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Abstrat

In this paper we propose a veri�ation method for hybrid systems that

is based on a suessive elimination of the various system loations in-

volved. Briey, with eah suh elimination we ompute a weakest preondi-

tion (strongest postondition) on the predeessor (suessor) loations suh

that the property to be proved annot be violated. This is done by repre-

senting a given veri�ation problem as a seond-order prediate logi formula

whih is to be solved (proved valid) with the help of a seond-order quan-

ti�er elimination method. In ontrast to many \standard" model heking

approahes the method as desribed in this paper does not perform a forward

or bakward reahability analysis. Experiments show that this approah is

partiularly interesting in ases where a standard reahability analysis would

require to travel often through some of the given system loations. In addi-

tion, the approah o�ers possibilities to proeed where \standard" reahabil-

ity analysis approahes do not terminate.

Keywords

Hybrid Systems, Veri�ation, Model Cheking, Quanti�er Elimination, Lo-

ation Elimination.



1 Introdution

Hybrid Systems are real-time systems that are embedded in analog envi-

ronments. They ontain disrete and ontinuous omponents and inter-

at with the physial world through sensors and atuators. Due to the

rapid development of omputer tehnology, hybrid systems diretly on-

trol muh of what we depend on in our daily lives [AHH96℄. Sine they

typially operate in safety-ritial situations, the development of rigorous

analysis tehniques is of high importane. However, traditional program

veri�ation is hardly useful, for it allows us, at best, to merely approxi-

mate ontinuously hanging environments by disrete sampling. Also, ear-

lier veri�ation tehniques based on temporal logis [CE81, CES86, EMSS90,

GH90, MP92, MW84, Non95, Non96, OL82, Pnu77, PH88, Sis85℄ lead only

halfway towards what is atually demanded. Only reently have there been

some attempts at developing a veri�ation methodology for hybrid sys-

tems [ABL97, ACD90, ACH

+

95, ACHH93, AD94, AH92, AHH96, AHS96,

ANKS95, CHR91, GNRR93, Hen91, Hen95, Hen96, HNSY92, Ho95, Kop96,

LLW95, Sha93, SUM96℄.

A ommon model for hybrid systems an be found in hybrid automata.

Briey, suh hybrid automata are �nite graphs whose nodes orrespond to

global states. A omputation of suh an automaton is a sequene of state

hanges (steps). Within eah step the system state evolves ontinuously

aording to a dynamial law until a transition from one node to another one

ours. Transitions are instantaneous state hanges that separate ontinuous

state evolutions.

The paper is now organized as follows. We start with a formal de�ni-

tion of hybrid systems. After that we proeed with the formal de�nition of

the syntax and the semantis of Integrator Computation Tree Logi, ICTL

[AHH96℄, that lets us formulate temporal properties of the hybrid system un-

der onsideration. What follows is the introdution of the dedutive model

heking approah in general. This inludes both the logial representation

and the method to solve the veri�ation problem. Some ommon generaliza-

tions are briey examined in a subsequent setion. In order to provide with

some more intuition on the approah some examples follow whih also allow

us to ompare the approah with standard reahability analysis methods.

Finally, we onlude that paper with a brief summary and an outlook at

what ought to be done in the near future.

1



2 Hybrid Systems

2.1 Syntax

Definition 2.1 (Constraint Terms and Constraint Formulas)

The set CT of Constraint Terms over a �xed variable set X is de�ned as

the smallest set ontaining X, and real-valued onstants, and, moreover,

is losed under addition, subtration, and multipliation with real-valued

onstants.

The set of CF of Constraint Formulas (over the variable set X) is de�ned

as the smallest set that is losed under onjuntion and ontains > (truth)

and ? (falsity) as well as all atoms of the form t

1

> t

2

, t

1

� t

2

, t

1

< t

2

,

t

1

� t

2

, and t

1

= t

2

, where t

1

and t

2

are onstraint terms taken from CT.

As usual, we illustrate hybrid systems as graphs like

_x = 1

x � 1

_x = 1

x � 1

L N

x

:

=

0

x = 1 j x := 0

> j x := 0

Nodes L and N represent disrete loations, whereas x is a data variable.

Within eah loation we desribe the loation invariant (x � 1 in the exam-

ple) and the ontinuous ativity whih desribes how the values of the data

variables hange in time. In the above example the value of x inreases by 1

per time unit (say, seond), i.e., the �rst derivative of the funtion desribing

the behavior of x over time is the onstant 1.

Edges are annotated with guards and disrete ations. Guards form a on-

straint on the data variables to hold if a transition via the orresponding

edge is to be performed. The disrete ation spei�es how the data vari-

ables are to be hanged after taking the transition. In the above example

the guard of the edge from L to N is x = 1 and the orresponding ation is

to reset x to 0.

The above hybrid system thus desribes the following behavior: it starts at

loation L with the data variable x set to 0. Within L and N the value of

x inreases by 1 every seond (so x is a lok). The system leaves loation

L after exatly one seond and resets x to 0. Similarly, it remains within N

for at most one seond and reenters L after resetting x to 0 again.

The following de�nition spei�es what hybrid systems are in general.

Definition 2.2 (Hybrid Systems)

Hybrid Systems are tuples of the form (X;L; E ;dif; inv; guard; at), where

� X is a �nite set of real-valued data variables,

� L is a �nite set of loations, i.e., nodes of a graph,
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� E � L �L is a �nite (multi)set of transitions, i.e., edges of the graph

with nodes from L,

� dif : L�X 7! CT is a mapping that assoiates with eah loation and

eah data variable a onstraint term (with free variables taken from

X), representing the hange of the data variable within this loation

over time,

� inv : L 7! CF is a mapping that assoiates with eah loation a on-

straint formula (with free variables taken from X), representing the

loation invariant,

� guard : E 7! CF is a mapping that assoiates with eah edge a on-

straint formula (with free variables taken from X), representing the

ondition that has to be enabled in order to travel along the edge, and

� at : E � X 7! CT is a mapping that assoiates with eah edge and

eah data variable a onstraint term (with free variables taken from

X), representing the value of the variable after traveling along the

edge.

2.2 Semantis

We de�ne a state of a hybrid system as a pair (L; �) where L 2 L is a

loation and � : X 7! R is a valuation of the data variables. � naturally

extends to (onstraint) terms and (onstraint) formulas. A state (L; �) is

alled admissible if �(inv(L)) holds. Given two admissible states � = (L; �)

and �

0

= (L

0

; �

0

) we say that �

0

is transition-reahable from � { denoted

by �

tr

7! �

0

{ if there exists a transition T = (L;L

0

) 2 E with soure L

and target L

0

, and both �(guard(T )) and �

0

(x) = �(at(T; x)) for eah

x 2 X. We all �

0

timely-reahable from � with delay Æ { denoted by

�

Æ

7! �

0

, where Æ is a non-negative real number { if L = L

0

and for eah

x 2 X there exists a di�erentiable funtion f

x

: [0; Æ℄ 7! R, with the �rst

derivative

_

f

x

: (0; Æ) 7! R, suh that (1) f

x

(0) = �(x) and f

x

(Æ) = �

0

(x) and

(2) for all � 2 R with 0 < � < Æ: both inv(L)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ and

_

f

x

(�) = dif(L; x)[x

1

=f

x

1

(�); : : : ; x

n

=f

x

n

(�)℄ are true. �

0

is timely-reahable

from � { denoted by �

?

7! �

0

{ if there exists a non-negative Æ 2 R suh that

�

Æ

7! �

0

. �

0

is said to be reahable from � if (�; �

0

) 2 (

?

7! [

tr

7!)

�

.

A run � of H with initial state �

0

= (L

0

; �

0

) is a maximal sequene of states

represented as

� = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

where t

i

2 R
�0

and f

i

: [0; t

i

℄ 7! (X 7! R), suh that f

i

(0) = �

i

, and

moreover, inv(L

i

)[X=f

i

(t)(X)℄ holds for all 0 � t � t

i

, (L

i

; f

i

(t

i

))

tr

7! �

i+1

and for all 0 � t

0

� t

0

+Æ � t

i

: (L

i

; f

i

(t

0

))

Æ

7! (L

i

; f

i

(t

0

+Æ)). The set of states
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ontained in suh a run � is given as States(�) = f(L

i

; f

i

(t)) j t 2 R; 0 � t �

t

i

g. The set of all runs of a hybrid system H with initial state � is denoted

by runs(H; �). A position � of a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � �

is a pair � = (i; r) 2 N � R suh that 0 � r � t

i

. We denote the set of

positions of a run � as pos(�). Positions are ordered lexiographially, i.e.,

(i; r) < (j; s) if and only if i < j or (i = j and r < s). Also, (i; r) � (j; s) if

and only if (i; r) < (j; s) or (i = j and r = s). By �(�) with � = (i; r) we

denote the state (L

i

; f

i

(r)). Thus States(�) = f�(�) j � 2 pos(�)g.

A run is said to be non-zeno if

P

t

i

diverges. In the sequel we shall assume

that the runs of the hybrid system under onsideration are all non-zeno.

1

For the simple hybrid system from page 2 it is quite easy to �nd the set

of reahable states. It ontains exatly all states of the form (L; �) or (N;�)

where � maps x to an arbitrary real value between 0 and 1. Intuitively, it

should thus be possible to prove that the value of the data variable x always

remains smaller than 1. But there are muh more interesting properties of

the above system that we want to be able to prove. As we noted already,

the system will always remain within loation L for exatly one seond,

whereas it an only remain within loation N for at most one seond. Thus,

the aumulated time spent in loation N an never exeed one half of the

overall running time of the system. Suh properties should be provable

as well. This, however, demands for a requirement language that lets us

formulate these kinds of properties. One suh language an be found in

ICTL [AHH96℄ as desribed in the setion to follow.

3 Integrator Computation Tree Logi ICTL

3.1 ICTL Syntax

We desribe properties of a hybrid system with data variables X and loa-

tions L, in terms of ICTL formulas, where

� every onstraint formula over X is an ICTL formula,

� every loation name from L is an ICTL formula,

� if � and 	 are ICTL formulas, so are :�, � ^	, � _	, � ! 	, and

� � 	,

� if � and 	 are ICTL formulas, so are AG �, AF �, EG �, EF �,

�EU	, and �AU	,

1

The assumption of non-zenoness implies that hybrid systems are deadlok-free, i.e.,

there is no reahable state that has no suessor. So-alled liveloks, however, are not

exluded. This means that we absolutely allow states whih have only themselves as

future alternatives. The latter ase just states that the situation does not hange in time,

whereas the former ase (deadlok) would laim that time itself has ome to an end.
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� if � is an ICTL formula, z is a new data variable, and fL

1

; : : : ; L

n

g 2 L

is a subset of the loation names then z

fL

1

;::: ;L

n

g

:� is an ICTL formula

(and z is added to the set X).

Intuitively, the temporal operators AG ;AF ;EG ;EF ; EU ; AU , mean

\always", \inevitably", \possibly always", \possibly", \possibly until", and

\inevitably until" respetively. Their formal semantis with respet to hy-

brid systems is de�ned below.

3.2 ICTL Semantis with respet to Hybrid Systems

Given a hybrid system H, by H

z

fL

1

;::: ;L

n

g

we mean the extended system we

obtain from adding the new lok z whih is initialized with 0 and whih is

supposed to run with slope 1 within loations L

1

; : : : ; L

n

and with slope 0,

i.e., it is stopped, for all other loations. Notie that this implies that the

value of the new lok z will never get below 0. Formally:

Let H = (X;L; E ;dif; inv; guard; at). Then

H

z

fL

1

;::: ;L

n

g

= (X [ fzg;L; E ;dif

0

; inv

0

; guard; at)

where inv

0

(L) = inv(L) ^ 0 � z and

dif

0

(L; x) =

8

<

:

dif(L; x) if x 6= z

1 if x = z and L 2 fL

1

; : : : ; L

n

g

0 otherwise

for all data variables x 2 X and loations L 2 L.

2

As usual, we de�ne the valuation �[z=0℄ as �[z=0℄(x) =

�

�(x) if x 6= z

0 otherwise.

Definition 3.1

Given a hybrid system H = (X;L; E ;dif; inv; guard; at) and a state � =

(L; �), the semantis of ICTL with respet to H and � is de�ned as:

H; � j=  i� j= �(), provided  is a onstraint formula

H; � j= N i� loations N and L are idential

H; � j= :� i� H; � 6j= �

H; � j= � ^	 i� H; � j= � & H; � j= 	

and similarly for the other boolean onnetives

H; � j= AG � i� 8� (� 2 runs(H; �) )

8� (� 2 pos(�) )H; �(�) j= �))

2

Atually, the funtion at would also have to be hanged aordingly. However, if we

take the onvention that we only desribe the ation on data variables that hange their

value by taking the transition, it beomes unneessary to add something like at(T; z) = z.
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H; � j= EF � i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= EG � i� 9� (� 2 runs(H; �) &

8� (� 2 pos(�) )H; �(�) j= �))

H; � j= AF � i� 8� (� 2 runs(H; �) )

9� (� 2 pos(�) & H; �(�) j= �))

H; � j= �EU	 i� 9� (� 2 runs(H; �) &

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �) )

H; �(�

0

) j= �)))

H; � j= �AU	 i� 8� (� 2 runs(H; �) )

9� (� 2 pos(�) & H; �(�) j= 	 &

8�

0

((�

0

2 pos(�) & (0; 0) � �

0

� �) )

H; �(�

0

) j= �)))

H; � j= z

N

:� i� H

z

N

; (L; �[z=0℄) j= �, where N � L

Lemma 3.2

For the ICTL operators AG and EF the above semantis an be hanged to

H; � j= AG� i� H; �

0

j= � for every �

0

reahable from �

H; � j= EF� i� H; �

0

j= � for some �

0

reahable from �

Clearly, from the above de�nition it follows that AG � $ :EF :� and

EF � $ >EU�. Also, EG � $ :AF :� and AF � $ >AU�. All tem-

poral operators an thus be desribed in terms of the two Until -operators.

Example 3.3

Reall the property we wanted to express and prove for our example hybrid

system on page 2. In terms of ICTL this property an be formulated as

y

fL;Ng

:z

fNg

:AG 2z � y

i.e., we assume two additional loks y and z, where y ounts overall time

(it runs with slope 1 in eah loation) and z aumulates the time spent in

loation N (it ats as a usual lok in loation N but is stopped in loation

L). The piture of our hybrid system then hanges to
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_x = 1 x � 1

_y = 1 0 � y

_z = 0 0 � z

_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

L N

x

:

=

0

y

:

=

0

;

z

:

=

0

x = 1 j x := 0

> j x := 0

For this extension we want to prove that AG 2z � y, i.e., we have to hek

whether the onstraint 2z � y holds for all reahable states.

4 Dedutive Model Cheking

The general idea behind the dedutive model heking approah is as fol-

lows. Our ultimate aim is to automate what is desribed in De�nition 3.1.

To this end onsider a hybrid system H, some loation of H, say L, and

an ICTL formula �. For some valuations of the data variables in L, �

is true and for the others � is false. Let us ollet the former in the set

^

� = f� j H; (L; �) j= �g. Now, suppose we were able to desribe this

set

^

� as a (�nite) onstraint formula, say d�e

L

. Then, heking whether

H; (L; �) j= � holds an be reformulated as to heking whether �(d�e

L

) is

valid. And in ase of merely linear onstraints this ould even be deided.

Our intermediate goal, therefore, is to �nd d�e

L

, the harateristi on-

straint formula for � in loation L.

3

In order to ahieve this, we onsider

the struture of the ICTL formula �. In the simplest ase � is either a

onstraint formula or a loation name. The latter ase simply redues to

> or ?, depending on whether or not this loation name is idential to L.

In the former ase, we an assume � to be its own harateristi onstraint

formula and so d�e

L

= �. Also, there are no diÆulties with boolean on-

netives as long as the harateristi onstraint formulas for the respetive

omponents are known. For instane, d� ^ 	e

L

= d�e

L

^ d	e

L

whih is

a �nite onstraint formula provided both d�e

L

and d	e

L

are. Evidently,

the more ompliated and more interesting ases are those where � has a

temporal operator as a top symbol. However, it is in general not possible to

�nd a orresponding �nite harateristi onstraint formula, for otherwise

the validity of ICTL formulas for arbitrary (linear) hybrid systems would

be deidable whih, unfortunately, is not the ase. Therefore we annot

3

The reader who is familiar with standard model heking approahes for hybrid sys-

tems probably noties a small hange in perspetive sine we do not ompute the set of

states that ful�ll �, but (representatives of) onstraint formulas instead. This view is far

from arti�ial; in fat, it is ruial for the proposed approah.
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expet to �nd a harateristi onstraint formula as easy as for the simple

ases above. Instead of attempting to onstrut d�e

L

diretly, we desribe

it as a formula of the seond-order prediate alulus and try to simplify

this desription to a onstraint formula if possible. How this an be done is

desribed later. At this stage we are more onerned with the onstrution

of the harateristi onstraint formula for � at L.

4.1 First-order Theories of Reahability and Inevitability

Here we restrit our view to linear hybrid systems, where dif(L; x) is a

onstant, say k

x

L

, for eah loation L and data variable x. We extend this

to sets of data variables X = fx

1

; : : : ; x

n

g in the natural way suh that a

term like X + k

X

L

Æ represents the sequene x

1

+ k

x

1

L

Æ; : : : ; x

n

+ k

x

n

L

Æ.

Definition 4.1

An interpretation = = (D;=

L

; �) for a �rst-order theory assoiated with a

hybrid system H with loations L has a �xed domain D (the reals or the

rationals, say), a valuation � for the data variables in X, and a meaning

funtion =

L

for the loations in L suh that =

L

(L) 2 D

n

, where n is the

number of data variables in X. A model of a formula � is an interpretation

satisfying this formula.

We often also speak of a model as a set of ground atoms of the form

fL(=(t

1

); : : : ;=(t

n

)) j = j= L(t

1

; : : : ; t

n

)g; t

i

are onstraint termsg, where

= is a model in the above sense. Interpretations (models) are partially or-

dered by set-inlusion. A minimal model of � is a model of � suh that none

of its proper subsets is also a model of �. We denote the set of minimal

models for a formula � by minMod(�). In ase there exists only one unique

minimal model we shall also refer to this one as minMod(�).

Definition 4.2

Let H = (X;L; E ;dif; inv; guard; at) be a hybrid system. For eah L 2 L

we de�ne the �rst-order theory

4

8X L(X) !

8

>

>

<

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ! N(at(T;X))

as the loal reahability theory of L in H, R

L

H

for short. By the reahability

theory of H { whih we all R

H

, or simply R if H is lear from the ontext

{ we understand the onjuntion of all loal reahability theories, i.e.,

R

H

=

^

L2L

R

L

H

4

For readability let us abbreviate L(at(T; x

1

); : : : ; at(T; x

n

)) with L(at(T;X)).
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Hene, for eah loation L 2 L we introdue an n-ary prediate with the

same name, where n is just the number of data variables in H, i.e., n = jXj.

Then, (loation) atoms L(�

1

; : : : ; �

n

) orrespond to states (L; �), where

�(x

i

) = �

i

with X = fx

1

; : : : ; ; x

n

g. For simpliity we abbreviate this with

L(�

1

; : : : ; �

n

)

�

=

(L; �). This notion of orrespondene between atoms and

states naturally extends to sets of atoms (interpretations, models) and sets

of states (e.g., members of a run).

The purpose of suh a reahability theory is to have a logial represen-

tation of the reahable states. It is onstruted in a way suh that for eah

possible state (denoted by an atom L(X) that orresponds to this very state)

the possible immediate future states an be determined. For instane, given

the atom L(X) the loal reahability theory of L in H tells us that the or-

responding state satis�es the loation invariant inv(L) and also that there

are potential timed suessors (8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X +

k

X

L

Æ))), and, �nally, potential transition suessors (

V

T=(L;N)2E

guard(T ) !

N(at(T;X))). The exat onnetion between reahability theories and

reahable states is given by the following lemma.

Lemma 4.3

If the onjuntion L(�(X)) ^ R

H

has a model at all then it has a unique

minimal model whih orresponds to the set of states that are reahable

from (L; �) in the hybrid system H. More formally:

minMod(L(�(X)) ^R

H

)

�

=

f� j ((L; �); �) 2 (

?

7! [

tr

7!)

�

g

Proof: First note that a reahability theory is Horn in the loation pred-

iates, that all other symbols have �xed interpretation, and that the only

boolean onnetive within onstraint formulas is the logial onjuntion.

Therefore, if the theory has a model at all then it has a unique minimal

model.

What remains to be shown is that for every loation L

0

and every data

variable valuation �

0

L

0

(�

0

(x

1

); : : : ; �

0

(x

n

)) 2 minMod(L(�(X)) ^R

H

)

,

((L; �); (L

0

; �

0

)) 2 (

?

7! [

tr

7!)

�

For the diretion from left to right take any proof of L

0

(�

0

(x

1

); : : : ; �

0

(x

n

))

from L(�(X)) ^ R

H

. The laim then follows by an easy indution on the

length of this proof.

As for the other diretion, onsider the reahable state (L

0

; �

0

) that is

inluded in some run �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

�

3

7!

t

3

f

3

� � � with �

0

= (L; �)

and �

0

= f

i

(t) for some 0 � t � t

i

. A simple indution on i then shows that

the ground atom represented by L

0

(f

i

(0)) belongs to the minimal model of

L(�(X)) ^ R

H

. Moreover, sine 8X L

0

(X) ! 8Æ (Æ � 0 ^ inv(L

0

)[X=X +

9



k

X

L

0

Æ℄ ! L

0

(X + k

X

L

0

Æ)) is a lause of the theory under onsideration we also

know that the ground atom represented by L

0

(f

i

(t)) is a member of the

minimal model and we are done. 2

Example 4.4

For our simple example from page 6 the reahability theory is given by

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z) ^

x = 1 ! N(0; y; z)

^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ) ^

L(0; y; z)

The reahability theory will ultimately be responsible for the temporal op-

erators AG and EF . However, it is not well suited for the other temporal

operators we are interested in. We therefore, in addition, de�ne a simi-

lar �rst-order theory; this time for these other temporal operators, though.

Just as the reahability theory provides us with some information about the

states that an be reahed, the inevitability theory to be de�ned below tells

us something about the states that are inevitable or unavoidable. It does

so by stating between whih possible future alternatives the system must

hoose. The following spei�es this.

Definition 4.5 (Inevitability Theory)

Let H = (X;L; E ;dif; inv; guard; at) be a hybrid system. For eah L 2 L

we de�ne the �rst-order theory

8X L(X) ! inv(L)

8X L(X) !

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

8Æ Æ � 0 ! L(X + k

X

L

Æ) _

9Æ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ � 0 ^

8Æ

0

0 � Æ

0

� Æ ! L(X + k

X

L

Æ

0

) ^

_

T=(L;N)2E

guard(T )[X=X + k

X

L

Æ℄ ^

N(at(T;X)[X=X + k

X

L

Æ℄)

as the loal inevitability theory of L in H, I

L

H

for short. By the inevitability

theory of H { whih we all I

H

, or simply I if H is lear from the ontext

{ we understand the onjuntion of all loal inevitabiity theories, i.e.,

I

H

=

^

L2L

I

L

H

10



The �rst part of any loal inevitability theory is trivial. It just guarantees

the mere fat that for eah loation prediate the orresponding loation

invariant is supposed to hold. The seond part is more ompliated and

more interesting. Note that, given an arbitrary state represented by the

loation prediate L(X), either the system remains forever in this loation,

i.e., 8Æ Æ � 0 ! L(X+k

X

L

Æ), or it will sooner or later leave this very loation.

In the latter ase we know that there is a time delay Æ after whih one of

the guards of the outgoing edges is true and until then the system remains

within loation L. This is exatly what is expressed by the ompliated

seond part of the loal inevitability theories.

The importane of the inevitability theory is made preise in the lemma

below.

Lemma 4.6

Eah minimal model of L(�(X))^I

H

orresponds to the members of one of

the possible runs

5

of H with initial state (L; �). Also, the members of any

possible run of H orrespond to a model of I

H

^ L(�(X)). Formally:

�

8= = 2 minMod(L(�(X)) ^ I

H

) )

9� � 2 runs(H; (L; �)) & =

�

=

States(�)

�

8� � 2 runs(H; (L; �)) )

fL

0

(�

0

(X)) j (L

0

; �

0

) 2 States(�)g j= L(�(X)) ^ I

H

Proof: Consider the systemati onstrution of a minimal model for the

theory L(�(X)) ^ I

H

. Evidently, this leads to run of H with initial state

(L; �).

On the other hand, onsider an arbitrary run of H with initial state (L; �).

It is easy to see that the atoms that orrespond to states of this run are

losed under L(�(X)) ^ I

H

. 2

Example 4.7

For our simple example from page 6 the inevitability theory is given by

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! L(x + Æ; y + Æ; z) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! L(x + Æ

0

; y + Æ

0

; z)) ^

x + Æ = 1 ^N(0; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

8Æ Æ � 0 ! N(x + Æ; y + Æ; z + Æ) _

9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

5

Reall that we only onsider non-zeno runs of hybrid systems. Zeno runs ould even

lead to inonsistenies in the inevitability theory.

11



whih an be simpli�ed to

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! 8Æ

0

(0 � Æ

0

� 1� x! L(x + Æ

0

; y + Æ

0

; z)) ^

N(0; y + 1� x; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! 9Æ Æ � 0 ^

8Æ

0

(0 � Æ

0

� Æ ! N(x + Æ

0

; y + Æ

0

; z + Æ

0

)) ^

L(0; y + Æ; z + Æ)

4.2 The Dedutive Approah for Linear Hybrid Systems

Suppose we are given a hybrid system H, its reahability theory R together

with an initial state (L; �), and a property AG  to be proved, where 

is a onstraint formula over the data variables X. Then we have to show

that  holds for all the reahable states of H, i.e., it is true for eah atom

of the minimal model of the orresponding reahability theory. Trivially,

this means that there exists a model (namely the minimal model) whose

elements all satisfy the onstraint . On the other hand, sine the minimal

model is by de�nition a subset of any model of the theory, we know that

having suh a model means that also for the minimal model it holds that

eah of its elements satisfy . Altogether, we know that AG  holds at (L; �)

for H if and only if there exists a model of its reahability theory (together

with the atom that orresponds to the initial state) suh that  holds for all

its elements, or, more formally,

6

if L(�(X)) ^R^

V

N2L

8XN(X) !  has

a �rst-order model. This latter statement, however, an be formulated in

terms of seond-order logi, namely

9L

1

; : : : ; L

n

L(�(X)) ^R ^ 8X (L

1

(X) _ : : : _ L

n

(X) ! )

sine the existene of a model is tantamount to the existene of suitable

interpretations for the free symbols involved.

Example 4.8

Reall that we wanted to prove AG 2z � y for the extended example system

on page 6. Aording to the above observations this means that we have to

6

Reall that the loation names are the only prediate symbols that have a free inter-

pretation.

12



prove the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ 0 � Æ � 1� x ^

0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

As for the general ase, assume that we have to show that AG �, where �

is an arbitrary ICTL formula. That means we have to verify that � holds

for every state that is reahable from the initial state, say (L; �), within the

hybrid system H. If � were a onstraint formula or a loation name, we

would know what to do from the observations above. Nevertheless, even

if � is not a onstraint formula, we have a desription of its harateristi

onstraint formula, namely d�e

L(X)

H

for eah loation name L. I.e., proving

that H; (L; �) j= AG � holds an be redued to showing the validity of

�(d�e

L(X)

H

). This, and similar reetions on the other temporal operators,

leads to the following de�nition.

Definition 4.9

The harateristi onstraint formula d�e

L(X)

H

assoiated with the ICTL

formula �, the hybrid system H = (X;L; E ;dif; inv; guard; at), and the

loation L 2 L is reursively de�ned by

de

L(X)

H

= 

dL

0

e

L(X)

H

=

�

> if L and L

0

are idential

? otherwise

d:�e

L(X)

H

= :d�e

L(X)

H

d� ^	e

L(X)

H

= d�e

L(X)

H

^ d	e

L(X)

H

and similarly for the other boolean onnetives

dz

N

:�e

L(X)

H

=

�

d�e

L(X;z)

H

z

N

�

z

0

, where N � L

7

dAG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^R

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

dEG �e

L(X)

H

= 9L

1

; : : : ; L

n

L(X) ^ I

H

^

V

N2L

8XN(X) ! d�e

N(X)

H

7

As usual, the notation A

x

y

means A with every ourrene of x replaed by y.
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The temporal operators EF and AF are to be treated as :AG : and

:EG : respetively. For the Until operators see Subsetion 4.3 on page 15.

Intuitively, suh a harateristi onstraint formula desribes the neessary

and suÆient ondition on the data variables suh that the ICTL formula �

holds for the hybrid system H in loation L. This, however, is exatly what

we need for our dedutive model heking approah. The following (main)

theorem makes this more preise.

Theorem 4.10

Given a hybrid system H with data variables X, an initial state (L; �) and

an ICTL formula �. Then

H; (L; �) j= � i� j= �

�

d�e

L(X)

H

�

Proof: By indution on the struture of �.

For � being a onstraint formula  or a loation name L the theorem holds

trivially. Also in ase of a boolean onnetive there are no problems at all.

Therefore, let us only onsider the more ompliated ases.

H; (L; �) j= z

N

:	

i� H

z

N

; (L; �[z=0℄) j= 	 (De�nition 3.1)

i� j= �[z=0℄

�

d	e

L(X;z)

H

z

N

�

(indution hypothesis)

i� j= �

�

dz

N

:	e

L(X)

H

�

(De�nition 4.9)

H; (L; �) j= AG 	

i� H; � j= 	 for every � reahable from (L; �) (Lemma 3.2)

i� 8� ((L; �); �) 2 (

?

7! [

tr

7!)

�

)H; � j= 	

i� 8N;�

0

N(�

0

(X)) 2 minMod(L(�(X)) ^R

H

) )H; (N;�

0

) j= 	

(Lemma 4.3)

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 = ) H; (N;�

0

) j= 	

i� 9= = j= L(�(X)) ^R

H

& 8N;�

0

(N;�

0

) 2 = ) j= �

0

�

d	e

N(X)

H

�

(indution hypothesis)

i� 9= = j= L(�(X)) ^R

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^R

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dAG 	e

L(X)

H

�
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H; (L; �) j= EG 	

i� 9� (� 2 runs(H; (L; �)) & 8� (� 2 pos(�) )H; �(�) j= 	))

(De�nition 3.1)

i� 9= = j= L(�(X)) ^ I

H

& 8N;�

0

N(�

0

(X)) 2 = ) H; (N;�

0

) j= 	))

(Lemma 4.6)

i� 9= = j= L(�(X)) ^ I

H

& 8(N;�

0

) (N;�

0

) 2 = ) j= �

0

�

d	e

N(X)

H

�

(indution hypothesis)

i� 9= = j= L(�(X)) ^ I

H

& = j=

V

N2L

8X N(X) ! d	e

N(X)

H

i� 9= = j= L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= 9L

1

; : : : ; L

n

L(�(X)) ^ I

H

^

V

N2L

8X N(X) ! d	e

N(X)

H

i� j= �

�

dEG 	e

L(X)

H

�

Finally, H; (L; �) j= EF 	 i� H; (L; �) 6j= AG :	 i� 6j= �

�

dAG :	e

L(X)

H

�

i�

8

j= �

�

dEF 	e

L(X)

H

�

and also H; (L; �) j= AF 	 i� H; (L; �) 6j= EG :	 i�

6j= �

�

dEG :	e

L(X)

H

�

i� j= �

�

dAF 	e

L(X)

H

�

. 2

4.3 Until-Formulas

The Until -operators �EU	 and �AU	 give rise to a slight ompliation of

the dedutive model heking approah desribed in this paper. Let us �rst

illustrate their treatment with the help of a speial ase, namely � being

a onstraint formula. In order to hek a property of the form EU	 in

state �

0

for the hybrid system H we have to �nd out whether there exists

a run � = �

0

7!

t

0

f

0

�

1

7!

t

1

f

1

�

2

7!

t

2

f

2

� � � suh that H; (L

i

; f

i

(t)) j= 	 for

some 0 � t � t

i

and for all states \inbetween" the onstraint  holds. The

reahability theory (together with the initial state) is only helpful in deter-

mining whether suh a 	 is about to hold. It does not tell us, though, what

happens inbetween. In order to overome this problem, we introdue the

notion of a -safe transition. Intuitively, -safe transitions preserve the on-

straint . Now, the set of states reahable via -safe transitions is de�nitely

a subset of the set of reahable states. Moreover, if a state with property

	 is reahable via -safe transitions then there exists a pre�x of at least

one run of the hybrid system suh that eah transition within this pre�x is

-safe { whih guarantees that the states ourring in this pre�x have prop-

erty  { and whih ends with a state having property 	. In other words,

8

Note that this \if and only if" holds beause �

�

dAG :	e

L(X)

H

�

ontains no free

symbols whatsoever, and therefore is either > or ?.
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if a state with property 	 is reahable via -safe transitions then EU	

holds. The other diretion holds trivially anyway. Hene, what remains to

be done is to desribe the reahability theory for -safe transitions. This,

however, is atually very simple, for we just have to add  as an additional

loation invariant for all loations of the hybrid system. For instane, the

loal reahability theory of L then hanges to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^  ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^ [X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ! N(at(T;X))

Note that adding this onstraint to the invariants of all loations ensures

that  is also preserved for edge-transitions, (L;N) say. Also note, that the

above hange in the reahability theory allows us to desribe the operator

EU	 where the interval in whih  is supposed to hold inludes the two

interval borders. This might not be very satisfatory for many interesting

problems. Thus, if we want to exlude the left border, we have to hange

the loal reahability theory for L to

8X L(X) !

8

>

>

>

>

<

>

>

>

>

:

inv(L) ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ^ [X=X + k

X

L

Æ℄ !

L(X + k

X

L

Æ)) ^

^

T=(L;N)2E

guard(T ) ^ [X=at(T;X)℄ ! N(at(T;X))

The di�erene to the earlier loal reahability theory is that  is no longer

fored to hold for the initial state, but is guaranteed to hold after time and

edge transitions. Exluding the right border of the interval an be done

by onsidering ( _ 	)EU	 instead of EU	. The latter way to desribe

reahability theories therefore seems to be the most general one.

For the general ase, we have to onsider ICTL formulas of the form

�EU	 where � is not neessarily a onstraint formula. This ompliates

matters again a bit beause the additional invariant to hold is d�e

L(X)

H

for

loation L and thus di�ers for eah loation.

Definition 4.11

We de�ne the reahability theory R

H

(

L

1

; : : : ; 

L

n

), where n = jLj, for the
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hybrid system H under the onstraints 

L

1

; : : : ; 

L

n

as:

R

H

(

L

1

; : : : ; 

L

n

) =

^

L

i

2L

8X L

i

(X) !

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

inv(L

i

) ^

8Æ (Æ � 0 ^ inv(L

i

)[X=X + k

X

L

i

Æ℄ ^



L

i

[X=X + k

X

L

i

Æ℄) ! L

i

(X + k

X

L

i

Æ) ^

^

T=(L

i

;L

j

)2E

guard(T ) ^ 

L

j

[X=at(T;X)℄ !

L

j

(at(T;X))

Evidently, by the above De�nition, R

H

= R

H

(>; : : : ;>).

Definition 4.12

The harateristi seond-order formula assoiated with the ICTL-formula

�EU	 in loation L for the hybrid system H is de�ned as:

d�EU	e

L(X)

H

= :9L

1

; : : : L

n

8

>

<

>

:

L(X) ^R

H

�

d�e

L

1

(X)

H

; : : : ; d�e

L

n

(X)

H

�

^

^

N2L

8X N(X) ! d	e

N(X)

H

How to desribe the operator AU in terms of EU an be found in [AHH96℄.

5 Seond-Order Quanti�er Elimination

So far, we have de�ned how to obtain a seond-order harateristi onstraint

formula from a given veri�ation problem (a hybrid system with initial state

and a property to be heked). This seond-order formula is now to be

proved valid. To this end we make use of the Elimination Theorem [NS95,

NS99, NOS99℄ that allows us to transform a given seond-order formula into

an equivalent �rst-order formula if possible.

Notation 5.1

As usual, by �

x

y

we mean � with eah x

i

in the sequene x replaed by

the orresponding y

i

from the sequene y. With �

�

P (�)=	

x

�

�

we refer to

� with every ourrene of the prediate symbol P replaed by the formula

	. The argument sequene � here allows us to name the argument list of

the respetive ourrenes.

Theorem 5.2 (Elimination Theorem)

Let � and 	 be two �rst-order formulas whih are positive with respet to

the prediate symbol P . Then

9P

�

8x (P (x) ! �) ^	

�

� 	

h

P (�)=

�

�P (x):�(P )

�

x

�

i

where �P (x):�(P ) =

^

i�!

�

i

(>) with �

0

(>) = >;�

n+1

(>) = �(�

n

(>))

17



The proof of this Theorem an be found in [NS95℄ (but also see [NS99,

NOS99℄). There, in addition, some generalizations and dual forms are ex-

amined. For the purpose of this paper, however, the above form suÆes.

Note that evaluating suh a greatest �xpoint, means to suessively ompute

eah �

i

(>) until we reah one that is entailed by its predeessor �

i�1

(>).

The monotoniity of � with respet to P (P ours only positively within

�) then guarantees that eah further iteration would also be implied by

�

i�1

(>). In fat, for simpliity, it is often not neessary to fully ompute

eah �

i

(>). It suÆes to onsider only those onjunts in �

i�1

(>) that are

not already subsumed by one of its predeessors.

The above Elimination Theorem is fairly general for it does not take the

speial appearane of the reahability and inevitability theories into aount.

Yet, in many interesting ases { namely those where a loation prediate is

to be eliminated for whih no edge transition to itself exists { we an provide

with a speial ase of the Elimination Theorem whose appliation does not

require the omputation of �xpoints. This speial ase is given below.

Corollary 5.3 (Simplifiation Lemma)

Suppose that 	 ontains L only positively and that � has no mention of L

at all. Then

9L

�

	 ^ 8X L(X) !

�

inv(L) ^ � ^

8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! L(X + k

X

L

Æ))

��

,

	

�

L(�) = (inv(L) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄))

X

�

�

Proof: By applying the Elimination Theorem. Reall that � is supposed

to have no mention of L. We are thus able to ompute the �xpoint of the

right-hand side of the impliation sign as:

�

1

(>) = inv(L) ^�

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

inv(L)[X=X + k

X

L

Æ℄ ^ �[X=X + k

X

L

Æ℄)

= �

1

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ ! �[X=X + k

X

L

Æ℄)

�

3

(>) = �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

Æ + k

X

L

Æ

0

℄ !

�[X=X + k

X

L

Æ + k

X

L

Æ

0

℄))

= �

2

(>) ^ 8Æ (Æ � 0 ^ inv(L)[X=X + k

X

L

Æ℄ !

8Æ

0

(Æ

0

� 0 ^ inv(L)[X=X + k

X

L

(Æ + Æ

0

)℄ !

�[X=X + k

X

L

(Æ + Æ

0

)℄))

At this stage it is easy to see that 8X �

2

(>) ! �

3

(>) and therefore we

are done with the �xpoint omputation and the result (after simpli�ation)
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inv(L)^8Æ (Æ � 0^ inv(L)[X=X +k

X

L

Æ℄ ! �[X=X +k

X

L

Æ℄). This �nal result

(the \omputed" �xpoint) has to be substituted for every ourrene within

the formula 	 where the free variables have to be instantiated aordingly.

2

The above Lemma is useful beause it an safe us a lot of �xpoint ompu-

tations. It states that it is almost trivial to eliminate a loation prediate

from a (reahability or inevitability) theory provided the loation has no

self-loop (� ontains no L in the preliminaries of the Lemma). Evidently,

appliations of the Simpli�ation Lemma (and also the Elimination The-

orem) usually introdue new edges and therefore it is very unlikely that

all eliminations an be performed only with the help of the above Lemma.

However, it is obvious that many eliminations are just of the above kind.

The purpose of both the Simpli�ation Lemma and the Elimination The-

orem, is to suessively eliminate existentially quanti�ed (loation) predi-

ates. I.e., eah elimination redues the number of loations of the hybrid

system by one. Suh eliminations result in new properties and new transi-

tions that, in a sense, represent paths through the eliminated loation.

As an illustration let us assume that we have to verify that AG x+y � 10

holds for a hybrid system that ontains the following sub-system.

_x = 2

_y = 1

x � y

L

1

L

2

L

3

x � y

x = y j x := 0; y := 0

Suppose that we are now about to eliminate loation L

2

. Aording to the

approah presented in this paper this means that we have to ompute { in

fat, �nd a �rst-order equivalent for { the seond-order formula

9L

2

2

6

6

6

6

6

6

4

8x; y L

1

(x; y) ! x � y ! L

2

(x; y) ^

8x; y L

2

(x; y) !

8

>

>

>

>

<

>

>

>

>

:

x � y ^

x + y � 10 ^

8Æ (Æ � 0 ^ x + 2Æ � y + Æ !

L

2

(x + 2Æ; y + Æ)) ^

x = y ! L

3

(0; 0)

9

>

>

>

>

=

>

>

>

>

;

3

7

7

7

7

7

7

5

The �ve onjunts of the above seond-order formula desribe the transition

from L

1

to L

2

, the loation invariant for L

2

, the property to be proved,

the time transition for loation L

2

, and the edge transition from L

2

to L

3

respetively.

Now, what we would expet as the result of eliminating L

2

? Evidently,

loation L

2

will vanish. And also, we will have to introdue a new edge from
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loation L

1

to loation L

3

whih in a sense represents the sub-path through

L

2

. The guard for this new edge should be x � y whih is inherited from

the edge between L

1

and L

2

. The disrete ation for the new edge should be

x := 0; y := 0 whih is inherited from the edge between L

2

and L

3

. But this

annot be all, and indeed this is not all that is omputed by the elimination.

As a onrete example suppose that we are in loation L

1

with x = 4 and

y = 5. In the new system, i.e., after eliminating L

2

, we an see that the

guard of the new edge holds and therefore we an make a transition to L

3

while resetting both x and y to 0. Moreover, the property to be proved,

namely x + y � 10 is never violated. In the original system, however, we

ould also perform the transition from L

1

, this time with destination L

2

,

though. We an leave L

2

only when x and y have an equal value, namely 6,

whih is reahed after exatly one time unit. After leaving L

2

we reah L

3

with both x and y reset to 0. But note, in the original system the property

to be proved (x + y � 10) has been violated in loation L

2

, e.g., when both

data variables had the value 6.

It is thus not suÆient to merely add the new edge; we also have to �nd the

neessary and suÆient ondition on the data variables in L

1

suh that the

property to be proved annot be violated within loation L

2

. And indeed,

this is what the Elimination Theorem (and also the Simpli�ation Lemma

in this ase) allows us to ompute. Aording to the Simpli�ation Lemma

and some further simpli�ations based on variable eliminations in quanti-

�ed onstraint formulas we an see that the above seond-order formula is

equivalent to

8x; y L

1

(x; y) ! x � y ! L

3

(0; 0)

8x; y L

1

(x; y) ! x � y ! 2y � x + 5

The �rst formula desribes just the new edge to be introdued. The seond

formula, however, tells us about the neessary and suÆient ondition on

the data variables for loation L

1

suh that it would be impossible to violate

x + y � 10 in loation L

2

.

Thus, what we ahieved by eliminating loation L

2

is, that we now an swith

to the somewhat simpler system we obtain by replaing the sub-system from

above by

L

1

L

3

x � y j x := 0; y := 0

For this simpli�ed system we then have to show that AG x+y � 10 (inherited

from the original problem) and also that x � y ! 2y � x + 5 for loation

L

1

.
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6 Examples

6.1 The Initial Simple Example

Reall the hybrid system of page 6 for whih we wanted to prove that

AG 2z � y. Aording to Example 4.8 on page 12 this means to hek

the validity of

9L;N

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

L(0; 0; 0)

8x; y; z L(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z L(x; y; z) ! x = 1 ! N(0; y; z)

8x; y; z L(x; y; z) ! 8Æ Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z)

8x; y; z N(x; y; z) ! x � 1 ^ 0 � y ^ 0 � z

8x; y; z N(x; y; z) ! L(0; y; z)

8x; y; z N(x; y; z) ! 8Æ (Æ � 0 ^ x + Æ � 1 ^

0 � y + Æ ^ 0 � z + Æ) !

N(x + Æ; y + Æ; z + Æ)

8x; y; z L(x; y; z) ! 2z � y

8x; y; z N(x; y; z) ! 2z � y

I.e., we apply the Simpli�ation Lemma and/or the Elimination Theorem

suessively to the existentially quanti�ed loation prediates L and N . For

instane, applying the Simpli�ation Lemma to the part of the above seond-

order formula that is onerned with the loation prediate L, i.e.,

9L

2

6

6

6

6

6

6

4

L(0; 0; 0) ^

8x; y; z N(x; y; z) ! L(0; y; z) ^

8x; y; z L(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z !

L(x + Æ; y + Æ; z))

x = 1 ! N(0; y; z)

results in (after some easy simpli�ations, e.g. with Fourier's algorithm)

N(0; 1; 0) ^

8x; y; z N(x; y; z) ! 0 � y ^ 0 � z ^ 2z � y ^N(0; y + 1; z):

It therefore remains to eliminate N in the resulting formula as given below.

9N

2

6

6

6

6

4

N(0; 1; 0) ^

8x; y; z N(x; y; z) !

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ 0 � Æ � 1� x ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ)

Interestingly, this �rst elimination step resulted in a seond-order formula

whih we ould equally obtain from the attempt to prove AG 2z � y for the

hybrid system
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_x = 1 x � 1

_y = 1 0 � y

_z = 1 0 � z

N

x

:

=

0

y

:

=

1

;

z

:

=

0

> j x := 0; y := y + 1

In a sense, the new arrows { one for the initial situation and one desribing

a loop from N to itself { take over the responsibility of the old loation L.

Now we have to eliminate the remaining seond-order quanti�ation from

the above formula. This time, however, we annot apply the Simpli�ation

Lemma for the loation N has got a self-loop after eliminating L. We

therefore have to proeed with the more general Elimination Theorem. I.e.,

we have to evaluate �N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 2z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

We do so by suessively omputing the �

i

(>).

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 2z � y

�

2

(>) = �

1

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ ! 2z + Æ � y)

= �

1

(>) ^ 1 + 2z � x + y

�

3

(>) = �

2

(>) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

1 + 2(z + Æ) � x + y + 2Æ)

= �

2

(>)

Hene, �N(x; y; z):�(N) � x � 1 ^ 0 � y ^ 0 � z ^ 1 + 2z � x + y and a

�nal instantiation with the values 0; 1; 0 for the variables x; y; z respetively

results in

0 � 1 ^ 0 � 1 ^ 0 � 0 ^ 1 + 0 � 0 + 1 � >

Thus, we have �nally proved that the original hybrid system indeed satis�es

AG 2z � y.

Now, let us hange the property to be proved to AG 3z � y, i.e., we

onsider the same hybrid system as before (on page 6) but try to prove a

property that does not hold.
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Then the elimination of L does not make a real di�erene, we just have

to substitute a 2 with a 3 in the �nal result. For the elimination of N ,

however, things hange drastially. We have to ompute �N(x; y; z):�(N)

where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ 3z � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ 3z � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ 2 + 3z � 2x + y

Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respetively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for eah i. If we take a look at �

2

(>) we observe

that its instantiation results in? and therefore we know that �N(x; y; z):�(N)

must be equivalent to ?, i.e., the property does not hold. It thus makes sense

to hek eah �

i

(>) after it has been generated for instantiation, for this

might lead to onsiderable simpli�ations.

As a �nal little variant of the example let us exhange 2z � y with

az � y, i.e., we introdue a parameter a to the property to be proved.

Again, the elimination of L does not make a real di�erene to the earlier

ases, we just have to substitute a 2 with an a in the elimination result. And

again, for the elimination of N things hange indeed. We have to ompute

�N(x; y; z):�(N) where

�(N) =

8

>

>

<

>

>

:

x � 1 ^ 0 � y ^ 0 � z ^ az � y ^

N(0; y + 1; z) ^

8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

N(x + Æ; y + Æ; z + Æ))

The various �

i

(>) then result in

�

0

(>) = >

�

1

(>) = x � 1 ^ 0 � y ^ 0 � z ^ az � y

�

2

(>) = �

1

(>) ^ 8Æ (Æ � 0 ^ x + Æ � 1 ^ 0 � y + Æ ^ 0 � z + Æ !

3z + 3Æ � y + Æ)

= �

1

(>) ^ a� 1 + 3z � y + (a� 1)x
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Now, note that we ultimately have to instantiate the variables x, y,

and z in the �xpoint result by 0, 1, and 0 respetively. Also note, that

�N(x; y; z):�(N) ! �

i

(>) for eah i. If we take a look at �

2

(>) we ob-

serve that its instantiation results in a � 2 and therefore we know that

�N(x; y; z):�(N) at least implies a � 2. By taking this additional knowl-

edge into aount, the �xpoint omputation terminates with just this result

a � 2. We therefore have shown that the example hybrid system has prop-

erty AG az � y if and only if the parameter a has a value less than or equal

to two.

6.2 The Water Level Monitor

The hybrid system is given as follows:

_x = 1

_y = 1

y � 10

_x = 1

_y = 1

x � 2

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero One

Three
Two

y

:

=

1

y = 10 j x := 0

x = 2

y = 5 j x := 0

x = 2

It is to be heked whether the water level (denoted by the data variable y)

always remains between 1 and 12, i.e., we have to prove the ICTL property

AG (1 � y ^ y � 12). Aording to the dedutive model heking approah

presented in this paper this means to prove the validity of the seond-order
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formula

9

Zero

One

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! One(0; y)

8x; y One(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

One(x + Æ; y + Æ)

x = 2 ! Two(x; y)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

Aording to Lemma 5.3 this is equivalent to (by eliminating loation One)

9

Zero

Two

Three

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Two(2; y + 2)

8x; y Two(x; y) !

8

>

>

<

>

>

:

y � 5 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y � 2Æ � 5 !

Two(x + Æ; y � 2Æ)

y = 5 ! Three(0; y)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

Note that this is exatly the formula we would have obtained from attempt-

ing to prove AG (1 � y ^ y � 12) for the hybrid system
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_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

_x = 1

_y = �2

y � 5

Zero

Three
Two

y

:

=

1

y

=

1

0

j

x

:

=

2

;

y

:

=

y

+

2

y = 5 j x := 0

x = 2

Again by Lemma 5.3 this is equivalent to (by eliminating loation Two)

9Zero;Three

0

B

B

B

B

B

B

B

B

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Three(0; 5)

8x; y Three(x; y) !

8

>

>

<

>

>

:

x � 2 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ x + Æ � 2 !

Three(x + Æ; y � 2Æ)

x = 2 ! Zero(x; y)

This seond-order formula would have equally been obtained by proving

AG (1 � y ^ y � 12) for the hybrid system

_x = 1

_y = 1

y � 10

_x = 1

_y = �2

x � 2

Zero

Three

y

:

=

1

y
=

10
j x

:=

0; y
:=

5

x = 2
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A �nal appliation of Lemma 5.3 then leads to (after eliminating loation

Three)

9Zero

0

B

B

B

B

�

Zero(x; 1)

8x; y Zero(x; y) !

8

>

>

<

>

>

:

y � 10 ^ 1 � y ^ y � 12

8Æ Æ � 0 ^ y + Æ � 10 !

Zero(x + Æ; y + Æ)

y = 10 ! Zero(2; 1)

Again, this would be exatly the formula we would get from the attempt to

prove AG (1 � y ^ y � 12) for some simpler hybrid system, namely

_x = 1

_y = 1

y � 10

Zero

y

:

=

1

y = 10 j x := 2; y := 1

This �nal seond-order formula trivially redues to >, and that in fat again

with the Simpli�ation Lemma alone (sine the self-loop is subsumed by the

initial state), and so the desired property is proved valid.

7 Generalizations

7.1 Parameterization

The harateristi seond-order formula we obtain from an ICTL-formula,

a hybrid system and a ground initial state has no free symbols whatsoever

unless the formula, the system, or the initial state are parameterized with

onstants over the reals. In this ase the harateristi formula represents

a onstraint on these parameters. This onstraint is the neessary and

suÆient ondition on the parameters for the ICTL-formula to hold. As an

example reall the parameterized system property from page 23.

7.2 Approximations

The �xpoint omputations do not neessarily terminate in general. In the

standard reahability analysis of hybrid systems one therefore often onsid-

ers ertain more or less strit approximations of the set of reahable sets.

Evidently suh approximations are also possible for the approah presented

here. For instane, one might onsider the onvex hull of the onstraint

formulas that arise from the elimination of some of the loations. Also one

might think of arti�ially terminating the �xpoint omputations after a er-

tain amount of iterations. In both ases we end up in de�ntions for the
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loation to be eliminated that are unneessarily \big". Similarly, there ex-

ist possibilities to approximate \smaller" andidates for the loation to be

eliminated. For further details the reader is refered to the relevant literature.

7.3 Retangular Hybrid Systems

In this paper the approah is desribed merely in terms of linear hybrid

systems, i.e. data variables are assumed to hange their value by a ertain

onstant amount (whih might vary from data variable to data variable)

per time unit. Nevertheless, the whole approah also works for retangular

hybrid systems, i.e. for systems within whih the hange in the data variables

is only desribed by some interval over the reals. For instane, reall the

de�nition of the reahability theory for some hybrid system (De�nition 4.2).

One part of it onsists of the lause 8Æ (Æ � 0 ^ inv(L)[x=x + k

x

L

Æ℄ !

L(x + k

x

L

Æ)), where k

x

L

denotes the real number that desribes the hange

of x in L within one time unit. If, however, we are given an interval, say

[a; b℄, rather than a �xed number we have to hange the orresponding part

of the reahability theory to 8Æ; � (Æ � 0 ^ a � � � b ^ inv(L)[x=x + �Æ℄ !

L(x + �Æ)). The non-linearity an easily be resolved and so we �nally end

up with linear formulas again. The Railroad-Gate-Controller from [AHH96℄

ertainly is one of the most famous examples of a retangular hybrid system.

8 Experimental Results

There exists a prototype implementation of the Elimination Approah (for

proving safety-properties) written in Sistus-Prolog with the CLP(Q,R)-

library for onstraint handling. Briey, the overall proedure implemented

works as follows: (i) read the problem �le, (ii) ompute the ompound au-

tomaton (parameters are additional arguments), (iii) add the property to

be proved (and also delete some of the time transitions in ase this is re-

quired from some \urgent" or \as-soon-as-possible"-semantis), (iv) selet

one of the initial loations, (v) eliminate the seleted loation (thus possibly

introduing new inital loations), (vi) if �nished or trivial then stop; oth-

erwise proeed with step (iv). The approah of seleting initial loations

for elimination has the obvious advantage that it will never be attempted

to eliminate an unreahable loation. On the other hand, suh a strategy

takes away muh of the freedom to hoose whatever loation we want for

elimination. Another feature of the implementation is that it allows us to

abstrat from (some of the loal) loations of a ompound automaton. This

makes it possible to perform a (forward or bakward) reahability analysis

(see below) whih allows for a thorough omparison between reahability

and elimination approahes.

Of major interest was the question whether there an be anything better

(at least for safety properties) than forward reahability provided it at all
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terminates. After all, within forward reahability we ompute exatly the

set of reahable states; and in fat we need to know about all the reah-

able states for proving safety properties. Thus, forward reahability does

not ompute any redundant information. However, it sometimes performs

redundant omputations. This an happen whenever a reahability analy-

sis requires more than one pass through the reahable loations before it

terminates. Systems for whih a single pass is suÆient are probably best

examined by forward reahability.

We laim that the Elimination Approah presented in this paper an

help us to avoid suh redundant omputations. This is the ase for instane

for the famous \audio-protool"-example. For other, unfortunately rather

trivial systems like the \Leaking Gas Burner" or the \Billiards"-example,

the Elimination Approah showed a slightly better behavior than standard

reahability analysis. However, in suh ases, where safety properties an

be proved in milliseonds anyway, this an hardly be alled \evidene".

The lak of non-trivial hybrid system in the literature that require several

passes through some of their loations made us ompose our own examples.

They are designed as simple as possible suh that they may serve to illustrate

the e�et of the Elimination Approah ompared to reahability analysis

methods. Some suh examples are given below.

8.1 Simulating Reahability Analysis

The Elimination Approah as desribed in this paper assumes that a pred-

iate symbol is introdued for eah of the loations of the (ompound) au-

tomaton. This method therefore is neither a forward nor a bakward analysis

approah. However, if we put these loation names into the argument list

and introdue a single and unique dummy prediate symbol instead that

replaes eah of the older loation names then it beomes obvious that the

Elimination Approah { by eliminating the new dummy prediate { per-

forms a bakward reahability analysis. Also, if we perform this loation

abstration but eliminate with the dual form of the Elimination Theorem,

i.e., let P our only negatively in � and in 	 then

9P [8x (P (x) _ �) ^	℄ � 	

h

P (�)=

�

�P (x):�

�

x

�

i

In this ase a forward reahability analysis is performed. For ompound

systems one an even perform something like a \mixed" approah by ab-

strating from only some of the loal systems.

8.2 Some Further Examples

8.2.1 Railroad-Gate-Controller

This example is taken from [AHH96℄. It desribes the ontrol system for

a railroad gate that has to guarantee that the gate is losed whenever a
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train is near and that it is open in ases where it is safe to be open. The

whole system onsists of three omponent systems: a train, a gate, and

the ontroller with three, four and again three loations respetively. This

suggests that the omposed system has at most 36 loations. However, this

number is restrited by the synhronisation labels that forbid ertain edge

ompositions. As it turns out, the omposed automaton has 22 loations,

but some of the guards denote what we all impossible guards, i.e., onstraint

formulas that will never beome true beause of the soure loation invariant.

Suh impossible guards usually annot be disovered syntatially, but they

obviously may redue the number of reahable loations

9

onsiderably. In

fat, this railroad-gate-ontroller example has only 7 reahable loations and

there is only little non-determinism. This makes the example fairly trivial,

despite it looks rather ompliated at the �rst glane.

Both the Elimination Approah and forward reahability analysis prove

the safety requirement AG (x � 10 ! Gate.losed) in about 0:5 seonds on

a 333 MHz UltraSPARC. The dual version of the Elimination Approah and

bakward reahability analysis require 1:0 se. and 1:3 se. respetively.

10

8.2.2 A Silly Multiplier

This is an example where three positive numbers a, b, and  are multiplied

and the �nal produt is stored in the data variable p. The multipliation is

performed by suessively adding 1 to p, similar to the nested for-loop

for (w:=0; w<; w++)

for (v:=0; v<b; v++)

for (u:=0; u<a; u++) fp:=p+1g

9

Notie the di�erene between reahable loations and reahable states. A loation is

reahable if there exists a reahable state that has this very loation as its �rst omponent.

If a loation is not reahable then there exists no reahable state with this loation.

10

Interestingly, forward reahability requires twie as many iterations as bakward reah-

ability, but also it is about twie as fast. This is explained by the fat that an iteration step

in the bakward analysis is far more ompliated than an iteration step during forward

analysis. It has to take muh more states, even impossible ones, into aount.
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_x = 1

_p = 1

_u = 0

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x = 1

x := 0

x = 1

u < a

x := 0

x = 1

u = a

x := 0

x = 1

v = b

x := 0

x

=

1

v

<

b

x

:

=

0

u

:

=

0

F

x = 1

w = 

x = 1

w < 

x := 0

u := 0

v := 0

It is to be shown that the loation F an be reahed { after all, as soon

as F is reahed, the data variable p ontains the multipliation result we

are interested in. (Bakward or forward) reahability analysis in a sense

simulates the behavior of the multiplier. I.e., sine this system is fully de-

terministi, it takes a walk through the whole omputation. Evidently, this

is very time onsuming even if we only attempted to ompute 10� 10� 10;

it takes approximately 8000 iterations.

Now, ompare this with the Elimination Approah.

11

(In the automata

below irrelevant information within the loations or at the transitions are

omitted for readability)

The Simpli�ation Lemma allows us to eliminate the top left loation in

one strike, resulting in

_x = 1

_p = 0

_u = 1

_v = 0

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_u = 0

_v = 0

_w = 1

x � 1

x

=

1

;

u

<

a

;

x

:

=

0

;

p

:

=

p

+

1

x = 1; u = a; x := 0

x = 1

v = b

x := 0

x = 1; v < b

x := 0; u := 0; p := p + 1

F

x = 1

w = 

x

=

1

;

w

<



x

:

=

0

;

u

:

=

0

;

v

:

=

0

;

p

:

=

p

+

1

p

:

=

1

11

The prototype implementation of the Elimination Approah is designed for safety

properties only. Thus, in order to prove that loation F an be reahed we have to show

that it is not the ase that loation F will never be reahed.
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As the next anditate for a loation elimination the prototype implementa-

tion hooses the bottom left loation and after approx. 2a iterations it ends

up with

_x = 1

_p = 0

_v = 1

_w = 0

x � 1

_x = 1

_p = 0

_v = 0

_w = 1

x � 1

x = 1; v = b

x := 0

x = 1; w < 

x := 0; p := p + a; v := 0

x = 1; v < b

x := 0; p := p + a

F

x = 1

w = 

p := a

The next step is to eliminate the new bottom loation. After about 2b

iterations it reahes

_x = 1

_p = 0

_w = 1

x � 1

x = 1; w < 

x := 0; p := p + a� b

F

x = 1

w = 

p

:

=

a

�

b

Now, in a �nal elimination the system attempts to get rid of the left loation.

This requires another 2 iterations and provides us with this �nal piture

F

p := a� b� 

In this remaining trivial system there is only one loation whih, in parti-

ular, is also the initial loation and whih therefore is trivially reahable.

The attempt to prove that F will never be reahed thus fails. Therefore

The loation F an be reahed and, while entering it, the data variable p

will ontain the produt of the positive numbers a, b, and .

As for a onrete example: in order to ompute the produt 10�10�10

the prototype implementation of the Elimination Approah requires about

0:8 seonds on a 333 MHz UltraSpar, whereas forward reahability analysis

(utilizing the same implementation) needs some 380 seonds. The more

sphistiated symboli model heker HyTeh, version 1.04, required some

12.3 seonds on the same mahine (forward reahability).

32



8.2.3 A Long Loop

The following example again demonstrates the e�et on long loops. In on-

trast to the multiplier example, however, the long loop is not inherent in the

system; it omes from the property to be proved.

_x = 1

_u = 1

_v = 1

_w = 1

x � 1

_x = 1

_u = 1

_v = 0

_w = 0

x � 2

_x = 1

_u = 1

_v = 1

_w = 0

x := 0

x

�

1

j

x

:

=

0

x

�

2

j

x

:

=

0

x; u; v; w := 0

Suppose that, for some reason, we want to show that AG (u � 154 !

5:9 � w � u + v). Although the system is fairly simple, the property to be

proved requires a reahability analysis to somehow (bakward) simulate the

system over a rather long period of time. In fat, forward reahability does

not terminate within a reasonable amount of time and bakward reahability

requires some 95 seonds on a 333 MHz UltraSpar. Unfortunately, HyTeh

version 1.04, the Berkeley symboli model heker for embedded systems

runs into a library overow error after about 60 seonds.

The implementation of the Elimination Approah, on the other hand,

�rst eliminates the two top loations within a fration of a seond (this

requires only the Simpli�ation Lemma) and, as an intermediate result,

omes up with a system that onsists of merely one remaining loation that

has a transition that leads to itself. It therefore has to be eliminated with

the Elimination Theorem and the implemented system does so in about 7.5

seonds on a 333 MHz UltraSpar.

8.2.4 Where Reahability Fails

The partiularity about the next example is that it ontains an \impossible"

loation, i.e., one of the loations { the bottom one { is unreahable beause

the guard (y = 2) of the transition that may lead to this very loation an

impossibly beome true.
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_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

_x = 1

_y = 1

x � 1

x

:

=

0

y

=

2

x := 0

x := 0; y := 0

x := 0

x := 0; y := y � 1

x

:

=

0

;

y

:

=

0

In a sense, forward reahability analysis detets this impossible transition,

although rather indiretly, for it never tries to ompute states whih involve

this loation. Nevertheless, forward reahability does not terminate, sine it

derives more and more new reahable states that involve the two rightmost

loations. At the �rst glane, bakward reahability might have a better

hane. Suppose we were about to prove that x � y is an overall invariant

of the system. If there were not the bottom loation, bakward reahability

would have no problem to detet that the invariant indeed holds. However,

this invariant does not hold for the bottom loation and the only reason why

this is non-ritial for the whole system is the mere fat that this loation

is not reahable anyway. It is thus simply not neessary to try and prove

the invariant for this very loation. However, bakward reahability annot

�nd out by itself that there is an impossible transition and therefore neither

terminates.

Now, what does the Elimination Approah (or atually its prototype

implementation) do with this example? After about 0:1 seonds (on a 333

MHz UltraSpar) it has eliminated the top three loations and ends up with

the remaining bottom loation, however, without any newly generated inital

transition. This means that there exists a trivial model for the remaining

set of formulas, namely the one that assigns ? (false) to the remaining

loation prediate, and the system terminates with suess. The Elimination

Approah thus allows us to solve this problem in a tiny fration of a seond.

8.3 Final Conlusion

The Elimination Approah has been tested on quite a lot of examples taken

from the relevant literature, the various veri�er distributions, and also self-

made. Some of them are small and trivial like the Water Level Monitor,

or the Leaking Gas Burner. Unfortunately, it seems that almost all non-

trivial examples that an be found in the literature are designed suh that
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a forward reahability analysis terminates after a single run through the

reahable loations. Only those standard examples for whih the properties

to be proved fore a reahability analysis to travel several (even many) times

through the reahable loations showed how valuable the Elimination Ap-

proah an be. For instane, take the Billiards example from [ACH

+

95℄ and

modify the movement of the white ball suh that it is pushed almost ver-

tially (or almost horizontially). Then any reahability analysis will have

to perform many iterations through the �xpoint omputation (one for eah

boune) and it will take quite some time to ome up with the desired result.

Two of the self-made examples from above are also along these lines. Both

the Silly Multiplier and the Long Lasting Loop require many iterations in

a reahability analysis. The Elimination Approah, however, is insensitive

to this fat. It simply eliminates the involved loations one by one and

therefore never has to visit these loations again.
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