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Abstrat

In this paper we prove deidability results of restrited fragments of simul-

taneous rigid reahability or SRR, that is the nonsymmetrial form of simul-

taneous rigid E-uni�ation or SREU. The absene of symmetry fores us to

use di�erent methods, from the ones that have been suessful in the ontext

of SREU in the past (for example word equations). The methods that we

use instead involve �nite (tree) automata tehniques, and the deidability

proofs provide preise omputational omplexity bounds. The main results

are 1) monadi SRR with ground rules is PSPACE-omplete, and 2) balaned

SRR with ground rules is EXPTIME-omplete. The �rst result indiates the

di�erene in omputational power between fragments of SREU with ground

rules and nonground rules, respetively, due to a straightforward enoding

of word equations in monadi SREU (with nonground rules). The seond re-

sult establishes the deidability and preise omplexity of the largest known

subfragment of nonmonadi SREU.

Keywords

Rigid Uni�ation, Term Rewriting, Reahability.



1 Introdution

Rigid reahability (RR) is the problem, given a rewrite system R and two

terms s and t, whether there exists a substitution � suh that s�, t�, and R�

are ground, and s� rewrites in some number of steps via R� into t�. The

term \rigid" stems from the fat that for eah rule only one instane an

be used in the rewriting proess. Simultaneous rigid reahability (SRR) is

the problem in whih a substitution is sought whih simultaneously solves

eah member of a system of reahability onstraints (R

i

; s

i

; t

i

). A speial

ase of [simultaneous℄ rigid reahability arises when the R

i

are symmetri,

ontaining for eah rule s! t also its onverse t! s. Suh systems arise for

example by orienting a set of equations in both diretions. The latter problem

was introdued by Gallier, Raatz & Snyder [1987℄ as \simultaneous rigid E-

uni�ation" (SREU) in the ontext of extending tableaux or matrix methods

in automated theorem proving to logi with equality. Rigid reahability was

initially introdued in the ontext of seond-order uni�ation [Farmer 1991,

Levy 1998℄.

Although the non-simultaneous ase of SREU (rigid E-uni�ation) was

proved NP-omplete by Gallier, Narendran, Plaisted & Snyder [1988℄, SREU

in general was shown by Degtyarev & Voronkov [1995℄ to be undeidable.

Further impliations of the latter result are disussed in [Degtyarev, Gure-

vih & Voronkov 1996℄. In a series of papers, SREU has been studied ex-

tensively and several sharp boundaries have been laid between its deid-

able and undeidable fragments. Most reent developments are disussed by

Voronkov [1998℄ and Veanes [1998℄. Rigid reahability was shown undeid-

able by Ganzinger, Jaquemard & Veanes [1998℄.

The, arguably, most diÆult remaining open problem regarding SREU

is the deidability of \monadi" SREU, or SREU restrited to signatures

where all nononstant funtion symbols are unary. The importane of this

fragment stems from its lose relation to word equations [Degtyarev, Matiya-

sevih & Voronkov 1996℄, and to fragments of intuitionisti logi [Degtyarev

& Voronkov 1996℄. What is known about monadi SREU in general is

that it redues to a nontrivial extension of word equations [Gurevih &

Voronkov 1997℄. In the ase of ground rules, the deidability of monadi

SREU was established in [Gurevih & Voronkov 1997℄ by reduing it to \word

equations with regular onstraints". The deidability of the latter prob-

lem is an extension of Makanin's [1977℄ result by Shulz [1990℄. Conversely,

word equations redue in polynomial time to monadi SREU [Degtyarev,

Matiyasevih & Voronkov 1996℄. The �rst main result of this paper (in Se-

tion 3) is that monadi SRR with ground rules is in PSPACE, improving the

EXPTIME result in Ganzinger et al. [1998℄. Hene, it is unlikely that there
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is a simple redution, if any redution at all, from monadi SREU to monadi

SREU with ground rules, or else one would get a onsiderable simpli�ation

of Makanin's [1977℄ proof. The PSPACE-hardness of monadi SREU with

ground rules was shown by Goubault [1994℄.

To obtain the PSPACE result we use an extension of the intersetion

nonemptiness problem of a sequene of �nite automata that we prove to be

in PSPACE. Moreover, using the same proof tehnique, we an show that

simultaneous rigid reahability with ground rules remains in PSPACE, even

when just the rules are required to be monadi. Furthermore, in this ase

PSPACE-hardness holds already for a single onstraint with one variable,

ontrasting the fat that SREU with one variable is solvable in polynomial

time [Degtyarev, Gurevih, Narendran, Veanes & Voronkov 1998b℄.

Our seond main result onerns (nonmonadi) SRR with ground rules.

In setion 4, we show that SRR with ground rules is EXPTIME-omplete for

\balaned" systems of reahability onstraints. Under balaned systems fall

for example systems where all ourrenes of eah variable are at the same

depth. It is possible to obtain undeidability of (nonsimultaneous) rigid

reahability with ground rules where all but one ourrene of all variables

our at the same depth [Ganzinger et al. 1998℄. Moreover, our deidability

result generalizes the deidability result by Degtyarev, Gurevih, Narendran,

Veanes & Voronkov [1998a℄ of the largest known deidable fragment of SREU

with ground rules and implies EXPTIME-ompletess of the omplexity of

this fragment (whih is left open in [Degtyarev et al. 1998a℄). We use �nite

tree automata tehniques over produt languages, that have been used in

deision proedures for \automata with onstraints between brothers" [f.

Comon, Dauhet, Gilleron, Lugiez, Tison & Tommasi 1998℄.

2 Preliminaries

A signature � is a olletion of funtion symbols with �xed arities � 0 and,

unless otherwise stated, � is assumed to ontain at least one onstant, that

is, one funtion symbol with arity 0. We use a; b; ; d; a

1

; : : : for onstants and

f; g; f

1

; : : : for funtion symbols in general. A signature is alled monadi if

all funtion symbols in it have arity � 1. A ground term is one that ontains

no variables. The set of all ground terms over a signature � is denoted by

T

�

.

We use s; t; l; r; s

1

; : : : for terms. The size ktk of a term t is de�ned

reursively by: ktk = 1 if t is either a variable or a onstant and

kf(t

1

; : : : ; t

n

)k = kt

1

k+ : : :+ kt

n

k+ 1:
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Positions in terms are sequenes of integers. We use p; p

1

et for positions,

� for the empty sequene (root position) and pp

0

for the onatenation prod-

ut of two positions p and p

0

. We will also use the pre�x ordering � on

positions. Some positions p

1

; : : : ; p

n

are alled parallel if they are pairwise

unomparable with respet to �.

We assume that the reader is familiar with the basi onepts in term

rewriting [e.g. Dershowitz & Jouannaud 1990, Baader & Nipkow 1998℄. We

write u[s℄ when s ours as a subterm of u. In that ase u[t℄ denotes the re-

plaement of the indiated ourrene of s by t. An equation is an unordered

pair of terms, denoted by s � t. A rule is an ordered pair of terms, denoted

by s ! t. An equation or a rule is ground if the terms in it are ground. A

system is a �nite set. Let R be a system of ground rules, and s and t two

ground terms. Then s rewrites in R to t, denoted by s�!

R

t, if t is obtained

from s by replaing an ourrene of a term l in s by a term r for some rule

l ! r in R. The term s redues in R to t, denoted by s�!

�

R

t, if either s = t

or s rewrites to a term that redues to t. R is alled symmetri if, with any

rule l ! r in R, R also ontains its onverse r ! l. Below we shall not

distinguish between systems of equations and symmetri systems of rewrite

rules. The size of a system R is the sum of the sizes of its omponents:

kRk =

P

l!r2R

(klk+ krk).

Rigid Reahability. A reahability onstraint, or simply a onstraint, in

a signature � is a triple (R; s; t) where R is a set of rules in �, and s and

t are �-terms. We refer to R, s and t as the rule set, the soure term

and the target term, respetively, of the onstraint. A substitution � in �,

solves (R; s; t) if � is grounding for R, s and t, and s��!

�

R�

t�: The problem

of solving onstraints is alled rigid reahability. A system of onstraints is

solvable if there exists a substitution that solves all onstraints in that system.

Simultaneous rigid reahability or SRR is the problem of solving systems

of onstraints. Monadi (simultaneous) rigid reahability is (simultaneous)

rigid reahability for monadi signatures.

Rigid E-uni�ation is rigid reahability for onstraints (E; s; t) with sets

of equations E. Simultaneous Rigid E-uni�ation or SREU is de�ned a-

ordingly.

Finite tree automata. Finite bottom-up tree automata, or simply, tree

automata, from here on, are a generalization of lassial automata [Doner

1970, Thather & Wright 1968℄. Using a rewrite rule based de�nition [e.g.

Coquid�e, Dauhet, Gilleron & V�agv�olgyi 1994, Dauhet 1993℄, a tree au-

tomaton (or TA) A is a quadruple (Q;�; R; F ), where (i) Q is a �nite set
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of onstants alled states, (ii) � is a �nite signature that is disjoint from Q,

(iii) R is a system of rules of the form f(q

1

; : : : ; q

n

) ! q, where f 2 � has

arity n � 0 and q; q

1

; : : : ; q

n

2 Q, and (iv) F � Q is the set of �nal states.

The size of a TA A is kAk = jQj+ j�j+ kRk.

We denote by L(A; q) the set ft 2 T

�

�

�

t�!

�

R

qg of ground terms aepted by

A in state q. The set of terms reognized by the TA A is the set

S

q2F

L(A; q).

A set of terms is alled reognizable or regular if it is reognized by some TA.

A monadi TA is a TA with a monadi signature.

Finite string automata. For monadi signatures, we use the traditional,

equivalent onepts of alphabets, strings (or words), �nite automata, and

regular expressions. We will identify an NFA A with alphabet � with the set

of all rules a(q) ! p, also written as q�!

a

A

p, where there is a transition with

label a 2 � from state q to state p in A, and we denote this set of rules also

by A. A monadi term a

1

(a

2

(: : : a

n

(q))) is written, using the reversed Polish

notation, as the string qa

n

: : : a

1

.

Then A aepts a string a

1

a

2

� � �a

n

if and only if, for some �nal state q

and the initial state q

0

of A, a

n

(� � �a

2

(a

1

(q

0

)) � � � )�!

�

A

q, i.e.,

q

0

�!

a

1

A

q

1

�!

a

2

A

� � � �!

A

a

n

q:

The set of all strings aepted by A is denoted by L(A).

Produt automata. Let � be a signature, m a positive integer, and ? a

new onstant. We write �

?

for � [ f?g and �

m

?

denotes the signature on-

sisting of, for all f

1

; f

2

; : : : ; f

m

2 �

?

, a unique funtion symbol hf

1

f

2

� � � f

m

i

with arity equal to the maximum of the arities of the f

i

's.

Let t

i

2 T

�

[ ?, t

i

= f

i

(t

i1

; : : : ; t

ik

i

), where k

i

� 0, for 1 � i � m. Let

k be the maximum of all the k

i

and let t

ij

= ? for k

i

< j � k. The produt

t

1


 � � � 
 t

m

of t

1

; : : : ; t

m

is de�ned by reursion on the subterms:

t

1


 � � � 
 t

m

= hf

1

f

2

� � � f

m

i(t

11


 � � � 
 t

1k

; : : : ; t

m1


 � � � 
 t

mk

) (1)

For example:

f(; g())
 f(g(d); f(; g())) = hffi(
 g(d); g()
 f(; g()))

= hffi(hgi(?
 d); hgfi(
 ;?
 g()))

= hffi(hgi(h?di; hgfi(hi; h?gi(?
 )))

= hffi(hgi(h?di; hgfi(hi; h?gi(h?i)))
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We write T

m

�

for the set of all t in T

�

m

?

suh that t = t

1


 � � � 
 t

m

for some

t

1

; : : : ; t

m

2 T

�

[ ?. If s 2 T

m

�

and t 2 T

n

�

, where s = s

1


 � � � 
 s

m

and

t = t

1


 � � � 
 t

n

, then s
 t denotes the term s

1


 � � � 
 s

m


 t

1


 � � � 
 t

n

in

T

m+n

�

. Given a sequene

~

t = t

1

; : : : ; t

m

of terms in T

�

[?, we write

N

~

t for

the produt term t

1


 � � � 
 t

m

Given two automata A

1

and A

2

over �

m

?

and �

n

?

, respetively, the produt

of A

1

and A

2

is an automaton A

1


 A

2

over �

m+n

?

suh that

L(A

1


 A

2

) = L(A

1

)
 L(A

2

) = ft

1


 t

2

: t

1

2 L(A

1

); t

2

2 L(A

2

)g

The onstrution of A

1


 A

2

is straightforward, with a state q

(q

1

;q

2

)

for all

states q

1

in A

1

and q

2

in A

2

, [see e.g. Comon et al. 1998℄. In general,

N

n

i=1

A

i

is de�ned aordingly.

We will use the following onstrution of Dauhet, Heuillard, Lesanne &

Tison [1990℄ in our proofs.

Lemma 1 Let R be a ground rewrite system over a signature �. There is a

TA A suh that L(A) = fs
 t : s; t 2 T

�

; s�!

�

R

tg that an be onstruted in

polynomial time from R and �.

3 Monadi SRR

We prove that monadi SRR with ground rules is PSPACE-omplete. Our

main tool is a deision problem of NFAs that we de�ne next. In this setion

we onsider only monadi signatures.

3.1 Constrained produt nonemptiness of NFAs

Given a signature � and a positive integer m, we want to selet only a

ertain subset from �

m

through seletion onstraints (bounded by m). These

are unordered pairs of indies written as i � j, where 1 � i; j � m, i 6= j.

Given a signature � and a set I of seletion onstraints, we write �

m⇂I for

the following subset of �

m

:

�

m⇂I = fha

1

a

2

� � �a

m

i 2 �

m

: (8i � j 2 I) a

i

= a

j

g

For an automaton A, let A⇂I denote the redution of A to the alphabet �

m⇂I.

We write also L(A)⇂I for L(A⇂I). The automaton A⇂I has the same states

as A, and the transitions of A⇂I are preisely all the transitions of A with

labels from �

m⇂I.

We onsider the following deision problem, that is losely related to the

nonemptiness problem of the intersetion of a sequene of NFAs. Consider

5



an alphabet �. Let (A

i

)

1�i�n

, n � 1, be a sequene of (string produt)

NFAs over the alphabets �

m

i

?

for 1 � i � n, respetively. Let m be the

sum of all the m

i

and let I be a set of seletion onstraints. The onstrained

produt nonemptiness problem of NFAs is, given (A

i

)

1�i�n

, and I, to deide if

(

N

n

i=1

L(A

i

))⇂I is nonempty. Our key lemma is the following one. Its proof is

a straightforward extension of the inlusion part of Kozen's [1977℄ PSPACE-

ompletess result of the intersetion nonemptiness problem of DFAs: given

a sequene (A

i

)

1�i�n

of DFAs, is

T

n

i=1

L(A

i

) nonempty?

Lemma 2 Constrained produt nonemptiness of NFAs (or monadi TAs) is

in PSPACE.

Proof. Let (A

i

)

1�i�n

, m

i

, m, �, and I be given as above. Assume also that

m

i

= 2 for 1 � i � n, i.e., m = 2n and eah automaton has alphabet �

2

?

.

(Proof of the general ase is analogous.)

Furthermore, we an assume, without loss of generality, that none of the

automata aepts the empty string and that, for eah string v that is aepted

by A

i

also h??iv is aepted by A

i

, e.g., we an assume that eah automaton

has a transition with label h??i from the initial state to the initial state.

Consider the following nondeterministi deision proedure.

I (Initialize) Calulate the number of states in

N

n

i=1

A

i

and save it in

IterationLimit.

(This alulation is easy, beause eah state of

N

n

i=1

A

i

orresponds to

a sequene of states (q

i

)

1�i�n

, where q

i

is a state of A

i

.)

Save in State

i

the initial state of A

i

for 1 � i � n.

II (Guess the next letter from �

m

?

⇂I) Selet (a
1

; : : : ; a

m

) 2 �

m

?

⇂I and

store a

i

in Letter

i

.

III (Guess the next transition of (

N

n

i=1

A

i

)⇂I) For 1 � i � n, guess

nondeterministially a state q

i

from A

i

.

Chek that, for 1 � i � n, there is a hLetter

2i�1

Letter

2i

i-transition

in A

i

from State

i

to q

i

, and if so, save q

i

in State

i

. If there is no suh

transition then terminate and rejet.

IV (Chek aeptane of (

N

n

i=1

A

i

)⇂I) If, for 1 � i � n, State

i

is an

aepting state of A

i

then terminate and aept.

V (Iterate) If IterationLimit is 0 then terminate and rejet, else de-

rease IterationLimit by one and return to Step II.

6



The proedure orresponds to walking through the graph of (

N

n

i=1

A

i

)⇂I, by

starting from the initial state, at eah step just remembering the urrent state

and guessing a valid transition from that state to the next state. We only

need to hek if there exists a path of at most IterationLimit transitions

(as initialized in Step I) in L(

N

n

i=1

A

i

)⇂I from the initial state to a �nal state.

It is evident that the proedure always terminates, and that it aepts if and

only if L(

N

n

i=1

A

i

)⇂I is nonempty.

It is obvious, through straightforward binary enodings, that no more

than polynomial spae is required, in order to meet the spae requirements

of the proedure. Hene, the proedure runs in nondeterministi polynomial

spae and thus in PSPACE, by using the result of Savith [1970℄.

Finally, note that the only di�erene between NFAs and monadi TAs is

that in the latter we may have several transitions of the form  ! q, where

 is a onstant and q a state. This orresponds roughly to allowing several

initial states in NFAs. ⊠

The proof of Lemma 2 an be extended in a straightforward manner to

�nite tree automata. The only di�erene will be that the algorithm will

do \universal hoies" when the arity of funtion symbols (letters) in the

omponent automata is > 1. This leads to alternating PSPACE, and thus,

by the result of Chandra, Kozen & Stokmeyer [1981℄, to EXPTIME upper

bound for the onstrained produt nonemptiness problem of TAs.

Although we will not use this fat, it is worth noting that the onstrained

produt nonemptiness problem is also PSPACE-hard, and this so already for

DFAs (or monadi DTAs). It is easy to see that

T

n

i=1

L(A

i

) is nonempty if

and only if L(

N

n

i=1

A

i

)⇂fi � i + 1 : 1 � i < ng is nonempty.

3.2 Redution of monadi SRR with ground rules to

onstrained produt nonemptiness of NFAs

We need the following notion of normal form of a system of reahability

onstraints. We say that a system S of reahability onstraints is at, if eah

onstraint in S is either of the form

� (R; x; t), R is nonempty, x is a variable, and t is a ground term or a

variable distint from x, or of the form

� (;; x; f(y)), where x and y are distint variables and f is a unary fun-

tion symbol.

Note that solvability of a reahability onstraint with empty rule set is simply

uni�ability of the soure and the target. The following simple lemma is useful.
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Lemma 3 Let S be a system of reahability onstraints. There is a at

system that an be obtained in polynomial time from S, that is solvable if

and only if S is solvable.

Proof. Let S be a given system of reahability onstraints and onsider the

following proedure.

1. Replae eah onstraint (R; s; t), where s is not a variable, or when

s = t, by the onstraints (R; x; t) and (;; x; s), where x is a new variable.

2. Replae eah onstraint (R; x; t), where R is nonempty, x is a variable

and t is neither ground nor a variable, by the onstraints (R; x; y) and

(;; y; t), where y is a new variable.

3. Replae eah onstraint (;; x; f(s)), where s is not a variable and not

ground, by the onstraints (;; x; f(y)) and (;; y; s), where y is a new

variable.

4. Repeat the above steps until the system is at.

It is easy to hek that eah step preserves solvability, and learly, the time

omplexity of this proedure is polynomial in the size of S. ⊠

By using Lemma 2 and Lemma 3 we an now show the following theorem,

that is the main result of this setion.

Theorem 1 Monadi SRR with ground rules is PSPACE-omplete.

Proof. The PSPACE-hardness has been proved already in the ase when

the rule sets are symmetri [Goubault 1994℄ and there is only one variable

[Gurevih & Voronkov 1997℄. We prove inlusion in PSPACE by giving a

polynomial time redution to the onstrained produt nonemptiness problem

of monadi TAs.

Let S be a system of reahability onstraints with ground rules. Let

� be the signature of S. We may assume, by using Lemma 3, that S is

at. Enumerate all the onstraints in S as �

1

; : : : ; �

m

; �

m+1

; : : : ; �

n

, where

all the onstraints of the form (;; x; f(y)) are enumerated as �

m+1

; : : : ; �

n

.

Let �

i

= (R

i

; x

i

; t

i

) for 1 � i � m and �

i

= (;; x

i

; f

i

(y

i

)) for m < i � n.

For 1 � i � m, onstrut a TA A

i

suh that,

L(A

i

) = fx

i

� 
 t

i

� : � solves �

i

g:

For m < i � n, onstrut a TA A

i

suh that,

L(A

i

) = fx

i

� 
 y

i

� : � solves �

i

g:
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h
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i

hfi

hggi

h

f

f

i

hhhi

Figure 1: A DFA (or monadi DTA) A that reognizes ff(s)
s : s 2 T

�

g, where

� onsists of the unary funtion symbols f , g, and h, and the onstant .

For example A reognizes the string h?ihgihggihhgihfhi, i.e., the term

hfhi(hhgi(hggi(hgi(h?i)))) that is the same as f(h(g(g()))) 
 h(g(g())).

(Suh an automaton is illustrated in Figure 1.) It follows from Lemma 1 that

all these TAs an be onstruted in polynomial time.

Let I be the set of all the following seletion onstraints (where 1 � i; j �

n and i 6= j):

1. If the soure of a �

i

is a variable that ours as the soure of a �

j

, then

2i� 1 � 2j � 1 2 I.

2. If the soure of a �

i

is a variable that ours in the target of a �

j

, then

2i� 1 � 2j 2 I.

3. If the target of a �

i

is a variable that ours in the target of a �

j

, then

2i � 2j 2 I.

It remains to be proved that L(

N

n

i=1

A

i

)⇂I is nonempty if and only if S is

solvable. (This proof is straightforward, and is illustrated in Example 1.)

The theorem follows then from Lemma 2. ⊠

The ruial step in the proof of Theorem 1 is the onstrution of an

automaton that reognizes the language ff(s)
 s : s 2 T

�

g. (See Figure 1.)

The reason why the proof does not generalize to TAs is that the language

ff(s) 
 s : s 2 T

�

g is not regular for nonmonadi signatures. The next

example illustrates how the redution in the proof of Theorem 1 works.

Example 1 Consider a at system S = f�

1

; �

2

; �

3

g with �

1

= (R; y; x), �

2

=

(;; y; f(z)) and �

3

= (;; z; g(x)), over a signature � = ff; g; g, where  is a

onstant. (This system is solvable if and only if the onstraint (R; f(g(x)); x)

is solvable.)

9



The onstrution in the proof of Theorem 1 gives us the monadi TAs

A

1

, A

2

and A

3

suh that

L(A

1

) = fs
 t : s�!

�

R

t; s; t 2 T

�

g;

L(A

2

) = ff(s)
 s : s 2 T

�

g;

L(A

3

) = fg(s)
 s : s 2 T

�

g;

and a set I = f1 � 3; 5 � 4; 6 � 2g of seletion onstraints. So L(

N

3

i=1

A

i

)⇂I

is as follows.

L(A

1


 A

2


 A

3

)⇂I = fs
 t
 f(u)
 u
 g(v)
 v :

s; t; u; v 2 T

�

; s�!

�

R

tg⇂f1 � 3; 5 � 4; 6 � 2g

= fs
 t
 f(u)
 u
 g(v)
 v :

s; t; u; v 2 T

�

; s�!

�

R

t; s = f(u); g(v) = u; v = tg

= ff(g(t))
 t
 f(g(t))
 g(t)
 g(t)
 t :

t 2 T

�

; f(g(t))�!

�

R

tg

So, solvability of S is equivalent to nonemptiness of L(A

1


 A

2


 A

3

)⇂I.

3.3 Some deidable extensions of the monadi ase

Some restritions imposed by only allowing monadi funtion symbols an

be relaxed without losing deidability of SRR for the resulting lasses of

onstraints. One deidable fragment of SRR is obtained by requiring only

the rules to be ground and monadi. It an be shown that SRR for this

lass is still in PSPACE. Furthermore, an easy argument using the inter-

setion nonemptiness problem of DFAs shows that PSPACE-hardness of this

fragment holds already for a single onstraint with one variable. This is in

ontrast with the fat that SREU with one variable and a �xed number of

onstraints an be solved in polynomial time [Degtyarev et al. 1998b℄.

4 A deidable nonmonadi fragment

In this setion, we onsider general signatures and give a riteria on the

soure and target terms of a system of reahability onstraints for the deid-

ability of SRR when the rules are ground. Moreover, we prove that SRR is

EXPTIME-omplete in this ase. Our deision algorithm involves essentially

tree automata tehniques. Let � be a signature �xed for the rest of the

setion.
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4.1 Semi-linear sequenes of terms

We say that a sequene of terms (t

1

; t

2

; : : : ; t

m

) of (possibly non ground)

�-terms or ? is semi-linear if one of the following onditions holds for eah

t

i

:

1. t

i

is a variable, or

2. t

i

is a linear term and no variable in t

i

ours in t

j

for i 6= j.

Note that if t

i

is ground then it satis�es the seond ondition trivially.

Lemma 4 Let (s

1

; s

2

; : : : ; s

k

) be a semi-linear sequene of �-terms. Then

the subset

�

s

1

� 
 s

2

� 
 � � � 
 s

k

� : � is a grounding �-substitution

	

� T

m

�

is

reognized by a TA the size of whih is in O((ks

1

k+ k�k) : : : (ks

k

k+ k�k)).

Proof. Let � and ~s = s

1

; s

2

; : : : ; s

k

be given. Let A

i

be the TA that reog-

nizes fs

i

� : s

i

� 2 T

�

g for 1 � i � k. The desired TA is (

N

A

i

)⇂I, where I

is the set of all seletion onstraints i � j suh that s

i

and s

j

are idential

variables. ⊠

We shall also use the following lemma.

Lemma 5 Let A = (�; Q;R; F ) be a TA, s 2 T

�

, and p

1

; : : : ; p

k

parallel

positions in s. Then there is a TA A

0

, with kA

0

k 2 O

�

kAk

2k

�

, that reognizes

the set

�

s

1


 � � � 
 s

k

: s

1

; : : : ; s

k

2 T

�

; s[p

1

 s

1

; : : : ; p

k

 s

k

℄ 2 L(A)

	

Proof. For all states q 2 Q, let A

q

be the automaton (�; Q;R; fqg). Let

f~q

i

g

1�i�m

be the olletion of all sequenes ~q

i

= q

i1

; : : : ; q

ik

2 Q suh that,

for some q

f

2 F , s[p

1

 q

i1

; : : : ; p

k

 q

ik

℄�!

�

R

q

f

. For all suh sequenes ~q

i

,

1 � i � m, onstrut a TA A

i

that reognizes

L(A

q

i1

)
 � � � 
 L(A

q

ik

):

Here we an assume that eah L(A

q

ij

) is nonempty, or else L(A

i

) is empty.

Assume that all the A

i

's have disjoint sets of states and let A

0

be the union of

all the A

i

's. It is easy to hek that A

0

reognizes the given set of terms. Note

that m � jQj

k

. The size of A

0

is therefore kA

0

k �

P

m

i=1

kA

i

k �

P

m

i=1

kAk

k

�

jQj

k

� kAk

k ⊠
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4.2 Parallel deomposition of sequenes of terms

For tehnial reasons, we generalize the notion of a produt of m terms by

allowing nonground terms. The resulting term is in an extended signature

with 
 as an additional variadi funtion symbol. The de�nition is the same

as for ground terms (see (1)), with the additional ondition that if one of the

t

i

's is a variable then

t

1


 � � � 
 t

m

= 
(t

1

; : : : ; t

m

):

Consider a sequene ~s = s

1

; : : : ; s

m

of terms and let (
(

~

t

i

))

1�i�k

be the

sequene of all the subterms of the produt term

N

~s whih have head symbol


. The parallel deomposition of ~s = s

1

; : : : ; s

m

or pd(~s) is the sequene

(

~

t

i

)

1�i�k

, i.e., we forget the symbol 
. We need the following tehnial

notion in the proof of Lemma 6: pdp(~s) is the sequene (p

i

)

1�i�k

, where p

i

is

the position of 
(

~

t

i

) in

N

~s.

The following example illustrates these new de�nitions and lemmas and

how they are used.

Example 2 Let s = f(g(z); g(x)) and t = f(y; f(x; y)) be two �-terms, and

let R be a ground rewrite system over �. We will show how to apture all

the solutions of the reahability onstraint (R; s; t) as a ertain regular set of

�

2

?

-terms. First, onstrut the produt s
 t.

s
 t = f(g(z); g(x))
 f(y; f(x; y))

= hffi(g(z)
 y; g(x)
 f(x; y))

= hffi(
(g(z); y); hgfi(x
 x;?
 y))

= hffi(
(g(z); y); hgfi(
(x; x);
(?; y)))

The preorder traversal of s 
 t yields the sequene 
(g(z); y), 
(x; x),


(?; y).

Finally, pd(s; t) is the semi-linear sequene g(z); y; x; x;?; y. (Note

that pdp(s; t) is the sequene 1; 21; 22.) It follows from Lemma 4 that

there is a TA A

1

suh that L(A

1

) =

�

g(z�) 
 y� 
 x� 
 x� 
 ? 
 y� :

� is a grounding �-substitution

	

.

Now, onsider a TA A

R

that reognizes the produt of �!

�

R

, see Lemma 1,

i.e., L(A

R

) = fu
v : u�!

�

R

v; u; v 2 T

�

g: From A

R

we an, by using Lemma 5,

onstrut a TA A

2

suh that

L(A

2

) =

�

s

1


 s

21


 s

22

: s

1

; s

21

; s

22

2 T

2

�

; hffi(s

1

; hgfi(s

21

; s

22

)) 2 L(A

R

)

	

12



Let A reognize L(A

1

) \ L(A

2

). We get that

L(A) = L(A

1

) \ L(A

2

)

=

8

<

:

s

1


 s

21


 s

22

: (9x�; y�; z� 2 T

�

)

s

1

= g(z�)
 y�; s

21

= x� 
 x�; s

22

= ?
 y�;

hffi(s

1

; hgfi(s

21

; s

22

)) 2 L(A

R

)

= fg(z�)
 � � � 
 y� : hffi(g(z�)
 y�; hgfi(x� 
 x�;?
 y�)) 2 L(A

R

)g

= fg(z�)
 � � � 
 y� : � solves (R; s; t)g

Hene L(A) 6= ; if and only if (R; s; t) is solvable.

The ruial property that is needed in the example to prove the deid-

ability of the rigid reahability problem is that the parallel deomposition of

the sequene onsisting of its soure and target terms is semi-linear. This

observation leads to the following de�nition.

4.3 Balaned systems with ground rules

A system

�

(R

1

; s

1

; t

1

); : : : ; (R

n

; s

n

; t

n

)

�

of reahability onstraints is alled

balaned if the parallel deomposition pd(s

1

; t

1

; s

2

; t

2

; : : : ; s

n

; t

n

) is semi-

linear. The proof of Lemma 6 is a generalization of the onstrution in

Example 2.

Lemma 6 From every balaned system S of reahability onstraints with

ground rules, we an onstrut in EXPTIME a TA A suh L(A) 6= ; i� S is

satis�able.

Proof. Let S =

�

(R

1

; s

1

; t

1

); : : : ; (R

n

; s

n

; t

n

)

�

be a given a balaned system

of reahability onstraints suh that R

1

, : : : ,R

n

are ground.

Using Lemma 1, we an assoiate a TA A

i

to eah R

i

(i � n) suh that

L(A

i

) =

�

u
 v : u�!

�

R

i

v; u; v 2 T

�

	

The ground terms s

?

i

and t

?

i

are obtained from the soure and target terms

by replaement of every variable by the onstant ?.

Let U = s

?

1


 t

?

1


 : : :
 s

?

n


 t

?

n

and (p

1

; : : : ; p

k

) = pdp(s

1

; t

1

; : : : ; s

n

; t

n

). We

an use Lemma 5 to onstrut a TA A

0

suh that

L(A

0

) =

n

v

1


 : : :
 v

k

: v

1

; : : : ; v

k

2 T

n

�

;

U [p

1

 v

1

; : : : ; p

k

 v

k

℄ 2 L(

n

O

i=1

A

i

)

o

13



By hypothesis, the sequene pd(s

1

; t

2

; : : : ; s

n

; t

n

), denoted (u

1

; : : : ; u

kn

), is

semi-linear. Therefore, it follows from Lemma 4 that there is a TA A

00

suh

that

L(A

00

) =

�

u

1

� 
 : : :
 u

kn

� : � is a grounding �-substitution

	

Note that both L(A

0

) and L(A

00

) are subsets of T

kn

�

. Let A be a TA reog-

nizing L(A

0

) \ L(A

00

). We have that L(A) 6= ; if and only if S is satis�able.

Let t 2 T

kn

�

. Then t 2 L(A)

i� t = u

1

�
 : : :
u

kn

� for some grounding �-substitution � (t 2 L(A

00

)), and

U [p

1

 w

1

; : : : ; p

k

 w

k

℄ 2 L(

N

n

i=1

A

i

), where w

i

=

N

i:n

j=(i�1)n+1

u

j

�

(t 2 L(A

00

)),

i� s

?

1


 t

?

1


 : : :
 s

?

n


 t

?

n

[p

1

 w

1

; : : : ; p

k

 w

k

℄ 2 L(

N

n

i=1

A

i

),

i� s

1

� 
 t

1

� 
 : : : 
 s

n

� 
 t

n

� 2 L(

N

n

i=1

A

i

), beause every variable of S

ours in one of the u

1

; : : : ; u

k

, by de�nition of pd ,

i� s

1

��!

�

R

1

t

1

�; : : : ; s

n

��!

�

R

n

t

n

�.

Lets now �nally evaluate the size of A, the omplexity of its onstrution

being linearly proportional to its size. For eah i � n, the size of A

i

is

polynomial in kR

i

k, thus







N

n

i=1

A

i







� M

n

where M = maxfkR

i

k : i � ng

and  is one onstant independent from the problem size Therefore, kA

0

k �

M

2nk

, see Lemma 5. Aording to Lemma 4,

kA

00

k � ku

1

k � : : :� ku

kn

k � �

n

i=1

ks

i

k � �

n

i=1

kt

i

k � N

2n

;

where N = maxfks

i

k; kt

i

k : i � ng. Hene,

kAk = kA

00

k � kA

0

k � N

2n

�M

2nk

� kSk

2n(k+1)

:

⊠

Theorem 2 SRR is EXPTIME-omplete for balaned systems with ground

rules.

Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998℄, where

we have proved that one an redue the emptiness deision for intersetion

of n tree automata to the satis�ability of a rigid reahability onstraint

�

R; f(x; : : : ; x); f(q

1

; : : : ; q

n

)

�

, where R is ground and q

1

, : : : ,q

n

are on-

stants. ⊠

The balaned ase an easily be used to show the deidability of the following

ase: for eah variable x there exists an integer d

x

suh that x ours only at

positions of length d

x

. For example with s

1

= f(x; g(y)), t

1

= f(f(y; y); x),

s

2

= g(x), and t

2

= g(f(a; y)), �rst \guess" a term a, g(x

1

), or f(x

1

; x

2

) for

x to obtain a system where all variables our at the same depth.
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Below you �nd a list of the most reent tehnial reports of the Max-Plank-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the diretory pub/papers/reports. Most

of the reports are also aessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions onerning ftp or WWW aess, please ontat reports�mpi-sb.mpg.de. Paper opies (whih

are not neessarily free of harge) an be ordered either by regular mail or by e-mail at the address below.

Max-Plank-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�uken

GERMANY

e-mail: library�mpi-sb.mpg.de
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