
Symmetries in Logic Programs

J inzhao Wu

MPI—I—1999—2-005 April 1999

Author’s Address

Jinzhao Wu
Max-Planck—Institut fur Informatik
Im Stadtwald
66123 Saarbriicken
qmpi—sb .mpg . de
http://www.mpi-sb.mpg.de/fiu

Publication Notes

This paper has been submitted for publication.

Acknowledgements

I am grateful to Prof. Dr. Harald Ganzinger for his valuable suggestions,
which, in particular, lead me to deeply consider various philosophies in logic
programming. I am also grateful to Dr. Jiirgen Stuber and Dr. Viorica
Sofronie-Stokkermans, who went through the paper and provided me with
useful information. Finally, thanks go to Ms. Brigitta Hansen, whose help
made the paper more readable.

Abstract

We investigate the structures and above all, the applications of a class of
symmetric groups induced by logic programs. After establishing the relation-
ships between minimal models of logic programs and their simplified forms,
and models of their completions, we show that in general when deriving neg-
ative information, we can apply the CWA, the GCWA, and the completion
procedure directly from some simplified forms of the original logic programs.
The least models and the results of SLD-resolution stay invariant for definite
logic programs and their simplified forms. The results of SLDNF-resolution,
the standard or perfect models stay invariant for hierarchical, stratified logic
programs and some of their simplified forms, respectively. We introduce a
new proposal to derive negative information termed OCWA, as well as the
new concepts of quasi-definite, quasi-hierarchical and quasi-stratified logic
programs. We also propose semantics for them.

1 Introduction

In logic programming, one usually makes use of some orderings to develop
various notions and ideas close to the common-sense intended meaning. This
is in fact taking some asymmetries into account. For instance, in —ap —> g,
people often bear in mind that q depends upon p, and therefore they haven’t
the same status. This treatment leads to many works including stratified
logic programs[1, 27], the SLDNF—resolution[8], standard and perfect model
semantics[1, 21].

On the other hand, like in any mathematical objects, symmetries in logic
programs are also crucial and worthwhile to further explore. We shouldn’t
neglect their actions on the corresponding logic programs. For example,
if we fail to infer -1p from p V q under the GCWA[20], it seems natural
not to infer fiq either from p V q, for p and q here have the same status.
Even in pp —> q, it is not useless to consider the symmetry of p and q in
p V q. By deleting —:p, we obtain ——> q. The completions of pp —> q and
—> q are logically equivalent. The minimal model of —> q is also a minimal
model of —|p —> q, and all minimal models of -p —> q can be obtained by
applying the permutations representing the symmetry to that of —> q. The
standard models[1] of pp —> q and —> q keep invariant. These considerations
sometimes not only help simplify the computation procedures, but increase
the computational power and result in new concepts. In p V q or —vp —) q,
we see that if we force one of p and q to be negative, it doesn’t lead to any
inconsistency.

This paper represents some initial work in this regard. We are concerned
with a class of syntactic symmetries in logic programs, which can be rep-
resented by symmetric groups on predicate symbols. Besides making clear
their structures, we try to see the behaviors of logic programs under these
symmetries.

As a matter of fact, there exist a number of symmetric group structures
in logic programs(See the conclusion part). We believe that they play a
role in logic programming. Another encouraging phenomenon is that some
permutations preserve many properties of logic programs. We have the
following simple facts: If a is a permutation on predicate symbols, and P
a logic program, then I is model of P iff 0(I) is a model of 0(P); I is a
model of Comp(P) iff 0(I) is a model of Comp(a(P)); and P is stratified iff
0(P) is stratified(It is straightforward to understand what 0(1) and 0(P)
are from the point of View of renaming).

We know that two major topics in logic programming are deriving nega—
tive information and developing various semantics[2, 25]. We focus on these
two issues, too.

There are generally three popular proposals to tackle negative informa-
tion. The CWA was introduced by Reiter to efficiently represent completely
specified world[22]. If it is in force, the negative facts can be inferred im-

plicitly. However, CWA may lead to inconsistency even though the original
logic programs are consistent. So sometimes this formalism is both inap—
propriate and unsafe. The GCWA was thus proposed by Minker, which is
consistency-preserving[20]. The negation as failure rule based on program
completions was first studied in detail by Clark [8]. Its two nice properties
are that it is semi—decidable and easier to implement. We do not involve
ourselves in circumscriptions[18] here.

There are also many works on semantics. In this paper, we do not dis—
cuss those using non-classical logics(See [25] and the references therein).
We concentrate on the classical first-order logic framework. The least mod-
els and SLD—resolution for definite logic programs were first developed by
van Emden and Kowalski[26]. Many later works in logic programming are
based on these notions. Clark first introduced hierarchical logic programs,
and proved the completeness of SLDNF-resolution for this class of logic
programs[8]. Stratified logic programs were introduced by Apt, Blair and
Walker[1], and independently by Van Gelder[27]. Standard model semantics
for stratified logic programs was proposed by Apt, Blair and Walker[1]. It
coincides with the perfect model semantics developed by Przymusinski[21].

As is known, the minimal models of logic programs and the models of
their completions are quite important in the theory of logic programming.
Motivated by them, in this paper we define a class of symmetries induced
by logic programs. After making clear the structures, we first see their
actions on these two kinds of models. Indeed, all the results are based on
the fact that among the elementary facts with the same entry in each such
model, there is no more than one whose relation symbol occurs in the same
orbit of the symmetries. This is also the main reason why we prefer such
symmetries. Then, we investigate the applications to CWA, GCWA, and
completion procedure. We concern ourselves with the least model semantics
and SLD—resolution for definite logic programs, the completeness result of
SLDNF—resolution for hierarchical logic programs, as well as the standard
or perfect model semantics for stratified logic programs.

we show that in general, these symmetries in logic programs are redun-
dant and can be removed for the above three proposals and semantics. It
may simplify the related computation procedures, and increase the compu-
tational powers.

Through considering these symmetries, we present a new proposal to
deal with negative information that is indeed a generalization of the GCWA.
We also define three classes of logic programs termed quasi—definite, quasi—
hierarchical and quasi-stratified logic programs respectively, which are more
general than definite, hierarchical and stratified logic programs. Finally, we
propose the similar semantics for them.

2 Basic knowledge: symmetric groups and logic
programs

In this section, we describe some basic notions and results on which our
following discussions are directly based. For those we do not define and use
in the paper, the reader may consult [23] and [16].

2. 1 Symmetric groups

Let R be a non—empty set. A permutation on R is a bijection from R to
R. Let SR be the set of all permutations on R. SR forms a group under
the operation of function composition. To be convenient, in the following
we call any a subgroup of SR a symmetric group (on R) if R is finite. Every
permutation on a finite set is either a cycle or a product of disjoint cycles,
and it is also a product of transpositions.

Assume that G is a permutation group on R. We define a relation ~ on
R by the rule

for r1, r2 6 R, r1 ~ r2 iff there exists 0 E G such that 0(r1) = r2.

~ is an equivalence relation on R. Its equivalence classes are called orbits
of G.

Let 0 be an orbit of G, if 0 consists of only one element 'r, we say that
r is fixed by G. Otherwise, we say that O is proper. By Fia:(G) we denote
the set of all elements of R fixed by G.

Suppose that G1 and G2 are two permutation groups on R1 and R2,
respectively. If R1 flRg = (Z), for any 01 6 G1, 02 6 G2, let a be the following
permutation on R1 U R2:

0(7‘) = 01(7'), ifr 6 R1;a(r) = 02(7'), ifr E R2.

By G1 x G2 we denote the set of all such permutations. It is a permutation
group on R1 U R2, and X is obviously commutative and associative.

For i = 1, - - - ,n, suppose that Ri g R, and Gi is a subgroup of SR..-
Let (1) R_ R1. represent the trivial subgroup of $3.551. consisting only of the
identity. For 01- E 01-, we define 01-~0n to be 0’1 ~ - «7;, where a; E Gi X
(UR—Ru such that if r 6 Hi then 0K7") = ai(r). By G1---Gn we denote the
following subset of SR:

G1“'Gn={01"'anl01 EGl,---,0'n€Gn}.

Clearly, if G is a subgroup of SR and G1---Gn g G, then Gn - - - G1 g G.

2.2 Logic programs

For a given alphabet, terms, atoms, and formulae of the first—order language
over this alphabet are defined as usual. A literal is an atom or the negation
of an atom. A term or a formula is said to be ground if no variables occur.
An interpretation consists of (1) a domain, namely a non—empty set D; (2)
a constant assignment, which maps each constant to an element of D; (3)
a function symbol assignment, which maps each n-ary function symbol to
a function from D" to D; (4) a predicate symbol assignment, which maps
each n-ary predicate symbol to a function from D” to {true, false}.

For the definitions of I being an Herbrand interpretation, a model, a
minimal model, or an Herbrand model of a closed formula set, the reader
is referred to [7, 15]. We say that a formula F follows from a formula set
FS(denoted by F5 l: F), if the models of F5 are models of F.

A (normal) clause is a formula of form

(M21140 /\(3’=1(nBj)) -> Bw,
where A,, Bj, Bu, are atoms, and all variables are supposed to be universal.
We say that the predicate symbols in A,, B“, occur positively, and the pred—
icate symbols in Bj occur negatively, in this clause. If v = 0, we call this
clause definite. We call (Ag-21A,) /\(§=1(-q)) the body, and Bu, the head,
of this clause. {fiA1,-~ ,-|Au,Bl, - - - ,Bv, Bw} is called the literal multiset
of this clause. It actually represents the disjunction form of the clause with-
out atom ordering. So we also say that each A,- occurs negatively, and each
8,, Bw occurs positively in this literal multiset.

For literals L1, - - . ,Lk, L1 /\ - - - /\ L), —> is called a goal. It is said to be
definite if L1, - - - ,Lk are all positive atoms. We also say that L1 /\ - - - /\ L],
is the body of this goal.

A (normal logic) program is a finite set of clauses. It is called definite
if all its clauses are definite. We note that normal programs are relatively
general. In fact, Lloyd and Topor showed that more general programs can
be transformed into normal ones. For details, we refer the reader to [17].

Now let P be a program. By the P-definition of a predicate symbol
r, we mean the subset of P consisting of all clauses with the heads Whose
predicate symbols are r. P is called stratified[hierarchical], if there exists a
partition

P = P1 U - - - U Pm
such that (1) P1 can be empty and P,- H Pj = (0(2' 75 j); (2) if a predicate
symbol occurs positively in the body of a. clause in Pi, then its P-definition
is contained in UjSiPJ-[resp Uj<,-Pj]; (3) if a predicate symbol occurs nega-
tively in a clause in B, then its P-definition is contained in Uj<,-Pj.

Definite and hierarchical programs are stratified.
Clark[8] introduced the notion of completion of a program to justify the

use of the negation as failure rule. Let P be a program. Suppose that 7' is

an n-ary predicate symbol, and m an n-tuple of variables. If the P—definition
of r is empty, we say that the formula

Vx(-vr(:r))

is the completed P-definition of r. Otherwise, let AjL,j —> r(t,-) be all the
clauses in the P-definition of r, where each t,- is an n—tuple of terms. Suppose
that y,- is the tuple of all variables occurring in t,. We then call the formula

vx((v,3y,((A,~L,,) /\ (x = ti)» H r(w))
the completed P—definition of r.

We remark that Van means Vzl - - - V337,, and (a: 2 t,) represents A?:1(xj =
tij) for :17 = (£131,‘ ‘ ' ,xn) and ti = (til: - ' ‘ ,tin), and Ely,- means Ely“ ~ - - 331,",

for yi = (yi1,"‘ayim)'
The completion of P, denoted by Comp(P), is the collection of com—

pleted P—definitions of predicate symbols (appearing in P) together with
the equality theory that consists of some axioms for :. For the description
of the equality theory, please consult Section 14 of [16]. Here we just point
out that it is in fact independent of P.

2.3 Notations

Suppose that A is the given alphabet, and R its predicate symbol set. For
a E SR, let 0(A) be the same as A except that the predicate symbol set is
{0(r)] 1‘ E R}, where the arity of 00”) equals that of r. In the following,
we no longer declare the first-order language is over which alphabet, for it
is not hard to recognize.

Let R be the set of all predicate symbols of the underlying first-order
language, and a E SR. For a formula F, We define 0(F) to be the formula
obtained from F by replacing any predicate symbol r in F by 0(r). For a
formula set FS, let 0(FS) = {0(F) | F 6 FS}. For a literal multiset M,
we define 0(M) to be the literal multiset {0(L) | L 6 M}.

Unless stated otherwise, in this paper P, sometimes with an index, rep—
resents a program.

Lemma 2.3.1 Suppose a 6 53. P is stratified]hierarchical, definite] iff
0(P) is stratified[resp. hierarchical, definite].

Now assume that I is an interpretation, and R1 is the predicate symbol
assignment of I. As usual, when causing no confusions, we often represent
I by

I = {R1(r)(d> | R1(r><d> = true},
where r is an n-ary predicate symbol, and d an n—tuple of elements of the
domain of I. For the above n—tuple d and an n-ary predicate symbol set 0,

let

M) = {12mm l R1<r)<d> e I}, and Io(d) ={R1<r)(d) e M) tr e 0}.
For a E S3, let Ram be the following predicate symbol assignment:

For 7‘ E R, RU(I)(7') = RI(U(7‘)).

We define 0(I) to be the interpretation whose domain, constant assign-
ment, function symbol assignment are the same as those of I, and predi-
cate symbol assignment is Ra(1)- Then, for a closed formula set FS, I is
a model of FS iff 0(1) is a model of 0’(FS). We also have the facts that
0(Comp(P)) = Comp(a(P)), and I is a model of Comp(P) iff 0(1) is a
model of Comp(a(P)).

Throughout the paper we use R(T) to denote the set of all predicate sym-
bols appearing in T, where T is a formula, a formula set, a literal multiset,
or an Herbrand interpretation. For a literal L, r(L) denotes the predicate
symbol in L, and L" represents the formula A?:1L(L" = true if n = 0). For
a literal multiset M, by M+[M_] we denote the literal multiset consisting
of the positive[resp. negative] atoms in M, and M(L) the number of occur—
rences ofL in M. This also implies A5 75 At for s 75 t(s,t E {1, - . ~ ,u}), and
BS 75 Bt for s # t(s,t E {1, - - - ,v}) when we say that

C = (A?=1A?")A(A§=1(n3j)bj) -> Bw
is a clause. By (1) we denote the identity permutation or identity group.

Up to isomorphisms, SR(p) is a subgroup of SR. In the following sections,
we discuss some subgroups of SR(P)'

3 Symmetric groups induced by logic programs

Now, we explore the structure of symmetric groups derived from programs,
as well as the actions of a sequence of such symmetric groups on the corre-
sponding programs.

3.1 Symmetric group associated with a logic program

For C E P, let M be the literal multiset of C, and

G0 = {0' E 33(13) I 0(M) = M}.

In fact, Go consists of the permutations keeping the disjunction form of C
invariant. It is a symmetric group on R(P).

Let G = 0061200. Then G is again a symmetric group on R(P). We
call it the symmetric group associated with P.

Example 3.1.] P = {Bird(tweety),Bird(z) /\ -aAb(m) —> Fly(:r)}.

G = {(1), (Ab Fly».
In what follows, if there are no other statements, G always denotes the

symmetric group associated with P.

Theorem 3.1.1 For arbitrary a E G and r1,r2 E R(P), if 0(r1) = 7.2,
then (mm) 6 G.

Proof. If n = Q, then (rm) = (1) E G. Otherwise, since G = flcEpGC,
for any clause C E P, a 6 G0. Let M = {fiA1,---,fiAu,Bl,-~,Bw} be
the literal multiset of G. Then for any a E G and r E R(M‘)[r E R(M+)],

0(7") 6 R(M")[resp. 0(r) E R(M+)].

If n g2 R(M), then r2 g R(M) either. Otherwise, because 0‘1(M) = M,

r1 6 R(a—1(M)) = R(M).

Contradiction. So (7‘17"2) E GC in this case. If r1 6 R(M), among the dis-
joint cycles which constitute a product of a E G, we assume a = (7‘17‘2 ‘ ' . rm)
is the one containing T1 and 7'2. For 2' = 1, - - - ,m, let A, = {-A,-1, - - - ,fiAis}
and B,- = {3,1, ' ~ - ,Bz’t} denote respectively the multisets consisting of the
literals in M— and M+ whose predicate symbols are n, and

0(Aij) = Ai+1j,a(AmJ-) = A1j>j : 1, . . . ,8,

(1(BiJ) = Bi+1j)a(i) = Bljaj = 1, . . . ’t7

where 2' = 1, - - - ,m —— 1. Let the multisets

M12 = A1 u Bl u A2 U B2, M’ = U§§3(Ai u B,),M” = M — (M12 u M’).

Then M12, M’, M” are a partition of M, and

(r1r2)(M12) : M12, (r1r2)(M') = M', (r1r2)(M") = 01(M") = M".

So (r1r2)(M) = M, (7113) 6 Go. We therefore have (7172) E G.
Q.E.D.

Theorem 3.1.2 G = 501 X x 30",, where 01,-~,Om are all the
orbits of G.

Proof. If G = (1), we are done. Otherwise, we express a E G as a
product of transpositions: a = H,- 01,-. Suppose a,- = (mm), and 7‘1 E 0,.
Then, if o,- is seen as a transposition on 01-, a E 50,. So

aiESo, X---XSom,O'=Ha-;€SOIXH-XSOm.
'i

7

Let a 6 S701 >< X 30",, C E P, and M the literal multiset of C’. For any
L E M, suppose 7'(L) = 7‘1, and 7‘1 E 0,. Then r2 2 0(7'1) E 01-. From
Theorem 3.1.1, we have

(mm) 6 G,0(L) = (7'17‘2)(L) E M,U(M) g M.

For the above L, there exists 7‘0 6 R(P) such that 0(r0) : r1. Clearly r0 E
0,. By Theorem 3.1.1, (r1r0)6 G. So L’ = (7‘1T0)(L) e M, and 0(L’) = L.
Therefore M Q 0(M). We thus have

(7(M)=M,UEG,SO1 ><~-XSom§G.

Q.E.D.
These two theorems show that G, the symmetric group associated with

P, is of a quite simple structure. In addition, Theorem 3.1.1 indicates that
G is generated by transpositions.

Before closing this section, we discuss briefly how to derive G from P.
As a matter of fact, Theorem 3.1.1 also tells us, to obtain G, we needn’t
exhaust all permutations in 53(1)).

Let C E P. we first look how to compute the orbits of GC.
Suppose that 00(7‘) is the orbit of GC containing 7‘ E R(P). Ifr g R(C),

then
00(7") = {T’ E R(P) | 7" é R(C)},

namely the set of all predicate symbols not occurring in C. Otherwise,
for r’ E R(P), 7" E Oc(r) iff for any L E M in which 7" occurs, we have
L’ = (rr’)(L) E M and M(L) = M(L'), where M is the literal multiset of
C.

We claim that 00612000) is an orbit of G.
As a matter of fact, let 0,. be the orbit of G which contains r. Since

G g Go, Or g Oc(7‘). SO

Or Q QCEPOCU‘)‘
On the other hand, for any 7" 6 (10612000), by Theorem 3.1.1 we know
(rr') 6 Go. So

(rr') 6 floePGC = G,r’ E 0,, and therefore flCEp 0C(r) Q 0,.

Accordingly, G, represented by its orbits, can be obtained in the following
method.

First compute Oc(r) for each C E P; then flC€pOC(r) is the orbit of G
containing 1‘ E R(P). When r runs out of R(P), all orbits, say 01, - - - ,Om,
of G are obtained, and G = $01 >< x 50m.

The method terminates, for both R(P) and the literal multiset of a clause
are finite.

3.2 Orbits, simplified forms and symmetric group of a logic
program

In this section, we define the notions of orbits and symmetric group of a
program, and present a procedure to obtain a new program.

3.2.1 Orbits of a logic program

We start by describing the procedure to create a new program E(P) from
P. The idea is motivated by the investigation of minimal models of P and
models of Comp(P). Roughly speaking, for any clause C E P, if some
atoms with the elements of a proper orbit O of G as predicate symbols
occur negatively in the literal multiset M of C, then we remove C from
P. Otherwise, if they occur positively in M, we choose an element of O as
its representative, delete the negative atoms with the other elements of O
as predicate symbols in C, and let the representative of 0 act as the head
predicate symbol if that of the head of C is located in O.

In the next section, we expose the relation between the minimal models of
P and the new program Pn derived by successively applying this procedure,
as well as that between the models of their completions. Then, we discuss
the derivation of negative information and semantic issues by using B, as a
standard.

Let 01, - - - ,Om be all the orbits of G. First, pick up a predicate symbol
rk in each 01,, and call it the representative of 0],.

Let C(O) = C; For k 2 I, assume

006 - 1) = (M2114?) /\ (/\§21(r3j)bj) -> 3w-
If there exists an Ai(z' E {1,--- ,u}), such that r(A,-) E 0k and 0;, is

proper, then let E(C) = (2); Otherwise, let E(C) : {C(m)}, where C(m) is
a clause derived in the following way:

Suppose that B = {Bj1,-~,Bjs} is the set of all atoms occurring in
the body of C(k — 1) such that 71l) E Ok,---,1~(Bjs) E 0],, where J =
{j1,m,j8} g V: {17IH7U}'

Case 1. 7'(Bw) ¢ 0k;
Choose Bt E B such that r(Bt) = 17,, and let

C(k) = (A321Afi)/\ (AjeW—nlfilbj) /\ (nBt)b‘ —> Bw.

Case 2. 7‘(Bw) E 0k-
Case 2.1 There exists a B, E B, such that r(Bw) = 7'(B,);
Choose Bt E B U {Bw} such that 7'(Bt) = 77,, and let

C(k) = (A?:1Agi)/\(AjE(V“J)(_'Bj)bj)A B?” —> Bt-

Case 2.2 Otherwise.
Choose 3,; E B U {Bw} such that r(Bt) = 77,, and let

C(19) = (Ail/1211') A (Aje(V—J)(*Bj)bj) ’9 Bt-

Let E(P) = UCEpE(C(m)).
This procedure is non-deterministic. If 71;, is the number of elements of

0],, then we can obtain at most H221 nk different E(P) corresponding to the
different choices of representatives rk of Oh. However, for any two of them,
say E(P)1 and E(P)2, there exists a E G such that E(P)1 = 0(E(P)2). In
the sequel, we sometimes identity the above E(C’)(= {C(m)}) and C(m).

We also note that actually we can define E(C) analogously for a general
clause C (a disjunction of literals). In fact, a disjunction of negative atoms
can be treated as a clause with empty head. For the results on some notions
independent of syntax, for example, minimal models, the CWA, and GCWA,
etc, we can suppose that P is a consistent general clause set instead of only
a normal program. We no longer mention this point in the later discussions.

Example 3.2.1 P = {p /\ n —> z, —Ip /\ fiz —-> n}.
G = {(1), (pn)}. G has two orbits: 00 = {p,n} and 06 = {z}, where only

00 is proper. If we choose p as the representative of 00, then E(P) 2 {n2 —>
p}. If we choose n as the representative of 00, then E(P) = {n2 —> n}.

The following is the procedure successively from P to obtain a program
sequence, a symmetric group sequence, and a so—called G-simplified form of
P.

Let P0 = P; Go the symmetric group associated with P;
For k 2 0, while Pk 75 (0 and Gk # (1),
let Pk+1 = E(Pk);
Gk+1 the symmetric group associated with E(Pk)
if E(Pk) # (0.

This procedure terminates, since when Gk 75 (1) the number of predi—
cate symbols occurring in Pk+1 is less than that of those in Pk. Upon the
termination, we obtain a program series P0, - - - ,Pn, and a symmetric group
series G0, - . - ,G’m (m = n — 1, or n). We call them a program sequence and
a symmetric group sequence respectively. We say that Pn is a G-simplified
form of P. Obviously the symmetric group associated with Pn is (1) if Pn
is non—empty. We notice that the difference between two symmetric group
sequences results from the difierent choices of representatives of orbits. We
also remark here that the choices of representatives of orbits of Pk+1 depends
on those of Pk.

10

Example 3.2.2 For the P in Example 3.2.1, P0 = P. G0 = G.

We choose P1 = {oz —> p}. Then G1 = {(1), (pz)}.
We choose P2 = {——> 2}. Then G2 = {(1)}.

Therefore, P0, P1,P2 is a program sequence, and G0, G1, G2 a symmetric
group sequence. P2 is a G-simplified form of P.

Hereafter, we assume that P0, ' - - ,Pn is a program sequence, Go, - - - , Gm
a symmetric group sequence as derived above. We notice again that each
Gk is a subgroup of SRUDk).

Let (9 = U21=0{O | 0 is an orbit of Gk}, namely the set of all orbits of
Gk (k = 0, ' ‘ - ,m). We define a binary relation ~ on (9:

For 01,02 6 0,01 ~02ifi01002 740.

~ is reflexive and symmetric. Let 2 be its transitive closure. 2 is thus an
equivalence on (9. Let (9,0 = 1, ~ - - ,1) be all the equivalence classes of 2.
We call each

CAP) = eoiO

an orbit of P. And each 0 E 0,- is called a component of this orbit. Such
a component is said to be proper, if it is not a singleton. If an orbit of P
consists of more than one element, we say that it is proper. Otherwise, we
call its element fixed by P. By Fix(P) we denote the set of all elements of
R(P) fixed by P.

Example 3.2.3 We consider the P in Example 3.2.2.

Go has two orbits: 00 = {p, n} and 06 = {z}
01 has one orbit: 01 = {p, 2}.
G2 has one orbit: 02 = {2}
So P has one orbit: 0(P) = {p,n,z}.

We may also use graphs to define the notion of orbits of P. Let W be the
graph with 0 as the vertex set, such that there is an edge between vertices
01 and 02 iff 01 002 75 (ll. If W1, - - - , W; are all the connected components of
W, then each union of vertex sets of W,- is an orbit of P. To be convenient,
in what follows we may suppose that in W, there are no rings, and 01 and
02 appear as two different vertices if 01 = 02, however, they are orbits of
two different Gs and Gt. So there is exactly one edge between two vertices.

All orbits of P constitute a partition of R(P).

In fact, for any 7' E R(P), there exists an Oi(P), r E 0,-(P). And for
any i 2: 1, - - - ,l, 0,-(P) g R(P). Now let

O,(P) = eo.0(i=1,2)

11

be two different orbits of P. If 01(P) fl 02(P) # (Z), we choose an r E
01(P) fl 02(P). Suppose 7‘ E 01 E 01 and T E 02 E 02. Then

01002#0702€01,O2§01-

Similarly 01 g 02. Thus 01 = 02, 01(P) = 02(P). This is a contradiction.

Lemma 3.2.1 Suppose that 05 and 0,; are orbits of Gs and Gt respec-
tively (s < t), and 05 0 0t # 0. (1) Os 0 0; consists of only one predicate
symbol, which is just the representative of 05; (2) For any 3 g k g t, there
exists an orbit 0;, of Gk, such that Os 00k # (2). Furthermore, if k < t, then
the representatives of 0;, and 05 are the same; (3) If 0,2 is an orbit of Gt
and 05 fl 0; ¢ 0, then 0, = 0;.

Proof. Let rs be the representative of 05. If 03 = {rs}, we are done;
Otherwise, (Os — {rs}) fl R(Pt) = 0. So 08 0 0t = {r5} if it is not empty.
(1) holds.

On the other hand, rs E R(Pt) Q R(Pk). So the first part of (2) holds.
In addition, if k < t, 7‘s has to be the representative of Ok to ensure 7‘s 6 Pt.
So the second part of (2) holds.

From (1) we know 7's 6 02. So 0t O 0; 75 0, 0t = 0;. (3) holds.
QED

Lemma 3.2.2 Suppose that 05 and 0; are two orbits of 0,, and 05 2
0;. If s = m, then 05 = 0;. Otherwise, if for any orbit 0t of Gt(t > s),
0500t=0, ogoot =0, then 05 =02.

Proof. Since the graph of the orbit of P containing 05 and 0; is con—
nected, there exist two paths 1 and 1’ containing 05 and 0; respectively,
such that l and l’ share a common vertex, say 0. By Lemma 321(2) and
the fact that there is no longer the edge with 05 or 0’s and any 0t as two
vertices, we may suppose

z=%—m—m—dw=%—q—m—%
where each pair 0k, 0; are orbits of Gk. Assume that 0 : 0;, = 0;. From
Lemma 3.2.1(3), 0;, = 0;, for any h 2 k. Especially, 05 2 0’5.

Q.E.D.
Now let 0,-(P) be an orbit of P, W,- its graph. In W,- we delete the edge

whose two vertices are respectively orbits of Gs and Gt, and t > s + 1. We
then obtain a graph, denoted by T(0,-(P)). By Lemma 3.2.1(2), (3) and
Lemma 3.2.2, T(0,~(P)) is a tree supporting Wi, in which all vertices of W,-
appear, the root is the 05 described in Lemma 3.2.2, all leaf nodes are orbits
of Go, and if a father node is an orbit of some Gk“, then all its sons are

12

orbits of Gk. According to Lemma 3.2.1(1), the representatives of son nodes
are in its father node.

Example 3.2.4 For the P in Example 3.2.3, the graph and tree of 0(P)
are as follows.

00 0:) 00 06

01 01

02 02

We claim that the orbits of P are independent of the choice of symmetric
group sequences.

Let 0(P) and 0'(P) be two orbits of P containing 7" E R(P) and de—
rived respectively from two symmetric group sequences G0,---,Gm and

I 0' _
0’ v m

To show 0(P) Q O’(P), we have to prove

for any node OkOf T(O(P)), 0;, Q O’(P).

Suppose that in the tree T(O(P)), 0k and Ok+1(k 2 O) are two nodes, and
0;, is a son of Ok+1. We first prove 0!: Q 0'(P) iff 0k+1 Q 0’(P).

Assume that 0;, and Ok+1 are orbits of Gk and Gk“ respectively, and
rk is the representative of Ok, then 7'}, E 0k+1- From the construction of
orbits of P, we know that there exist finite 01, - - . ,0; E 06 ~ - - G2. such that
01 - - - 01(Ok+1) and 01 - - . 01(Ok) are orbits of Gk“ and G; respectively. Let
r}: = 01 - - - 01(rk). Then

Tic E 01"'01(0k),7“ice 01 ' "0'l(0k+1)-

If 0;, Q O’(P)[or Ok+1 Q O’(P)], then Th 6 0'(P). By the definition of
orbits of P,

01"'01(0k) Q 01(1)) [reSP- 0'1"'Ul(0k+1) Q 01(Pll-
However, 01 - - - 01(Ok) and 01 - - - 01(Ok+1) share 7‘2. We have

01 - "0'l(0k+1) E 0'(P)[resp- 0'1 - "01(0k) Q 0'(P)l-
Also from the definition of orbits of P, we have

0k+1 Q 0'(P)[reSP- 0k E 0119)].
According to this result, now we only need to show, for the root 0 of

T(O(P)), O Q O'(P). In fact, if we let 0, be the orbit of Go that contains
7', then 0, Q 0(P). Since G6 = G0, 0, Q 0’(P). Again, from the above
result, we know 0 Q 0’ (P)

Analogously, we can prove 0’ (P) Q 0(P). Therefore 0’ (P) = 0(P).

13

3.2.2 Simplified forms and symmetric group of a logic program

In the procedure to derive E(P) in Section 3.2.1, if we let 01, - - - , Om be
all the orbits of P, then we call the new derived program E(P) a simplified
form of P.

If 01(P),---,01(P) are all the orbits of P,

G(P) = Soup) >< X SOAP)
is called the symmetric group of P. The orbits of G(P) are just those of P,
and by Theorem 3.1.2, Go - - - Gm Q G(P) for a symmetric group sequence
G0, ' ' ' a Gm

Example 3.2.5 The P in Example 3.2.2 has one orbit 0(P) = {p, n, 2}. If
we choose 2 as its representative, {—> z} is a simplified form of P, and G (P) 2

Sam-

If each Oi(P) contains 11,- elements, then there are H£=1 nz- simplified
forms of P. However, for any two simplified forms P" and P,’, of P, there
exists a E G(P) such that P}, = G(Pn). Therefore, by Theorem 2.3.1,
a simplified form of P is stratified[hierarchical, definite], iff all simplified
forms of P are stratified[resp. hierarchical, definite].

Lemma 3.2.3 Let M be the literal multiset of C' E P. (1) Suppose that
0,-(P) are all the proper orbits of P such that 0,-(P) n R(M‘) 75 (2). There
exist an 0,-(P) and a proper component 0,- of 0,-(P) such that O,- Q R(M');
(2) If E(M’) Q Fix(P), then for any 7“ E MJr and the orbit 0,(P) of P
containing 7‘, OT(P) Q R(M+).

Proof. (1) For a proper 0,-(P), if Oj(P) fl R(M’) # (0, let rj E Oj(P) fl
R(M_), and suppose that Oj is a component of Oj(P), such that rj E 03-.
Since at least one component of Oj(P) is proper, by Lemma 321(1), we
may assume that Oj is proper.

If Oj is an orbit of G0, then Oj Q R(M‘). We are done. Otherwise, let
Oj be an orbit of Gt(t Z 1). If 01- Q R(M‘), we are done. Otherwise, there
exists 5 g t — 1 such that

E(- - - E(E (C))) = (Z) (See the procedure to derive E(P)).
H_/

S

This means that there exist A1,A2 E M‘, 'r(A1) # 7‘(A2), however they
both belong to the same orbit, say 03, of G5, and 05 Q R(M_).

(2) Let 0;, and 0k+1 be two nodes of the tree T(O,(P)), and 0k a son
of Ok+1. We first prove 0k Q R(M+) iff Ok+1 Q R(M+).

As a matter of fact, since R(M_) Q Fix(P), we know

14

E(- - - E(E (C))) 75 (D, of course E(- - E(E (C))) # 0.
H—’ HW—’

k + 1 k

Let Ck+1 and Ck be the respective clauses of them, and Mk+1 and Mk the
literal multisets of Ck+1 and Ck, respectively. Let 1“], be the representative
of ok-

If 0;, Q R(M+), then m, E R(M,:). However, 7‘], E Ok+1. So

rk E R(MI:+—1)7

for 0H1 g R(M,j’+1) g R(M+).
Conversely, suppose Ok+1 Q R(M+). Then rk E R(M,:H). So

77, e R(M,j) Q R(M,j+,).

Thus 0;, Q R(M,:') Q R(M+).
If 00 is the orbit of Go containing r, then 00 Q R(M+). According

to the above claim, the root of T(0,(P)) is contained in R(M+). Again
from the above claim, all nodes of T(OT(P)) are contained in R(M+). We
therefore get the result as required.

Q.E.D.
Let C E P, and M the literal multiset of C'. If R(M‘) Q Fix(P), by

Lemma 3.2.3, there exists a proper orbit O,- of some 67,-, such that 0, Q
R(M‘). We call such an O,- the nearest in C, ifz' = 0, or for any j < i
and proper orbit Oj of 0,», 01- Q R(M‘). Obviously, if the above 0, is
the nearest in C and z' > 0, then for any j < i and proper orbit Oj of Gj,
Oj fl R(M‘) = (2). Moreover, we have

Lemma 3.2.4 Let the orbit O,- of G,(i > 0) be the nearest in C E P.
Then for any j < 2', O,- Q Fix(G'J-).

Proof. If 0,- is the nearest in C, then for j < 2',

E(- . - E(E (C))) 75 0. So 0, Q Fisc(Gj).
W

1
Q.E.D.

Theorem 3.2.5 A G-simplified form of P is a simplified form of P.
Conversely, a simplified form of P is a G-simplified form of P.

Proof. From the symmetric group sequence corresponding to a given
G—simplified form of P, we can obtain all orbits 0,-(P) of P and their trees
T(0i(P)). We choose the representative of root of T(O,-(P)) as the repre—
sentative of 0i(P), we then obtain a simplified form of P. By Lemma 3.2.3,
it is the same as the given G-simplified form of P.

15

On the contrary, Let Go be the symmetric group associated with P,
P0 = P. For an orbit 00 of GO, if it contains the representative of some
orbit of P, we then Choose it as the representative of 00. Otherwise, choose
an arbitrary element of 00 as its representative. Suppose now we have got
0;, and Pk(k 2 1). We go on the same procedure for the orbits of Gk, and
eventually obtain a G—simplified form of P. By Lemma 3.2.3 and 3.2.4, it is
the same as the given simplified form of P.

Q.E.D.
This theorem indicates that the G-simplified forms of P and the sim-

plified forms of P are exactly the same. In what follows, we discuss the
applications of these notions.

4 Minimal models of logic programs and models
of their completions

A clause set has minimal models under the model ordering defined by Bossu
and Siegel[5]. However, people are usually interested in minimal Herbrand
models. A clause set has models iff it has Herbrand models. In this section,
we consider the relations between the minimal models of P and its simplified
forms, as well as the models of their completions. To be convenient, in the
following when we mention minimal models, we mean that they are minimal
Herbrand models.

From now on we suppose that Pn is a simplified form of P, I is an
interpretation, R1 is the predicate symbol assignment of I, and d a tuple of
the domain elements of I.

According to Theorem 3.2.5, Pn is a G—simplified form of P. We assume
that P0 = P,---,Pn and G0 = G',~~,Gm are the corresponding program
and symmetric group sequences respectively.

Lemma 4.1 Suppose that O is an orbit and I a minimal model of P.
For two different r1, r2 6 0, if 7'1 (d) E Io(d) then r2(d) Q I0(d).

Proof. Assume r2(d) E Io(d). Let I’ = I — {r1(d)}. We want to show
that I’ is still a model of P.

Suppose that C is an instance of a clause in P, and M the literal multiset
of C.

For the case where R(M_) Q Fix(P), if I makes a literal in M’ true,
then I’ makes this literal true since r1 ¢ R(M‘). So I’ makes 0 true.
Otherwise, I makes a literal B in M+ true. If B 75 r1(d), I’ makes C true.
If B = r1(d), by Lemma 3.2.3(2), r2(d) E M+. However, r2(d) E I’. So I’
still makes C true.

Now suppose R(M‘) Z Fi$(P). By Lemma 132.3(1), there is a proper
orbit 0;, of some G’k such that 0k ; R(M‘). We assume that this 0;, is

16

the nearest in C, and

0k(dl) = {7‘(d’) l ’I" E 0k} g M_.

We claim that at most one element of 0;,(d’) is in I(d’) If this Claim is true,
then at most one element of Ok(d’) is in I’ . So I’ makes C true. Now, we
want to prove this claim. Actually, we have the following facts.

(1) If Ii is a minimal model of Pi, and 0,- an orbit of G1, then [1'0]. (d)
contains at most one element(z' = O, - . - ,n — 1).

Indeed, if r3(d),r4(d) 6 Jam), where 7‘3 75 m and 73,72; E 01-, then
I; = I‘ — {7‘3(d)} is a model of B. In fact, for an arbitrary C E B, let M
be the literal multiset of C. If 73,74 9! R(M), We are done. Otherwise, if
{T3, 7‘4} 0 R(M+) # 0, then

73,721 E R(M+).

So I; is a model of C. If {73,7'4} fl R(M‘) 7é (Z), we have

7‘3,7‘4 E R(M_).

So I; is still a model of C. However, I; C Ii. This is in contradiction with
the fact that Ii is minimal.

(2) If Ii is a minimal model of Pi, and 0,- an orbit of 0,, then there
exist aid 6 0,, such that Ii+1 = Udaid(Ii(d)) is a minimal model of P¢+1
(i=0,~-,n—1).

As a matter of fact, if exists, for an arbitrary non—empty

Ii(d) = {d100, ' ' ' aril(d)}?

where rgj E R(P,-), let Oij be the orbit of G,- such that rgj 6 0,7. By fact
(1), Om # Ow ifu 75 1).

In the procedure to derive Pi+1 from Pi, suppose that my is the represen-
tative of Oij. Let aid 2 (rglm) - - - (Thrill Then aid 6 Ci. In what follows,
we show that Ii+1 = Udaid(Ii(d)) is a minimal model of Pi“.

Let C1 6 Pi“, C 6 H, and 01 = E(C). Suppose that C; and C’ are
ground instances of 01 and C respectively, and C1 = E(C’). By M and
M1 we denote the literal multisets of C’ and C1 respectively. If Ii makes
a literal fir§j(d) in M' true, then aid(Ii(d)) makes erg-(d) true. Since
R(M') g Fia:(GZ-), rij = réj. However,

fi’réfld) E M— = Mf.

So aid(Ii(d)) makes a literal in Mf true, it makes Ci true. If Ii makes a
literal rb-(d) in M+ true, then aid(Ii(d)) makes rij(d) true. However,

Tij(d) E M1+.

17

So it makes 0; true. We have thus proved that IH'1 is a model of Pi“.
Additionally, for i = O, - ' . ,n — 1, we have: (2.1) The minimal models of

Pi+1 are minimal models of Pi; (2.2) If Ii is a minimal model of P,, then for
any aid 6 G1, Udaid(Ii(d)) is a minimal model of P,.

The proofs of (2.1) and (2.2) are similar to those of the following Lemma
4.2 (2)and (3) We just need to replace “Lemma 4.1” and “Lemma 3.2.3”
in those proofs by the above fact (1) and the fact that if a predicate symbol
1- E R(M“)[or r E R(M+)], the orbit of G,- in which 1' is located is contained
in R(M‘)[resp. R(M+)].

Assume that Udaid(Ii(d) — W(d)) is a minimal model of Pi“, W(d) Q
Ii(d), and at least one W(d) 75 (I), then by (2.1), it is a minimal model of 13,-.
By (22),

Udaalaidmd) — W(d)) = uduiw) — W(d)) c uduiw» = I“
is a model of 13,-. Contradiction.

Now we continue to prove the above claim. If k = 0, by fact (1), we get
the result as required. Otherwise, from fact (2), there are 00d 6 G0, ~-,
ak_1d E Gk_1 such that Udak_1d - - - 00d(I(d)) is a minimal model of Pk. Let

U = 0k-1d"'0‘0d-

According to fact (1), a(I(d’)) fl Ok(d’) contains at most one element. So
I(d’) fl 0‘1(Ok(d’)) contains at most one element. From Lemma 3.2.4, we
know 0‘1(Ok(d’)) = Ok(d’). We are done.

We thus proved that I’ C I is a model of P. However, since I is minimal,
this is impossible. Therefore r2(d) g I0(d).

Q.E.D.

Lemma 4.2 (1) HI is a model ofP and R(I) g R(P,,), then I is a model
of Pn. Furthermore, if this I is a minimal model of P, then it is a minimal
model of Pn; (2) If In is a minimal model of Pn, then In is a minimal model
of P; (3) If I is a minimal model of P, then for any 0d 6 G(P), Udad(I(d))
is a minimal model of P.

Proof. In the procedure to get Pn, let C'n = E(C) 6 P7,, C E P.
Suppose that Cl, and C’ are ground instances of On and C respectively,
and C), = E(C’). Let M and Mn be the literal multisets of C’ and C),
respectively. Then M; = M‘.

(1) If I makes a literal in M_ true, then I makes 0;, true. If I makes
a literal, say B, in M+ true, then since 7(3) 6 R(I) Q R(Pn), we have
B E M: . Thus I makes 0;, true. So the first part of (1) holds.

If I' Q I is a minimal model of P”, then by (2), I’ is a minimal model of
P. So if I is a minimal model of P, I’ = I. Therefore I is a minimal model
of P".

18

(2) If E(C') : (2), there exist at least two different literals fir1(d) and
fir2(d) in M‘ such that the predicate symbols T1 and T2 are in the same
orbit of P. Clearly, at most one of r1(d) and r2(d) is in In. So In(d) makes
r1(d) /\ r2(d) false, In satisfies C’. Now assume E(C) 75 (0. If In makes a
literal in M; true, since Mn— : M", In makes a literal in M‘ true, In
satisfies C". Otherwise In makes a literal in M: true. Because M: g M“L,
In makes a literal in M+ true. So In still satisfies C" . In is therefore a model
of P.

Suppose that I’ Q In is a model of P. Since R(I’) g R(Pn), from the
first part of (1), I’ is a model of Pn. However, In is a minimal model of Pn.
I’ = In. So In is a minimal model of P.

(3) Let ad 6 G(P). For the case where I makes a literal in M — true,
if there exist two different literals -I7‘1(d) and fir2(d) in M_ such that the
predicate symbols 7'1 and 7‘2 are in the same orbit of P, then from Lemma
4.1, at most one of r1(d) and 7‘2(d) is in I(d). So at most one of r1(d) and
r2(d) is in ad(I(d)), ad(I(d)) makes 0’ true. Otherwise, by Lemma 3.2.3(1),
we have

R(M_) g Fizz:(P).

Thus ad(M‘) = M“. However, ad(I(d)) makes a literal in 0d(M—) true.
Hence it makes a literal in M—, and thus C", true. Now suppose that I
makes all the literal in M‘ false. Then I makes a literal, say r(d), in M+
true, and by Lemma 4.1 and Lemma 3.2.3(1),

R(M‘) g Fix(P).

According to Lemma 323(2), ad(r(d)) E R(M+). Since ad(I(d)) makes
ad(r(d)) true, it makes C” true. We therefore proved that Udad(I(d)) is a
model of P.

If Udad(I(d) — W(d)) is a minimal model of P, W(d) Q I(d), and at least
one W(d) # 0, then Udad—lad(I(d)—W(d)) = Ud(I(d)—W(d)) C Ud(I(d)) =
I is a model of P. This is in contradiction with the fact that I is minimal.
So Udad(I(d)) is minimal.

Q.E.D.

Theorem 4.3 If I is a minimal model of P, then there exist a minimal
model In of Pn and ad E G(P) such that I = Udad(In(d)). If In is a minimal
model of Pn, then for any ad 6 C(P), I = Udad(In(d)) is a minimal model
of P.

Proof. If I is a minimal model of P, by fact (2) in the proof of Lemma
4.1, there exist 00d 6 Go, ---, an-” E Gn_1 such that Udan_1d- - -00d(I(d))
is a minimal model of Pn. Let

In(d) = an_1d- - ~00d(I(d)), and ad 2 00—; ' - «71:161.

19

Then 0d 6 Go - ' - Gm g G(P), and I = Ud0d(In(d)).

If In is a minimal model of Pn, by Lemma 4.2(2), In is a minimal model
of P. From Lemma 4.2(3), for any ad 6 C(P), I = Ud0d(In(d)) is a minimal
model of P.

Q.E.D.
Theorem 4.3 tells us that all minimal models of P can be obtained from

those of P7,. The actions of G(P) on all minimal models of Pn lead to all
minimal models of P. In this regard, we say that Pn keeps the minimal
models of P.

Actually, Lemma 4.1 can be proved in a simpler way. However, the proof
procedure we presented successively reflects the relations between minimal
models of the program sequence. It simplifies the proof of Theorem 4.3,
and shows that we may replace G(P) by Go - - - Gm in this theorem. the
reasons why we use G(P) instead of GO - - - Gm are that G(P) is of a quite
simple group structure, it doesn’t rely upon the choices of symmetric group
sequences, and it is easier to get the minimal models from Pn. We only need
to substitute predicate symbols for those in the same orbits of P.

Now, we turn to the completion procedure of programs. We notice that
the models of Comp(P) may not be models of Comp(Pn). On the contrary,
the models of Comp(Pn) may not be models of Comp(P) either. However,
we have the following theorem, which shows that they are the same up
to permutations. We note again that the equality = is supposed to be in
Fix(P)

Lemma 4.4 Suppose that I is a model of Comp(P), and O is an orbit of
G. For two different 71,7'2 E O, ifRI(r1)(d) E I0(d) then R1(r2)(d) ¢ [0(d).

Proof. Assume that n is n—ary. Since R1(r1)(d) E Io(d) g I, there
exists at least one clause 0,- in P Whose head is r1(t,-), where t,- is an n-tuple
of terms. Clearly, -I1~2(t,~) appears in the body of 01-, and if we let M,- be the
literal multiset of 0,, and bi = M,(-wr2(t,-)), then we can write C,- as

C, = C; /\ (-17‘2(t,-))bi /\ (-w7'1(t,-))l""1 —> r1(t,-).

So, for the n—tuple x of variables,

C = V$(Vi3yi((:c = ti)/\C,{/\(-‘T2(ti))b‘/\(-Ir1(t,-))b"_1) H 7‘1(x)) E Comp(P),

where y,- is the tuple of all variables in 13,-. Hence, if R1(r1)(d) E I, there is
at least one b,- such that bi — 1 = 0, and therefore R1(r2)(d) g2 I. Otherwise
I makes C false.

Q.E.D.
Let 0 be a proper orbit of G’, and

PA={C€P|0§R(M_)},

20

where M stands for the literal multiset of C. By Lemma 4.4, I is a model
of Comp(P) ifl I is a model of Comp(P — PA). On the other hand, in the
procedure to derive E(P), we can ensure that removing all clauses in PA
from P doesn’t have any impact on the final result. So, in the following,
without loss of generality, we assume PA = (2). Let r1, r2 be two different n-
ary predicate symbols in O, and r2 the representative of O in the procedure
to derive P1.

Let the following PH1 and PH2 be the P-definitions of T1 and r2, respec—
tively.

PHI = {Cu /\ (‘1T1(t1i))b“_1 /\("7‘2(t1i))b” —> 7‘1(t1i)ii= 1: ‘ ' ' ,m1},

PH2 = {022‘ /\ ("T1(t2i))b2i /\ (”2(tzillbzrl —) 7‘2(t2z') i i = 1, ‘ ' ' #112}-
Let Pa be the set of all clauses in P — (PHl U PHz) in which n and r2 occur
negatively. Suppose

Pa = {DijA(“(7‘1(tij))b”/\(“(T2(tij))bij —>Pi(uij) Ii: 1, ' ' ‘ 7173' = 1, ' - ' ah}-

For 2' = 17 - - - ,l, assume that the following Pfiz- is the (P — PJ—definition of
Pi.

P—ui = {s —>Pi(vij) 1j= 1,"',ki}-
In the above expressions, Cij,Dij and Fij are conjunctions of literals

where r1, r2 do not occur. tij are n-tuples of terms. If the predicate symbol
p1- is ni—ary, then uij and vi]- are ni-tuples of terms.

NOW let P, = P — (PHI U PHg U P_\ U UiPfiz'), and

PH1(0) = {Cii /\ ("7‘2(t1i))b“_1 —> T2(t1i) i i = 17"',m1},

PH2(0) = {021' /\ (n7‘2(752i))b2"1 -> 7‘2(t2i)1i= 1, ‘ ' - ,mz},
Pfi(0) ={D1jA(—|(r2(tij))bij _> Pz(uij) : Z = 1’ ' ' ')l7j = 1a ' i ‘ 7ki}'

Let P(0) = P’UPH1(0)UPH2(0)UP.1(O)UUz-Pfii. Assume that CompStep1(P)
and CompStep1(P(O)) are the sets consisting respectively of the completed
P-definitions and P(0)-definitions of r1,r2 and pi(i = 1, - - - ,l). By Lemma
4.4 and the definition of applying a permutation to interpretations, we have
the following fact:

Suppose that I is an interpretation satisfying the equality theory. If I is a
model of CompStep1(P)[CompStep1(P(O))], then there exist ad 6 S{r1,r2}
such that Udad(I(d)) is a model of CompStepl(P(0))[resp. CompStep1(P)].

Lemma 4.5 If I is a model of C’omp(P)[Comp(P(O))]7 then there
exist ad 6 Shin} such that Ud0d(I(d)) is a model of Comp(P(O))[resp.
Comp(P)].

21

Proof. Let W be the set of completed P’-definitions of r1, T2 and p,(i =
1,-~,l). Then

Comp(P) = CompStep1(P) U (Comp(P’) — W),

Comp(P(O)) = CompStepl(P(0)) U (Comp(P’) — W).

Since 7‘1 and 7'2 do not appear in Comp(P’) — W, for any 0d 6 301772},
if I is a model of Comp(P)[Comp(P(0))], then Udad(I(d)) is a model of
Comp(P’) — W. According to the above fact, we get the result as required.

Q.E.D.

Theorem 4.6 If I is a model of Comp(P), then there exist 00; E C(P)
such that Udad(I(d)) is a model of Comp(Pn). Conversely, if In is a model
of Comp(Pn), then there exist ad 6 G(P) such that Udad(In(d)) is a model
of Comp(P).

Proof. By Lemma 4.5 and Theorem 3.1.1, we know that for i = 0, - - - ,n—
1, if Ii is a model of Comp(1—’,~)[C’0mp(P,-+1)] then there exist aid 6 Ci, such
that Udad(I(d)) is a model of Comp(P,-+1)[resp. Comp(Pi)]. Let

(M = Un—ld ' ‘ ' 00d» [IGSP- 0d = 00d"'0n—1d]-

Then ad 6 Gm - - - Go Q G(P) [resp. ad 6 G0 - - - Gm Q G(P)], and Udad(I(d))
is a model of Comp(Pn)[resp. Comp(Po) = Comp(P)].

Q.E.D.
So, up to permutations, Comp(Pn) keeps models of Comp(P). As a

corollary, Comp(P) is consistent iff the completions of its simplified forms
are consistent.

Example 4.1 In Example 3.2.5, P2 = {z} is a simplified form of P, and the
unique orbit of P is 0(P) = {p, n, 2}. P2 has one minimal model {2}. So all
the minimal model ofP are {a({z})|a E S{p7n,z}} = {{p}, {n}, {2}}. On the
other hand, {n} and {z} are models of Comp(P) and Comp(P2) respectively.
For a = (nz) E S{p,n,z}, we see that {n} = a{z}, and {z} = a{n}.

5 On the derivation of negative information

In this section, we discuss the applications of the symmetric groups we de-
fined to the CWA, GCWA, and the completion procedure. We are mainly
interested in what negative information can be assumed. We also give an—
other proposal to cope with negative information based on the notion of
orbits of programs.

22

5.1 CWA and GCWA

We begin with the CWA and GCWA. For more details and the other so-
phisticated generalizations, the reader is referred to [22], [20] and [10].

5.1.1 Deriving negative information

For a ground atom A, we say that -wA is derivable from P under the CWA
(denoted by CWA(P) l: -'A), if P 17$ A. We say that -1A is derivable from
P under the GCWA (denoted by GCWA(P)]= -1A), if for any disjunction
C' of ground atoms, P I: A V C implies P l: C'.

When the CWA is consistent, the GCWA coincides with it. For this,
please see any textbooks, such as [16] or [18], on logic programming or on
non-monotonic reasoning. Here we just note that GCWA(P) l: -:A iff A is
not in the union of all minimal models of P. In the following, we suppose
that A is a ground atom, and Pn a simplified form of P.

Lemma 5.1.1 P l: A iff Pn l: A and r(A) E Fizz:(P).

Proof. Let A = r(d’), where 7‘ = r(A), and d’ is a tuple of the Herbrand
constants.

If P [75 A, there exists a minimal model I of P, such that

A g I(d’)(P U {fiA} has no models iff it has no Herbrand models).

By Theorem 4.3, there exist 0d 6 G(P) such that In = Udad(I(d)) is a
model of P”. If r E Fix(P), then A g adr(I(d’)). Therefore,

A¢%J%%A

If PT, [75 A, there exists a minimal model In of Pn such that A g? In. However,
by Theorem 4.3, In is a model of P, so

P%A

Otherwise, if Pn l: A and r g? Fix(P), we let 0, be the orbit of P where
r locates, r’ E O, and 7" ¢ 7‘. Let ad = (1-7"), and In a minimal model of
P”. Then ad 6 G(P), and by Theorem 4.3, I = Udad(In(d)) is a model of
P. However, 7' 5! R(I). Thus

A¢LP%A

Q.E.D.
According to this lemma, we have

Theorem 5.1.2 CWA(P) l: fiA iff CWA(P,,) I: fiA or 7‘(A) 6 Fix(P).

23

This theorem indicates that if an n-ary predicate symbol 7" lies in a
proper orbit of P, then for any n—tuple d of the Herbrand constants, we can
infer -|7'(d) from P under the CWA. Otherwise, we need to test whether
-|7*(d) is derivable from Pn under the CWA. In fact, we even have a stronger
result: Let PF = {C 6 PIR(C) Q Fix(P)} Then CWA(P) I: m4 iff
CWA(PF) }: -1A.

In the sequel, when we say GCWA(Pn) l: ~1A, we always assume without
loss of generality that in the procedure to derive Pn from P, r(A) is the
representative of the orbit of P where it locates.

Theorem 5.1.3 If GCWA(P) |= fiA, then there is a E G(P), such
that GCWA(Pn) I: fia(A); If GCWA(Pn) {2 fiA, then for any 0' E G(P),
GCWA(P) [2 fia(A).

Proof. As in the proof of Lemma 5.1.1, we let A = r(d’), and assume
that 7" is the representative of the orbit of P where 7" locates. Then 0r 2
(7‘7") 6 G(P), 0(A) meets the above assumption. For an arbitrary minimal
model In of P", if 0(A) E In then by Theorem 4.3, I}, = 0(In) is still a
minimal model of P. And A E I; Hence

GCWA(P) ta ‘1A.
This is in contradiction with the hypothesis.

If there is a 6 G(P) such that GCWA(P) lyé -'cr(A), then there exists a
minimal model I ofP such that cr(7‘)(d’) E I(d’). If I(d) = {r1(d), - - - ,rk(d)},
we let I’(d) = {ri (d), - - - ,TL(d)}, where r; is the representative of the orbit
of P where r,- locates in the procedure to obtain the simplified form G(Pn)
of P. Similar to the fact (2) in the proof of Lemma 4.1, UdI’ (d) is a minimal
model of G(Pn). Because in the procedure to derive Pn from P, 7' is the
representative of the orbit of P where it locates, in the procedure to derive
0(Pn) from P, 0(r) is the representative of the orbit of P where it locates.
So,

a(r)(d') E I’(d’), GCWA(0(P,,)) té fia(A).

Therefore, there is a minimal model I’ of G(Pn), such that 0(A) E I’. Obvi-
ously A E 0_1(I’), and a"1(I’) is a minimal model of P7,. Hence

GCWA(Pn) ts m4,
which is in contradiction with the hypothesis.

Q.E.D.
Theorem 5.1.3 demonstrates that, to obtain the negative facts from P

under the GCWA, we may apply the permutations in G(P) to those from
Pn under the GCWA.

24

About the positive facts, from Lemma 5.1.1, we have

Theorem 5.1.4 (1) CWA(P) |= A iff CWA(P,,) I: A and r(A) E
Fi1:(P); (2) GCWA(P) l: A iff GCWA(Pn) I: A and r(A) E Fix(P).

Example 5.1.1 P = {p /\ n —> z, -\z —> r}.
P has two orbits: 01 = {pm} and 02 = {2,7‘}. They are both proper.

So {-ap, fin, -uz, or} is the set of all negative facts derivable from P under
the CWA. CWA is inconsistent in this example.

If we choose p and 2 as the representatives of 01 and 02, we then obtain
a simplified form of P: P2 = {2} Only the negation of representative p is
derivable from P2 under the GCWA. So {fia(p) | a E C(P) = 01 x 02} =
{—119, fin} is the set of all negative facts derivable from P under the GCWA.

5.1.2 On the computation of GCWA

The negation of a ground atom is derivable from P under the GCWA iff this
ground atom belongs to no minimal model of P. It is very difficult to evalu-
ate this condition directly[12]. One method is to test if some disjunctions of
ground atoms can be deduced from P[11]. In this section. We discuss how
to simplify this procedure based on the symmetric group we defined. To be
able to conduct computing, we suppose that there are no function symbols.
Without loss of generality, we discuss in the propositional logic.

In the sequel, a disjunction means the empty clause or a disjunction of
finite ground atoms. For a set 0 of ground atoms, by V0 we denote the
disjunction of all atoms in O. For a disjunction C, we say 1" E C, if atom
7‘ appears in C. Similarly, for an atom set 0, we say 0 C; C, if for any
7" E O, r E C. We call C irredundant, if for any proper subset O of the set
consisting of the atoms in C, P l: C, however, P tyé V0.

Theorem 5.1.5 Let C be an irredundant disjunction, 7‘ be a ground
atom, and O, the orbit of P containing 7‘. If 7' E C, then Or Q C.

Proof. Suppose C = (Vir§)V(VJ-rj), where rg, rj are ground atoms, and rj
are all the ground atoms in C belonging to 0,. Obviously, 7' E {rj I j} 7S (2).
Let MM be the set of all minimal models of P, and

MM1 = {I 6 MM | There exists 2', such that r; E I},MM2 = MM—MMl.

MM2 # (2). Otherwise, P l: Virg, which is in contradiction with the fact
that C is irredundant. For an arbitrary I e MM2, there exists an 7‘, 6 Or
such that 7‘, E I. Choose an arbitrary rt 6 OT. By Lemma 4.1 and 4.2(3),

1': (I-{rs})U{7“t}

25

is a minimal model of P. And I’ E MMz. Thus I’ satisfies ej. From
Lemma 4.1, we have rt 6 {rj lj}. Hence7 Or = {rj |j}.

QED.
Let n and m be respectively the numbers of elements of Herbrand uni-

verse and orbits of P. To test whether or not GCWA(P) }2 —.r, we basically
have to test 212—1 disjunctions C to see whether P f: C V 7‘ implies P I: C.
However, according to Theorem 5.1.5, we have

GCWA(P) l: fir, if for orbits 01,---,O;c of P, P }= (V01) V V
(VOk) V (V0,) implies P |= (V01) V - - - V (VOk).

So, now we only need try 2m‘1 disjunctions C to see if P l: C V (VOT)
implies P I: C. This may simplify the computation procedure in the case
when the symmetric group of P is not (1). In addition, if GCWA(P))= fir,
then for any 1" E 0,, GCWA(P) f: nr’. This means that we only need to
test one element in each orbit of P.

Example 5.1.2 We consider the P in Example 5.1.1. To see if GCWA(P) }:
np, in general one has to test the following 8 disjunctions:

n V 2 V r,n V z,n V r,z V r,z,r,n and the empty clause.

According to our result, we only need to test the following 2 disjunctions:

2 V r and the empty clause.

Also, when we have known GCWA(P) l: -up, we can conclude GCWA(P) l:
fin without any testing. This is because p and n are in the same orbit of P.

5.2 OCWA: An extension

We present a new proposal to derive negative information termed orbit CWA
(OCWA), which is actually an extension of the GCWA.

Assume that 01-(i = 1, - - ~ ,m) are all the orbits of P. For each 01-, let
0? be a set consisting of an arbitrarily chosen predicate symbol in 01-, and
01-— : Oi — 02' . In the sequel, A still represents a ground atom. Let

NF1 = {—.A| There exists 0,- : MA) 6 of},
NFg = {-IA | There exists 0,- : 7-(A) 6 0:, and for any

disjunction C, P l: C V A implies P l: C}.

Let OCWA(P) = P U NF1 U NF2. -1A is said to be derivable from P under
the OCWA if OCWA(P) }: —IA. The OCWA preserves consistency:

Theorem 5.2.1 OCWA(P) is consistent.

26

Proof. In the procedure to derive a simplified form of P, we choose
the predicate symbol in O? as the representative. Let Pn be the obtained
simplified form of P, and In a minimal model of it. By Theorem 4.3, In is
a minimal model of P. Since the predicate symbols in 0," do not appear in
Pn anymore, In is a model of NF1. On the other hand, for any 5A E NF2,
A doesn’t belong to any minimal model of P. So A g In, In is a model of
NF2. We therefore know that In is a model of OCWA(P), it is consistent.

Q.E.D.
Actually, OCWA(P) is equivalent to GCWA(Pn) to derive negative

information. The next theorem shows that although new positive facts might
be deduced by applying the OCWA, we are able to recognize the situation
very easily.

Theorem 5.2.2 P l: A iff OCWA(P) f: A and r(A) E Fi$(P).

Proof. If P l: A, then OCWA(P) I: A, and by Lemma 5.1.1, r(A) E
Fix(P).

Assume OCWA(P) I: A. Let Pn be the simplified form of P as in the
proof of Theorem 5.2.1. It is not hard to see that OCWA(P) is logically
equivalent to PnUNF1UNF2(in fact, Pn may be obtained from P and NF1 by
subsumption and resolution[7]). So Pn UNF1UNF2 I: A. If r(A) E Fix(P),
then r(A) $5 R(NF1). Clearly,

R(NF1) fl R(Pn) = 0,R(NF1) flR(NF2) = 0.

Thus Pn U NF2 l: A. Similar to the proof of first part of Theorem 5.1.3, for
any -vA’ E NFg, GCWA(Pn) I: ~1A’. So GCWA(Pn) }2 A, and thus Pn l:
A. Again from Lemma 5.1.1, we have P l: A.

Q.E.D.

Example 5.2.] For the P in Example 5.1.2, We choose 0? = {n}, O; =
{r}. {52, -up, fin} are all negative facts derivable from P under the OCWA.
However, -iz isn’t derivable from P under the GCWA.

In the procedure to formulate the OCWA, if we choose each 01-+ as an
arbitrary non-empty subset of 0,, all the results above still hold. Especially,
when 0? = 0i; the OCWA coincides with the GCWA. So, the OCWA
is in fact a generalization of the GCWA. So far we don’t know yet the
relations between the OCWA and the CCWA developed by Gelfond and
Przymusinska[10]. Nevertheless, the OCWA has an advantage that one can
modify the negative facts very easily when changing his mind on the world.
However, in the CCWA, it is difficult to change directly from the derived
negative facts. One inadvantage of the OCWA is that when the symmetric
group of P is (1), the OCWA is exactly the GCWA.

27

5.3 Completion procedure

Hereafter, we consider another inference rule to derive negative information,
which is usually termed negation as failure. The basic idea is that we admit a
negative ground atom if it isn’t a logical consequence of Comp(P). However,
in the case when Comp(P) is inconsistent, it is invalid. Fortunately, the
completions of stratified programs are consistent[l].

Let P be stratified. Then all simplified forms of P are stratified.

Indeed, we can first obtain a program sequence P0 = P, - - - ,Pn in the
following way:

Let EU 2 0) be stratified. For any proper orbit O,- of the symmetric
group G,- associated with P,, if there exist an r,- E 0,- and C,- E P, such that
r, is the predicate symbol of the head of 0,, then all predicate symbols in
O,- — {73-} cannot appear in the head of any clause in Pi. In the procedure
to get Pi+1 from B, this 7‘, is chosen as the representative of 0,. Otherwise,
let an arbitrary element of 0,- be its representative.

We thus obtained Pi“, and it is obviously stratified. Hence, Pn is strat—
ified. However, Pn is a simplified form of P by Theorem 3.2.5, and for any
a simplified form P,’, of P, there is a or E C(P) such that P,’z = 0(Pn). By
Lemma 2.3.1, P,’, is stratified.

Actually, Comp(P) is logically equivalent to Comp(Pn). In what follows,
we show that such a P7, can be chosen directly based on the orbits of P.

Let P0 = P, - - - ,Pn and Go,~-',Gm be a program sequence and the
corresponding symmetric group sequence, and

PA = {C G P | R(M_) Z Fi$(P)},
where M denotes the literal multiset of C. For an arbitrary C 6 PA, by
Lemma 3.2.3, there exists a proper orbit O, of G, such that 0,- Q R(M_).
Suppose that this 0, is the nearest in C. For two different n-ary predicate
symbols in 0,, assume r1(t), r2(t) E M_, where t is an n-tuple of terms.

Let I be a model of Comp(P). I satisfied the equality theory. If i = 0, by
Lemma 4.4, for any n—tuple d of the elements of domain of I, at most one of
R1(r1)(d) and R1(r2)(d) is in I(d). So I makes the body of C false. Hi > 0,
from the proof of Theorem 4.6, we know that there are 00d, - - ‘ ,a,_1d such
that Ud0,_1d - - - aOd(I(d)) is a model of Comp(P,-). According to Lemma 4.4,
0,-_1d - - - 00d(I(d)) contains at most one of R1(7'1)(d) and R1(r2)(d). Then
by Lemma 3.2.4, I(d) contains at most one of R1(r1)(d) and R1(7‘2)(d). I
still makes the body of C false. So I is a model of Comp(P — PA).

On the contrary, let I be a model of Comp(P — PA). I satisfied the
equality theory. If there is not a clause in P — PA, in whose head T1 or
T2 is the predicate symbol, then I obviously makes the body of C false.
Otherwise, for example, we assume there are clauses Cj in P — PA, whose

28

heads are r1(tj). From Lemma 323(2), ‘iT2(tj) appears in the body of Cj.
Similar to the proof of Lemma 4.4, at most one of R1(r1)(d) and R1(r2)(d)
is in I(d), I still makes the body of C false. So I is a model of Comp(P).

We therefore proved that I is a model of Comp(P) iff I is a model of
Comp(P — PA). Namely, Comp(P)and Comp(P — PA) are logically equiva—
lent.

For any proper orbit O of P, if there exist 7‘ E O and C E P — PA
such that 7‘ is the predicate symbol of head of C, in the procedure to get a
simplified form of P, we choose this 7' as the representative of 0. Otherwise,
choose an arbitrary element of 0 as its representative. We call such a derived
simplified form Pn of P keep heads. If P is stratified, by Lemma 323(2),
all predicate symbols in 0 — {7‘} cannot appear in the heads of clauses in
P — PA.

Theorem 5.3.1 If P is stratified and Pn keeps heads, then Comp(P)
and Comp(Pn) are logically equivalent.

Proof. For an n—ary predicate symbol r, if its completed (P — PA)-
definition is Vx(-1r(x)), then it is still the completed Pn—definition of r. The
contrary also holds since P is stratified and Pn keeps heads.

Otherwise, suppose {0,- | 2'} is the (P —— PA)-definition of 1‘. Without
loss of generality, we assume that besides the orbit O, = {r1, - - - ,rs,r}
containing r, there is one proper orbit O,- = {pi1,~-,p,~k,} of P, whose
elements appear in 0,:

Ci = C; /\ (A§‘=1(vpij(ti))b‘) /\ (A§=1(v7‘j(t))) —> TUE),
where C; is a conjunction of literals whose predicate symbols are in Fix(P),
and t,ti are tuples of terms, b,- is the number of occurrences of fipij(t,-) in
the literal multiset of Ci(Since P is stratified, the number of occurrences of
rj(t) is 1). Then, the completed (P — PA)-definition of r is

1’0“) = Vrv(Vi3yz-(C£ /\ (Af;1(npij(ti))b‘) /\ (/\§=1(nrj(t))) /\ (x = t)) <-> 7156)),
where y,- are the tuples of variables in 0,. Suppose that Pu is the represen-
tative of 0,. Since P is stratified, by Lemma 3.2.3(2),‘ pij E O,- — {pl-1} and
rj can no longer appear in the heads of any clauses in P. So their completed
(P — PA)-definitions are

F(Pij) = V$I(“Pij($l)) and Fm) = Va7(n7"j(90))
respectively. Because Pig-(j 75 1) and r,- do not appear in P7,, F(p,-j) and
F(rj) are in Comp(Pn), too. And since 'r is the representative of Or, the
completed Pn—definition of 7' is

Fn(7”) = V$(Vi3lyi(05 /\ (np¢1(ti))b" /\ (-‘B = 73)) H 7‘(13))-

29

Let F = {F(p,-j) I 2';j = 2,---,ki} U {F(7'j) l j = 1,---,s}. Then, together
with the equality theory, {F(7‘)}UF and {Fn(r)}UF are logically equivalent.
Therefore Comp(P —— PA) and Comp(Pn) are logically equivalent. We are
done.

Q.E.D.

Corollary 5.3.2 Suppose that P is stratified and Pn keeps heads. For
a ground literal L, Comp(P) {2 L iff Comp(Pn) I: L.

Example 5.3.] P: {pAn——> z,p/\n—> 7‘,fiz —>7'}.

P is stratified. It has two simplified forms P2 = {r} and P5 = {2}. Only
P2 keeps heads.

Comp(P) = {1), fin, (p /\ n) V fiz H r,p /\ n <—> z},
' Comp(P2) = {-vp,-in, -z,r},Comp(Pé) = {-1p, fin,z, fir}.

Comp(P2) is logically equivalent to Comp(P). But Comp(P2’) isn’t.

6 On semantics

We first discuss the semantics for definite, hierarchical and stratified pro-
grams. Then we extend these notions to more general ones, and develop the
similar semantics.

6.1 Definite, hierarchical and stratified logic programs

We mainly focus on the model and procedural semantics for definite pro—
grams, the completeness of a procedural semantics for hierarchical programs,
and the standard or perfect model semantics for stratified programs.

6.1.1 Definite logic programs

If P is definite, then P has the least model, the simplified form P" of P
is unique, and it is a subset of P. Pn is obviously definite, it also has
the least model. We refer the reader to [13, 15, 26] or Chapter 2 and 3
of [16] for the definitions of program function Tp associated with P, (fair)
SLD-refutation, as well as correct and computed answers for P U {Q}(Q is a
definite goal). We might as well require that Q0 is ground if (9 is a computed
answer for P U {Q} Here we only note that the negation as failure rule can
be implemented by fair SLD-resolution. In the following, gfp(Tp) denotes
the greatest fix—point of Tp, and w is the first infinite ordinal.

Theorem 6.1.1 Suppose that P is definite. (1) The least model of Pn
is exactly that of P; (2) TP T w = Tn. T w; (3) 9fP(TP) = gfp(TP..); (4)
Tp l w = Tpn l w.

30

Proof. (1) Immediate from Theorem 4.3.
(2) Let I be the least model of P. Then Tp T w = I = T13" T w.
(3) A E gfp(Tp), iff Comp(P) U {A} has an Herbrand model (See Chap-

ter 3 of [16]), iff Comp(Pn) U {A} has an Herbrand model(Theorem 5.3.1),
iff A E 9fP(TPn)-

(4) A ¢ Tp i w, iff Comp(P) I: -\A (Chapter 3 of [16]), iff Comp(Pn) {2
fiA(Corollary 5.3.2), iff A ¢ Tpn 1 w.

Q.E.D.
Actually, we can prove that for any natural number n, Tp T n = Tpn T 77..

However, this doesn’t hold for Tp ,L n.
We know that for a ground atom A, (1) -1A can be inferred from P under

the negation as failure rule ifi every fair SLD—tree for P U {-wA} is finitely
failed iff A g Tp ,L w; (2) -A can be inferred from P under the Herbrand
rule iff A Q gfp(Tp); (3) -A can be inferred from P under the CWA iff
A ¢ Tp T to. So, by Theorem 6.1.1, we have

(1) -‘A can be inferred from P under the negation as failure rule iff every
fair SLD-tree for Pn U {-iA} is finitely failed; (2) -nA can be inferred from P
under the Herbrand rule iff -IA can be inferred from B, under the Herbrand
rule; (3) -A can be inferred from P under the CWA iff -IA can be inferred
from Pn under the CWA.

Theorem 6.1.2 Let Q be a definite goal. (9 is a correct answer for
P U {Q} iff 6 is a computed answer for P, U {Q}.

Proof. 9 is a correct answer for PU {Q}, iff P T: -e9, iff B, T: fiQ0(See
Theorem 6.1.1(1)), iff 0 is a computed answer for Pn U {Q} (The soundness
and completeness of SLD-resolution, see Chapter 2 of [16]).

QED.
The facts we showed in this section demonstrate that if P is definite,

basically various semantics keep invariant. We can utilize its simplified form
rather than P itself, to proceed these semantics.

Example 6.1.] P = {pAn ——> 2,2 —) r}.
The simplified form of P is P1 = {z —> 1*}. There are no definite goals

that succeed through the SLD-resolution from P1. So no definite goals can
succeed through the SLD-resolution from P.

Example 6.1.1 also indicates that in general P and Pn are neither (weakly)
subsumption—equivalent nor Herbrand-equivalent[19]. However, they both
are completion-equivalent (Theorem 5.3.1), and equivalent with respect to
some observables, for instance, successful derivations and computed an-
swers[9].

31

6.1.2 Hierarchical logic programs

Now, we concentrate on the completeness result of SLDNF—resolution for
hierarchical programs. For the definitions of SLDNF-resolution7 a safe com-
putation rule scr, a correct answer for Comp(P) U {Q}, as well as an scr-
computed answer for P U {Q}(Q is a goal), the reader is referred to [8] or
Chapter 3 of [16].

To avoid floundering, Clark defined allowed programs and goals[8]. A
clause or a goal is said to be allowed if every variable occurring in it occurs in
a positive literal of its body. We say that P U {Q} is allowed if its members
are all allowed. This definition is stronger than that defined by Lloyd, et
al[16]. We call the latter weakly allowed in the following.

Now assume that B, is a simplified form of P. Similar to the discussion
in Section 5.3.1, we have the following fact:

If P is hierarchical, then Pn is hierarchical.

Theorem 6.1.3 Suppose that P is hierarchical, Pn keeps heads, Q is a
goal, and Pn U {Q} is (weakly) allowed. 6 is a correct answer for Comp(P) U
{Q} and 6 is a ground substitution for all variables in Q ifi 6 is an scr-
computed answer for B, U {Q}.

Proof. By the above fact, Theorem 5.3.1, as well as the soundness and
completeness of SLDNF-resolution for hierarchical programs(Chapter 3 of
[16]), we get the result as required.

Q.E.D.
This theorem indicates that if P is hierarchical, generally the results

of SLDNF-resolutions from P and its simplified forms keeping heads are
invariant. we may utilize simplified forms of P keeping heads instead of P
to conduct the SLDNF-resolution without destroying the completeness. On
the other hand, this theorem is also a generalization of the completeness
result for hierarchical programs. As a matter of fact, it is obvious that if
P U {Q} is allowed, then B, U {Q} is allowed. However, if P U {Q} is weakly
allowed, P” U {Q} may not be weakly allowed even when P is hierarchical.
We consider the following example

P = {p(a) /\ when) —> q2(x)}.
P1 = {p(a) —> q1(3:)} is a simplified form of P. Let Q =<— q1(1:). Then P U
{Q} is weakly allowed. P1 U{Q} isn’t, since in the Pl—definition of C11, p(a) —>
q1(a:) is not allowed. Fortunately, in the case when P is hierarchical(or more
general, stratified) and Pn keeps heads, P U {Q} is weakly allowed implies
that Pn U {Q} is weakly allowed. The converse isn’t true.

We point out that in Theorem 6.1.3, the results of SLDNF-resolution
from Pn doesn’t depend on the choice of P”. in fact, if P], is another simpli—

32

fied form of P keeping heads, then Pn U {Q} is weakly allowed ifi P,’, U {Q}
is weakly allowed. And by Theorem 5.3.1, Comp(Pn) and Comp(P,’,) are
logically equivalent.

Example 6.1.2 P = {pAn —> 2,-12 —> 7‘}.
P2 : {r} is a simplified form of P keeping heads. Q = fipA —m/\ fizAr —>

succeeds through the SLDNF-resolution from P2. So it can succeed through
the SLDNF—resolution from P.

Finally, we remark that Clark’s completeness result was pushed up to
strict stratified programs by Cavedon and Lloyd[6], and to call—consistent
programs by Kunen[l4]. We can similarly discuss these two classes of pro—
grams. Basically, if P is strict and stratified, then so is P”. If P is call-
consistent, then so is F”. We no longer pay more attention to the details.

6.1.3 Stratified logic programs

We show that if P is stratified, its simplified forms keeping heads keep the
standard model of P. For the definition of standard model and levels of
predicate symbols for a stratified program, please see [1] or [16]. Hereafter,
we assume that Pn is a simplified form of P. Pn is then stratified.

Theorem 6.1.4 Suppose that P is stratified and Pn keeps heads. The
standard model of Pn is exactly that of P.

Proof. Since Pn keeps heads, we may assume that a predicate symbol
has the same level in Pn and P, and the levels are 0, - ~ - ,t. Let A represent
a ground atom, and for k S t,

Pk = {C E P | The maximum level of predicate symbols in C is k},

P1,“ = {C E Pn I The maximum level of predicate symbols in C is k}.

Then, in the procedure to obtain Pn from P, Pr]: = E(Pk). Let

D0 = {S | S Q {A : the level of r(A) is 0}}

P0 and P3 are definite, and the least fix—point If} of Tpg (restricted to D0)
is exactly the least fix—point I0 of Tpo(restricted to Do). For k 2 0, suppose
that Ik and I}: are the least fix-points of Tpk and T135, restricted to Dk,
respectively, and Ik = I5. Let

Dk+1 = {1" u s | s g {A : the level of r(A) is k + 1}}.

Then, Dk+1 is a complete lattice under set inclusion. Furthermore, Dk+1 is
a sublattice of the lattice of Herbrand interpretations, and Tpk+1 and TPk+1,

33

restricted to Dk+1, are both well-defined and monotonic. So, Tpk+1 and
T135“, restricted to Dk+1, have the least fix-points I,“+1 and [5+1 respec-
tively. Similar to the proof of Lemma 4.2(1) and (2), we have I"+1 : IS“.
We therefore have It = If” i.e., the standard models of P and Pn coincide.

Q.E.D.

Example 6.1.3 P = {—> p,p/\ on -> 7‘}.
P1 = {a p, p —> r} is the simplified form of P keeping heads. The

standard model of P1 is {p, 7‘}. It’s the standard model of P.

According to Theorem 6.1.4, the standard models of P and its simpli-
fied forms keeping heads are invariant. We can thus apply Apt, Blair and
Walker’s interpreter[1] to Pn without any impact on the final results. Fi~
nally, we note that if P is locally stratified[21], then Pn is locally stratified,
and the perfect models of P and Pn coincide. In fact, for the set P|H of all
ground instances of P(May be infinite), when it is viewed as a propositional
clause set, we may analogously define the corresponding permutation group
C(PIH). And G(P) is a subgroup of G(P|H) up to isomorphism. Similar
to the above proof, we can get the result.

6.2 Quasi-definite(hierarchical, stratified) logic programs

We generalize the notions of definite, hierarchical and stratified programs,
and propose semantics for them.

6.2.1 Definitions

A program is said to be quasi-definite[quasi—hierarchical, quasi-stratified], if
its simplified forms are definite[resp. hierarchical, stratified].

Obviously, definite[hierarchical, stratified] programs are quasi—definite[resp.
quasi-hierarchical, quasi-stratified]. Quasi-definite and quasi—hierarchical
programs are quasi-stratified.

Example 6.2.1 P’ = {-IT ——) z,—|z —> r} is quasi-definite, for one of its
simplified forms Pi = {—> 7‘} is definite.

P = {-xr —-> z,p /\ n Ar —> 7‘} is quasi—definite, since P2 = {-—> z} is a
simplified form of P, and it is definite.

Example 6.2.2 P = {z —-> 73-12 —> 1‘,p /\ n /\ z —> z} is quasi-hierarchical,
for P1 = {z ——> 7', '12 —> r} is a simplified form of P, which is hierarchical.

Example 6.2.3 P 2 {up —> n, on —> p,r /\ -'p /\ on —-> z, z —+ 7‘} is quasi-
stratified, because P1 = {—> p, r /\ -vp ——> z, 2 —> 7‘} is a simplified form of P,
which is stratified.

34

6.2.2 Quasi-definite logic programs

We follow the terminologies for definite programs in Section 6.1.1. By A
we represent a ground atom. Let Pn be a simplified form of P. If P is
quasi-definite, then Pn is definite. Without confusions, we also use Fix(P)
to denote the set {A I MA) 6 Fix(P)}. Then by Lemma 5.1.1, we have

Theorem 6.2.1 Let P be quasi—definite. The followings are the same:
(1){A | P |= A}; (2)Tpn T wflFix(P); (3) InflFix(P), where In is the least
model of Pn; (4) {A| there is an SLD-refutation from Pn U{—> A}}flFix(P).

Let Q be a definite goal. We call a substitution 0 a correct answer for
PU{Q}, if P }= -Q0, and we require that 9 makes Q ground. From Theorem
6.2.1, we have

Theorem 6.2.2 Let P be quasi-definite, and Q a definite goal. 6 is a
correct answer for P U {Q} iii" 6 is a computed answer for Pn U {Q}, and
R(Q) g MP).

So, the SLD-resolution is sound and complete for quasi—definite programs
and definite goals. we may employ the SLD—resolution to compute definite
goals in this case. And it is independent of the choice of Pn.

Now we turn to deriving negative facts. Let P be quasi-definite. First we
choose some simplified forms, say P3 = Pn, - - - ,P,’,“, of P according to some
given requirements(for example, keeping heads). We say that -A is derivable
(under the requirements) if every fair SLD—tree for P}, U {A —>}(i = 0, ~ . ~ ,k)
is finitely failed.

When P is definite, this rule coincides with the negation as failure rule.
Let a,- E G(P) such that 0,-(Pf,) : Pn(z' = 0, - - - , k). Then HA is derivable

iff every fair SLD—tree for Pn U {tn-(A) —>}(i = 0, - . - ,k) is finitely failed.
Therefore this rule can be implemented through fair SLD-resolution from

Pn. It is sound and complete with respect to Comp(Pn). As a matter of
fact, -1A is derivable ifi Comp(Pn) |= Af=00,(A).

PU{-nA [fiA is derivable} is consistent. Indeed, Comp(Pn) is consistent.
So Pn U {-IA | —IA is derivable} is consistent. Let I be an Herbrand model of
it. Then I is a model of Pn, and A g? I if fiA is derivable. Suppose that In g
I is a minimal model of Pn. Then A 93 In if -wA is derivable, and by Theorem
4.3, In is a model of P. Thus it is a model of P U {fiA | -iA is derivable}.

Example 6.2.4 For the P in Example 6.2.1, no positive atoms can succeed
through the SLD-resolution from P since Fizr(P) = 0. Now we choose
a simplified form of P: P1 = {2} (it keeps heads) . Then fip,-'n and —w
are derivable. However, although -7‘ is a logic consequence of Comp(P),
generally we can by no means obtain fir through the SLDNF-resolution

35

from P.

6.2.3 Quasi-hierarchical and quasi-stratified logic programs

Let H be the set of all predicate symbols appearing in the heads of some
clauses in P, 01, - - - , 0;, be all the orbits of P whose intersections with H
are non—empty, and

GH = 501nH X >< 50km;-

GH is then a subgroup of G(P). If Q = AiL, ——> is a goal, we use GH(Q)
to denote the goal /\,~ AUEGH 0(Li) —+ . Now, suppose that P" is a simplified
form of P keeping heads. We say that a substitution 6 is a correct answer for
Comp(P) U {Q} in symmetric sense, if it is a correct answer for Comp(Pn) U
{G'H(Q)}. A substitution 0 is called an scr-computed answer for P U {Q}
in symmetric sense, if it is an scr-computed answer for Pn U {GH(Q)}.

Actually, 0 is a correct answer for Comp(P) U {Q} in symmetric sense[an
scr—computed answer for PU{Q} in symmetric sense] iff for every Pn keeping
heads, it is a correct answer for Comp(Pn) U {Q}[resp. scr-computed an-
swer for Pn U {Q}]. It seems reasonable to define correct answers by utilizing
Comp(Pn). According to Theorems 4.3 and 4.6, we may say that Pn keeps
the minimal models of P, and Comp(Pn) and Comp(P) are logically equiv—
alent up to permutations. When P is hierarchical or stratified, GH = (1),
and by Theorem 5.3.1, these two definitions coincide with the usual ones.

If P U {Q} is allowed, then so is Pn U {GH(Q)}. We then have

Theorem 6.2.3 Suppose that P is quasi-hierarchical, Q is a goal, and
P U {Q} is allowed. 6 is a correct answer for Comp(P) U {Q} in symmetric
sense and 9 is a ground substitution for all variables in Q iii 9 is an scr-
computed answer for P U {Q} in symmetric sense.

Quasi-hierarchical programs may allow some recursion. Theorem 6.2.3
is a generalization of Clark’s completeness result of the SLDNF-resolution
for hierarchical programs. It isn’t covered by the other generalizations such
as in [6] and [14]. Unfortunately, P being weakly allowed does not ensure
that Pn is. So the completeness part of this theorem may not hold if we just
require P to be weakly allowed.

Example 6.2. 5, For the P in Example 6.2.2, it has one simplified form
P1 = {z —> 7', oz —> r}. Of course P1 keeps heads. 7‘ is a logic consequence
of Comp(P). However, 1“ —> cannot succeed through the SLDNF—resolution
from P. Namely, the identity substitution is not computed for P U {r —>}.
But 1' —> succeeds through the SLDNF-resolution from P1. So now the
identity substitution is computed.

36

Now, we take a look at quasi-stratified programs. By Theorem 4.6, we
have the following

Theorem 6.2.4 If P is quasi-stratified, then Comp(P) is consistent.

This theorem extends the result that Comp(P) is consistent for strat-
ified programs. The latter result was ever generalized to call—consistent
programs[24]. We remark that it doesn’t cover Theorem 6.2.4, or vise visa.
Let’s consider

P= {-ipA—Iz —>n,-wn/\-z —->p,-ap/\—1n—> 2}.

P is quasi-stratified. But it isn’t call-consistent. On the other hand,

P= {-vn—>n,-In/\p—>p}

is call-consistent. However, it isn’t quasi-stratified.
Although a quasi-stratified program may not have the unique standard

model, Apt, Blair and Walker’s interpreter[l] does apply.
Let P be quasi-stratified, and Pn a simplified form of P keeping heads.

We call the standard models of 0(Pn)(0 E GH) the standard models of P.
It is reasonable to utilize these models as the intended meaning. For a

ground atom A, we say P l=SM A if A is in the intersection of standard
models of P, P |=SM m4 if A isn’t in the union of standard models of P.

When P is stratified, it coincides with the usual standard model seman—
tics. Also, we needn’t test for all simplified forms of P keeping head. We
only need to fix one. As a matter of fact, we have

Theorem 6.2.5 Suppose that P is quasi—stratified, Pn keeps heads, and
L is a ground literal. P {=5M L iff for any a 6 GH, Pn |L=5M 0(L).

Example 6.2.6For the P in Example 6.2.3, P1 = {—> p, 7'/\~1p —> z, z —> 7‘}
is a simplified form of P keeping heads. GH = {(1971), (1)} GH(z) = {z},
and P1 fn -|z. So P ln oz. Similarly, P l=SM -'7'.

Bachmair and Ganzinger showed that the perfect model semantics can
be defined for stratified programs up to redundancy[3]. We point out that
the notion of being quasi—stratified isn’t covered by that of being stratified
up to redundancy, or vise visa. Let

P={p/\n—>z,—|p/\—|z—>n}.

Then P is quasi-stratified. But it isn’t stratified up to redundancy. However,

P = {n10 —> p}
is stratified up to redundancy. it isn’t quasi-stratified.

37

7 Conclusions

In this paper, we first discussed structures of the symmetric group corre-
sponding to a symmetry in a program. Then we presented the notions of
symmetric group and simplified forms of a program based on a sequence of
such symmetries.

Actually, these notions were due to the investigation of minimal models
of a program and models of its completion. As is known, they play a cen-
tral role in the theory of logic programming. We showed the relationships
between the minimal models of a program and its simplified forms, and the
relationships between the models of the completions of a program and its
simplified forms.

We then focus on the applications to derivations of negative information
and semantic issues. Roughly speaking, the CWA, the GCWA, and the
completion procedure can be applied directly to the simplified forms instead
of the original program(For the completion procedure, we have to require
that the simplified forms keep heads). A definite program and its simplified
form have the same least model and procedural semantics(The latter means
SLD-resolution). A hierarchical program and its simplified forms keeping
heads have the invariant procedural semantics(SLDNF-resolution). And a
stratified program and its simplified forms keeping heads have the invariant
standard or perfect model semantics.

We also introduced some new concepts based on these symmetries. We
presented a new rule to assume negative information termed OCWA, which
is in fact a generalization of the GCWA. We defined three classes of programs
called respectively quasi-definite, quasi—hierarchical and quasi-stratified pro-
grams, which are more general than definite, hierarchical and stratified pro-
grams. Finally, we briefly described the similar model and procedural seman-
tics for quasi-definite programs, procedural semantics for quasi—hierarchical
programs, and model semantics for quasi-stratified programs.

To sum up, the considerations of these symmetries may simplify the
related computation procedures, increase the computational power, and lead
to new concepts. Of course, the price is to compute some symmetric groups.
One future work is to study the complexity issues.

Before closing the paper, we pose the following problems. The first one
is indeed to see to what extent the positions of atoms in a program affect
the results. The second is to investigate other symmetries in a program as
well as their applications.

We want to figure out the behaviors of goals with respect to the comple-
tion set

{00mP(UCeP{OC(C)}) l 00 6 Go}
For example, for P = {—> p,p /\ -xq1 —) qg}, and goal p —>, the SLDNF-
resolution procedure doesn’t depend on the positions of q1 and q2. So, in

38

this situation we can say: “Don’t worry, it doesn’t matter to choose whom
as the negative hypothesis”.

One shortcoming of the symmetric group we defined in the paper is that
in many cases it is trivial, which means that sometimes we probably restrict
too much. This requires us to investigate more general symmetries. As a
matter of fact, a program induces a number of symmetric group structures,
which can be roughly classified into the syntactic and semantic ones. Be—
sides the symmetric group G associated with P we defined in the paper, for
instance,

G1={O’ESRIVCEP,ECI€PZO'(M0)=MCI}

is another syntactic symmetric group induced by P, where MC and MCI
are the literal multisets of C and C’ respectively. And G S G1(i.e., G
is a subgroup of Cl). The followings are some examples belonging to the
category of semantic symmetric groups induced by P.

G2 = {a 6 SR I VC 6 P, 30’ E P: 0(0) is logically equivalent to 0’},
G3 = {a 6 SR | I is a model ofP => 0(1) is a model of P},
G4 = {a 6 SR I I is a minimal model ofP => so is 0(1)},
G5 2 {a 6 SR | Comp(P) is logically equivalent to Gomp(a(P))}.

It is not hard to see that G _<_ G1 3 G2 3 G3 3 G4. As an example, let’s
think of

P ={q1 —+ p,q2 —> p, "QI —> q2}[4l-
For this P, G = (1). However, 01 = G2 = 03 2 G4 = {(1),(q1q2)}, and

G5 = {(1), (pq2)}. The structures of Gi(i 2 1) are more complicated than
G. These symmetric groups keep some syntactic or semantic properties
invariant. It is interesting to explore the behaviors of a program under
them or their combinations. We believe this is meaningful.

On the other hand, we needn’t limit ourselves to the symmetries on
predicate symbols. We can also consider, for instance, those on function
symbols and constants, and look the actions of them or their combinations.
Let’s see the example

P = {np(a) /\ 79(6) /\ nq(a) —> q(b)}-
the symmetries on predicate and function symbols together result in a sim—
plified form P1 = {—> q(b)}. P1 is definite, all minimal models of P can be
obtained from those of P1, and Gomp(P) is logically equivalent to Comp(P1)
(up to permutations).

In fact, if we similarly define the symmetric group on function symbols
and simplified forms of a program, generally Theorem 4.3 and 4.6 do not
hold anymore. One obvious counter-example is

P = {p(a) A W») —) q, —> p(w)}-

39

However, if P is a ground clause set, all the similar conclusions hold.
It is also interesting to investigate the applications of symmetries to

mechanical theorem proving[7]. For example, by Theorem 4.3, a clause set
is unsatisfiable iff a simplified form of it is unsatisfiable, It may help to
decide the SAT problem in practice.

References

1. Apt, K. R., Blair, H. A. 85 Walker, A., Towards a Theory of Declar-
ative Knowledge, in: Foundations of Deductive Databases and Logic
Programming, Minker, J. (ed), Morgan Kaufmann, Los Altos, 1988,
89-148.

2. Apt, K. R, B01, R. N., Logic Programming and Negation: A Survey,
J. Logic Programming, 19/20, 1994, 9-71.

3. Bachnair, L., Ganzinger, H., Perfect Model Semantics for Logic Pro—
grams with Equality, Proc. Int. Conf. on Logic Programming, 1991,
645—659.

4. Baral, C., Lobo, J ., 85 Minker, J ., Generalized Well-Founded Semantics
for Logic Programs, Proc. 10th Int. Conf. on Automated Deduction,
LNAI 449, Springer—Verlag, 1990, 102-116.

5. Bossu, G., Siegel, P., Saturation,Nonmonotonic Reasoning and the
Closed World Assumption, Artificial Intelligence, 25, 1985, 13-63.

6. Cavedon, L., Lloyd, J. W., A Completeness Theorem for SLDNF res-
olution, J. Logic Programming, 7(3), 177—191, 1989.

7. Chang, C.-L., Lee, R. C., Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

8. Clark, K. L., Negation as failure, in: Readings in Nonmonotonic Rea-
soning, M. L. Ginsberg (ed.), Morgan Kaufmann, Los Altos, 1987,
311-325.

9. Gabbrielli, M., Levi, G. 85 Meo, M. C., Observational Equivalences
for Logic Programs, Proceedings of the Joint International Conference
and Symposium on Logic ProgrammingUICSLP-QQ), MIT press, 1992,
131-145.

10. Gelfond, M., Przymusinska, H., Negation as Failure: Careful Closure
of Procedure, Artificial Intelligence 30, 1986, 273—287.

11. Grant, J., Minker, J ., Answering Queries in Indefinite Databases and
the Null Value Problem, Advances in Computing Theory(Kanellakis,
Guest Ed), JAI Press, 1986, 247-267.

40

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Henschen, L., Park, H., Compiling the GCWA in Indefinite Deductive
Databases, in: Foundations of Deductive Databases and Logic Pro-
gramming, Minker, J. (ed.), Morgan Kaufmann, Los Altos, 1988, 395-
438.

Kowalski, R. A., Predicate Logic as a Programming Language, Infor-
mation Processing, 74, 1974, 569—574.

Kunen, K., Negation in Logic programming, J. Logic Programming, 4,
1987, 289-308.

Lassez, J .-L., Maher, M. J ., Closures and Fairness in the Semantics
of Programming Logics, Theoretical Computer Science, 29, 1984, 167-
184.

Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag,
Berlin Heidelberg New York London Paris Tokyo, 1987

Lloyd, J. W., Toper, R. W., A Basis for Deductive Databases Systems
II, J. Logic Programming, 3, 1986, 55-67.

Lukaszewicz, W., Non—Monotonic Reasoning - Formalization of Com-
monsense Reasoning, Ellis Horwood, 1990.

Maher, M. J ., Equivalences of Logic Programs, in2F0undations of De-
ductive Databases and Logic Programming, Minker, J. (ed.), Morgan
Kaufmann, Los Altos, 1988, 627-658.

Minker, J ., On Indefinite Databases and the Closed World Assump-
tion, in: Readings in Nonmonotonic Reasoning, M. L. Ginsberg (ed),
Morgan Kaufmann, Los Altos, 1987, 326-333.

Przymusinski, T. C., On the Declarative Semantics of Deductive Data—
bases and Logic Programs, in: Foundations of Deductive Databases
and Logic Programming, Minker, J. (ed), Morgan Kaufmann, Los
Altos, 1988, 193-216.

Reiter, R., On Closed World Data Bases, in: Readings in Nonmono-
tonic Reasoning, M. L. Ginsberg (ed.), Morgan Kaufmann, Los Altos,
1987, 300-310.

Rotman, J. J., An Introduction to the Theory of Groups, Springer—
Verlag, New York, 1994.

Sato, T., On the Consistency of First Order Logic Programs, Technical
Report 87—12, Electrotechnical Laboratory, Ibarki, Japan, 1987.

41

25.

26.

27.

Shepherdson, J. C., Negation as Failure, Completion and Stratifica-
tion, in: Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Dov M. Gabbay et al (eds.), Vol.5, 1998, 356-419.

Van Emden, M. H., Kowalski, R. A., The Semantics of Predicate Logic
as a Programming Language, J. ACM, 23, 1976, 733-742.

Van Gelder, A., Negation as Failure Using Tight Derivations for Gen-
eral Logic Programs, in: Foundations of Deductive Databases and
Logic Programming, Minister, J. (ed.), Morgan Kaufmann, Los Altos,
1988, 149—176.

42

3i
INFORMATIK

Below you find a list of the most recent technical reports of the Max—Planck—Institut fiir Informatik. They
are available by anonymous ftp from ftp .mpi-sb .mpg . de under the directory pub/papers/ reports. Most
of the reports are also accessible via WWW using the URL http : //www.mpi-sb .mpg.de. If you have any
questions concerning ftp or W access, please contact reportspi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library
attn. Birgit Hofmann
Im Stadtwald
D-66123 Saarbriicken
GERMANY
e—mail: librarmpi-sb . mpg . de

MPI-I—1999—2-004

MPI—I—1999-2-003

MPI-I-1999— 2—001

MPI—I-1999- 1-002

MPI—I—1999—1-001

V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

U. Waldmann

W. Charatonik

N.P. Boghossian, O. Kohlbacher,
H.—. Lenhof

A. Crauser, P. Ferragina

MPI-I-98-2-018

MPI—I-98—2-017

MPI-I-98—2-014

MPI—I—98—2-013

MPI-I-98-2-012

MPI—I—98~2—011

MPI-I-98-2-010

MPI—I-98—2—009

MPI-I-98-2—008

MPI—I-98—2—007

MPI-I—98—2—006

MPI—I-98-2-005

MPI-I-98-2-004

MPI-I-98-2-003

MPI-I-98-2-002

MPI—I—98-l—O31

MPI-I—98-1—030

MPI-I-98-1-029

F. Eisenbrand

M. Tzakova, P. Blackburn

Y. Gurevich, M. Veanes

H. Ganzinger, F. Jacquemard, M. Veanes

G. Delzanno, A. Podelski

A. Degtyarev, A. Voronkov

S. Ramangalahy

S. Vorobyov

S. Vorobyov

S. Vorobyov

P. Blackburn, M. Tzakova

M. Veanes

S. Vorobyov

R.A. Schmidt

F. Jacquemard, C. Meyer, C. Weidenbach

G.W. Klau, P. Mutzel

H. Bronniman, L. Kettner, S. Schirra,
R. Veltkamp

P. Mutzel, R. Weiskircher

Decidable fragments of simultaneous rigid reachability

Cancellative Superposition Decides the Theory of
Divisible Torsion—Free Abelian Groups

Automata on DAG Representations of Finite Trees

BALL: Biochemical Algorithms Library

A Theoretical and Experimental Study on the
Construction of Suffix Arrays in External Memory

A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

Hybridizing Concept Languages

Partisan Corroboration, and Shifted Pairing

Rigid Reachability

Model Checking Infinite-state Systems in CLP

Equality Reasoning in Sequent—Based Calculi

Strategies for Conformance Testing

The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

AE—Equational theory of context unification is
Co—RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification and
Simultaneous Rigid E—Unification
Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

E-Unification for Subsystems of S4

Unification in Extensions of Shallow Equational
Theories

Optimal Compaction of Orthogonal Grid Drawings

Applications of the Generic Programming Paradigm in
the Design of CGAL

Optimizing Over All Combinatorial Embeddings of a
Planar Graph

MPI-I-98sl-O28

MPI-I-98-1-027

MPI—I—98— 1-026

MP1-I-98-1-025

MPI-I-98-1-024

MPI-I-98—1—023

MPI-I—98-1—022

MPI-I-98-1-021

MPI—I-98-1-020

MPI-I-98- 1-019

MPI-I—98-1-018

.VIPI-I-98-1-017

MPI-I—98-1-016

.VIPI-I-98-1-015

.VIPI—I-98-1-014

.VIPI-I-98-1-013

.VlPI—I—98~1-012

.VlPI-l-98-1-011

MPI-I-98-1-010

.VIPI-I-98-1-009

.VIPI—I-98-1-008

MPI-I-98-1—007

.VIPI-I-98~1-006

MPI-I-QS-l-OOS

MPI—L98—1-004

MPI-I-98-1-003

MPI—I—98—1-002

MPI—I-98—1-001

MPI—I—97-2-012

MPI—I—97-2-011

MPI-I-97-2—010

MPI—I-97-2-0_09

A. Crauser, K. Mehlhorn, E. Althaus,
K. Brengel, T. Buchheit, J. Keller,
H. Krone, O. Lambert, R. Schulte,
S. Thiel, M. Westphal, R. Wirth

C. Burnikel

K. Jansen, L. Porkolab

K. Jansen, L. Porkolab

S. Burkhardt, A. Crauser, P. Ferragina,
H. Lenhof, E. Rivals, M. Vingron

C. Burnikel

C. Burnikel, J. Ziegler

S. Albers, G. Schmidt

C. Riib

D. Dubhashi, D. Ranjan

A. Crauser, P. Ferragina, K. Mehlhorn,
U. Meyer, E. Ramos

P. Krysta, K. Lorys

M.R. Henzinger, S. Leonardi

U. Meyer, J.F. Sibeyn

G.W. Klau, P. Mutzel

S. Mahajan, E.A. Ramos,
K.V. Subrahmanyam

G.N. Frederickson, R. Solis-Oba

R. Solis-Oba

D. Frigioni, A. Marchetti—Spaccamela,
U. Nanni

M. Jiinger, S. Leipert, P. Mutzel

A. Fabri, G. Giezeman, L. Kettner,
S. Schirra, S. Schonherr

K. Jansen

K. Jansen

S. Schirra

S. Schirra

G.S. Brodal, M.C. Pinotti

T. Hagerup

L. Bachmair, H. Ganzinger, A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

A. Bockmayr, F. Eisenbrand

On the performance of LEDA-SM

Delaunay Graphs by Divide and Conquer

Improved Approximation Schemes for Scheduling
Unrelated Parallel Machines

Linear—time Approximation Schemes for Scheduling
Malleable Parallel Tasks

q-gram Based Database Searching Using a Sufiix Array
(QUASAR)

Rational Points on Circles

Fast Recursive Division

Scheduling with Unexpected Machine Breakdowns

On Wallace’s Method for the Generation of Normal
Variates

2nd Workshop on Algorithm Engineering WAE 798 —
Proceedings

On Positive Influence and Negative Dependence

Randomized External-Memory Algorithms for Some
Geometric Problems

New Approximation Algorithms for the Achromatic
Number

Scheduling Multicasts on Unit-Capacity Tiees and
Meshes

Time‘Independent Gossiping on Full—Port Tori

Quasi-Orthogonal Drawing of Planar Graphs

Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization

2—Approximation algorithm for finding a spanning tree
with maximum number of leaves

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

A Note on Computing a Maximal Planar Subgraph
using PQ-‘Trees

On the Design of CGAL, the Computational Geometry
Algorithms Library

A new characterization for parity graphs and a coloring
problem with costs

The mutual exclusion scheduling problem for
permutation and comparability graphs

Robustness and Precision Issues in Geometric
Computation

Parameterized Implementations of Classical Planar
Convex Hull Algorithms and Extreme Point
Compuations

Comparator Networks for Binary Heap Construction

Simpler and Faster Static AC0 Dictionaries

Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

On the Chvatal Rank of Polytopes in the 0/1 Cube

