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Abstrat

The elementary losure P

0

of a polyhedron P is the intersetion of P with

all its Gomory-Chv�atal utting planes. P

0

is a rational polyhedron provided

that P is rational. The known bounds for the number of inequalities de�ning

P

0

are exponential, even in �xed dimension. We show that the number of in-

equalities needed to desribe the elementary losure of a rational polyhedron

is polynomially bounded in �xed dimension. If P is a simpliial one, we on-

strut a polytope Q, whose integral elements orrespond to utting planes of

P . The verties of the integer hull Q

I

inlude the faets of P

0

. A polynomial

upper bound on their number an be obtained by applying a result of Cook

et al. Finally, we present a polynomial algorithm in varying dimension, whih

omputes utting planes for a simpliial one that orrespond to verties of

Q

I

.



1 Introdution

Integer programming is onerned with the optimization problem

maxf

T

x j Ax � b; x 2 Zn

g; where A 2 Zm�n

and b 2 Zm

:

It is well-known that integer programming is NP-hard. However, the situation is

di�erent if the number of variables, here n, is �xed. Lenstra (1983) showed that

integer programming in �xed dimension is solvable in polynomial time. Lenstra's

algorithm relies on results from the geometry of numbers like Khinthine's at-

ness theorem, lattie basis redution, and the ellipsoid method. Lov�asz & Sarf

(1992) found a way to avoid the ellipsoid method. However, present algorithms

for integer programming in �xed dimension are still far from being elementary.

The utting plane method pioneered by Gomory (1958) omputes iteratively

tighter approximations of the integer hull P

I

of a polyhedron P , until P

I

is �nally

obtained. We shortly desribe the method. An inequality 

T

x � bÆ, with  2 Zn

and Æ = maxf

T

x j x 2 Pg, is alled a Gomory-Chv�atal utting plane. The set

of vetors P

0

satisfying all utting planes for P is alled the elementary losure

of P . Let P

(0)

= P and P

(i+1)

= (P

(i)

)

0

, for i � 0. Chv�atal (1973) showed that

every polytope P satis�es P

(t)

= P

I

for some t 2 N
0

. Shrijver (1980) extended

this result to rational polyhedra. The number of iterations t until P

(t)

= P

I

is not polynomial in the size of the desription of P , even in �xed dimension

(Chv�atal 1973). Yet, if P

I

= ; and P � Rn

, Cook, Coullard & Tur�an (1987)

showed that there exists a number t(n), suh that P

(t(n))

= ;. Cook (1990) proved

the existene of utting plane proofs for integer infeasibility that an be arried

out in polynomial spae. These results raise the question whether it is possible

to ome up with a polynomial utting plane algorithm for integer infeasibility in

�xed dimension. Using binary searh this would also yield a polynomial utting

plane algorithm for integer programming in �xed dimension.

In this ontext we are motivated to investigate the omplexity of the ele-

mentary losure in �xed dimension. More preisely, we will study the ques-

tion whether, in �xed dimension, the elementary losure P

0

of a polyhedron

P = fx 2 Rn

j Ax � bg, with A and b integer, an be de�ned by an inequality

system whose size is polynomial in the size of A and b.

It is well-known that the elementary losure P

0

an be de�ned by utting

planes of the form �

T

Ax � b�

T

b, where � 2 [0; 1)

m

(see e.g. (Cook, Cunning-

ham, Pulleyblank & Shrijver 1998, Lemma 6.34)). This leads to the insight

that P

0

is a rational polyhedron again, if P is rational. Carath�eodory's theorem

implies that the vetors � an be further restrited suh that at most rank(A)

many omponents of � are stritly positive.

Proposition 1. Let P = fx 2 Rn

j Ax � bg; A 2 Zm�n

; b 2 Zm

, be a rational

polyhedron. The elementary losure P

0

is the polyhedron de�ned by Ax � b and

the set of all inequalities �

T

Ax � b�

T

b, where � has at most rank(A) positive

omponents, � 2 [0; 1)

m

and �

T

A 2 Zn

.

It follows that P

0

an be desribed by at most (kA

T

k

1

)

n

many inequalities,

sine this is a straightforward upper bound on the number of integer vetors of
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the form �

T

A; � 2 [0; 1℄

m

. This upper bound is exponential in the enoding

length of A, even in �xed dimension. One an further restrit the utting planes



T

x � bÆ to those orresponding to a totally dual integral (TDI) system de�ning

P (Edmonds & Giles 1977, Giles & Pulleyblank 1979, Shrijver 1980). The

number of inequalities of a minimal TDI-system for a polyhedron P an still be

exponential in the size of P , even in �xed dimension (Shrijver 1986, p. 317).

The ontributions of this paper are twofold. In the �rst part, we prove that

in �xed dimension the number of inequalities needed to desribe P

0

is polynomial

in the enoding length of P . Based on this result, we develop in the seond part

a polynomial algorithm in varying dimension for omputing Gomory-Chv�atal

utting planes of simpliial ones. Our approah uses tehniques from integer

linear algebra like the Hermite and the Howell normal form of matries. While

the Hermite normal form has been applied to ut generation before (see e.g.

(Hung & Rom 1990, Lethford 1999)), the utting planes that we derive here

are not only among those of maximal possible violation in a natural sense, but

also belong to the polynomial desription of P

0

developed in the �rst part of

our paper. Caprara, Fishetti & Lethford (1999) apply Gaussian elimination

to �nd mod k-uts, for k prime, whih are violated by (k � 1)=k. We present

a framework that aptures all Gomory-Chv�atal uts in an algebrai struture,

namely the kernel of a matrix and one solution of an inhomogeneous system of

linear equalities over some residue ring Z
d

, where d is not neessarily prime. This

struture omfortably allows for loal searh tehniques to improve on various

riteria for the quality of uts, like the Eulidean distane, norm or sparsity.

2 Notation and de�nitions

A polyhedron P is a set of vetors of the form P = fx 2 Rn

j Ax � bg, for

some matrix A 2 Rm�n

and some vetor b 2 Rm

. We write P = P (A; b). The

polyhedron is rational if both A and b an be hosen to be rational. If P is

bounded, then P is alled a polytope. The integer hull P

I

of a polytope P

is the onvex hull of the integral vetors in P . If P is rational, then P

I

is a

rational polyhedron again. The dimension of P is the dimension of the aÆne

hull of P . An inequality 

T

x � Æ de�nes a fae F = fx 2 P j 

T

x = Æg of P , if

Æ � maxf

T

x j x 2 Pg. F is alled a faet of P , if dim(F ) = dim(P )�1. If F 6= ;

and dim(F ) = 0, then F is alled a vertex of P . If P is full-dimensional, then

P has a unique (up to salar multipliation) minimal set of inequalities de�ning

P . They orrespond to the faets of P . We refer to (Nemhauser & Wolsey 1988)

and (Shrijver 1986) for further basis of polyhedral theory.

The size of an integer z is the number

size(z) =

(

1 if z = 0

1 + blog

2

(jzj) if z 6= 0

Likewise, the size of a matrix A 2 Zm�n

, size(A) is the number of bits needed to

enode A, i.e., size(A) = mn+

P

i;j

size(a

i;j

), (see (Shrijver 1986, p. 29)). If P

is given as P (A; b), then we denote size(A) + size(b) by size(P ).
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A lattie L � Rn

is a subgroup of Rn

of the form fAx j x 2 Zn

g, where A

is a nonsingular square matrix. We write L = L(A). The dual lattie L
�

(A)

of L(A) is the lattie L
�

(A) = fx 2 Rn

j x

T

y 2 Z; 8y 2 L(A)g. One has

L
�

(A) = L((A
�1

)

T

) (see e.g. (Shrijver 1986, p. 50)).

If P is a rational polyhedron, then the number of extreme points of P

I

an

be polynomially bounded by size(P ) in �xed dimension. This follows from a

generalization of a result by Hayes & Larman (1983), see (Shrijver 1986, p. 256).

The following upper bound on the number of verties of P

I

was proved by Cook,

Hartmann, Kannan & MDiarmid (1992). B�ar�any, Howe & Lov�asz (1992) show

that this bound is tight.

Theorem 2. If P � Rn

is a rational polyhedron whih is the solution set of a

system of at most m linear inequalities whose size is at most ', then the number

of verties of P

I

is at most 2m

d

(6n

2

')

d�1

, where d = dim(P

I

) is the dimension

of the integer hull of P .

Last we reall some basi number theory (see e.g. (Niven, Zukerman &

Montgomery 1991)). Z
d

denotes the ring of residues modulo d, i.e., the set

f0; : : : ; d� 1g with addition and multipliation modulo d. We will often identify

an element of Z
d

with the natural number in f0; : : : ; d � 1g to whih it orre-

sponds. Z
d

is a ommutative ring but not a �eld if d is not a prime. However Z
d

is a prinipal ideal ring, i.e., eah ideal is of the form hgi = fgx j x 2 Z
d

g / Z
d

.

Sine hdi = hegi for eah unit e 2 Z�
d

and sine g= gd(d; g) is a unit of Z
d

, it

follows that hgi = hgd(d; g)i. Therefore we an assume that g divides d, g j d.

Thus eah ideal of Z
d

has a unique generator dividing d, all it the standard gen-

erator. The standard generator g of an ideal ha

1

; : : : ; a

k

i /Z
d

is easily omputed

with the Eulidean algorithm.

3 The elementary losure of a rational simpliial one

Consider a rational simpliial one, i.e., a polyhedron P = fx 2 Rn

j Ax � bg,

where A 2 Zn�n

, b 2 Zn

and A has full rank. Observe that P; P

0

and P

I

are all

full-dimensional. The elementary losure P

0

is given by the inequalities

(�

T

A)x � b�

T

b; where � 2 [0; 1℄

n

; and �

T

A 2 Zn

: (1)

Sine P

0

is full-dimensional, there exists a unique (up to salar multipliation)

minimal subset of the inequalities in (1) that suÆes to desribe P

0

. These

inequalities are the faets of P

0

. We will ome up with a polynomial upper

bound on their number in �xed dimension.

The vetors � in (1) belong the dual lattie L
�

(A) of L(A). Reall that eah

element in L
�

(A) is of the form �=d, where d = det(L(A)) = jdet(A)j is the

absolute value of the determinant of A. It follows from the Hadamard inequality

that size(d) is polynomial in size(A), even for varying n. Now (1) an be rewritten

as

�

T

A

d

x �

�

�

T

b

d

�

; where � 2 f0; : : : ; dg

n

; and �

T

A 2 (d � Z)n: (2)
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Notie here that �

T

b=d is a rational number with denominator d. There are two

ases: either �

T

b=d is an integer, or �

T

b=d misses the nearest integer by at least

1=d. Therefore b�

T

b=d is the only integer in the interval

�

�

T

b� d+ 1

d

;

�

T

b

d

�

:

These observations enable us to onstrut a polytope Q, whose integral points

will orrespond to the inequalities (2). Let Q be the set of all (�; y; z) in R2n+1

satisfying the inequalities

� � 0

� � d

�

T

A = d y

(�

T

b)� d+ 1 � d z

(�

T

b) � d z:

(3)

If (�; y; z) is integral, then � 2 f0; : : : ; dg

n

, y 2 Zn

enfores �

T

A 2 (d �Z)n and z

is the only integer in the interval [(�

T

b+ 1� d)=d; �

T

b=d℄. It is not hard to see

that (3) de�nes indeed a polytope.

The orrespondene between inequalities (their syntati representation) in

(2) and integral points in Q is obvious. The faets of P

0

are among the verties

of Q

I

.

Proposition 3. Eah faet of P

0

is represented by an integral vertex of Q

I

.

Proof. Consider a faet 

T

x � Æ of P

0

. If we remove this inequality (possibly

several times, beause of salar multiples) from the set of inequalities in (2),

then the polyhedron de�ned by the resulting set of inequalities di�ers from P

0

,

sine P

0

is full-dimensional. Thus there exists a point x̂ 2 Qn

that is violated by



T

x � Æ, but satis�es any other inequality in (2). Consider the following integer

program:

maxf(�

T

A=d) x̂ � z j (�; y; z) 2 Q

I

g: (4)

Sine x̂ =2 P

0

there exists an inequality (�

T

A=d)x � b�

T

b=d in (2) with

(�

T

A=d)x̂ � b�

T

b=d > 0:

Therefore, the optimal value will be stritly positive, and an integral optimal

solution (�; y; z) must orrespond to the faet 

T

x � Æ of P

0

. Sine the optimum

of the integer linear program (4) is attained at a vertex of Q

I

, the assertion

follows.

Remark 4. Not eah vertex of Q

I

represents a faet of P

0

. In partiular, if P is

de�ned by nonnegative inequalities only, then 0 is a vertex of Q

I

but not a faet

of P

0

.
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Theorem 5. The elementary losure of a rational simpliial one P = fx 2

Rn

j Ax � bg, where A and b are integral, is polynomially bounded in size(P )

when the dimension is �xed.

Proof. Eah faet of P

0

orresponds to a vertex of Q

I

by Proposition 3. Reall

from the Hadamard bound (see e.g. (Shrijver 1986, p. 7)) that d � ka

1

k � � � ka

n

k,

where a

i

are the olumns of A. Thus the number of bits needed to enode d is

in O(n size(P )). Therefore the size of Q is in O(n size(P )). It follows from

Theorem 2 that the number of verties of Q

I

is in O(size(P )

n

) for �xed n, sine

the dimension of Q is n+ 1.

It is possible to expliitly onstrut in polynomial time a minimal inequality

system de�ning P

0

when the dimension is �xed. As noted in (Cook et al. 1992),

one an onstrut the verties of Q

I

in polynomial time. This works as follows.

Suppose one has a list of verties v

1

; : : : ; v

k

of Q

I

. Let Q

k

denote the onvex

hull of these verties. Find an inequality desription of Q

k

, Cx � d. For eah

row-vetor 

i

of C, �nd with Lenstra's algorithm a vertex of Q

I

maximizing

f

T

x j x 2 Q

I

g. If new verties are found, add them to the list and repeat the

preeding steps, otherwise the list of verties is omplete. The list of verties of

Q

I

yields a list of inequalities de�ning P

0

. With the ellipsoid method or your

favorite linear programming algorithm in �xed dimension, one an deide for eah

individual inequality, whether it it is neessary. If not, remove it. What remains

are the faets of P

0

.

4 The elementary losure of rational polyhedra

Let P = fx 2 Rn

j Ax � bg, with integral A and b, be a rational polyhedron.

If A does not have full olumn rank, then there exists a unimodular matrix U

transforming A from the right into a matrix with only rank(A) many nonzero

olumns. Sine unimodular transformations applied to A from the right and the

elementary losure operation are ompliant (see e.g. (Shrijver 1986, p. 341)), we

an assume that A has full olumn rank. Suh a unimodular matrix U an be

found in polynomial time. Simply hoose rank(A) linearly independent rows

^

A

of A with Gaussian elimination and ompute U transforming

^

A into its Hermite

normal form (Shrijver 1986, p. 45). Reall that the Hermite normal form of

an integral matrix A 2 Zm�n

with full row rank is a nonnegative, nonsingular

lower triangular matrix H, suh that there exists a unimodular matrix U with

(H j 0) = AU , where eah row of H has a unique maximal entry, loated at the

diagonal h

i;i

. Polynomial algorithms for omputing the Hermite normal form

have been given by Kannan & Bahem (1979), Hafner & MCurley (1991), and

Storjohann & Labahn (1996), among others.

It follows from Proposition 1 that any Gomory-Chv�atal ut an be derived

from a set of n inequalities out of Ax � b where the orresponding rows of A are

linear independent. Suh a hoie represents a simpliial one C and it follows

from Theorem 5 that the number of inequalities of C

0

is polynomially bounded

by size(C) � size(P ).
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Theorem 6. The number of inequalities needed to desribe the elementary lo-

sure of a rational polyhedron P = P (A; b) with A 2 Zm�n

and b 2 Zm

, is

polynomial in size(P ) in �xed dimension.

Proof. As we observed, we an assume that A has full olumn rank. An upper

bound on the number of inequalities that are neessary to desribe P

0

follows

from the sum of the upper bounds on the number of faets of C

0

where C is a

simpliial one, formed by n inequalities of Ax � b. There are at most

�

m

n

�

� m

n

ways to hoose n linear independent rows of A. Thus the number of neessary

inequalities desribing P

0

is O(m

n

size(P )

n

) for �xed n.

Following the disussion at the end of Setion 3 and using again Lenstra's

algorithm, it is now easy to ome up with a polynomial algorithm for onstruting

the elementary losure of a rational polyhedron P (A; b) in �xed dimension. As

we observed, we an assume that A has full olumn rank. For eah hoie of n

rows of A de�ning a simpliial one C, ompute the elementary losure C

0

and

put the orresponding inequalities in the partial list of inequalities desribing P

0

.

At the end, redundant inequalities an be deleted.

5 Finding uts for simpliial ones

In Setion 3 we saw that the verties of Q

I

inlude the faets of the elementary

losure P

0

of a simpliial one P (A; b). In pratie the following situation often

ours. One wants to �nd a utting plane that uts of the extreme point of P ,

x̂ = A

�1

b. It is easy to see that the senario of Gomory's orner polyhedron

(Gomory 1967) (see also (Shrijver 1986, p. 364)), is of this nature. In this

setion, we will show how to generate suh utting planes. Following Setion 3,

they will have the speial property that they orrespond to verties of Q

I

and

thus belong to a family of inequalities whih grows only polynomially in �xed

dimension. While the separation problem for the elementary losure is NP-hard

(Eisenbrand 1999) in general, these utting planes an be omputed in polynomial

time in varying dimension.

Let P = fx 2 Rn

j Ax � bg again be a rational simpliial one, where

A 2 Zn�n

and b 2 Zn

. Let d = jdet(A)j denote the absolute value of the

determinant of A. Let Q be de�ned by the inequalities in (3). We will �nd a

fae-de�ning inequality of Q

I

that represents the utting planes with a maximal

rounding e�et. This relates to the study of maximally violated mod k-uts by

Caprara et al. (1999). A utting plane

(�=d)

T

Ax � b(�=d)

T

b

an be found by solving the following linear system over Z
d

.

�

T

(A j b) = (0; : : : ; 0; �); (5)

where �=d for � 2 f0; : : : ; d � 1g is the desired value for the rounding e�et

(�

T

b)=d � b(�

T

b)=d. If P is a simpliial one, then this rounding e�et is the

6



amount of violation of the utting plane by the extreme point x̂ of P . Caprara

et al. (1999) �x � in the system (5) to the maximal possible value d�1. However,

there does not have to exist a solution to (5) when � is set to d � 1. We show

here that the maximal �, denote it by �

max

, for whih a solution to (5) exists,

an be omputed eÆiently.

For this we have to reah a little deeper into the linear algebra tool-box. In

the following we will make extensive use of the Hermite and Howell normal form

of an integer matrix. The Hermite normal form belongs to the standard tools

in integer programming. Hung & Rom (1990) for example use a variant of the

Hermite normal form to generate utting planes of simpliial ones P , suh that

the outome

~

P has in integral vertex. Lethford (1999) uses the Hermite normal

form to ut o� the minimal fae of a one P (A; b) where A has full row rank.

We use the Hermite normal form beause it allows us to represent the image and

kernel of matries A 2 Zm�n

d

in a onvenient way. Notie that Z
d

is not a �eld

if d is not a prime. Therefore, standard Gaussian elimination does not apply for

these tasks in general.

5.1 The Howell and Hermite normal form

Let us study the olumn-span of a matrix B 2 Zm�n

d

span(B) = fx 2 Zm

d

j 9y 2 Zn

d

; By = xg:

The olumn-span of an integral matrix B 2 Zm�n

is de�ned aordingly. We

write span

Z

d

(B) and span

Z

(B) to distinguish if neessary. The span of an empty

set of vetors is the submodule f0g of Zm

d

.

Consider the set of vetors S(i) � span(B), i = 0; : : : ;m, whose �rst i

omponents are 0. Clearly S(i) is a Z
d

-submodule of span(B). We say that a

nonzero matrix B is in anonial form if

i. B has no zero olumn, i.e., a olumn ontaining zeroes only,

ii. B is in olumn-ehelon form, i.e., if the �rst ourrene of a nonzero entry

in olumn j is in row i

j

, then i

j

< i

j

0

, whenever j < j

0

(the olumns form

a stairase \downwards"),

iii. S(i) is generated by the olumns of B belonging to S(i).

We shortly motivate this onept. If B 2 Zm�n

d

is in anonial form and

y 2 Zm

d

is given, then it is easy to deide whether y 2 span

Z

d

(B). For this, let

i be the number of leading zeroes of y. Clearly y 2 span

Z

d

(B) if and only if

y 2 S(i). Conditions ii) and iii) imply that if y 2 S(i), then there exists a unique

olumn b of B with exatly i leading zeroes and

b

i+1

� x = y

i+1

(6)

being a solvable equation in Z
d

. It is an elementary number theory task to

deide, whether suh an x exists and if so to �nd one (see e.g. (Niven et al. 1991,

7



p. 62)). Now subtrat x b

i+1

times olumn b from y. The result is in S(i + 1).

One proeeds until the outome is in S(n), whih implies that y 2 span

Z

d

(B), or

the onditions disussed above fail to hold, whih implies that y =2 span

Z

d

(B).

Storjohann & Mulders (1998) show how to ompute a anonial form of a

matrix A with O(mn

!�1

) basi operations in Z
d

, where O(n

!

) is the time re-

quired to multiply two n � n matries. The number ! is less then or equal

to 2:37 as found by Coppersmith & Winograd (1990). In the rest of this pa-

per, we use the O-notation to ount basi operations in Z
d

like addition, mul-

tipliation, or (extended)-gd omputation of numbers in f0; : : : ; d � 1g. The

bit-omplexity of a basi operation in Z
d

is O(size(d) log size(d) log log size(d)) as

found by Sh�onhage & Strassen (1971) (see also (Aho, Hoproft & Ullman 1974)).

Reall that size(d) = O(n size(A)).

Storjohann & Mulders (1998) give Howell (1986) redit for the �rst algo-

rithm and the introdution of the anonial form and all it Howell normal form.

However, there is a simple relation to the Hermite normal form already used in

Setion 4.

Proposition 7. Let A 2 Zm�n

d

be a nonzero matrix and let H be the Hermite

normal form of (A j d � I) where (A j d � I) is interpreted as an integer matrix.

Then a anonial form of A is the matrix H

0

whih is obtained from H by deleting

the olumns h

(i)

with h

i;i

= d (notie that h

i;i

j d).

Proof. Clearly, span

Z

d

(H

0

) � span

Z

d

(A) and H

0

is in olumn-ehelon form. We

need to verify iii). Let u 2 span

Z

d

(A) with u 2 S(i), where i is maximal. Property

iii) is guaranteed if i = m. If i < m, then u

i+1

6= 0. Interpreted over Z, this

means that 0 < u

i+1

< d. Clearly u 2 span

Z

(H), and sine u

i+1

2 h

i+1;i+1

� Z

(reall that H is a lower triangular matrix with nonzero diagonal elements and

that u

i+1

is the �rst nonzero entry of u), it follows that the olumn h

(i+1)

appears

in H

0

. After subtrating u

i+1

=h

i+1;i+1

times the olumn h

(i+1)

from u, the result

will be in S(i+1) and, by indution, the result will be in the span of the olumns

of H

0

belonging to S(i + 1). All together we see that u is in the span of the

vetors of H

0

belonging to S(i).

It is now easy to see that the anonial forms of a matrix A have a unique

representative B that, using the notation of ii), satis�es the following additional

onditions that we will assume for the rest of the paper:

iv. the elements of row i

j

are redued modulo b

i

j

;j

(interpreted over the inte-

gers) and

v. the natural number b

i

j

;j

divides d.

5.2 Determining the maximal amount of violation

We now apply the anonial form to determine the maximal amount of violation

�

max

=d. Notie that P 6= P

I

if and only if there exists a � 6= 0 suh that (5)

has a solution. If (A j b)

T

onsist in Z
d

of zeroes only, then P = P

I

. Otherwise

let H be the anonial form of (A j b)

T

, whih an be found with O(n

!

) basi
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operations in Z
d

(Storjohann & Mulders 1998). Sine P 6= P

I

, the last olumn

of H is of the form (0; : : : ; 0; g)

T

, for some g 6= 0. The ideal hgi / Z
d

generated

by g is exatly the set of � suh that (5) is solvable for �. Sine g j d, the largest

� 2 f1; : : : ; d� 1g \ hgi is

�

max

= d� g:

Thus we an ompute �

max

in O(n

!

) basi operations in Z
d

and the inequality

(b

T

;0

T

;�1)(�; y; z) = b

T

�� z � �

max

(7)

will be valid for Q

I

, de�ning a nonempty fae of Q

I

,

F = (Q

I

\ (b

T

�� z = �

max

)): (8)

Theorem 8. Let P = fx 2 Rn

j Ax � bg be a rational simpliial one, where

A 2 Zn�n

is of full rank, b 2 Zn

and d = jdet(A)j. Then one an ompute in

O(n

!

) basi operations of Z
d

the maximal possible amount of violation �

max

=d.

Here, �

max

is the maximum number � 2 f0; : : : ; d � 1g for whih there exists a

utting plane (�=d)

T

Ax � b(�

T

b)=d separating A

�1

b with (�

T

b)=d�b(�

T

b)=d =

�=d.

5.3 Computing verties of Q

I

We proeed by omputing a vertex of F , whih will also be a vertex of Q

I

. First

we �nd in O(n

!

) basi operations of Z
d

, a solution �̂ to

�

T

(A j b) = (0; : : : ; 0; �

max

): (9)

Let K 2 Zn�k

d

represent the kernel of (A j b)

T

, i.e.,

span

Z

d

(K) = fx 2 Zn

d

j x

T

(A j b) = (0; : : : ; 0)g:

The anonial form of K again an be omputed in time O(n

!

) (Storjohann &

Mulders 1998). The solution set of (9) is the set of vetors

S = f�̂+ �� j �� 2 span

Z

d

(K)g: (10)

Notie that S is the set of integral vetors in F . Verties of Q

I

will be obtained

as minimal elements of S with respet to some ordering on S. For i = 1; : : : ; n

and a permutation � of f1; : : : ; ng, we de�ne a quasi-ordering �

i

�

on S by

� �

i

�

~� i� (�

�(1)

; : : : ; �

�(i)

) �

lex

(~�

�(1)

; : : : ; ~�

�(i)

):

Here, �

lex

denotes the lexiographi ordering on f0; : : : ; d� 1g

i

.

Proposition 9. If � 2 S is minimal with respet to �

n

�

, then (�; y; z) is a vertex

of Q

I

, where y and z are determined by � aording to (3).

9



Proof. Assume without loss of generality that � = id. Let � 2 S be minimal with

respet to �

n

�

and suppose that � =

P

j=1;::: ;l

�

j

�

(j)

is a onvex ombination

of verties of Q

I

, where eah �

(j)

6= � and �

j

> 0. Clearly, eah �

(j)

is in

S. Therefore, there exists an index i 2 f1; : : : ; ng suh that �

i

� �

(j)

i

, for

all j 2 f1; : : : ; lg, and �

i

< �

(j)

i

, for some j 2 f1; : : : ; lg. Sine �

j

� 0 and

P

i=1;::: ;l

�

j

= 1, we have

P

j=1;::: ;l

�

j

�

(j)

i

> �

i

, a ontradition.

We now show how to ompute a minimal element � 2 S with respet to �

n

�

.

For simpliity we assume that � = id, but the algorithm works equally well for

any other permutation. For � 2 S, we all (�

1

; : : : ; �

i

) the i-pre�x of �. We

will onstrut a sequene �

(i)

; i = 0; : : : ; n; of elements of S with the property

that the i-pre�x of �

(i)

is minimal among all i-pre�xes of elements in S with

respet to the �

lex

order. Sine �

lex

is a total order, the i-pre�x of �

(i)

is unique

and the i-pre�x of �

(j)

is the i-pre�x of �

(i)

, for all j � i. In other words, the

j-pre�x of �

(j)

oinides with the i-pre�x of �

(i)

exept possibly in the last (j� i)

omponents.

De�ne K(i) � span

Z

d

(K) as the Z
d

-submodule of span

Z

d

(K) onsisting of

those elements having a zero in their �rst i omponents. For j � i, the vetor

�

(j)

is obtained from �

(i)

by adding an element of K(i). Suppose that K is in

anonial form and let K

(i)

be the submatrix of K onsisting of those olumns

of K that lie in K(i). Notie that K

(i)

is in anonial form, too, and that

span

Z

d

(K

(i)

) = K(i).

We initialize �

(0)

with an arbitrary element of S. Suppose we have onstruted

�

(i)

. By the preeding disussion, �

(i+1)

is of the form �

(i)

+�, for some � 2 K(i).

We have to take are of the (i + 1)-st omponent. Let � be the �rst olumn of

K

(i)

and let g be the (i + 1)-st omponent of �. If g = 0, then �

(i)

is minimal

with respet to �

i+1

. Otherwise the smallest omponent that we an get in the

(i + 1)-st position is is the least positive remainder r of the division of �

(i)

i+1

by

g (remember that g j d). We have �

(i)

i+1

= qg + r with an appropriate natural

number q and some r 2 f1; : : : ; g � 1g. Thus, by subtrating q� from �

(i)

,

we obtain a vetor �

(i+1)

that is minimal with respet to �

i+1

. Notie that

the omputation of �

(i+1)

from �

(i)

involves O(n) elementary operations in Z
d

.

Repeating this onstrution n times we get the following theorem.

Theorem 10. Let P = fx 2 Rn

j Ax � bg be a rational simpliial one, where

A 2 Zn�n

is of full rank, b 2 Zn

and d = jdet(A)j. Then one an ompute

in O(n

!

) basi operations of Z
d

a vertex of Q

I

orresponding to a utting plane

(�=d)

T

Ax � b(�=d)

T

b separating A

�1

b with maximal possible amount of viola-

tion �

max

=d.

In pratie one would want to generate several utting planes for P . Here is

a simple heuristi to move from one utting plane orresponding to a vertex of

Q

I

to the next. If one has omputed some � 2 S then it an be easily heked,

whether a omponent of � an be individually dereased. This works as follows.

Suppose we are interested in the i-th omponent �

i

. Compute the standard

10



generator g of the ideal of the i-th omponents of span

Z

d

(K). Reall that g j d.

Now �

i

an be individually dereased, if g < �

i

. In this ase we swap rows i and

1 of K and omponents i and 1 of � and proeed as disussed in the previous

paragraph. This \swapping" orresponds to another permutation. It results in

a new order �

�

and a new vertex of Q

I

.
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