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Abstract

In this paper we prove decidability results of restricted fragments of simul-
taneous rigid reachability or SRR, that is the nonsymmetrical form of simul-
taneous rigid E-unification or SREU. The absence of symmetry forces us to
use different methods, from the ones that have been successful in the context
of SREU in the past (for example word equations). The methods that we
use instead involve finite (tree) automata techniques, and the decidability
proofs provide precise computational complexity bounds. The main results
are 1) monadic SRR with ground rules is PSPACE-complete, and 2) balanced
SRR with ground rules is EXPTIME-complete. The first result indicates the
difference in computational power between fragments of SREU with ground
rules and nonground rules, respectively, due to a straightforward encoding
of word equations in monadic SREU (with nonground rules). The second re-
sult establishes the decidability and precise complexity of the largest known
subfragment of nonmonadic SREU.

Keywords

Rigid Unification, Term Rewriting, Reachability.



1 Introduction

Rigid reachability (RR) is the problem, given a rewrite system R and two
terms s and ¢, whether there exists a substitution # such that s, tf, and Rf
are ground, and sf rewrites in some number of steps via Rf into tf. The
term “rigid” stems from the fact that for each rule only one instance can
be used in the rewriting process. Simultaneous rigid reachability (SRR) is
the problem in which a substitution is sought which simultaneously solves
each member of a system of reachability constraints (R;,s;,t;). A special
case of [simultaneous| rigid reachability arises when the R; are symmetric,
containing for each rule s — ¢ also its converse ¢ — s. Such systems arise for
example by orienting a set of equations in both directions. The latter problem
was introduced by Gallier, Raatz & Snyder [1987] as “simultaneous rigid E-
unification” (SREU) in the context of extending tableaux or matrix methods
in automated theorem proving to logic with equality. Rigid reachability was
initially introduced in the context of second-order unification [Farmer 1991,
Levy 1998|.

Although the non-simultaneous case of SREU (rigid F-unification) was
proved NP-complete by Gallier, Narendran, Plaisted & Snyder [1988], SREU
in general was shown by Degtyarev & Voronkov [1995] to be undecidable.
Further implications of the latter result are discussed in [Degtyarev, Gure-
vich & Voronkov 1996]. In a series of papers, SREU has been studied ex-
tensively and several sharp boundaries have been laid between its decid-
able and undecidable fragments. Most recent developments are discussed by
Voronkov [1998] and Veanes [1998]. Rigid reachability was shown undecid-
able by Ganzinger, Jacquemard & Veanes [1998].

The, arguably, most difficult remaining open problem regarding SREU
is the decidability of “monadic” SREU, or SREU restricted to signatures
where all nonconstant function symbols are unary. The importance of this
fragment stems from its close relation to word equations [Degtyarev, Matiya-
sevich & Voronkov 1996], and to fragments of intuitionistic logic [Degtyarev
& Voronkov 1996]. What is known about monadic SREU in general is
that it reduces to a nontrivial extension of word equations [Gurevich &
Voronkov 1997]. In the case of ground rules, the decidability of monadic
SREU was established in [Gurevich & Voronkov 1997] by reducing it to “word
equations with regular constraints”. The decidability of the latter prob-
lem is an extension of Makanin’s [1977] result by Schulz [1990]. Conversely,
word equations reduce in polynomial time to monadic SREU [Degtyarev,
Matiyasevich & Voronkov 1996]. The first main result of this paper (in Sec-
tion 3) is that monadic SRR with ground rules is in PSPACE, improving the
EXPTIME result in Ganzinger et al. [1998]. Hence, it is unlikely that there



is a simple reduction, if any reduction at all, from monadic SREU to monadic
SREU with ground rules, or else one would get a considerable simplification
of Makanin’s [1977] proof. The PSPACE-hardness of monadic SREU with
ground rules was shown by Goubault [1994].

To obtain the PSPACE result we use an extension of the intersection
nonemptiness problem of a sequence of finite automata that we prove to be
in PSPACE. Moreover, using the same proof technique, we can show that
simultaneous rigid reachability with ground rules remains in PSPACE, even
when just the rules are required to be monadic. Furthermore, in this case
PSPACE-hardness holds already for a single constraint with one variable,
contrasting the fact that SREU with one variable is solvable in polynomial
time [Degtyarev, Gurevich, Narendran, Veanes & Voronkov 19985).

Our second main result concerns (nonmonadic) SRR with ground rules.
In section 4, we show that SRR with ground rules is EXPTIME-complete for
“balanced” systems of reachability constraints. Under balanced systems fall
for example systems where all occurrences of each variable are at the same
depth. Tt is possible to obtain undecidability of (nonsimultaneous) rigid
reachability with ground rules where all but one occurrence of all variables
occur at the same depth [Ganzinger et al. 1998]. Moreover, our decidability
result generalizes the decidability result by Degtyarev, Gurevich, Narendran,
Veanes & Voronkov [19984] of the largest known decidable fragment of SREU
with ground rules and implies EXPTIME-completess of the complexity of
this fragment (which is left open in [Degtyarev et al. 1998a]). We use finite
tree automata techniques over product languages, that have been used in
decision procedures for “automata with constraints between brothers” [cf.
Comon, Dauchet, Gilleron, Lugiez, Tison & Tommasi 1998].

2 Preliminaries

A signature Y is a collection of function symbols with fixed arities > 0 and,
unless otherwise stated, X is assumed to contain at least one constant, that
is, one function symbol with arity 0. We use a, b, ¢, d, ay, ... for constants and
fyq, f1,... for function symbols in general. A signature is called monadic if
all function symbols in it have arity < 1. A ground term is one that contains
no variables. The set of all ground terms over a signature X is denoted by
Ts.

We use s,t,l,r, s1,... for terms. The size ||t]| of a term ¢ is defined
recursively by: ||t|| = 1 if ¢ is either a variable or a constant and

If(te, ... ta)ll = ||| + -+ |lta]] + 1.



Positions in terms are sequences of integers. We use p, p; etc for positions,
e for the empty sequence (root position) and pp’ for the concatenation prod-
uct of two positions p and p’. We will also use the prefix ordering < on
positions. Some positions pq,...,p, are called parallel if they are pairwise
uncomparable with respect to <.

We assume that the reader is familiar with the basic concepts in term
rewriting [e.g. Dershowitz & Jouannaud 1990, Baader & Nipkow 1998]. We
write u[s] when s occurs as a subterm of w. In that case u[t] denotes the re-
placement of the indicated occurrence of s by t. An equation is an unordered
pair of terms, denoted by s ~ t. A rule is an ordered pair of terms, denoted
by s — t. An equation or a rule is ground if the terms in it are ground. A
system is a finite set. Let R be a system of ground rules, and s and t two
ground terms. Then s rewrites in R to ¢, denoted by s>, if ¢ is obtained
from s by replacing an occurrence of a term [ in s by a term r for some rule
[ — rin R. The term s reduces in R to t, denoted by s, if either s = ¢
or s rewrites to a term that reduces to . R is called symmetric if, with any
rule [ — r in R, R also contains its converse r — [. Below we shall not
distinguish between systems of equations and symmetric systems of rewrite
rules. The size of a system R is the sum of the sizes of its components:

IR =220 rer (M +Irl])-

Rigid Reachability. A reachability constraint, or simply a constraint, in
a signature ¥ is a triple (R, s,t) where R is a set of rules in 3, and s and
t are Y-terms. We refer to R, s and t as the rule set, the source term
and the target term, respectively, of the constraint. A substitution 6 in X,
solves (R, s,t) if § is grounding for R, s and ¢, and s6 -5 t0. The problem
of solving constraints is called rigid reachability. A system of constraints is
solvable if there exists a substitution that solves all constraints in that system.
Sitmultaneous rigid reachability or SRR is the problem of solving systems
of constraints. Monadic (simultaneous) rigid reachability is (simultaneous)
rigid reachability for monadic signatures.

Rigid E-unification is rigid reachability for constraints (F, s,t) with sets
of equations F. Simultaneous Rigid E-unification or SREU is defined ac-
cordingly.

Finite tree automata. Finite bottom-up tree automata, or simply, tree
automata, from here on, are a generalization of classical automata [Doner
1970, Thatcher & Wright 1968]. Using a rewrite rule based definition [e.g.
Coquidé, Dauchet, Gilleron & Vagvolgyi 1994, Dauchet 1993], a tree au-
tomaton (or TA) A is a quadruple (Q, %, R, F'), where (i) @ is a finite set



of constants called states, (ii) X is a finite signature that is disjoint from @,
(iii) R is a system of rules of the form f(q,...,q,) — ¢, where f € ¥ has
arity n > 0 and ¢,q1,... ,q, € Q, and (iv) F C @ is the set of final states.
The size of a TA Ais ||A]] = |Q] + || + || R]|-

We denote by L(A, q) the set {t € Ty ‘ t=%»q} of ground terms accepted by
Ain state g. The set of terms recognized by the TA Ais the set U, . L(4, q).
A set of terms is called recognizable or reqular if it is recognized by some TA.
A monadic TA is a TA with a monadic signature.

Finite string automata. For monadic signatures, we use the traditional,
equivalent concepts of alphabets, strings (or words), finite automata, and
regular expressions. We will identify an NFA A with alphabet ¥ with the set
of all rules a(q) — p, also written as ¢-% p, where there is a transition with
label a € ¥ from state ¢ to state p in A, and we denote this set of rules also
by A. A monadic term a;(as(...a,(q))) is written, using the reversed Polish
notation, as the string qa,, ...a;.

Then A accepts a string aias - - - a, if and only if, for some final state ¢
and the initial state go of A, a,(---az(ai1(q))---) % q, ie.,

a a an
W S0

The set of all strings accepted by A is denoted by L(A).

Product automata. Let ¥ be a signature, m a positive integer, and | a
new constant. We write ¥, for ¥ U { L} and X7 denotes the signature con-
sisting of, for all fi, f,... , fm € X1, a unique function symbol (fifo- - fin)
with arity equal to the maximum of the arities of the f;’s.

Let t; € Ts U L, t; = fi(ti1, ..., ti;), where k; > 0, for 1 < i < m. Let
k be the maximum of all the k; and let ¢;; = L for k; < j < k. The product
L ®- -ty of ty,...,t, is defined by recursion on the subterms:

@ Qtym = (fifor fu)t11 Q@ Qtiy oo i1 @+ Qtpg) (1)

For example:

fle,g(e) ® f(g(d), f(e, g(c))) (fH)(c®g(d),g(c) ® f(c, g(c)))
= (fH{cg)(L®d),{gf)(c®c, L®g(c)))
= (ff){cg)((Ld), (g.f)({cc), (Lg)(L®c)))
= (fH(eg)((Ld), (gf)({cc), (Lg)({Le))))



We write 74" for the set of all ¢ in TET such that t = t; ® - -+ ® t,,, for some
tyeoostm € TsU L. If s € T and t € T, where s = 51 ® -+ ® s, and
t=t1 ®---®t,, then s ®t denotes the term s ®---® 5, ¥t ®---R 1, in
T ™. Given a sequence t=t,... tm of terms in 75 U L, we write Q1 for
the product term t; ® - - - ® 1,

Given two automata A; and A, over X" and X'}, respectively, the product
of A; and A, is an automaton A; ® A, over ET” such that

L(A; ® Ay) = L(A)) @ L(Ay) = {t1 ®ty : t1 € L(Ay),ts € L(Ay)}

The construction of A; ® A, is straightforward, with a state ¢4, 4,) for all
states ¢; in A; and ¢ in Ay, [see e.g. Comon et al. 1998]. In general, @, A;
is defined accordingly.

We will use the following construction of Dauchet, Heuillard, Lescanne &
Tison [1990] in our proofs.

Lemma 1 Let R be a ground rewrite system over a signature .. There is a
TA A such that L(A) = {s®1:5,t € Ts, st} that can be constructed in
polynomial time from R and X.

3 Monadic SRR

We prove that monadic SRR with ground rules is PSPACE-complete. Our
main tool is a decision problem of NFAs that we define next. In this section
we consider only monadic signatures.

3.1 Constrained product nonemptiness of NFAs

Given a signature ¥ and a positive integer m, we want to select only a
certain subset from ™ through selection constraints (bounded by m). These
are unordered pairs of indices written as i ~ j, where 1 < i,57 < m, i # j.
Given a signature > and a set I of selection constraints, we write X | [ for
the following subset of >™:

I = {{aax-can)y €™ 0 (Mimjel)a =a;}

For an automaton A, let A|I denote the reduction of A to the alphabet %™ |I.
We write also L(A)|I for L(A|I). The automaton A|I has the same states
as A, and the transitions of A|l are precisely all the transitions of A with
labels from X 1.

We consider the following decision problem, that is closely related to the
nonemptiness problem of the intersection of a sequence of NFAs. Consider
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an alphabet ¥. Let (A;)i<i<n, n > 1, be a sequence of (string product)
NFAs over the alphabets ¥ for 1 < ¢ < n, respectively. Let m be the
sum of all the m; and let I be a set of selection constraints. The constrained
product nonemptiness problem of NFAs is, given (A;)1<i<n, and I, to decide if
(7, L(A;))|I is nonempty. Our key lemma is the following one. Its proof is
a straightforward extension of the inclusion part of Kozen’s [1977] PSPACE-
completess result of the intersection nonemptiness problem of DFAs: given
a sequence (A;)1<;<, of DFAs, is (), L(A;) nonempty?

Lemma 2 Constrained product nonemptiness of NFAs (or monadic TAs) is
in PSPACE.

Proof. Let (A;)i1<i<n, mi, m, ¥, and I be given as above. Assume also that
m; = 2 for 1 < i < n, i.e., m = 2n and each automaton has alphabet 2.
(Proof of the general case is analogous.)

Furthermore, we can assume, without loss of generality, that none of the
automata accepts the empty string and that, for each string v that is accepted
by A; also (L L)v is accepted by A;, e.g., we can assume that each automaton
has a transition with label (1L 1) from the initial state to the initial state.
Consider the following nondeterministic decision procedure.

I (Initialize) Calculate the number of states in )., A; and save it in
IterationLimit.

(This calculation is easy, because each state of )., A; corresponds to
a sequence of states (¢;)1<j<n, Where ¢; is a state of A4;.)

Save in State; the initial state of A; for 1 <7 <n.

IT (Guess the next letter from X7 |I) Select (aq, ... ,a,) € X7 |I and
store a; in Letter;.

III (Guess the next transition of (Q);_, 4;)|I) For 1 < i < n, guess
nondeterministically a state g; from A;.

Check that, for 1 < i < n, there is a (Lettery; jLetters;)-transition
in A; from State; to q;, and if so, save g; in State;. If there is no such
transition then terminate and reject.

IV (Check acceptance of (Q);_, A;)|]) If, for 1 < i < n, State; is an
accepting state of A; then terminate and accept.

V (Iterate) If IterationLimit is 0 then terminate and reject, else de-
crease IterationLimit by one and return to Step II.



The procedure corresponds to walking through the graph of ()., 4;)|1, by
starting from the initial state, at each step just remembering the current state
and guessing a valid transition from that state to the next state. We only
need to check if there exists a path of at most IterationLimit transitions
(as initialized in Step I) in L();_, A;) I from the initial state to a final state.
It is evident that the procedure always terminates, and that it accepts if and
only if L():—, A;)|] is nonempty.

It is obvious, through straightforward binary encodings, that no more
than polynomial space is required, in order to meet the space requirements
of the procedure. Hence, the procedure runs in nondeterministic polynomial
space and thus in PSPACE, by using the result of Savitch [1970].

Finally, note that the only difference between NFAs and monadic TAs is
that in the latter we may have several transitions of the form ¢ — ¢, where
c is a constant and ¢ a state. This corresponds roughly to allowing several
initial states in NFAs. X

The proof of Lemma 2 can be extended in a straightforward manner to
finite tree automata. The only difference will be that the algorithm will
do “universal choices” when the arity of function symbols (letters) in the
component automata is > 1. This leads to alternating PSPACE, and thus,
by the result of Chandra, Kozen & Stockmeyer [1981], to EXPTIME upper
bound for the constrained product nonemptiness problem of TAs.

Although we will not use this fact, it is worth noting that the constrained
product nonemptiness problem is also PSPACE-hard, and this so already for
DFAs (or monadic DTAs). It is easy to see that ()., L(A;) is nonempty if
and only if L(Q);_, A;)[{i =i+ 1:1<i<n} is nonempty.

3.2 Reduction of monadic SRR with ground rules to
constrained product nonemptiness of NFAs

We need the following notion of normal form of a system of reachability
constraints. We say that a system S of reachability constraints is flat, if each
constraint in S is either of the form

e (R,x,t), R is nonempty, x is a variable, and ¢ is a ground term or a
variable distinct from z, or of the form

e (0,x, f(y)), where x and y are distinct variables and f is a unary func-
tion symbol.

Note that solvability of a reachability constraint with empty rule set is simply
unifiability of the source and the target. The following simple lemma is useful.
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Lemma 3 Let S be a system of reachability constraints. There is a flat
system that can be obtained in polynomial time from S, that is solvable if
and only if S is solvable.

Proof. Let S be a given system of reachability constraints and consider the
following procedure.

1. Replace each constraint (R, s,t), where s is not a variable, or when
s = t, by the constraints (R, z,t) and (), z, s), where x is a new variable.

2. Replace each constraint (R, x,t), where R is nonempty, x is a variable
and ¢ is neither ground nor a variable, by the constraints (R, z,y) and
(0,,t), where y is a new variable.

3. Replace each constraint ((), z, f(s)), where s is not a variable and not
ground, by the constraints (0, z, f(y)) and (0,y, s), where y is a new
variable.

4. Repeat the above steps until the system is flat.

It is easy to check that each step preserves solvability, and clearly, the time
complexity of this procedure is polynomial in the size of S. X

By using Lemma 2 and Lemma 3 we can now show the following theorem,
that is the main result of this section.

Theorem 1 Monadic SRR with ground rules is PSPACE-complete.

Proof. The PSPACE-hardness has been proved already in the case when
the rule sets are symmetric [Goubault 1994] and there is only one variable
[Gurevich & Voronkov 1997]. We prove inclusion in PSPACE by giving a
polynomial time reduction to the constrained product nonemptiness problem
of monadic TAs.

Let S be a system of reachability constraints with ground rules. Let
Y be the signature of S. We may assume, by using Lemma 3, that S is
flat. Enumerate all the constraints in S as pi,..., Pm, Pmit,--- » Pn, Where
all the constraints of the form (0, z, f(y)) are enumerated as ppi1,. .. , Pn-
Let p; = (R;, x4, t;) for 1 <4 <m and p; = (0, z;, f;(y;)) for m < i < n.

For 1 <i < m, construct a TA A; such that,

L(AZ) = {LL‘ZG X tzg : 0 solves pz}
For m < i < n, construct a TA A; such that,

L(A;) = {z0®uyb : 0 solves p;}.

8



Figure 1: A DFA (or monadic DTA) A that recognizes {f(s)®s : s € Ty}, where
3 consists of the unary function symbols f, g, and h, and the constant c.
For example A recognizes the string (cL){(gc)(gg)(hg){(fh), i.e., the term

(fh)({hg)((g9)({gc)({cL))))) that is the same as f(h(g(g(c)))) ® h(g(g(c)))-

(Such an automaton is illustrated in Figure 1.) It follows from Lemma 1 that
all these TAs can be constructed in polynomial time.

Let I be the set of all the following selection constraints (where 1 < i,j <
n and i # j):

1. If the source of a p; is a variable that occurs as the source of a p;, then
21— 1=2j—1€1.

2. If the source of a p; is a variable that occurs in the target of a p;, then
2% —1~2j€l.

3. If the target of a p; is a variable that occurs in the target of a p;, then
2i~2j€l.

It remains to be proved that L(Q);_, 4;)|1 is nonempty if and only if S is
solvable. (This proof is straightforward, and is illustrated in Example 1.)
The theorem follows then from Lemma 2. X

The crucial step in the proof of Theorem 1 is the construction of an
automaton that recognizes the language {f(s)®s : s € Ts}. (See Figure 1.)
The reason why the proof does not generalize to TAs is that the language
{f(s) ® s : s € Tg} is not regular for nonmonadic signatures. The next
example illustrates how the reduction in the proof of Theorem 1 works.

Example 1 Consider a flat system S = {p1, po, p3} with p; = (R, y, ), p2 =
(0,y, f(2)) and p3 = (0, z, g(x)), over a signature X = {f, g, c}, where c is a
constant. (This system is solvable if and only if the constraint (R, f(g(x)), x)
is solvable.)



The construction in the proof of Theorem 1 gives us the monadic TAs
Ay, Ay and Aj such that

L(A) = {S®t:8%)t,3,t€7§]},
L(A) = {f(s)®s:s€Ts},
L(A3) = {g9(s)®s:s€ T},

and aset I = {1 ~ 3,5 ~ 4,6 ~ 2} of selection constraints. So L(Q)}_, A;)|]
is as follows.

HAe @ T = (et 1 ouaynon:
s,t,u,vETZ,s%)t}L{l ba 4,6~ 2}
= {5t flu)@ueglv)®v
s, t,u,v € Ty, st 5= () ():u,v:t}
= {fle) @t fgt) ®g(t) ®g(t)
teTs, flg(t) 1t}

®

So, solvability of S is equivalent to nonemptiness of L(A4; ® Ay ® Aj3)|[1.

3.3 Some decidable extensions of the monadic case

Some restrictions imposed by only allowing monadic function symbols can
be relaxed without losing decidability of SRR for the resulting classes of
constraints. One decidable fragment of SRR is obtained by requiring only
the rules to be ground and monadic. It can be shown that SRR for this
class is still in PSPACE. Furthermore, an easy argument using the inter-
section nonemptiness problem of DFAs shows that PSPACE-hardness of this
fragment holds already for a single constraint with one variable. This is in
contrast with the fact that SREU with one variable and a fixed number of
constraints can be solved in polynomial time [Degtyarev et al. 1998b).

4 A decidable nonmonadic fragment

In this section, we consider general signatures and give a criteria on the
source and target terms of a system of reachability constraints for the decid-
ability of SRR when the rules are ground. Moreover, we prove that SRR is
EXPTIME-complete in this case. Our decision algorithm involves essentially
tree automata techniques. Let X be a signature fixed for the rest of the
section.

10



4.1 Semi-linear sequences of terms

We say that a sequence of terms (ti,t,...,%,) of (possibly non ground)
Y-terms or L is semi-linear if one of the following conditions holds for each
til

1. t; is a variable, or
2. t; is a linear term and no variable in ¢; occurs in ¢; for i # j.

Note that if #; is ground then it satisfies the second condition trivially.

Lemma 4 Let (s, 89,...,8;) be a semi-linear sequence of Y-terms. Then
the subset {319 ® 590 ® -+ ® sib: 0 is a grounding E—substitution} C T s
recognized by a TA the size of which is in O((||s1]] + |IZ]) .- (Iskll + [|1Z]]))-

Proof. Let ¥ and § = sy, 89,...,5; be given. Let A; be the TA that recog-
nizes {s;0 : 5,0 € Tg} for 1 < i < k. The desired TA is (Q) A;)|I, where T
is the set of all selection constraints ¢ ~ j such that s; and s; are identical
variables. X

We shall also use the following lemma.

Lemma 5 Let A = (X,Q,R,F) be a TA, s € Ts, and py,... ,pr parallel
positions in s. Then there is a TA A', with ||A'|| € O(||A||**), that recognizes
the set {81®"'®8k281,... , Sk € Ts,y S[p1 < S1,.+. , Dk < Sk GL(A)}

Proof. For all states ¢ € @, let A, be the automaton (X,Q, R, {q}). Let
{@}1<i<m be the collection of all sequences ¢; = ¢;1, ... ,qx € @ such that,
for some gr € F, s[p1 < qi1, -, Pk < Gik] % qr. For all such sequences ¢,
1 <i < m, construct a TA A; that recognizes

L(AQil) X L(A‘Iik)‘

Here we can assume that each L(A,,;) is nonempty, or else L(A;) is empty.
Assume that all the A;’s have disjoint sets of states and let A’ be the union of
all the A;’s. It is easy to check that A’ recognizes the given set of terms. Note
that m < |Q|¥. The size of A’ is therefore [|A'|| < >°7 |4l < S°, |AJF <
|QIF > || A" X

11



4.2 Parallel decomposition of sequences of terms

For technical reasons, we generalize the notion of a product of m terms by
allowing nonground terms. The resulting term is in an extended signature
with ® as an additional variadic function symbol. The definition is the same
as for ground terms (see (1)), with the additional condition that if one of the
t;’s is a variable then

R Qty =Q(t1,. .. ,tm)-

Consider a sequence § = si,... , sy, of terms and let (®(Z;))1<;<x be the
sequence of all the subterms of the product term (X) § which have head symbol
®. The parallel decomposition of § = s1,...,8, or pd(5) is the sequence
(t_;)lﬁiﬁkﬂ i.e., we forget the symbol ®. We need the following technical
notion in the proof of Lemma 6: pdp(3) is the sequence (p;)1<;<k, Where p; is
the position of ®(%;) in & 3.

The following example illustrates these new definitions and lemmas and
how they are used.

Example 2 Let s = f(g(2),9(z)) and t = f(y, f(z,y)) be two X-terms, and
let R be a ground rewrite system over . We will show how to capture all
the solutions of the reachability constraint (R, s,t) as a certain regular set of
Y2 -terms. First, construct the product s ® t.

flg(2),9(x)) ® f(y, f(,y))
= (fNg(z)®y,9(z) ® f(z,y))
= (fH® Y):(9f)z®@z, L ®Yy))
= (fH® ) (9f)(@(z,z),®(L,y)))

st =

g9(z
g9(z

(9(2),
(9(2),

The preorder traversal of s ® ¢ yields the sequence ®(g(2),y), ®(z,x),
®(L,y).

Finally, pd(s,t) is the semi-linear sequence ¢(z),y,z,z, L,y. (Note
that pdp(s,t) is the sequence 1, 21 22) It follows from Lemma 4 that
there is a TA A; such that L(A;) = {g(20) @ y ® 20 @ 20 @ L ® yb :
f is a grounding - substltutlon}

Now, consider a TA Ag that recognizes the product of %, see Lemma 1,
ie., L(Ag) = {u®v :upv, u,v € Tx}. From Ag we can, by using Lemma 5,
construct a TA A, such that

L(As) = {81 ® S91 @ S 81,591,592 € Ty (f)(51,(gf) (501, 52)) € L(AR)}

12



Let A recognize L(A;) N L(Ay). We get that

L(A) = L(A1) N L(A,)
S1 ® S91 ® S9o ¢ (FzB, 90, 20 € Tyx)
= s1=9(20) @ yb, so1 = 20 @ 0, s90 = 1 R yb,
(fF)(s1,(gf) (521, 522)) € L(AR)
={9(z0) ® - ®@yb: (ff)(9(20) @ y0, (gf) (20 ® 20, L @ yf)) € L(Ar)}
={g(20) ® --- @ yh : O solves (R, s,t)}

Hence L(A) # () if and only if (R, s,t) is solvable.

The crucial property that is needed in the example to prove the decid-
ability of the rigid reachability problem is that the parallel decomposition of
the sequence consisting of its source and target terms is semi-linear. This
observation leads to the following definition.

4.3 Balanced systems with ground rules

A system ((Rl, S15t1), vy (R, sn,tn)) of reachability constraints is called
balanced if the parallel decomposition pd(si,t1, S, ta,... Sy, t,) is semi-
linear. The proof of Lemma 6 is a generalization of the construction in
Example 2.

Lemma 6 From every balanced system S of reachability constraints with
ground rules, we can construct in EXPTIME a TA A such L(A) # 0 iff S is

satisfiable.

Proof. Let S = ((Rl, S15t1)y vy (R, sn,tn)) be a given a balanced system
of reachability constraints such that Ry, ... ,R, are ground.
Using Lemma 1, we can associate a TA A; to each R; (i < n) such that

L(A;) = {u®v : u%)v, u,v € Tg}

The ground terms s;- and t; are obtained from the source and target terms
by replacement of every variable by the constant L.

Let U=3s{ @t ®...0sr @t and (p1,...,pr) = pdp(s1,t1,... , 8n,tn). We
can use Lemma 5 to construct a TA A’ such that

L(A’):{v1®...®vk: V1o ne U € T,

n

U[pl — V1, ..., PR <—Uk] EL(®AZ)}

=1

13



By hypothesis, the sequence pd(sq,ta,... ,Sn,ts), denoted (uq,. .., Ug,), i8
semi-linear. Therefore, it follows from Lemma 4 that there is a TA A” such
that

L(A") = {u10 ® ... R U, : 0 is a grounding E—substitution}

Note that both L(A’) and L(A”) are subsets of 73", Let A be a TA recog-
nizing L(A") N L(A"). We have that L(A) # 0 if and only if S is satisfiable.
Let t € T5™. Then t € L(A)

iff t = u,10®...®u,0 for some grounding ¥-substitution 0 (t € L(A")), and
Ulpy < wy, ... ,pp < wi] € L(Q—; Asi), where w; = ®;’£(ifl)n+1 u;t
(t € L(A")),

iff s{ @t ®...Qs, @ty[pr < wi,...,pp + wi] € LIQL, Ai),
iff 51040®...° 5,0 ®t,0 € L(Q;_, Ai), because every variable of S

occurs in one of the uq,... ,u, by definition of pd,
iff 5102200, 5,0 510

Lets now finally evaluate the size of A, the complexity of its construction
being linearly proportional to its size. For each ¢ < n, the size of A; is

polynomial in ||R;||, thus H@L AZH < M where M = max{||R;|| : i < n}
and c is one constant independent from the problem size Therefore, ||A'|| <
M?k see Lemma 5. According to Lemma 4,
A" < fluall x x| < T s3] > TEZ [J#5]] < N7,
where N = max{||s;||, [|t:|| : # < n}. Hence,
IAl = [[A"]| < [JA"] < NZ% s M2t < ||S2rier+n),
X

Theorem 2 SRR is EXPTIME-complete for balanced systems with ground
rules.

Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998], where
we have proved that one can reduce the emptiness decision for intersection
of n tree automata to the satisfiability of a rigid reachability constraint
(R,f(x,... x), flqi,. .- ,qn)), where R is ground and ¢, ... ,q, are con-
stants. X

The balanced case can easily be used to show the decidability of the following
case: for each variable z there exists an integer d, such that x occurs only at
positions of length d,. For example with s; = f(z,¢9(y)), t1 = f(f(y,v), ),
sy = g(z), and ty = g(f(a,y)), first “guess” a term a, g(z1), or f(xy,zy) for
x to obtain a system where all variables occur at the same depth.

14
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