Cancellative Superposition
 Decides the Theory of Divisible
 Torsion-Free Abelian Groups

Uwe Waldmann

Author's Address

Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken
Germany
E-Mail: uwe@mpi-sb.mpg.de
Phone: +496819325227

Acknowledgements

Thanks to Patrick Maier and Jürgen Stuber for helpful comments on this paper.

Abstract

In divisible torsion-free abelian groups, the efficiency of the cancellative superposition calculus can be greatly increased by combining it with a variable elimination algorithm that transforms every clause into an equivalent clause without unshielded variables. We show that the resulting calculus is a decision procedure for the theory of divisible torsion-free abelian groups.

Keywords

Automated Theorem Proving, First-Order Logic, Superposition, Cancellative Abelian Monoids, Associativity, Commutativity, Variable Elimination, Term Rewriting, Divisible Torsion-free Abelian Groups, Decision Problem.

1 Introduction

Equational reasoning in the presence of the associativity and commutativity axioms is known to be difficult - theoretically $[4,8]$, as well as practically [1 , $9,10,11,12,13,17]$. Using AC-unification and extended clauses the worst inefficiencies of a naïve approach can be avoided, but still the extended clauses lead to numerous variable overlaps - one of the most prolific types of inferences in resolution or superposition style calculi. Besides, minimal complete set of AC-unifiers may have doubly exponential size. If the theory contains also the identity law

$$
\begin{equation*}
x+0 \approx x \tag{U}
\end{equation*}
$$

then AC-unification can be replaced by ACU-unification, but the minimal complete set is still simply exponential.

A substantial improvement can be observed when we consider structures that satisfy also the cancellation axiom

$$
\begin{equation*}
x+y \approx x+z \Rightarrow y \approx z, \tag{K}
\end{equation*}
$$

or the inverse axiom

$$
\begin{equation*}
x+(-x) \approx 0, \tag{Inv}
\end{equation*}
$$

(which implies (K)), that is, when we switch over from abelian semigroups or monoids to abelian groups (ACUInv) or at least cancellative abelian monoids (ACUK). The cancellative superposition calculus (Ganzinger and Waldmann $[6,14]$) is a refined superposition calculus for cancellative abelian monoids which requires neither explicit inferences with the theory clauses nor extended equations or clauses. Strengthened ordering constraints lead to a significant reduction of the number of variable overlaps, compared with traditional AC-calculi. Some variable overlaps remain necessary, however.

In (non-trivial) divisible torsion-free abelian groups, e.g., the rational numbers and rational vector spaces, the abelian group axioms ACUInv are extended by the torsion-freeness axioms

$$
\begin{equation*}
k x \approx k y \Rightarrow x \approx y \tag{T}
\end{equation*}
$$

(for all $k \in \mathbf{N}^{>0}$), the divisibility axioms ${ }^{1}$

$$
\begin{equation*}
k \operatorname{div}-b y_{k}(x) \approx x \tag{Div}
\end{equation*}
$$

(for all $k \in \mathbf{N}^{>0}$), and the non-triviality axiom ${ }^{2}$

$$
\begin{equation*}
a \not \approx 0 . \tag{Nt}
\end{equation*}
$$

[^0]Divisible torsion-free abelian groups (DTAGs) allow quantifier elimination: For every quantified formula over $0,+$, and \approx there exists a quantifierfree formula that is equivalent modulo the theory axioms. In particular, every closed formula over this vocabulary is provably true or false: the theory of DTAGs is complete and decidable. Superposition calculi, however, work on formulae that do not contain any existential quantifiers, but that may contain free function symbols - possibly introduced by skolemization, possibly given initially. In the presence of free function symbols, there is of course no way to eliminate all variables from a formula - not even all universally quantified ones - but we can at least give an effective method to eliminate all unshielded variables, that is, all variables not occurring below any free function symbol. This elimination algorithm has been integrated into the cancellative superposition calculus in (Waldmann [16]). The resulting calculus is refutationally complete with respect to the axioms of divisible torsion-free abelian groups and allows us to dispense with variable overlaps completely.

Starting with Joyner [7], several resolution or superposition calculi have been shown to be decision procedures for certain classes of formulae (e.g., Bachmair, Ganzinger, and Waldmann [3], Fermüller et al. [5]). As the theory of DTAGs is decidable, it is now a natural question to ask whether the combination of cancellative superposition and variable elimination for unshielded universally quantified variables is powerful enough to be usable as a decision procedure for the theory of DTAGs. We show in this paper that this is indeed the case: The combined calculus is refutationally complete in the presence of arbitrary free function symbols; and it is a decision procedure, if all free function are the result of skolemization.

2 Preliminaries

We will first give a short overview over the cancellative superposition calculus and its specialization for DTAGs. The reader is referred to (Waldmann $[14,16])$ for more technical details.

Throughout this paper we assume that our signature ${ }^{3}$ contains a binary function symbol + and a constant 0 . If t is a term and $n \in \mathbf{N}$, then $n t$ is an abbreviation for the n-fold sum $t+\cdots+t$; in particular, $0 t=0$ and $1 t=t$.

A function symbol is called free, if it is different from 0 and + . A term is called atomic, if it is not a variable and its top symbol is different from + . We say that a term t occurs at the top of s, if there is a position $o \in \operatorname{pos}(s)$ such that $\left.s\right|_{o}=t$ and for every proper prefix o^{\prime} of $o, s\left(o^{\prime}\right)$ equals + ; the term t occurs in s below a free function symbol, if there is an $o \in \operatorname{pos}(s)$ such that

[^1]$\left.s\right|_{o}=t$ and $s\left(o^{\prime}\right)$ is a free function symbol for some proper prefix o^{\prime} of o. A variable x is called shielded in a clause C, if it occurs at least once below a free function symbol in C. Otherwise, x is called unshielded.

We say that an ACU-compatible ordering \succ has the multiset property, if whenever a ground atomic term u is greater than v_{i} for every i in a finite non-empty index set I, then $u \succ \sum_{i \in I} v_{i}$.

From now on we will work only with ACU-congruence classes, rather than with terms. So all terms, equations, substitutions, inference rules, etc., are to be taken modulo ACU, i.e., as representatives of their congruence classes. The symbol \succ will always denote an ACU-compatible ordering that has the multiset property and is total on ground ACU-congruence classes. ${ }^{4}$

Without loss of generality we assume that the equality symbol \approx is the only predicate of our language. Hence a literal is either an equation $t \approx t^{\prime}$ or a negated equation $t \not \approx t^{\prime}$. The symbol $\dot{\sim}$ denotes either \approx or $\not \approx$. A clause is a finite multiset of literals, usually written as a disjunction.

Let A be a ground literal $n u+\sum_{i \in I} s_{i} \dot{\approx} m u+\sum_{j \in J} t_{j}$, where u, s_{i}, and t_{j} are atomic terms, $n \geq m \geq 0, n \geq 1$, and $u \succ s_{i}$ and $u \succ t_{j}$ for all $i \in I$, $j \in J$. Then u is called the maximal atomic term of A, denoted by $\operatorname{mt}(A)$.

The ordering \succ_{L} on literals compares lexicographically first the maximal atomic terms of the literals, then the polarities (negative \succ positive), then the multisets of all non-zero terms occurring at the top of the literals, and finally the multisets consisting of the left and right hand sides of the literals. The ordering \succ_{C} on clauses is the multiset extension of the literal ordering \succ_{L}. Both \succ_{L} and \succ_{C} are noetherian and total on ground literals/clauses.

We denote the entailment relation modulo equality and ACUKT by \vDash acukt. In other words, $\left\{C_{1}, \ldots, C_{n}\right\} \models_{\text {ACUKT }} C_{0}$ if and only if ACUKT \cup $\left\{C_{1}, \ldots, C_{n}\right\} \models C_{0}$.

3 Cancellative Superposition

The cancellative superposition calculus (Waldmann [14]) is a refutationally complete variant of the standard superposition calculus (Bachmair and Ganzinger [2]) for sets of clauses that contain the axioms ACUK and (optionally) T. It requires neither extended clauses, nor explicit inferences with the axioms ACUKT, nor symmetrizations. Compared with standard superposition or AC superposition calculi, the ordering restrictions of its inference rules are strengthened: Inferences are not only limited to maximal sides of maximal literals, but also to maximal summands thereof. As shielded vari-

[^2]ables are non-maximal, this implies in particular that there are no overlaps with such variables.

The inference system \mathfrak{K} of the cancellative superposition calculus ${ }^{5}$ consists of the inference rules cancellation, equality resolution, standard superposition, cancellative superposition, abstraction, and cancellative equality factoring. Ground versions of these rules are given below.

The following conditions are common to all the inference rules: Every literal involved in some inference must be maximal in the respective premise (except for the last but one literal in cancellative equality factoring inferences). A positive literal involved in a superposition or abstraction inference must be strictly maximal in the respective clause. In all superposition and abstraction inferences, the left premise is smaller than the right premise. In standard superposition and abstraction inferences, if s is a proper sum, then t (or w, respectively) occurs in a maximal atomic subterm of s.

Cancellation
$\frac{C^{\prime} \vee m u+s \dot{\approx} m^{\prime} u+s^{\prime}}{C^{\prime} \vee\left(m-m^{\prime}\right) u+s \dot{\approx} s^{\prime}}$
if $m \geq m^{\prime} \geq 1$ and $u \succ s, u \succ s^{\prime}$.

Equality Resolution $\quad \frac{C^{\prime} \vee 0 \not \approx 0}{C^{\prime}}$

Standard Superposition $\frac{D^{\prime} \vee t \approx t^{\prime} \quad C^{\prime} \vee s[t] \dot{\approx} s^{\prime}}{D^{\prime} \vee C^{\prime} \vee s\left[t^{\prime}\right] \dot{\approx} s^{\prime}}$
if t occurs below a free function symbol in s, and $s[t] \succ s^{\prime}, t \succ t^{\prime}$.

Canc. Superposition $\frac{D^{\prime} \vee n u+t \approx t^{\prime} \quad C^{\prime} \vee m u+s \dot{\approx} s^{\prime}}{D^{\prime} \vee C^{\prime} \vee \psi s+\chi t^{\prime} \dot{\approx} \chi t+\psi s^{\prime}}$
if $m \geq 1, n \geq 1, \psi=n / \operatorname{gcd}(m, n), \chi=m / \operatorname{gcd}(m, n)$, and $u \succ s, u \succ s^{\prime}, u \succ t, u \succ t^{\prime}$.

Abstraction
$\frac{D^{\prime} \vee n u+t \approx t^{\prime} \quad C^{\prime} \vee s[w] \dot{\approx} s^{\prime}}{C^{\prime} \vee y \not \approx w \vee s[y] \dot{\approx} s^{\prime}}$
if $n \geq 1, w=m u+q$ occurs in s immediately below some free function symbol, $m \geq 1, n u+t$ is not a subterm of w, and $u \succ t, u \succ t^{\prime}, s[w] \succ s^{\prime}$.

[^3]Canc. Eq. Factoring $\frac{C^{\prime} \vee n u+t \approx n^{\prime} u+t^{\prime} \vee m u+s \approx s^{\prime}}{C^{\prime} \vee \psi t+\chi s^{\prime} \not \approx \chi s+\psi t^{\prime} \vee n u+t \approx n^{\prime} u+t^{\prime}}$

$$
\begin{aligned}
& \text { if } m \geq 1, n>n^{\prime} \geq 0, \nu=n-n^{\prime}, \psi=m / \operatorname{gcd}(m, \nu), \\
& \chi=\nu / \operatorname{gcd}(m, \nu), \text { and } u \succ s, u \succ s^{\prime}, u \succ t, u \succ t^{\prime} .
\end{aligned}
$$

The inference system \mathfrak{K} is sound with respect to ACUKT. In other words, for every inference with premises C_{1}, \ldots, C_{n} and conclusion C_{0}, we have $\left\{C_{1}, \ldots, C_{n}\right\} \models_{\text {аСUкт }} C_{0}$.

Lifting the inference rules to non-ground clauses is relatively straightforward as long as we restrict to clauses without unshielded variables. For the inference rules equality resolution and standard superposition, we proceed as in the standard superposition calculus (Bachmair and Ganzinger [2]). For the inference rules cancellation, cancellative superposition, and cancellative equality factoring, we have to take into account that, in a clause $C=C^{\prime} \vee A$, the maximal literal A need no longer have the form $m u+s \dot{\sim} s^{\prime}$, where u is the unique maximal atomic term. Rather, a non-ground literal such as $f(x)+2 f(y)+b \not \approx c$ may contain several (distinct but ACU-unifiable) maximal atomic terms u_{k} with multiplicities m_{k}, where k ranges over some finite non-empty index set K. We obtain thus $A=\sum_{k \in K} m_{k} u_{k}+s \dot{\approx} s^{\prime}$, where $\sum_{k \in K} m_{k}$ corresponds to m in the ground literal above. As in the standard superposition rule, the substitution σ that unifies all u_{k} (and the corresponding terms v_{l} from the other premise) is applied to the conclusion. For instance, the cancellative superposition rule has now the following form:

Cancellative Superposition

$$
\frac{D^{\prime} \vee A_{2} C^{\prime} \vee A_{1}}{\left(D^{\prime} \vee C^{\prime} \vee A_{0}\right) \sigma}
$$

if the following conditions are satisfied:

- $A_{1}=\sum_{k \in K} m_{k} u_{k}+s \dot{\approx} s^{\prime}$.
- $A_{2}=\sum_{l \in L} n_{l} v_{l}+t \approx t^{\prime}$.
- $m=\sum_{k \in K} m_{k} \geq 1, n=\sum_{l \in L} n_{l} \geq 1$.
- $\psi=n / \operatorname{gcd}(m, n), \chi=m / \operatorname{gcd}(m, n)$.
- u is one of the u_{k} or $v_{l}(k \in K, l \in L)$.
- σ is a most general ACU-unifier of all u_{k} and $v_{l}(k \in K, l \in L)$.
- $u \npreceq s, u \npreceq s^{\prime}, u \npreceq t, u \npreceq t^{\prime}$.
$-A_{0}=\psi s+\chi t^{\prime} \dot{\approx} \chi t+\psi s^{\prime}$.
The lifted versions of the rules cancellation and cancellative equality factoring are obtained analogously. The only inference rule for which lifting is
not so straightforward is the abstraction rule. Here we have to take into account that the term to be abstracted out may be a sum containing variables at the top [14].

In the presence of unshielded variables, it is still possible to devise (more complicated) lifted inference rules that produce only finitely many conclusions for a given tuple of premises. We do not repeat these rules here, as the additional theory axioms DivInvNt make it possible to eliminate unshielded variables completely. The elimination of unshielded variables happens in two stages. First we show that every clause is logically equivalent to a clause without unshielded variables. Then this elimination algorithm has to be integrated into the cancellative superposition calculus. Our main tool for the second step is the concept of redundancy.

Let $C_{0}, C_{1}, \ldots, C_{k}$ be clauses and let θ be a substitution such that $C_{i} \theta$ is ground for all $i \in\{1, \ldots, k\}$. If there are inferences

$$
\frac{C_{k} \ldots C_{1}}{C_{0}}
$$

and

$$
\frac{C_{k} \theta \ldots C_{1} \theta}{C_{0} \theta}
$$

then the latter is called a ground instance of the former.
Let N be a set of clauses, let \bar{N} be the set of ground instances of clauses in N. An inference is called ACUKT-redundant with respect to N if for each of its ground instances with conclusion $C_{0} \theta$ and maximal premise $C \theta$ we have $\left\{D \in \bar{N} \mid D \prec_{\mathrm{C}} C \theta\right\} \not \models_{\text {ACUKT }} C_{0} \theta .{ }^{6}$ A clause C is called ACUKTredundant with respect to N, if for every ground instance $C \theta,\{D \in \bar{N} \mid$ $\left.D \prec_{\mathrm{C}} C \theta\right\} \vDash=_{\text {ACUKT }} C \theta$.

A set N of clauses is called saturated with respect to an inference system and a redundancy criterion, if every inference from clauses in N is redundant with respect to N.

THEOREM 3.1 The inference system \mathfrak{K} is refutationally complete with respect to ACUKT, that is, a \mathfrak{K}-saturated set of clauses is unsatisfiable modulo ACUKT if and only if it contains the empty clause (Waldmann [14]).

One application of the redundancy concept is simplification: A prover produces a saturated set of clauses by computing inferences according to some fair strategy and adding the conclusions of non-redundant inferences to the current set of clauses. At any time of the saturation process, the prover is permitted to replace a clause by an equivalent set of new clauses, provided the new clauses make the simplified clause redundant. As we will see later, in the calculus for DTAGs, redundancy is already essential to prove the refutational completeness of the inference rules themselves.

[^4]
4 Variable Elimination: The Logical Side

It is well-known that the theory of DTAGs allows quantifier elimination: For every quantified formula over $0,+$, and \approx there exists an equivalent quantifier-free formula. In the presence of free function symbols, there is of course no way to eliminate all variables from a clause, but we can at least give an effective method to eliminate all unshielded variables.

Let x be a variable. We define a binary relation \rightarrow_{x} over clauses by
CancelVar $\quad C^{\prime} \vee m x+s \dot{\approx} m^{\prime} x+s^{\prime} \quad \rightarrow_{x} C^{\prime} \vee\left(m-m^{\prime}\right) x+s \dot{\sim} s^{\prime}$ if $m \geq m^{\prime} \geq 1$.

ElimNeg $\quad C^{\prime} \vee m x+s \not \approx s^{\prime} \quad \rightarrow_{x} C^{\prime}$ if $m \geq 1$ and x does not occur in $C^{\prime}, s, s^{\prime}$.

ElimPos $\quad C^{\prime} \vee m_{1} x+s_{1} \approx s_{1}^{\prime} \vee \ldots \vee m_{k} x+s_{k} \approx s_{k}^{\prime} \rightarrow_{x} C^{\prime}$ if $m_{i} \geq 1$ and x does not occur in $C^{\prime}, s_{i}, s_{i}^{\prime}$, for $1 \leq i \leq k$.

Coalesce $\quad C^{\prime} \vee m x+s \not \approx s^{\prime} \vee n x+t \dot{\approx} t^{\prime}$ $\rightarrow_{x} C^{\prime} \vee m x+s \not \approx s^{\prime} \vee \psi t+\chi s^{\prime} \dot{\approx} \psi t^{\prime}+\chi s$ if $m \geq 1, n \geq 1, \psi=m / \operatorname{gcd}(m, n), \chi=n / \operatorname{gcd}(m, n)$, and x does not occur at the top of $s, s^{\prime}, t, t^{\prime}$.

The relation \rightarrow_{x} is noetherian. Let the binary relation $\rightarrow_{\text {elim }}$ over clauses be defined in such a way that $C_{0} \rightarrow_{\text {elim }} C_{1}$ if and only if C_{0} contains an unshielded variable x and C_{1} is a normal form of C_{0} with respect to \rightarrow_{x}. Then $\rightarrow_{\text {elim }}$ is again noetherian. For any clause C, let $\operatorname{elim}(C)$ denote some (arbitrary but fixed) normal form of C with respect to the relation $\rightarrow_{\text {elim }}$.

Lemma 4.1 For every clause C, $\operatorname{elim}(C)$ contains no unshielded variables.
Lemma 4.2 For every clause $C,\{C\} \cup$ DivInvNt \vDash acukt $\operatorname{elim}(C)$ and $\{\operatorname{elim}(C)\} \neq_{\text {acukt }} C$. For every ground instance $C \theta,\{\operatorname{elim}(C) \theta\} \neq$ aCuKt $C \theta$.

Using the technique sketched so far, every clause C_{0} can be transformed into a clause elim $\left(C_{0}\right)$ that does not contain unshielded variables, follows from C_{0} and the divisible torsion-free abelian group axioms, and implies C_{0} modulo ACUKT. Obviously, we can perform this transformation for all initially given clauses before we start the saturation process. However, the set of clauses without unshielded variables is not closed under the inference system \mathfrak{K}, i.e., inferences from clauses without unshielded variables may produce clauses with unshielded variables. To eliminate these clauses during the saturation process, it is not sufficient that they follow logically from some other clauses: redundancy requires that they follow from some sufficiently
small clauses. Unfortunately, under certain circumstances the transformed clause elim $\left(C_{0}\right)$ may not be small enough. Hence, to integrate the variable elimination algorithm into the cancellative superposition calculus, it has to be supplemented by a case analysis technique.

5 Variable Elimination: The Operational Side

Let ι be an inference. We call the unifying substitution σ that is computed during ι and applied to the conclusion the pivotal substitution of ι. (For abstraction inferences and all ground inferences, the pivotal substitution is the identity mapping.) If A is the last literal of the last premise of ι, we call $A \sigma$ the pivotal literal of ι. Finally, if u_{0} is the atomic term that is cancelled out in ι, or in which some subterm is replaced or abstracted out, ${ }^{7}$ then we call $u_{0} \sigma$ the pivotal term of ι. Pivotal terms have two important properties: First, whenever an inference ι from clauses without unshielded variables produces a conclusion with unshielded variables, then all these unshielded variables occur in the pivotal term of ι. Second, no atomic term in the conclusion of ι can be larger than the pivotal term of ι.

A clause C is called fully abstracted, if no non-variable term occurs below a free function symbol in C. Every clause C can be transformed into an equivalent fully abstracted clause abs (C) by iterated rewriting

$$
C[f(\ldots, t, \ldots)] \rightarrow x \not \approx t \vee C[f(\ldots, x, \ldots)],
$$

where x is a new variable and t is a non-variable term occurring immediately below the free function symbol f in C. It should be noted that the variable elimination algorithm preserves full abstraction, so that for every clause C, $\operatorname{elim}(\operatorname{abs}(C))$ is a logically equivalent clause that is fully abstracted and does not contain unshielded variables.

In the sequel we assume that every clause C in the input of the inference system is replaced by elim $(\operatorname{abs}(C))$ before we start the saturation process. The inference system $\mathfrak{D}^{a b s}$ that we will describe now preserves both properties: the set of all fully abstracted clauses without unshielded variables is closed under $\mathfrak{D}^{a b s}$. The system $\mathfrak{D}^{a b s}$ is given by two meta-inference rules:

Eliminating Inference

$$
\frac{C_{n} \ldots C_{1}}{\operatorname{elim}\left(C_{0}\right)}
$$

if the following condition is satisfied:

[^5]$$
-\frac{C_{n} \ldots C_{1}}{C_{0}} \text { inference. }{ }^{8} \text { is a non-abstraction and non-standard superposition } \mathfrak{K} \text { - }
$$

Instantiating Inference

$$
\frac{C_{n} \ldots C_{1}}{C_{0} \tau}
$$

if the following conditions are satisfied:
$-\frac{C_{n} \ldots C_{1}}{C_{0}}$ is a non-abstraction and non-standard superposition \mathfrak{K} inference with pivotal literal A and pivotal term u.

- The multiset difference $\operatorname{elim}\left(C_{0}\right) \backslash C_{0}$ contains a literal A_{1} with the same polarity as A.
- An atomic term u_{1} occurs at the top of A_{1}.
- τ is contained in a minimal complete set of ACU-unifiers of u and u_{1}.

The redundancy of $\mathfrak{D}^{a b s}$-inferences is defined in a slightly complicated way. Essentially, a $\mathfrak{D}^{a b s}$-inference is redundant if sufficiently many ground instances of the \mathfrak{K}-inference on which it is based are redundant. For our purposes, it is sufficient to know that any inference is redundant with respect to a set N of clauses as soon as its conclusion (or a simplified version thereof) is present in N.

ThEOREM 5.1 If a set of fully abstracted clauses is saturated with respect to $\mathfrak{D}^{\text {abs }}$ and none of the clauses contains unshielded variables, then it is also saturated with respect to \mathfrak{K}, and it is unsatisfiable modulo ACUKT \cup DivInvNt if and only if it contains the empty clause (Waldmann [14, 16]).

If all clauses are fully abstracted, then the terms that have to be compared during the saturation have the property that they do not contain the operator + . In this situation, the requirement that the ordering \succ has to be ACU-compatible becomes void, and we may use an arbitrary reduction ordering over terms not containing + that is total on ground terms and for which 0 is minimal. As every ordering of this kind can be extended to an ordering that is ACU-compatible and has the multiset property (Waldmann [15]), the completeness proof is still justified.

[^6]
6 Deciding the Theory of DTAGs

A refutationally complete calculus derives a contradiction (and terminates) whenever the set of input formulae is inconsistent. To show that a refutationally complete calculus is actually a decision procedure, one has to prove that it terminates even on consistent inputs. Following this general scheme, we will now demonstrate that the calculus $\mathfrak{D}^{a b s}$ is a decision procedure for the theory of divisible torsion-free abelian groups.

Let us denote by \mathcal{D} the class of all closed first-order formulae with arbitrary quantifiers and logical connectives and containing not more than the function symbols + (binary), 0 (constant), - (unary), div-by (unary) for $k \in \mathbf{N}^{>0}$, and the binary predicate symbol \approx. Given a formula $F \in \mathcal{D}$, our task is to decide whether F is equivalent to true or to false with respect to the theory of divisible torsion-free abelian groups. As the theory of DTAGs is complete, every formula in \mathcal{D} is equivalent either to true or to false, hence F is equivalent to true if and only if it is satisfiable.

We can first of all eliminate the symbols - and div-by from F by recursively replacing any atom $s[-t] \approx s^{\prime}$ by $\forall x\left(\neg x+t \approx 0 \vee s[x] \approx s^{\prime}\right)$ and any atom $s\left[\operatorname{div}-b y_{k}(t)\right] \approx s^{\prime}$ by $\forall x\left(\neg k x \approx t \vee s[x] \approx s^{\prime}\right)$, where x is a new variable. The resulting formula F_{1} is then converted into a formula F_{2} in prenex normal form. By skolemization, F_{2} can be further translated into a formula F_{3} without existentially quantified variables, such that F_{3} is satisfiable if and only if F is satisfiable. Skolemization replaces the existentially quantified variables of F_{2} by terms $f_{k}\left(x_{1}, \ldots, x_{i}\right)$, where the x_{j} are universally quantified variables and f_{k} is a new free function symbol. Finally, the formula F_{3} can be transformed into conjunctive normal form, which we represent as a finite set of clauses. This set of clauses is a subset of the class \mathcal{D}_{c} defined as follows: A clause C is contained in \mathcal{D}_{c} if and only if there exists a finite sequence of distinct variables x_{1}, \ldots, x_{n} such that, for every literal $s \dot{\approx} s^{\prime}$ in C, both s and s^{\prime} are sums $\sum n_{k} t_{k}$, and each t_{k} is either a variable x_{i} or an atomic term $f\left(x_{1}, \ldots, x_{i}\right)$ for some $i \leq n$. The class of all clauses C in \mathcal{D}_{c} without unshielded variables is denoted by $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$. We claim that there is a strategy for $\mathfrak{D}^{a b s}$-superposition that is guaranteed to terminate on every finite subset of $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$. Termination implies that with this strategy $\mathfrak{D}^{a b s}$-superposition becomes a decision procedure for the satisfiability of finite subsets of $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$ (and hence of formulae in \mathcal{D}) with respect to ACUKT \cup DivInvNt.

In the rest of this paper, we assume \succ to be a lexicographic path ordering based on a precedence relation that respects the arity of function symbols (greater arity implying higher precedence). Apart from satisfying this restriction, the precedence can be arbitrary (but has to be total). Without loss of generality, we assume that the function symbols occurring in the input clauses are $f_{m} \succ \cdots \succ f_{1}$. We note that $f_{j}\left(x_{1}, \ldots, x_{l}\right) \succ f_{k}\left(x_{1}, \ldots, x_{i}\right)$ if and only if $f_{j} \succ f_{k}$ if and only if $j>k$.

In the one-sorted case, the inference system $\mathfrak{D}^{a b s}$ consists of the eliminating and the instantiating variants of the rules cancellation, equality resolution, cancellative superposition, and cancellative equality factoring. We will show that for the special class of clauses $\mathcal{D}_{\mathrm{C}}^{\text {elim }}$, instantiating inferences are not needed:

Lemma 6.1 Every $\mathfrak{D}^{a b s}$-inference from clauses in $\mathcal{D}_{\mathrm{c}}^{\mathrm{elim}}$ is an eliminating inference.

Proof. Assume that there is an instantiating $\mathfrak{D}^{a b s}$-inference

$$
\frac{C_{n} \ldots C_{1}}{C_{0} \tau}
$$

with premises in $\mathcal{D}_{\mathrm{c}}^{\mathrm{elim}}$. Then

$$
\begin{array}{ccc}
C_{n} \ldots & C_{1} \\
\hline C_{0}
\end{array}
$$

is a \mathfrak{K}-inference with pivotal literal A, pivotal term u, and pivotal substitution σ. Furthermore, the multiset difference $\operatorname{elim}\left(C_{0}\right) \backslash C_{0}$ contains a literal A_{1} with the same polarity as A, and $u \tau=u_{1} \tau$ for some atomic term u_{1} occurring at the top of A_{1}. As $\operatorname{elim}\left(C_{0}\right) \neq C_{0}$, the clause C_{0} must contain some unshielded variable x, and since the premises have no unshielded variables, x must occur in the pivotal term u. Now, as the premises C_{i} are clauses in $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$, there exists a fixed list of variables x_{1}, x_{2}, \ldots such that all atomic terms in $C_{i} \sigma$, and thus in C_{0} and $\operatorname{elim}\left(C_{0}\right)$, have the form $f_{j}\left(x_{1}, \ldots, x_{l}\right)$ for some j and l. Consequently, any two atomic terms in $C_{i} \sigma, C_{0}$, and $\operatorname{elim}\left(C_{0}\right)$ are either equal or not unifiable. By assumption, u and u_{1} have the unifier τ, hence $u=u_{1}$. So x occurs in u_{1}, and thus in an atomic term in $\operatorname{elim}\left(C_{0}\right)$, and thus in an atomic term in C_{0}. Hence x is shielded in C_{0}, which refutes our assumption.

For a clause C, let $\operatorname{sfact}(C)$ be the clause obtained from C by syntactic factoring, that is, by replacing every repeated literal $A \vee \ldots \vee A$ by A. Let $\operatorname{scanc}(C)$ be the clause obtained from C by syntactic cancellation, that is, by replacing every literal $s+t \dot{\approx} s^{\prime}+t$ with non-zero t by $s \dot{\approx} s^{\prime}$.

Unlike syntactic factoring, syntactic cancellation may introduce unshielded variables (if the term that was cancelled out was the last term shielding some variable). During elimination of these unshielded variables, the Coalesce rule may again produce syntactically equal terms on both sides of a literal. Let the binary relation $\rightarrow_{\text {sce }}$ over clauses be defined in such a way that $C_{0} \rightarrow_{\text {sce }} C_{1}$ if and only if $C_{1}=\operatorname{elim}(\operatorname{scanc}(C))$ and $C_{1} \neq C_{0}$. It is easy to show that $\rightarrow_{\text {sce }}$ terminates. Let us denote the normal form of a clause C with respect to $\rightarrow_{\text {sce }}$ by $\operatorname{scanc}^{*}(C)$, and let $\operatorname{simp}(C)$ be the clause sfact(scanc* $(C))$.

Lemma 6.2 For every clause C in $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$, replacing C by $\operatorname{simp}(C)$ is a simplification. ${ }^{9}$

In descriptions of resolution or paramodulation style inference systems, one assumes conventionally that all clauses are variable disjoint, so that overlapping terms or literals can always be unified in the inference rules. To simplify the termination proof, we will exploit the fact that the particular structure of $\mathcal{D}_{\mathrm{c}}^{\mathrm{elim}}$ allows us to use quite the opposite approach: Consider a $\mathfrak{D}^{a b s}$-inference from two clauses C_{2} and C_{1} in $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$. During this inference, the maximal atomic term of C_{2}, say $f_{k}\left(x_{1}^{\prime \prime}, \ldots, x_{i}^{\prime \prime}\right)$, and the maximal atomic term of C_{1}, say $f_{k}\left(x_{1}^{\prime}, \ldots, x_{i}^{\prime}\right)$, are overlapped. By definition of the ordering and of the class $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$, the set of variables of C_{1} is exactly $\left\{x_{1}^{\prime}, \ldots, x_{i}^{\prime}\right\}$, and all atomic terms in C_{1} have the form $f_{j}\left(x_{1}^{\prime}, \ldots, x_{l}^{\prime}\right)$ with $j \leq k$ and $l \leq i$ (and analogously for C_{2}). Therefore, essentially the same inference is also possible, if we assume that all clauses share the same variables x_{1}, x_{2}, \ldots, and all nonvariable terms occurring in the clause set have the form $f_{j}\left(x_{1}, \ldots, x_{l}\right)$ for some j and l. The pivotal substitution can then always be assumed to be the identity mapping, and it is trivial to check that the conclusion of any $\mathfrak{D}^{a b s}$-inference uses again the variables x_{1}, x_{2}, \ldots in the required way.

To saturate a given finite subset of the class $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$, we use the following strategy:

Let N be the set of all input clauses.
Let $f_{m} \succ \cdots \succ f_{1}$ be the function symbols occurring in N.
Let $N_{m+1}^{*}=\{\operatorname{sfact}(C) \mid C \in N\}$.
For $k=m, m-1, \ldots, 1$:
If N_{k+1}^{*} is defined, let N_{k}^{0} be the set obtained from N_{k+1}^{*} by replacing every clause C whose maximal function symbol is f_{k} by $\operatorname{simp}(C)$.
For $r=0,1, \ldots$:
If N_{k}^{r} is defined and if there are non-redundant cancellative superposition or cancellative equality factoring $\mathfrak{D}^{a b s}$-inferences from clauses in N_{k}^{r} with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$, pick one of them "don't care" non-deterministically, let C be its conclusion, and let $N_{k}^{r+1}=N_{k}^{r} \cup\{\operatorname{sfact}(C)\} ;$
if N_{k}^{r} is defined and if there is no such inference, let $N_{k}^{*}=N_{k}^{r}$.
If N_{1}^{*} is defined, let N^{*} be the union of N_{1}^{*} and the set of all conclusions of all non-redundant equality resolution $\mathfrak{D}^{a b s}$-inferences from clauses in N_{1}^{*}.

Lemma 6.3 Let $k \in\{1, \ldots, m\}$. If N_{k+1}^{*} is defined, then there exists an $r \in \mathbf{N}$ such that there is no non-redundant cancellative superposition or cancellative equality factoring $\mathfrak{D}^{a b s}$-inference from clauses in N_{k}^{r} with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$.

[^7]Proof. Every $\mathfrak{D}^{a b s}$-inference is redundant with respect to N_{k}^{r} if its conclusion C or an equivalent smaller clause, such as $\operatorname{sfact}(C)$, is contained in N_{k}^{r}. All inclusions in the sequence $N_{k}^{0} \subseteq N_{k}^{1} \subseteq \cdots \subseteq N_{k}^{r} \subseteq \ldots$ must therefore be strict. A clause can participate in an inference with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ only if it contains f_{k} and if it does not contain any f_{j} with $j>k$, or in other words, if $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ is its maximal atomic term. The set of all such clauses in N_{k}^{0} is obviously finite. We will show below that the number of such clauses in $\bigcup_{r} N_{k}^{r}$ is finitely bounded. From these finitely many clauses only finitely many conclusions of inferences can be derived, hence $\bigcup_{r} N_{k}^{r}$ must be finite. As the inclusions in the sequence are strict, the sequence is finite.

It remains to be proved that the number of clauses with maximal atomic term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ in $\bigcup_{r} N_{k}^{r}$ is finitely bounded. Let M be the subset of N_{k}^{0} containing all clauses with maximal atomic term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$. Let L be the set of all literals of clauses in M, let L_{1} be the set of all literals in L in which f_{k} occurs, and let $L_{0}=L \backslash L_{1}$. Note that there is no literal in L_{1} in which f_{k} occurs on both sides. Let L_{0}^{\prime} be the set of all literals A, such that there is a cancellative superposition \mathfrak{K}-inference

with literals A_{1} and A_{2} from L_{1}. Let $L_{0}^{\prime \prime}$ be the set of all literals A, such that there is a cancellative equality factoring \mathfrak{K}-inference

$$
\frac{A_{2} \vee A_{1}}{A \vee A_{2}}
$$

with literals A_{1} and A_{2} from L_{1}. Note that f_{k} does not occur in literals from $L_{0}^{\prime} \cup L_{0}^{\prime \prime}$. Let M^{*} be the set of all clauses consisting of literals in $L_{0} \cup L_{0}^{\prime} \cup L_{0}^{\prime \prime} \cup L_{1}$ (without duplicated literals).

Consider an arbitrary eliminating cancellative superposition or cancellative equality factoring $\mathfrak{D}^{a b s}$-inference

$$
\frac{C_{n} \ldots C_{1}}{\operatorname{elim}\left(C_{0}\right)}
$$

from premises in M^{*} with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ and conclusion $D=$ elim $\left(C_{0}\right)$. If $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ occurs in $\operatorname{sfact}(D)$, then it occurs also in C_{0}. In this case, all variables in C_{0} are shielded, thus $\operatorname{elim}\left(C_{0}\right)=C_{0}$. Since

$$
\begin{array}{lll}
C_{n} \ldots C_{1} \\
\hline C_{0}
\end{array}
$$

is a cancellative superposition or cancellative equality factoring \mathfrak{K}-inference, $\operatorname{sfact}(D)=\operatorname{sfact}\left(C_{0}\right)$ is again contained in M^{*}. As $M \subseteq M^{*}$, we can conclude that all clauses in $\bigcup_{r} N_{k}^{r}$ with maximal atomic term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ are contained in M^{*}. Since M^{*} is finite, this completes the proof.

Corollary $6.4 N_{k}^{*}$ and N^{*} are defined for every $k \in\{1, \ldots, m+1\}$.
Corollary $6.5 N \vdash N_{m+1}^{*} \vdash N_{m}^{0} \vdash N_{m}^{1} \vdash \ldots \vdash N_{m}^{*} \vdash \ldots \vdash N_{1}^{0} \vdash N_{1}^{1} \vdash \ldots \vdash$ $N_{1}^{*} \vdash N^{*}$ is a finite theorem proving derivation; N and N^{*} are equivalent modulo ACUKT \cup DivInvNt.

Lemma 6.6 Let $1 \leq k \leq j \leq m$. Then all $\mathfrak{D}^{\text {abs }}$-inferences with pivotal term $f_{j}\left(x_{1}, \ldots, x_{l}\right)$ from clauses in N_{k}^{*} are redundant with respect to N_{k}^{*}.
Proof. By induction, we may assume that all $\mathfrak{D}^{a b s}$-inferences with pivotal term $f_{p}\left(x_{1}, \ldots, x_{l}\right), p>k$ from clauses in N_{k+1}^{*} are redundant with respect to N_{k+1}^{*}.

The clauses in $N_{k}^{*} \backslash N_{k+1}^{*}$ contain only function symbols f_{p} with $p \leq$ k. Therefore, every $\mathfrak{D}^{a b s}$-inference from clauses in N_{k}^{*} with pivotal term $f_{p}\left(x_{1}, \ldots, x_{i}\right)$ and $p>k$ is an inference from clauses in N_{k+1}^{*}, hence it is redundant with respect to N_{k+1}^{*}. As all clauses in $N_{k+1}^{*} \backslash N_{k}^{*}$ are redundant with respect to N_{k+1}^{*}, every inference that is redundant with respect to N_{k+1}^{*} is also redundant with respect to N_{k}^{*}. Therefore it suffices to show that all $\mathfrak{D}^{a b s}$-inferences with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ from clauses in N_{k}^{*} are redundant with respect to N_{k}^{*}.

It is easy to check that literals with f_{k} occurring on both sides cannot occur at all in clauses in $N_{k}^{*} \backslash N_{k}^{0}$, and that they can occur in a clause C in N_{k}^{0} only if some f_{p} with $p>k$ occurs in C. Hence there are no cancellation inferences with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ from clauses in $N_{k}^{*}=N_{k}^{0} \cup\left(N_{k}^{*} \backslash N_{k}^{0}\right)$. This means that all inferences from clauses in N_{k}^{*} with pivotal term $f_{k}\left(x_{1}, \ldots, x_{i}\right)$ are either cancellative superposition or cancellative equality factoring inferences, hence they are redundant with respect to N_{k}^{*} by construction of N_{k}^{*}.
THEOREM 6.7 All inferences from clauses in N^{*} are redundant with respect to N^{*}.

Proof. By the previous lemma, all $\mathfrak{D}^{a b s}$-inferences with pivotal terms $f_{j}\left(x_{1}, \ldots, x_{l}\right)$ from clauses in N_{1}^{*} are redundant with respect to N_{1}^{*} (and hence with respect to N^{*}). Furthermore, by construction of N^{*}, all equality resolution inferences from clauses in N_{1}^{*} are redundant with respect to N^{*}. Since equality resolution applies only to clauses with maximal literals $0 \not \approx 0$ and since no clause in N_{1}^{*} contains repeated literals, no inferences are possible from clauses in $N^{*} \backslash N_{1}^{*}$.

As N^{*} is saturated, it contains the empty clause if and only if it is unsatisfiable modulo ACUKT \cup DivInvNt. Since N and N^{*} are equivalent modulo the theory axioms, the main theorem of the this paper is proved:

THEOREM 6.8 A finite set $N \subseteq \mathcal{D}_{\mathrm{c}}^{\text {elim }}$ is unsatisfiable modulo ACUKT \cup DivInvNt if and only if the saturation strategy derives the empty clause from N.

7 Conclusions

In previous work, we have demonstrated that the cancellative superposition calculus \mathfrak{K} can be augmented by a variable elimination algorithm for DTAGs. The resulting calculus $\mathfrak{D}^{a b s}$ is refutationally complete with respect to the axioms of divisible torsion-free abelian groups and allows us to dispense with variable overlaps altogether. As variable overlaps are one of the most prolific types of inferences in resolution or superposition style calculi, integration of the variable elimination algorithm leads to a dramatically reduced search space compared with the usual cancellative superposition calculus or, even worse, AC or ACU superposition calculi.

Since 1976 several resolution or superposition calculi have been shown to be decision procedures for certain classes of formulae (e.g., $[3,5,7]$). If the calculi in question are known to be refutationally complete, then showing that they are actually decision procedures amounts to proving that they terminate even on consistent inputs. In the present paper we have demonstrated that the calculus $\mathfrak{D}^{a b s}$ is powerful enough to solve the decision problem for divisible torsion-free abelian groups. Following the general scheme described above, the termination proof is peculiar in two respects: First, we require that the set of clauses is saturated in a stratified way. Termination follows from the two facts that the number of strata is finite and that the number of new clauses derived during each stratum is finite. Second, the particular structure of the literals and clauses makes it possible to assume that all clauses share the same variables and that the pivotal substitution is always the identity mapping - in some sense, variables are treated as if they were constants.

What remains open at present is the precise computational complexity of our decision procedure. The time bound that can be derived in a straightforward manner from the saturation strategy is non-elementary. Possibly significantly better bounds can be obtained for subclasses of $\mathcal{D}_{\mathrm{c}}^{\text {elim }}$, but this is still a matter of further research.

References

[1] Leo Bachmair and Harald Ganzinger. Associative-commutative superposition. In Nachum Dershowitz and Naomi Lindenstrauss, editors, Conditional and Typed Rewriting Systems, 4th International Workshop, CTRS-94, LNCS 968, pages 1-14, Jerusalem, Israel, July 13-15, 1994. Springer-Verlag.
[2] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation, 4(3):217-247, 1994.
[3] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplification as a decision procedure for the monadic class with equality. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Computational Logic and Proof Theory, Third Kurt Gödel Colloquium, LNCS 713, pages 83-96, Brno, Czech Republic, August 24-27, 1993. Springer-Verlag.
[4] E[dward] Cardoza, R[ichard] Lipton, and A[lbert] R. Meyer. Exponential space complete problems for petri nets and commutative semigroups: Preliminary report. In Eighth Annual ACM Symposium on Theory of Computing, pages 50-54, Hershey, PA, USA, May 3-5, 1976.
[5] C[hristian] Fermüller, A[lexander] Leitsch, Tanel Tammet, and Nail Zamov. Resolution Methods for the Decision Problem. LNAI 679. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[6] Harald Ganzinger and Uwe Waldmann. Theorem proving in cancellative abelian monoids (extended abstract). In Michael A. McRobbie and John K. Slaney, editors, Automated Deduction - CADE-13, 13th International Conference on Automated Deduction, LNAI 1104, pages 388-402, New Brunswick, NJ, USA, July 30-August 3, 1996. SpringerVerlag.
[7] William H. Joyner Jr. Resolution strategies as decision procedures. Journal of the ACM, 23(3):398-417, July 1976.
[8] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Mathematics, 46(3):305-329, December 1982.
[9] Etienne Paul. A general refutational completeness result for an inference procedure based on associative-commutative unification. Journal of Symbolic Computation, 14(6):577-618, December 1992.
[10] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational theories. Journal of the ACM, 28(2):233-264, April 1981.
[11] Gordon D. Plotkin. Building-in equational theories. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence 7, chapter 4, pages 73-90. American Elsevier, New York, NY, USA, 1972.
[12] Michaël Rusinowitch and Laurent Vigneron. Automated deduction with associative-commutative operators. Applicable Algebra in Engineering, Communication and Computing, 6(1):23-56, January 1995.
[13] James R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and associativity. Journal of the ACM, 21(4):622642, October 1974.
[14] Uwe Waldmann. Cancellative Abelian Monoids in Refutational Theorem Proving. Dissertation, Universität des Saarlandes, Saarbrücken, Germany, 1997. http://www.mpi-sb.mpg.de/~uwe/ paper/PhD.ps.gz.
[15] Uwe Waldmann. Extending reduction orderings to ACU-compatible reduction orderings. Information Processing Letters, 67(1):43-49, July 16, 1998.
[16] Uwe Waldmann. Superposition for divisible torsion-free abelian groups. In Claude Kirchner and Hélène Kirchner, editors, Automated Deduction - CADE-15, 15th International Conference on Automated Deduction, LNAI 1421, pages 144-159, Lindau, Germany, July 5-10, 1998. Springer-Verlag.
[17] Ulrich Wertz. First-order theorem proving modulo equations. Technical Report MPI-I-92-216, Max-Planck-Institut für Informatik, Saarbrücken, Germany, April 1992.

I N F O R M A T I K
Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg. de. If you have any questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Birgit Hofmann
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-1999-2-003	U. Waldmann	Cancellative Superposition Decides the Theory of Divisible Torsion-Free Abelian Groups
MPI-I-1999-2-001	W. Charatonik	Automata on DAG Representations of Finite Trees
MPI-I-98-2-018	F. Eisenbrand	A Note on the Membership Problem for the First
MPI-I-98-2-017	M. Tzakova, P. Blackburn	Elementary Closure of a Polyhedron
MPI-I-98-2-014	Y. Gurevich, M. Veanes	Hybridizing Concept Languages
MPI-I-98-2-013	H. Ganzinger, F. Jacquemard, M. Veanes	Partisan Corroboration, and Shifted Pairing Reachability
MPI-I-98-2-012	G. Delzanno, A. Podelski	Model Checking Infinite-state Systems in CLP
MPI-I-98-2-011	A. Degtyarev, A. Voronkov	Equality Reasoning in Sequent-Based Calculi
MPI-I-98-2-010	S. Ramangalahy	Strategies for Conformance Testing
MPI-I-98-2-009	S. Vorobyov	The Undecidability of the First-Order Theories of One
		Step Rewriting in Linear Canonical Systems

MPI-I-98-1-026	K. Jansen, L. Porkolab
MPI-I-98-1-025	K. Jansen, L. Porkolab
MPI-I-98-1-024	S. Burkhardt, A. Crauser, P. Ferragina, H. Lenhof, E. Rivals, M. Vingron
MPI-I-98-1-023	C. Burnikel
MPI-I-98-1-022	C. Burnikel, J. Ziegler
MPI-I-98-1-021	S. Albers, G. Schmidt
MPI-I-98-1-020	C. Rüb
MPI-I-98-1-019	
MPI-I-98-1-018	D. Dubhashi, D. Ranjan
MPI-I-98-1-017	A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, E. Ramos
MPI-I-98-1-016	P. Krysta, K. Loryś
MPI-I-98-1-015	M.R. Henzinger, S. Leonardi
MPI-I-98-1-014	U. Meyer, J.F. Sibeyn
MPI-I-98-1-013	G.W. Klau, P. Mutzel
MPI-I-98-1-012	S. Mahajan, E.A. Ramos, K.V. Subrahmanyam
MPI-I-98-1-011	G.N. Frederickson, R. Solis-Oba
MPI-I-98-1-010	R. Solis-Oba
MPI-I-98-1-009	D. Frigioni, A. Marchetti-Spaccamela, U. Nanni
MPI-I-98-1-008	M. Jünger, S. Leipert, P. Mutzel
MPI-I-98-1-007	A. Fabri, G. Giezeman, L. Kettner, S. Schirra, S. Schönherr
MPI-I-98-1-006	K. Jansen
MPI-I-98-1-005	K. Jansen
MPI-I-98-1-004	S. Schirra
MPI-I-98-1-003	S. Schirra
MPI-I-98-1-002	G.S. Brodal, M.C. Pinotti
MPI-I-98-1-001	T. Hagerup
MPI-I-97-2-012	L. Bachmair, H. Ganzinger, A. Voronkov
MPI-I-97-2-011	L. Bachmair, H. Ganzinger
MPI-I-97-2-010	S. Vorobyov, A. Voronkov
MPI-I-97-2-009	A. Bockmayr, F. Eisenbrand
MPI-I-97-2-008	A. Bockmayr, T. Kasper
MPI-I-97-2-007	P. Blackburn, M. Tzakova
MPI-I-97-2-006	S. Vorobyov

Improved Approximation Schemes for Scheduling Unrelated Parallel Machines

Linear-time Approximation Schemes for Scheduling Malleable Parallel Tasks
q-gram Based Database Searching Using a Suffix Array (QUASAR)
Rational Points on Circles
Fast Recursive Division
Scheduling with Unexpected Machine Breakdowns
On Wallace's Method for the Generation of Normal Variates
2nd Workshop on Algorithm Engineering WAE '98 Proceedings

On Positive Influence and Negative Dependence
Randomized External-Memory Algorithms for Some Geometric Problems

New Approximation Algorithms for the Achromatic Number
Scheduling Multicasts on Unit-Capacity Trees and Meshes
Time-Independent Gossiping on Full-Port Tori Quasi-Orthogonal Drawing of Planar Graphs

Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization
2-Approximation algorithm for finding a spanning tree with maximum number of leaves

Fully dynamic shortest paths and negative cycle detection on diagraphs with Arbitrary Arc Weights
A Note on Computing a Maximal Planar Subgraph using PQ-Trees

On the Design of CGAL, the Computational Geometry Algorithms Library
A new characterization for parity graphs and a coloring problem with costs
The mutual exclusion scheduling problem for permutation and comparability graphs
Robustness and Precision Issues in Geometric Computation
Parameterized Implementations of Classical Planar Convex Hull Algorithms and Extreme Point Compuations
Comparator Networks for Binary Heap Construction
Simpler and Faster Static AC ${ }^{0}$ Dictionaries
Elimination of Equality via Transformation with Ordering Constraints
Strict Basic Superposition and Chaining
Complexity of Nonrecursive Logic Programs with Complex Values

On the Chvátal Rank of Polytopes in the $0 / 1$ Cube
A Unifying Framework for Integer and Finite Domain Constraint Programming
Two Hybrid Logics
Third-order matching in $\lambda \rightarrow$-Curry is undecidable

[^0]: ${ }^{1}$ In non-skolemized form: $\forall x \exists y$: $k y \approx x$ for all $k \in \mathbf{N}^{>0}$.
 ${ }^{2}$ In non-skolemized form: $\exists y: y \not \approx 0$.

[^1]: ${ }^{3}$ The cancellative superposition calculus as described in (Waldmann [14, 16]) works in a many-sorted framework. For the purposes of this paper, it is sufficient to restrict to the one-sorted case.

[^2]: ${ }^{4}$ For ground terms, such an ordering can be obtained for instance from the recursive path ordering with precedence $f_{n} \succ \ldots \succ f_{1} \succ+\succ 0$ and multiset status for + by comparing normal forms w.r.t. $x+0 \rightarrow x$ and $0+x \rightarrow x$. If clauses are fully abstracted eagerly (cf. Sect. 4), the compatibility requirement becomes void.

[^3]: ${ }^{5}$ In [14], this inference system is denoted by $C S$ - $I n f_{\mathrm{N}}>0$.

[^4]: ${ }^{6}$ For abstraction inferences one has to consider all ground instances $C_{0} \theta \rho$ of $C_{0} \theta=y \not \approx$ $w \theta \vee C_{0}^{\prime} \theta[y]$ with $y \rho \prec w \theta$.

[^5]: ${ }^{7}$ More precisely, u_{0} is the maximal atomic subterm of s containing t (or w) in standard superposition or abstraction inferences, and the term u in all other inferences.

[^6]: ${ }^{8}$ In the one-sorted case considered in this paper, standard superposition inferences from fully abstracted clauses are impossible. In the general many-sorted case, standard superposition inferences must not be ignored.

[^7]: ${ }^{9}$ The restriction to clauses in $\mathcal{D}_{\mathrm{c}}^{\mathrm{elim}}$ is crucial for the correctness of this lemma.

