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Abstra
t

In this paper we prove de
idability results of restri
ted fragments of simul-

taneous rigid rea
hability or SRR, that is the nonsymmetri
al form of simul-

taneous rigid E-uni�
ation or SREU. The absen
e of symmetry for
es us to

use di�erent methods, from the ones that have been su

essful in the 
ontext

of SREU in the past (for example word equations). The methods that we

use instead involve �nite (tree) automata te
hniques, and the de
idability

proofs provide pre
ise 
omputational 
omplexity bounds. The main results

are 1) monadi
 SRR with ground rules is PSPACE-
omplete, and 2) balan
ed

SRR with ground rules is EXPTIME-
omplete. The �rst result indi
ates the

di�eren
e in 
omputational power between fragments of SREU with ground

rules and nonground rules, respe
tively, due to a straightforward en
oding

of word equations in monadi
 SREU (with nonground rules). The se
ond re-

sult establishes the de
idability and pre
ise 
omplexity of the largest known

subfragment of nonmonadi
 SREU.

Keywords

Rigid Uni�
ation, Term Rewriting, Rea
hability.



1 Introdu
tion

Rigid rea
hability (RR) is the problem, given a rewrite system R and two

terms s and t, whether there exists a substitution � su
h that s�, t�, and R�

are ground, and s� rewrites in some number of steps via R� into t�. The

term \rigid" stems from the fa
t that for ea
h rule only one instan
e 
an

be used in the rewriting pro
ess. Simultaneous rigid rea
hability (SRR) is

the problem in whi
h a substitution is sought whi
h simultaneously solves

ea
h member of a system of rea
hability 
onstraints (R

i

; s

i

; t

i

). A spe
ial


ase of [simultaneous℄ rigid rea
hability arises when the R

i

are symmetri
,


ontaining for ea
h rule s! t also its 
onverse t! s. Su
h systems arise for

example by orienting a set of equations in both dire
tions. The latter problem

was introdu
ed by Gallier, Raatz & Snyder [1987℄ as \simultaneous rigid E-

uni�
ation" (SREU) in the 
ontext of extending tableaux or matrix methods

in automated theorem proving to logi
 with equality. Rigid rea
hability was

initially introdu
ed in the 
ontext of se
ond-order uni�
ation [Farmer 1991,

Levy 1998℄.

Although the non-simultaneous 
ase of SREU (rigid E-uni�
ation) was

proved NP-
omplete by Gallier, Narendran, Plaisted & Snyder [1988℄, SREU

in general was shown by Degtyarev & Voronkov [1995℄ to be unde
idable.

Further impli
ations of the latter result are dis
ussed in [Degtyarev, Gure-

vi
h & Voronkov 1996℄. In a series of papers, SREU has been studied ex-

tensively and several sharp boundaries have been laid between its de
id-

able and unde
idable fragments. Most re
ent developments are dis
ussed by

Voronkov [1998℄ and Veanes [1998℄. Rigid rea
hability was shown unde
id-

able by Ganzinger, Ja
quemard & Veanes [1998℄.

The, arguably, most diÆ
ult remaining open problem regarding SREU

is the de
idability of \monadi
" SREU, or SREU restri
ted to signatures

where all non
onstant fun
tion symbols are unary. The importan
e of this

fragment stems from its 
lose relation to word equations [Degtyarev, Matiya-

sevi
h & Voronkov 1996℄, and to fragments of intuitionisti
 logi
 [Degtyarev

& Voronkov 1996℄. What is known about monadi
 SREU in general is

that it redu
es to a nontrivial extension of word equations [Gurevi
h &

Voronkov 1997℄. In the 
ase of ground rules, the de
idability of monadi


SREU was established in [Gurevi
h & Voronkov 1997℄ by redu
ing it to \word

equations with regular 
onstraints". The de
idability of the latter prob-

lem is an extension of Makanin's [1977℄ result by S
hulz [1990℄. Conversely,

word equations redu
e in polynomial time to monadi
 SREU [Degtyarev,

Matiyasevi
h & Voronkov 1996℄. The �rst main result of this paper (in Se
-

tion 3) is that monadi
 SRR with ground rules is in PSPACE, improving the

EXPTIME result in Ganzinger et al. [1998℄. Hen
e, it is unlikely that there
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is a simple redu
tion, if any redu
tion at all, from monadi
 SREU to monadi


SREU with ground rules, or else one would get a 
onsiderable simpli�
ation

of Makanin's [1977℄ proof. The PSPACE-hardness of monadi
 SREU with

ground rules was shown by Goubault [1994℄.

To obtain the PSPACE result we use an extension of the interse
tion

nonemptiness problem of a sequen
e of �nite automata that we prove to be

in PSPACE. Moreover, using the same proof te
hnique, we 
an show that

simultaneous rigid rea
hability with ground rules remains in PSPACE, even

when just the rules are required to be monadi
. Furthermore, in this 
ase

PSPACE-hardness holds already for a single 
onstraint with one variable,


ontrasting the fa
t that SREU with one variable is solvable in polynomial

time [Degtyarev, Gurevi
h, Narendran, Veanes & Voronkov 1998b℄.

Our se
ond main result 
on
erns (nonmonadi
) SRR with ground rules.

In se
tion 4, we show that SRR with ground rules is EXPTIME-
omplete for

\balan
ed" systems of rea
hability 
onstraints. Under balan
ed systems fall

for example systems where all o

urren
es of ea
h variable are at the same

depth. It is possible to obtain unde
idability of (nonsimultaneous) rigid

rea
hability with ground rules where all but one o

urren
e of all variables

o

ur at the same depth [Ganzinger et al. 1998℄. Moreover, our de
idability

result generalizes the de
idability result by Degtyarev, Gurevi
h, Narendran,

Veanes & Voronkov [1998a℄ of the largest known de
idable fragment of SREU

with ground rules and implies EXPTIME-
ompletess of the 
omplexity of

this fragment (whi
h is left open in [Degtyarev et al. 1998a℄). We use �nite

tree automata te
hniques over produ
t languages, that have been used in

de
ision pro
edures for \automata with 
onstraints between brothers" [
f.

Comon, Dau
het, Gilleron, Lugiez, Tison & Tommasi 1998℄.

2 Preliminaries

A signature � is a 
olle
tion of fun
tion symbols with �xed arities � 0 and,

unless otherwise stated, � is assumed to 
ontain at least one 
onstant, that

is, one fun
tion symbol with arity 0. We use a; b; 
; d; a

1

; : : : for 
onstants and

f; g; f

1

; : : : for fun
tion symbols in general. A signature is 
alled monadi
 if

all fun
tion symbols in it have arity � 1. A ground term is one that 
ontains

no variables. The set of all ground terms over a signature � is denoted by

T

�

.

We use s; t; l; r; s

1

; : : : for terms. The size ktk of a term t is de�ned

re
ursively by: ktk = 1 if t is either a variable or a 
onstant and

kf(t

1

; : : : ; t

n

)k = kt

1

k+ : : :+ kt

n

k+ 1:
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Positions in terms are sequen
es of integers. We use p; p

1

et
 for positions,

� for the empty sequen
e (root position) and pp

0

for the 
on
atenation prod-

u
t of two positions p and p

0

. We will also use the pre�x ordering � on

positions. Some positions p

1

; : : : ; p

n

are 
alled parallel if they are pairwise

un
omparable with respe
t to �.

We assume that the reader is familiar with the basi
 
on
epts in term

rewriting [e.g. Dershowitz & Jouannaud 1990, Baader & Nipkow 1998℄. We

write u[s℄ when s o

urs as a subterm of u. In that 
ase u[t℄ denotes the re-

pla
ement of the indi
ated o

urren
e of s by t. An equation is an unordered

pair of terms, denoted by s � t. A rule is an ordered pair of terms, denoted

by s ! t. An equation or a rule is ground if the terms in it are ground. A

system is a �nite set. Let R be a system of ground rules, and s and t two

ground terms. Then s rewrites in R to t, denoted by s�!

R

t, if t is obtained

from s by repla
ing an o

urren
e of a term l in s by a term r for some rule

l ! r in R. The term s redu
es in R to t, denoted by s�!

�

R

t, if either s = t

or s rewrites to a term that redu
es to t. R is 
alled symmetri
 if, with any

rule l ! r in R, R also 
ontains its 
onverse r ! l. Below we shall not

distinguish between systems of equations and symmetri
 systems of rewrite

rules. The size of a system R is the sum of the sizes of its 
omponents:

kRk =

P

l!r2R

(klk+ krk).

Rigid Rea
hability. A rea
hability 
onstraint, or simply a 
onstraint, in

a signature � is a triple (R; s; t) where R is a set of rules in �, and s and

t are �-terms. We refer to R, s and t as the rule set, the sour
e term

and the target term, respe
tively, of the 
onstraint. A substitution � in �,

solves (R; s; t) if � is grounding for R, s and t, and s��!

�

R�

t�: The problem

of solving 
onstraints is 
alled rigid rea
hability. A system of 
onstraints is

solvable if there exists a substitution that solves all 
onstraints in that system.

Simultaneous rigid rea
hability or SRR is the problem of solving systems

of 
onstraints. Monadi
 (simultaneous) rigid rea
hability is (simultaneous)

rigid rea
hability for monadi
 signatures.

Rigid E-uni�
ation is rigid rea
hability for 
onstraints (E; s; t) with sets

of equations E. Simultaneous Rigid E-uni�
ation or SREU is de�ned a
-


ordingly.

Finite tree automata. Finite bottom-up tree automata, or simply, tree

automata, from here on, are a generalization of 
lassi
al automata [Doner

1970, That
her & Wright 1968℄. Using a rewrite rule based de�nition [e.g.

Coquid�e, Dau
het, Gilleron & V�agv�olgyi 1994, Dau
het 1993℄, a tree au-

tomaton (or TA) A is a quadruple (Q;�; R; F ), where (i) Q is a �nite set

3



of 
onstants 
alled states, (ii) � is a �nite signature that is disjoint from Q,

(iii) R is a system of rules of the form f(q

1

; : : : ; q

n

) ! q, where f 2 � has

arity n � 0 and q; q

1

; : : : ; q

n

2 Q, and (iv) F � Q is the set of �nal states.

The size of a TA A is kAk = jQj+ j�j+ kRk.

We denote by L(A; q) the set ft 2 T

�

�

�

t�!

�

R

qg of ground terms a

epted by

A in state q. The set of terms re
ognized by the TA A is the set

S

q2F

L(A; q).

A set of terms is 
alled re
ognizable or regular if it is re
ognized by some TA.

A monadi
 TA is a TA with a monadi
 signature.

Finite string automata. For monadi
 signatures, we use the traditional,

equivalent 
on
epts of alphabets, strings (or words), �nite automata, and

regular expressions. We will identify an NFA A with alphabet � with the set

of all rules a(q) ! p, also written as q�!

a

A

p, where there is a transition with

label a 2 � from state q to state p in A, and we denote this set of rules also

by A. A monadi
 term a

1

(a

2

(: : : a

n

(q))) is written, using the reversed Polish

notation, as the string qa

n

: : : a

1

.

Then A a

epts a string a

1

a

2

� � �a

n

if and only if, for some �nal state q

and the initial state q

0

of A, a

n

(� � �a

2

(a

1

(q

0

)) � � � )�!

�

A

q, i.e.,

q

0

�!

a

1

A

q

1

�!

a

2

A

� � � �!

A

a

n

q:

The set of all strings a

epted by A is denoted by L(A).

Produ
t automata. Let � be a signature, m a positive integer, and ? a

new 
onstant. We write �

?

for � [ f?g and �

m

?

denotes the signature 
on-

sisting of, for all f

1

; f

2

; : : : ; f

m

2 �

?

, a unique fun
tion symbol hf

1

f

2

� � � f

m

i

with arity equal to the maximum of the arities of the f

i

's.

Let t

i

2 T

�

[ ?, t

i

= f

i

(t

i1

; : : : ; t

ik

i

), where k

i

� 0, for 1 � i � m. Let

k be the maximum of all the k

i

and let t

ij

= ? for k

i

< j � k. The produ
t

t

1


 � � � 
 t

m

of t

1

; : : : ; t

m

is de�ned by re
ursion on the subterms:

t

1


 � � � 
 t

m

= hf

1

f

2

� � � f

m

i(t

11


 � � � 
 t

1k

; : : : ; t

m1


 � � � 
 t

mk

) (1)

For example:

f(
; g(
))
 f(g(d); f(
; g(
))) = hffi(

 g(d); g(
)
 f(
; g(
)))

= hffi(h
gi(?
 d); hgfi(

 
;?
 g(
)))

= hffi(h
gi(h?di; hgfi(h

i; h?gi(?
 
)))

= hffi(h
gi(h?di; hgfi(h

i; h?gi(h?
i)))

4



We write T

m

�

for the set of all t in T

�

m

?

su
h that t = t

1


 � � � 
 t

m

for some

t

1

; : : : ; t

m

2 T

�

[ ?. If s 2 T

m

�

and t 2 T

n

�

, where s = s

1


 � � � 
 s

m

and

t = t

1


 � � � 
 t

n

, then s
 t denotes the term s

1


 � � � 
 s

m


 t

1


 � � � 
 t

n

in

T

m+n

�

. Given a sequen
e

~

t = t

1

; : : : ; t

m

of terms in T

�

[?, we write

N

~

t for

the produ
t term t

1


 � � � 
 t

m

Given two automata A

1

and A

2

over �

m

?

and �

n

?

, respe
tively, the produ
t

of A

1

and A

2

is an automaton A

1


 A

2

over �

m+n

?

su
h that

L(A

1


 A

2

) = L(A

1

)
 L(A

2

) = ft

1


 t

2

: t

1

2 L(A

1

); t

2

2 L(A

2

)g

The 
onstru
tion of A

1


 A

2

is straightforward, with a state q

(q

1

;q

2

)

for all

states q

1

in A

1

and q

2

in A

2

, [see e.g. Comon et al. 1998℄. In general,

N

n

i=1

A

i

is de�ned a

ordingly.

We will use the following 
onstru
tion of Dau
het, Heuillard, Les
anne &

Tison [1990℄ in our proofs.

Lemma 1 Let R be a ground rewrite system over a signature �. There is a

TA A su
h that L(A) = fs
 t : s; t 2 T

�

; s�!

�

R

tg that 
an be 
onstru
ted in

polynomial time from R and �.

3 Monadi
 SRR

We prove that monadi
 SRR with ground rules is PSPACE-
omplete. Our

main tool is a de
ision problem of NFAs that we de�ne next. In this se
tion

we 
onsider only monadi
 signatures.

3.1 Constrained produ
t nonemptiness of NFAs

Given a signature � and a positive integer m, we want to sele
t only a


ertain subset from �

m

through sele
tion 
onstraints (bounded by m). These

are unordered pairs of indi
es written as i � j, where 1 � i; j � m, i 6= j.

Given a signature � and a set I of sele
tion 
onstraints, we write �

m⇂I for

the following subset of �

m

:

�

m⇂I = fha

1

a

2

� � �a

m

i 2 �

m

: (8i � j 2 I) a

i

= a

j

g

For an automaton A, let A⇂I denote the redu
tion of A to the alphabet �

m⇂I.

We write also L(A)⇂I for L(A⇂I). The automaton A⇂I has the same states

as A, and the transitions of A⇂I are pre
isely all the transitions of A with

labels from �

m⇂I.

We 
onsider the following de
ision problem, that is 
losely related to the

nonemptiness problem of the interse
tion of a sequen
e of NFAs. Consider

5



an alphabet �. Let (A

i

)

1�i�n

, n � 1, be a sequen
e of (string produ
t)

NFAs over the alphabets �

m

i

?

for 1 � i � n, respe
tively. Let m be the

sum of all the m

i

and let I be a set of sele
tion 
onstraints. The 
onstrained

produ
t nonemptiness problem of NFAs is, given (A

i

)

1�i�n

, and I, to de
ide if

(

N

n

i=1

L(A

i

))⇂I is nonempty. Our key lemma is the following one. Its proof is

a straightforward extension of the in
lusion part of Kozen's [1977℄ PSPACE-


ompletess result of the interse
tion nonemptiness problem of DFAs: given

a sequen
e (A

i

)

1�i�n

of DFAs, is

T

n

i=1

L(A

i

) nonempty?

Lemma 2 Constrained produ
t nonemptiness of NFAs (or monadi
 TAs) is

in PSPACE.

Proof. Let (A

i

)

1�i�n

, m

i

, m, �, and I be given as above. Assume also that

m

i

= 2 for 1 � i � n, i.e., m = 2n and ea
h automaton has alphabet �

2

?

.

(Proof of the general 
ase is analogous.)

Furthermore, we 
an assume, without loss of generality, that none of the

automata a

epts the empty string and that, for ea
h string v that is a

epted

by A

i

also h??iv is a

epted by A

i

, e.g., we 
an assume that ea
h automaton

has a transition with label h??i from the initial state to the initial state.

Consider the following nondeterministi
 de
ision pro
edure.

I (Initialize) Cal
ulate the number of states in

N

n

i=1

A

i

and save it in

IterationLimit.

(This 
al
ulation is easy, be
ause ea
h state of

N

n

i=1

A

i


orresponds to

a sequen
e of states (q

i

)

1�i�n

, where q

i

is a state of A

i

.)

Save in State

i

the initial state of A

i

for 1 � i � n.

II (Guess the next letter from �

m

?

⇂I) Sele
t (a
1

; : : : ; a

m

) 2 �

m

?

⇂I and

store a

i

in Letter

i

.

III (Guess the next transition of (

N

n

i=1

A

i

)⇂I) For 1 � i � n, guess

nondeterministi
ally a state q

i

from A

i

.

Che
k that, for 1 � i � n, there is a hLetter

2i�1

Letter

2i

i-transition

in A

i

from State

i

to q

i

, and if so, save q

i

in State

i

. If there is no su
h

transition then terminate and reje
t.

IV (Che
k a

eptan
e of (

N

n

i=1

A

i

)⇂I) If, for 1 � i � n, State

i

is an

a

epting state of A

i

then terminate and a

ept.

V (Iterate) If IterationLimit is 0 then terminate and reje
t, else de-


rease IterationLimit by one and return to Step II.

6



The pro
edure 
orresponds to walking through the graph of (

N

n

i=1

A

i

)⇂I, by

starting from the initial state, at ea
h step just remembering the 
urrent state

and guessing a valid transition from that state to the next state. We only

need to 
he
k if there exists a path of at most IterationLimit transitions

(as initialized in Step I) in L(

N

n

i=1

A

i

)⇂I from the initial state to a �nal state.

It is evident that the pro
edure always terminates, and that it a

epts if and

only if L(

N

n

i=1

A

i

)⇂I is nonempty.

It is obvious, through straightforward binary en
odings, that no more

than polynomial spa
e is required, in order to meet the spa
e requirements

of the pro
edure. Hen
e, the pro
edure runs in nondeterministi
 polynomial

spa
e and thus in PSPACE, by using the result of Savit
h [1970℄.

Finally, note that the only di�eren
e between NFAs and monadi
 TAs is

that in the latter we may have several transitions of the form 
 ! q, where


 is a 
onstant and q a state. This 
orresponds roughly to allowing several

initial states in NFAs. ⊠

The proof of Lemma 2 
an be extended in a straightforward manner to

�nite tree automata. The only di�eren
e will be that the algorithm will

do \universal 
hoi
es" when the arity of fun
tion symbols (letters) in the


omponent automata is > 1. This leads to alternating PSPACE, and thus,

by the result of Chandra, Kozen & Sto
kmeyer [1981℄, to EXPTIME upper

bound for the 
onstrained produ
t nonemptiness problem of TAs.

Although we will not use this fa
t, it is worth noting that the 
onstrained

produ
t nonemptiness problem is also PSPACE-hard, and this so already for

DFAs (or monadi
 DTAs). It is easy to see that

T

n

i=1

L(A

i

) is nonempty if

and only if L(

N

n

i=1

A

i

)⇂fi � i + 1 : 1 � i < ng is nonempty.

3.2 Redu
tion of monadi
 SRR with ground rules to


onstrained produ
t nonemptiness of NFAs

We need the following notion of normal form of a system of rea
hability


onstraints. We say that a system S of rea
hability 
onstraints is 
at, if ea
h


onstraint in S is either of the form

� (R; x; t), R is nonempty, x is a variable, and t is a ground term or a

variable distin
t from x, or of the form

� (;; x; f(y)), where x and y are distin
t variables and f is a unary fun
-

tion symbol.

Note that solvability of a rea
hability 
onstraint with empty rule set is simply

uni�ability of the sour
e and the target. The following simple lemma is useful.

7



Lemma 3 Let S be a system of rea
hability 
onstraints. There is a 
at

system that 
an be obtained in polynomial time from S, that is solvable if

and only if S is solvable.

Proof. Let S be a given system of rea
hability 
onstraints and 
onsider the

following pro
edure.

1. Repla
e ea
h 
onstraint (R; s; t), where s is not a variable, or when

s = t, by the 
onstraints (R; x; t) and (;; x; s), where x is a new variable.

2. Repla
e ea
h 
onstraint (R; x; t), where R is nonempty, x is a variable

and t is neither ground nor a variable, by the 
onstraints (R; x; y) and

(;; y; t), where y is a new variable.

3. Repla
e ea
h 
onstraint (;; x; f(s)), where s is not a variable and not

ground, by the 
onstraints (;; x; f(y)) and (;; y; s), where y is a new

variable.

4. Repeat the above steps until the system is 
at.

It is easy to 
he
k that ea
h step preserves solvability, and 
learly, the time


omplexity of this pro
edure is polynomial in the size of S. ⊠

By using Lemma 2 and Lemma 3 we 
an now show the following theorem,

that is the main result of this se
tion.

Theorem 1 Monadi
 SRR with ground rules is PSPACE-
omplete.

Proof. The PSPACE-hardness has been proved already in the 
ase when

the rule sets are symmetri
 [Goubault 1994℄ and there is only one variable

[Gurevi
h & Voronkov 1997℄. We prove in
lusion in PSPACE by giving a

polynomial time redu
tion to the 
onstrained produ
t nonemptiness problem

of monadi
 TAs.

Let S be a system of rea
hability 
onstraints with ground rules. Let

� be the signature of S. We may assume, by using Lemma 3, that S is


at. Enumerate all the 
onstraints in S as �

1

; : : : ; �

m

; �

m+1

; : : : ; �

n

, where

all the 
onstraints of the form (;; x; f(y)) are enumerated as �

m+1

; : : : ; �

n

.

Let �

i

= (R

i

; x

i

; t

i

) for 1 � i � m and �

i

= (;; x

i

; f

i

(y

i

)) for m < i � n.

For 1 � i � m, 
onstru
t a TA A

i

su
h that,

L(A

i

) = fx

i

� 
 t

i

� : � solves �

i

g:

For m < i � n, 
onstru
t a TA A

i

su
h that,

L(A

i

) = fx

i

� 
 y

i

� : � solves �

i

g:
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Figure 1: A DFA (or monadi
 DTA) A that re
ognizes ff(s)
s : s 2 T

�

g, where

� 
onsists of the unary fun
tion symbols f , g, and h, and the 
onstant 
.

For example A re
ognizes the string h
?ihg
ihggihhgihfhi, i.e., the term

hfhi(hhgi(hggi(hg
i(h
?i)))) that is the same as f(h(g(g(
)))) 
 h(g(g(
))).

(Su
h an automaton is illustrated in Figure 1.) It follows from Lemma 1 that

all these TAs 
an be 
onstru
ted in polynomial time.

Let I be the set of all the following sele
tion 
onstraints (where 1 � i; j �

n and i 6= j):

1. If the sour
e of a �

i

is a variable that o

urs as the sour
e of a �

j

, then

2i� 1 � 2j � 1 2 I.

2. If the sour
e of a �

i

is a variable that o

urs in the target of a �

j

, then

2i� 1 � 2j 2 I.

3. If the target of a �

i

is a variable that o

urs in the target of a �

j

, then

2i � 2j 2 I.

It remains to be proved that L(

N

n

i=1

A

i

)⇂I is nonempty if and only if S is

solvable. (This proof is straightforward, and is illustrated in Example 1.)

The theorem follows then from Lemma 2. ⊠

The 
ru
ial step in the proof of Theorem 1 is the 
onstru
tion of an

automaton that re
ognizes the language ff(s)
 s : s 2 T

�

g. (See Figure 1.)

The reason why the proof does not generalize to TAs is that the language

ff(s) 
 s : s 2 T

�

g is not regular for nonmonadi
 signatures. The next

example illustrates how the redu
tion in the proof of Theorem 1 works.

Example 1 Consider a 
at system S = f�

1

; �

2

; �

3

g with �

1

= (R; y; x), �

2

=

(;; y; f(z)) and �

3

= (;; z; g(x)), over a signature � = ff; g; 
g, where 
 is a


onstant. (This system is solvable if and only if the 
onstraint (R; f(g(x)); x)

is solvable.)
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The 
onstru
tion in the proof of Theorem 1 gives us the monadi
 TAs

A

1

, A

2

and A

3

su
h that

L(A

1

) = fs
 t : s�!

�

R

t; s; t 2 T

�

g;

L(A

2

) = ff(s)
 s : s 2 T

�

g;

L(A

3

) = fg(s)
 s : s 2 T

�

g;

and a set I = f1 � 3; 5 � 4; 6 � 2g of sele
tion 
onstraints. So L(

N

3

i=1

A

i

)⇂I

is as follows.

L(A

1


 A

2


 A

3

)⇂I = fs
 t
 f(u)
 u
 g(v)
 v :

s; t; u; v 2 T

�

; s�!

�

R

tg⇂f1 � 3; 5 � 4; 6 � 2g

= fs
 t
 f(u)
 u
 g(v)
 v :

s; t; u; v 2 T

�

; s�!

�

R

t; s = f(u); g(v) = u; v = tg

= ff(g(t))
 t
 f(g(t))
 g(t)
 g(t)
 t :

t 2 T

�

; f(g(t))�!

�

R

tg

So, solvability of S is equivalent to nonemptiness of L(A

1


 A

2


 A

3

)⇂I.

3.3 Some de
idable extensions of the monadi
 
ase

Some restri
tions imposed by only allowing monadi
 fun
tion symbols 
an

be relaxed without losing de
idability of SRR for the resulting 
lasses of


onstraints. One de
idable fragment of SRR is obtained by requiring only

the rules to be ground and monadi
. It 
an be shown that SRR for this


lass is still in PSPACE. Furthermore, an easy argument using the inter-

se
tion nonemptiness problem of DFAs shows that PSPACE-hardness of this

fragment holds already for a single 
onstraint with one variable. This is in


ontrast with the fa
t that SREU with one variable and a �xed number of


onstraints 
an be solved in polynomial time [Degtyarev et al. 1998b℄.

4 A de
idable nonmonadi
 fragment

In this se
tion, we 
onsider general signatures and give a 
riteria on the

sour
e and target terms of a system of rea
hability 
onstraints for the de
id-

ability of SRR when the rules are ground. Moreover, we prove that SRR is

EXPTIME-
omplete in this 
ase. Our de
ision algorithm involves essentially

tree automata te
hniques. Let � be a signature �xed for the rest of the

se
tion.
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4.1 Semi-linear sequen
es of terms

We say that a sequen
e of terms (t

1

; t

2

; : : : ; t

m

) of (possibly non ground)

�-terms or ? is semi-linear if one of the following 
onditions holds for ea
h

t

i

:

1. t

i

is a variable, or

2. t

i

is a linear term and no variable in t

i

o

urs in t

j

for i 6= j.

Note that if t

i

is ground then it satis�es the se
ond 
ondition trivially.

Lemma 4 Let (s

1

; s

2

; : : : ; s

k

) be a semi-linear sequen
e of �-terms. Then

the subset

�

s

1

� 
 s

2

� 
 � � � 
 s

k

� : � is a grounding �-substitution

	

� T

m

�

is

re
ognized by a TA the size of whi
h is in O((ks

1

k+ k�k) : : : (ks

k

k+ k�k)).

Proof. Let � and ~s = s

1

; s

2

; : : : ; s

k

be given. Let A

i

be the TA that re
og-

nizes fs

i

� : s

i

� 2 T

�

g for 1 � i � k. The desired TA is (

N

A

i

)⇂I, where I

is the set of all sele
tion 
onstraints i � j su
h that s

i

and s

j

are identi
al

variables. ⊠

We shall also use the following lemma.

Lemma 5 Let A = (�; Q;R; F ) be a TA, s 2 T

�

, and p

1

; : : : ; p

k

parallel

positions in s. Then there is a TA A

0

, with kA

0

k 2 O

�

kAk

2k

�

, that re
ognizes

the set

�

s

1


 � � � 
 s

k

: s

1

; : : : ; s

k

2 T

�

; s[p

1

 s

1

; : : : ; p

k

 s

k

℄ 2 L(A)

	

Proof. For all states q 2 Q, let A

q

be the automaton (�; Q;R; fqg). Let

f~q

i

g

1�i�m

be the 
olle
tion of all sequen
es ~q

i

= q

i1

; : : : ; q

ik

2 Q su
h that,

for some q

f

2 F , s[p

1

 q

i1

; : : : ; p

k

 q

ik

℄�!

�

R

q

f

. For all su
h sequen
es ~q

i

,

1 � i � m, 
onstru
t a TA A

i

that re
ognizes

L(A

q

i1

)
 � � � 
 L(A

q

ik

):

Here we 
an assume that ea
h L(A

q

ij

) is nonempty, or else L(A

i

) is empty.

Assume that all the A

i

's have disjoint sets of states and let A

0

be the union of

all the A

i

's. It is easy to 
he
k that A

0

re
ognizes the given set of terms. Note

that m � jQj

k

. The size of A

0

is therefore kA

0

k �

P

m

i=1

kA

i

k �

P

m

i=1

kAk

k

�

jQj

k

� kAk

k ⊠
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4.2 Parallel de
omposition of sequen
es of terms

For te
hni
al reasons, we generalize the notion of a produ
t of m terms by

allowing nonground terms. The resulting term is in an extended signature

with 
 as an additional variadi
 fun
tion symbol. The de�nition is the same

as for ground terms (see (1)), with the additional 
ondition that if one of the

t

i

's is a variable then

t

1


 � � � 
 t

m

= 
(t

1

; : : : ; t

m

):

Consider a sequen
e ~s = s

1

; : : : ; s

m

of terms and let (
(

~

t

i

))

1�i�k

be the

sequen
e of all the subterms of the produ
t term

N

~s whi
h have head symbol


. The parallel de
omposition of ~s = s

1

; : : : ; s

m

or pd(~s) is the sequen
e

(

~

t

i

)

1�i�k

, i.e., we forget the symbol 
. We need the following te
hni
al

notion in the proof of Lemma 6: pdp(~s) is the sequen
e (p

i

)

1�i�k

, where p

i

is

the position of 
(

~

t

i

) in

N

~s.

The following example illustrates these new de�nitions and lemmas and

how they are used.

Example 2 Let s = f(g(z); g(x)) and t = f(y; f(x; y)) be two �-terms, and

let R be a ground rewrite system over �. We will show how to 
apture all

the solutions of the rea
hability 
onstraint (R; s; t) as a 
ertain regular set of

�

2

?

-terms. First, 
onstru
t the produ
t s
 t.

s
 t = f(g(z); g(x))
 f(y; f(x; y))

= hffi(g(z)
 y; g(x)
 f(x; y))

= hffi(
(g(z); y); hgfi(x
 x;?
 y))

= hffi(
(g(z); y); hgfi(
(x; x);
(?; y)))

The preorder traversal of s 
 t yields the sequen
e 
(g(z); y), 
(x; x),


(?; y).

Finally, pd(s; t) is the semi-linear sequen
e g(z); y; x; x;?; y. (Note

that pdp(s; t) is the sequen
e 1; 21; 22.) It follows from Lemma 4 that

there is a TA A

1

su
h that L(A

1

) =

�

g(z�) 
 y� 
 x� 
 x� 
 ? 
 y� :

� is a grounding �-substitution

	

.

Now, 
onsider a TA A

R

that re
ognizes the produ
t of �!

�

R

, see Lemma 1,

i.e., L(A

R

) = fu
v : u�!

�

R

v; u; v 2 T

�

g: From A

R

we 
an, by using Lemma 5,


onstru
t a TA A

2

su
h that

L(A

2

) =

�

s

1


 s

21


 s

22

: s

1

; s

21

; s

22

2 T

2

�

; hffi(s

1

; hgfi(s

21

; s

22

)) 2 L(A

R

)
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Let A re
ognize L(A

1

) \ L(A

2

). We get that

L(A) = L(A

1

) \ L(A

2

)

=

8

<

:

s

1


 s

21


 s

22

: (9x�; y�; z� 2 T

�

)

s

1

= g(z�)
 y�; s

21

= x� 
 x�; s

22

= ?
 y�;

hffi(s

1

; hgfi(s

21

; s

22

)) 2 L(A

R

)

= fg(z�)
 � � � 
 y� : hffi(g(z�)
 y�; hgfi(x� 
 x�;?
 y�)) 2 L(A

R

)g

= fg(z�)
 � � � 
 y� : � solves (R; s; t)g

Hen
e L(A) 6= ; if and only if (R; s; t) is solvable.

The 
ru
ial property that is needed in the example to prove the de
id-

ability of the rigid rea
hability problem is that the parallel de
omposition of

the sequen
e 
onsisting of its sour
e and target terms is semi-linear. This

observation leads to the following de�nition.

4.3 Balan
ed systems with ground rules

A system

�

(R

1

; s

1

; t

1

); : : : ; (R

n

; s

n

; t

n

)

�

of rea
hability 
onstraints is 
alled

balan
ed if the parallel de
omposition pd(s

1

; t

1

; s

2

; t

2

; : : : ; s

n

; t

n

) is semi-

linear. The proof of Lemma 6 is a generalization of the 
onstru
tion in

Example 2.

Lemma 6 From every balan
ed system S of rea
hability 
onstraints with

ground rules, we 
an 
onstru
t in EXPTIME a TA A su
h L(A) 6= ; i� S is

satis�able.

Proof. Let S =

�

(R

1

; s

1

; t

1

); : : : ; (R

n

; s

n

; t

n

)

�

be a given a balan
ed system

of rea
hability 
onstraints su
h that R

1

, : : : ,R

n

are ground.

Using Lemma 1, we 
an asso
iate a TA A

i

to ea
h R

i

(i � n) su
h that

L(A

i

) =

�

u
 v : u�!

�

R

i

v; u; v 2 T

�

	

The ground terms s

?

i

and t

?

i

are obtained from the sour
e and target terms

by repla
ement of every variable by the 
onstant ?.

Let U = s

?

1


 t

?

1


 : : :
 s

?

n


 t

?

n

and (p

1

; : : : ; p

k

) = pdp(s

1

; t

1

; : : : ; s

n

; t

n

). We


an use Lemma 5 to 
onstru
t a TA A

0

su
h that

L(A

0

) =

n

v

1


 : : :
 v

k

: v

1

; : : : ; v

k

2 T

n

�

;

U [p

1

 v

1

; : : : ; p

k

 v

k

℄ 2 L(

n

O

i=1

A

i

)

o
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By hypothesis, the sequen
e pd(s

1

; t

2

; : : : ; s

n

; t

n

), denoted (u

1

; : : : ; u

kn

), is

semi-linear. Therefore, it follows from Lemma 4 that there is a TA A

00

su
h

that

L(A

00

) =

�

u

1

� 
 : : :
 u

kn

� : � is a grounding �-substitution

	

Note that both L(A

0

) and L(A

00

) are subsets of T

kn

�

. Let A be a TA re
og-

nizing L(A

0

) \ L(A

00

). We have that L(A) 6= ; if and only if S is satis�able.

Let t 2 T

kn

�

. Then t 2 L(A)

i� t = u

1

�
 : : :
u

kn

� for some grounding �-substitution � (t 2 L(A

00

)), and

U [p

1

 w

1

; : : : ; p

k

 w

k

℄ 2 L(

N

n

i=1

A

i

), where w

i

=

N

i:n

j=(i�1)n+1

u

j

�

(t 2 L(A

00

)),

i� s

?

1


 t

?

1


 : : :
 s

?

n


 t

?

n

[p

1

 w

1

; : : : ; p

k

 w

k

℄ 2 L(

N

n

i=1

A

i

),

i� s

1

� 
 t

1

� 
 : : : 
 s

n

� 
 t

n

� 2 L(

N

n

i=1

A

i

), be
ause every variable of S

o

urs in one of the u

1

; : : : ; u

k

, by de�nition of pd ,

i� s

1

��!

�

R

1

t

1

�; : : : ; s

n

��!

�

R

n

t

n

�.

Lets now �nally evaluate the size of A, the 
omplexity of its 
onstru
tion

being linearly proportional to its size. For ea
h i � n, the size of A

i

is

polynomial in kR

i

k, thus










N

n

i=1

A

i










� M


n

where M = maxfkR

i

k : i � ng

and 
 is one 
onstant independent from the problem size Therefore, kA

0

k �

M

2
nk

, see Lemma 5. A

ording to Lemma 4,

kA

00

k � ku

1

k � : : :� ku

kn

k � �

n

i=1

ks

i

k � �

n

i=1

kt

i

k � N

2n

;

where N = maxfks

i

k; kt

i

k : i � ng. Hen
e,

kAk = kA

00

k � kA

0

k � N

2n

�M

2
nk

� kSk

2n(
k+1)

:

⊠

Theorem 2 SRR is EXPTIME-
omplete for balan
ed systems with ground

rules.

Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998℄, where

we have proved that one 
an redu
e the emptiness de
ision for interse
tion

of n tree automata to the satis�ability of a rigid rea
hability 
onstraint

�

R; f(x; : : : ; x); f(q

1

; : : : ; q

n

)

�

, where R is ground and q

1

, : : : ,q

n

are 
on-

stants. ⊠

The balan
ed 
ase 
an easily be used to show the de
idability of the following


ase: for ea
h variable x there exists an integer d

x

su
h that x o

urs only at

positions of length d

x

. For example with s

1

= f(x; g(y)), t

1

= f(f(y; y); x),

s

2

= g(x), and t

2

= g(f(a; y)), �rst \guess" a term a, g(x

1

), or f(x

1

; x

2

) for

x to obtain a system where all variables o

ur at the same depth.
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erning ftp or WWW a

ess, please 
onta
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