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Abstrat

In divisible torsion-free abelian groups, the eÆieny of the anellative su-

perposition alulus an be greatly inreased by ombining it with a variable

elimination algorithm that transforms every lause into an equivalent lause

without unshielded variables. We show that the resulting alulus is a deision

proedure for the theory of divisible torsion-free abelian groups.
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1 Introdution

Equational reasoning in the presene of the assoiativity and ommutativity

axioms is known to be diÆult { theoretially [4, 8℄, as well as pratially [1,

9, 10, 11, 12, 13, 17℄. Using AC-uni�ation and extended lauses the worst

ineÆienies of a na��ve approah an be avoided, but still the extended

lauses lead to numerous variable overlaps { one of the most proli� types

of inferenes in resolution or superposition style aluli. Besides, minimal

omplete set of AC-uni�ers may have doubly exponential size. If the theory

ontains also the identity law

x+ 0 � x ; (U)

then AC-uni�ation an be replaed by ACU-uni�ation, but the minimal

omplete set is still simply exponential.

A substantial improvement an be observed when we onsider strutures

that satisfy also the anellation axiom

x+ y � x+ z ) y � z ; (K)

or the inverse axiom

x+ (�x) � 0 ; (Inv)

(whih implies (K)), that is, when we swith over from abelian semigroups

or monoids to abelian groups (ACUInv) or at least anellative abelian

monoids (ACUK). The anellative superposition alulus (Ganzinger and

Waldmann [6, 14℄) is a re�ned superposition alulus for anellative abelian

monoids whih requires neither expliit inferenes with the theory lauses

nor extended equations or lauses. Strengthened ordering onstraints lead

to a signi�ant redution of the number of variable overlaps, ompared with

traditional AC-aluli. Some variable overlaps remain neessary, however.

In (non-trivial) divisible torsion-free abelian groups, e. g., the rational

numbers and rational vetor spaes, the abelian group axioms ACUInv are

extended by the torsion-freeness axioms

kx � ky ) x � y (T)

(for all k 2 N

>

0

), the divisibility axioms

1

k div-by

k

(x) � x (Div)

(for all k 2 N

>

0

), and the non-triviality axiom

2

a 6� 0 : (Nt)

1

In non-skolemized form: 8x 9y: ky � x for all k 2 N

>

0

.

2

In non-skolemized form: 9y: y 6� 0.
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Divisible torsion-free abelian groups (DTAGs) allow quanti�er elimina-

tion: For every quanti�ed formula over 0, +, and � there exists a quanti�er-

free formula that is equivalent modulo the theory axioms. In partiular,

every losed formula over this voabulary is provably true or false: the the-

ory of DTAGs is omplete and deidable. Superposition aluli, however,

work on formulae that do not ontain any existential quanti�ers, but that

may ontain free funtion symbols { possibly introdued by skolemization,

possibly given initially. In the presene of free funtion symbols, there is

of ourse no way to eliminate all variables from a formula { not even all

universally quanti�ed ones { but we an at least give an e�etive method to

eliminate all unshielded variables, that is, all variables not ourring below

any free funtion symbol. This elimination algorithm has been integrated

into the anellative superposition alulus in (Waldmann [16℄). The result-

ing alulus is refutationally omplete with respet to the axioms of divisible

torsion-free abelian groups and allows us to dispense with variable overlaps

ompletely.

Starting with Joyner [7℄, several resolution or superposition aluli have

been shown to be deision proedures for ertain lasses of formulae (e.g.,

Bahmair, Ganzinger, and Waldmann [3℄, Ferm�uller et al. [5℄). As the the-

ory of DTAGs is deidable, it is now a natural question to ask whether the

ombination of anellative superposition and variable elimination for un-

shielded universally quanti�ed variables is powerful enough to be usable as a

deision proedure for the theory of DTAGs. We show in this paper that this

is indeed the ase: The ombined alulus is refutationally omplete in the

presene of arbitrary free funtion symbols; and it is a deision proedure,

if all free funtion are the result of skolemization.

2 Preliminaries

We will �rst give a short overview over the anellative superposition al-

ulus and its speialization for DTAGs. The reader is referred to (Wald-

mann [14, 16℄) for more tehnial details.

Throughout this paper we assume that our signature

3

ontains a binary

funtion symbol + and a onstant 0. If t is a term and n 2N, then nt is an

abbreviation for the n-fold sum t+ � � �+ t; in partiular, 0t = 0 and 1t = t.

A funtion symbol is alled free, if it is di�erent from 0 and +. A term is

alled atomi, if it is not a variable and its top symbol is di�erent from +.

We say that a term t ours at the top of s, if there is a position o 2 pos(s)

suh that sj

o

= t and for every proper pre�x o

0

of o, s(o

0

) equals +; the term

t ours in s below a free funtion symbol, if there is an o 2 pos(s) suh that

3

The anellative superposition alulus as desribed in (Waldmann [14, 16℄) works in

a many-sorted framework. For the purposes of this paper, it is suÆient to restrit to the

one-sorted ase.
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sj

o

= t and s(o

0

) is a free funtion symbol for some proper pre�x o

0

of o. A

variable x is alled shielded in a lause C, if it ours at least one below a

free funtion symbol in C. Otherwise, x is alled unshielded.

We say that an ACU-ompatible ordering � has the multiset property,

if whenever a ground atomi term u is greater than v

i

for every i in a �nite

non-empty index set I, then u �

P

i2I

v

i

.

From now on we will work only with ACU-ongruene lasses, rather

than with terms. So all terms, equations, substitutions, inferene rules, et.,

are to be taken modulo ACU, i.e., as representatives of their ongruene

lasses. The symbol � will always denote an ACU-ompatible ordering that

has the multiset property and is total on ground ACU-ongruene lasses.

4

Without loss of generality we assume that the equality symbol � is the

only prediate of our language. Hene a literal is either an equation t � t

0

or a negated equation t 6� t

0

. The symbol

:

� denotes either � or 6�. A lause

is a �nite multiset of literals, usually written as a disjuntion.

Let A be a ground literal nu+

P

i2I

s

i

:

�mu+

P

j2J

t

j

, where u, s

i

, and

t

j

are atomi terms, n � m � 0, n � 1, and u � s

i

and u � t

j

for all i 2 I,

j 2 J . Then u is alled the maximal atomi term of A, denoted by mt(A).

The ordering �

L

on literals ompares lexiographially �rst the maxi-

mal atomi terms of the literals, then the polarities (negative � positive),

then the multisets of all non-zero terms ourring at the top of the liter-

als, and �nally the multisets onsisting of the left and right hand sides of

the literals. The ordering �

C

on lauses is the multiset extension of the

literal ordering �

L

. Both �

L

and �

C

are noetherian and total on ground

literals/lauses.

We denote the entailment relation modulo equality and ACUKT by

j=

ACUKT

. In other words, fC

1

; : : : ; C

n

g j=

ACUKT

C

0

if and only if ACUKT[

fC

1

; : : : ; C

n

g j= C

0

.

3 Canellative Superposition

The anellative superposition alulus (Waldmann [14℄) is a refutation-

ally omplete variant of the standard superposition alulus (Bahmair and

Ganzinger [2℄) for sets of lauses that ontain the axioms ACUK and (op-

tionally) T. It requires neither extended lauses, nor expliit inferenes with

the axioms ACUKT, nor symmetrizations. Compared with standard super-

position or AC superposition aluli, the ordering restritions of its inferene

rules are strengthened: Inferenes are not only limited to maximal sides of

maximal literals, but also to maximal summands thereof. As shielded vari-

4

For ground terms, suh an ordering an be obtained for instane from the reursive

path ordering with preedene f

n

� : : : � f

1

� + � 0 and multiset status for + by

omparing normal forms w. r. t. x+ 0 ! x and 0 + x! x. If lauses are fully abstrated

eagerly (f. Set. 4), the ompatibility requirement beomes void.
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ables are non-maximal, this implies in partiular that there are no overlaps

with suh variables.

The inferene system K of the anellative superposition alulus

5

on-

sists of the inferene rules anellation, equality resolution, standard superpo-

sition, anellative superposition, abstration, and anellative equality fa-

toring. Ground versions of these rules are given below.

The following onditions are ommon to all the inferene rules: Every

literal involved in some inferene must be maximal in the respetive premise

(exept for the last but one literal in anellative equality fatoring infer-

enes). A positive literal involved in a superposition or abstration inferene

must be stritly maximal in the respetive lause. In all superposition and

abstration inferenes, the left premise is smaller than the right premise. In

standard superposition and abstration inferenes, if s is a proper sum, then

t (or w, respetively) ours in a maximal atomi subterm of s.

Canellation

C

0

_ mu+ s

:

� m

0

u+ s

0

C

0

_ (m�m

0

)u+ s

:

� s

0

if m � m

0

� 1 and u � s, u � s

0

.

Equality Resolution

C

0

_ 0 6� 0

C

0

Standard Superposition

D

0

_ t � t

0

C

0

_ s[t℄

:

� s

0

D

0

_ C

0

_ s[t

0

℄

:

� s

0

if t ours below a free funtion symbol in s, and

s[t℄ � s

0

, t � t

0

.

Can. Superposition

D

0

_ nu+ t � t

0

C

0

_ mu+ s

:

� s

0

D

0

_ C

0

_  s+ �t

0

:

� �t+  s

0

ifm� 1, n� 1,  =n=gd(m;n), �=m=gd(m;n),

and u � s, u � s

0

, u � t, u � t

0

.

Abstration

D

0

_ nu+ t � t

0

C

0

_ s[w℄

:

� s

0

C

0

_ y 6� w _ s[y℄

:

� s

0

if n� 1, w=mu+ q ours in s immediately below

some free funtion symbol, m � 1, nu+ t is not a

subterm of w, and u � t, u � t

0

, s[w℄ � s

0

.

5

In [14℄, this inferene system is denoted by CS-Inf

N

>

0

.
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Can. Eq. Fatoring

C

0

_ nu+ t � n

0

u+ t

0

_ mu+ s � s

0

C

0

_  t+ �s

0

6� �s+  t

0

_ nu+ t � n

0

u+ t

0

if m� 1, n > n

0

� 0, � = n�n

0

,  =m= gd(m; �),

� = �= gd(m; �), and u � s, u � s

0

, u � t, u � t

0

.

The inferene system K is sound with respet to ACUKT. In other words,

for every inferene with premises C

1

; : : : ; C

n

and onlusion C

0

, we have

fC

1

; : : : ; C

n

g j=

ACUKT

C

0

.

Lifting the inferene rules to non-ground lauses is relatively straightfor-

ward as long as we restrit to lauses without unshielded variables. For the

inferene rules equality resolution and standard superposition, we proeed as

in the standard superposition alulus (Bahmair and Ganzinger [2℄). For

the inferene rules anellation, anellative superposition, and anellative

equality fatoring, we have to take into aount that, in a lause C =C

0

_ A,

the maximal literal A need no longer have the form mu + s

:

� s

0

, where u

is the unique maximal atomi term. Rather, a non-ground literal suh as

f(x) + 2f(y) + b 6�  may ontain several (distint but ACU-uni�able)

maximal atomi terms u

k

with multipliities m

k

, where k ranges over some

�nite non-empty index set K. We obtain thus A =

P

k2K

m

k

u

k

+ s

:

� s

0

,

where

P

k2K

m

k

orresponds to m in the ground literal above. As in the

standard superposition rule, the substitution � that uni�es all u

k

(and the

orresponding terms v

l

from the other premise) is applied to the onlusion.

For instane, the anellative superposition rule has now the following form:

Canellative Superposition

D

0

_ A

2

C

0

_ A

1

(D

0

_ C

0

_ A

0

)�

if the following onditions are satis�ed:

{ A

1

=

P

k2K

m

k

u

k

+ s

:

� s

0

.

{ A

2

=

P

l2L

n

l

v

l

+ t � t

0

.

{ m =

P

k2K

m

k

� 1, n =

P

l2L

n

l

� 1.

{  = n= gd(m;n), � = m= gd(m;n).

{ u is one of the u

k

or v

l

(k 2 K, l 2 L).

{ � is a most general ACU-uni�er of all u

k

and v

l

(k 2 K; l 2 L).

{ u 6� s, u 6� s

0

, u 6� t, u 6� t

0

.

{ A

0

=  s+ �t

0

:

� �t+  s

0

.

The lifted versions of the rules anellation and anellative equality fa-

toring are obtained analogously. The only inferene rule for whih lifting is

5



not so straightforward is the abstration rule. Here we have to take into a-

ount that the term to be abstrated out may be a sum ontaining variables

at the top [14℄.

In the presene of unshielded variables, it is still possible to devise (more

ompliated) lifted inferene rules that produe only �nitely many onlu-

sions for a given tuple of premises. We do not repeat these rules here, as the

additional theory axioms DivInvNt make it possible to eliminate unshielded

variables ompletely. The elimination of unshielded variables happens in two

stages. First we show that every lause is logially equivalent to a lause

without unshielded variables. Then this elimination algorithm has to be in-

tegrated into the anellative superposition alulus. Our main tool for the

seond step is the onept of redundany.

Let C

0

; C

1

; : : : ; C

k

be lauses and let � be a substitution suh that C

i

�

is ground for all i 2 f1; : : : ; kg. If there are inferenes

C

k

: : : C

1

C

0

and

C

k

� : : : C

1

�

C

0

�

then the latter is alled a ground instane of the former.

Let N be a set of lauses, let N be the set of ground instanes of lauses

in N . An inferene is alled ACUKT-redundant with respet to N if for

eah of its ground instanes with onlusion C

0

� and maximal premise C�

we have fD 2 N j D �

C

C� g j=

ACUKT

C

0

�.

6

A lause C is alled ACUKT-

redundant with respet to N , if for every ground instane C�, fD 2 N j

D �

C

C� g j=

ACUKT

C�.

A set N of lauses is alled saturated with respet to an inferene system

and a redundany riterion, if every inferene from lauses in N is redundant

with respet to N .

Theorem 3.1 The inferene system K is refutationally omplete with re-

spet to ACUKT, that is, a K-saturated set of lauses is unsatis�able modulo

ACUKT if and only if it ontains the empty lause (Waldmann [14℄).

One appliation of the redundany onept is simpli�ation: A prover

produes a saturated set of lauses by omputing inferenes aording to

some fair strategy and adding the onlusions of non-redundant inferenes

to the urrent set of lauses. At any time of the saturation proess, the

prover is permitted to replae a lause by an equivalent set of new lauses,

provided the new lauses make the simpli�ed lause redundant. As we will

see later, in the alulus for DTAGs, redundany is already essential to prove

the refutational ompleteness of the inferene rules themselves.

6

For abstration inferenes one has to onsider all ground instanes C

0

�� of C

0

� = y 6�

w� _ C

0

0

�[y℄ with y� � w�.

6



4 Variable Elimination: The Logial Side

It is well-known that the theory of DTAGs allows quanti�er elimination:

For every quanti�ed formula over 0, +, and � there exists an equivalent

quanti�er-free formula. In the presene of free funtion symbols, there is of

ourse no way to eliminate all variables from a lause, but we an at least

give an e�etive method to eliminate all unshielded variables.

Let x be a variable. We de�ne a binary relation !

x

over lauses by

CanelVar C

0

_ mx+ s

:

� m

0

x+ s

0

!

x

C

0

_ (m�m

0

)x+ s

:

� s

0

if m � m

0

� 1.

ElimNeg C

0

_ mx+ s 6� s

0

!

x

C

0

if m � 1 and x does not our in C

0

; s; s

0

.

ElimPos C

0

_ m

1

x+ s

1

� s

0

1

_ : : : _ m

k

x+ s

k

� s

0

k

!

x

C

0

if m

i

� 1 and x does not our in C

0

; s

i

; s

0

i

, for 1 � i � k.

Coalese C

0

_ mx+ s 6� s

0

_ nx+ t

:

� t

0

!

x

C

0

_ mx+ s 6� s

0

_  t+ �s

0

:

�  t

0

+ �s

if m � 1, n � 1,  = m= gd(m;n), � = n= gd(m;n), and x

does not our at the top of s; s

0

; t; t

0

.

The relation!

x

is noetherian. Let the binary relation!

elim

over lauses

be de�ned in suh a way that C

0

!

elim

C

1

if and only if C

0

ontains an

unshielded variable x and C

1

is a normal form of C

0

with respet to !

x

.

Then !

elim

is again noetherian. For any lause C, let elim(C) denote some

(arbitrary but �xed) normal form of C with respet to the relation !

elim

.

Lemma 4.1 For every lause C, elim(C) ontains no unshielded variables.

Lemma 4.2 For every lause C, fCg [ DivInvNt j=

ACUKT

elim(C) and

felim(C)g j=

ACUKT

C. For every ground instane C�, felim(C)�g j=

ACUKT

C�.

Using the tehnique skethed so far, every lause C

0

an be transformed

into a lause elim(C

0

) that does not ontain unshielded variables, follows

from C

0

and the divisible torsion-free abelian group axioms, and implies

C

0

modulo ACUKT. Obviously, we an perform this transformation for all

initially given lauses before we start the saturation proess. However, the

set of lauses without unshielded variables is not losed under the inferene

system K, i.e., inferenes from lauses without unshielded variables may

produe lauses with unshielded variables. To eliminate these lauses during

the saturation proess, it is not suÆient that they follow logially from some

other lauses: redundany requires that they follow from some suÆiently

7



small lauses. Unfortunately, under ertain irumstanes the transformed

lause elim(C

0

) may not be small enough. Hene, to integrate the variable

elimination algorithm into the anellative superposition alulus, it has to

be supplemented by a ase analysis tehnique.

5 Variable Elimination: The Operational Side

Let � be an inferene. We all the unifying substitution � that is omputed

during � and applied to the onlusion the pivotal substitution of �. (For

abstration inferenes and all ground inferenes, the pivotal substitution is

the identity mapping.) If A is the last literal of the last premise of �, we all

A� the pivotal literal of �. Finally, if u

0

is the atomi term that is anelled

out in �, or in whih some subterm is replaed or abstrated out,

7

then we all

u

0

� the pivotal term of �. Pivotal terms have two important properties: First,

whenever an inferene � from lauses without unshielded variables produes

a onlusion with unshielded variables, then all these unshielded variables

our in the pivotal term of �. Seond, no atomi term in the onlusion of

� an be larger than the pivotal term of �.

A lause C is alled fully abstrated, if no non-variable term ours

below a free funtion symbol in C. Every lause C an be transformed into

an equivalent fully abstrated lause abs(C) by iterated rewriting

C[f(: : : ; t; : : : )℄ ! x 6� t _ C[f(: : : ; x; : : : )℄ ;

where x is a new variable and t is a non-variable term ourring immediately

below the free funtion symbol f in C. It should be noted that the variable

elimination algorithm preserves full abstration, so that for every lause C,

elim(abs(C)) is a logially equivalent lause that is fully abstrated and does

not ontain unshielded variables.

In the sequel we assume that every lause C in the input of the inferene

system is replaed by elim(abs(C)) before we start the saturation proess.

The inferene system D
abs

that we will desribe now preserves both prop-

erties: the set of all fully abstrated lauses without unshielded variables is

losed under D
abs

. The system D
abs

is given by two meta-inferene rules:

Eliminating Inferene

C

n

: : : C

1

elim(C

0

)

if the following ondition is satis�ed:

7

More preisely, u

0

is the maximal atomi subterm of s ontaining t (or w) in standard

superposition or abstration inferenes, and the term u in all other inferenes.

8



{

C

n

: : : C

1

C

0

is a non-abstration and non-standard superposition K-

inferene.

8

Instantiating Inferene

C

n

: : : C

1

C

0

�

if the following onditions are satis�ed:

{

C

n

: : : C

1

C

0

is a non-abstration and non-standard superposition K-

inferene with pivotal literal A and pivotal term u.

{ The multiset di�erene elim(C

0

) n C

0

ontains a literal A

1

with the

same polarity as A.

{ An atomi term u

1

ours at the top of A

1

.

{ � is ontained in a minimal omplete set of ACU-uni�ers of u and u

1

.

The redundany of D
abs

-inferenes is de�ned in a slightly ompliated

way. Essentially, a D
abs

-inferene is redundant if suÆiently many ground

instanes of the K-inferene on whih it is based are redundant. For our

purposes, it is suÆient to know that any inferene is redundant with respet

to a set N of lauses as soon as its onlusion (or a simpli�ed version thereof)

is present in N .

Theorem 5.1 If a set of fully abstrated lauses is saturated with respet

to D
abs

and none of the lauses ontains unshielded variables, then it is

also saturated with respet to K, and it is unsatis�able modulo ACUKT [

DivInvNt if and only if it ontains the empty lause (Waldmann [14, 16℄).

If all lauses are fully abstrated, then the terms that have to be om-

pared during the saturation have the property that they do not ontain the

operator +. In this situation, the requirement that the ordering � has to

be ACU-ompatible beomes void, and we may use an arbitrary redution

ordering over terms not ontaining + that is total on ground terms and

for whih 0 is minimal. As every ordering of this kind an be extended to

an ordering that is ACU-ompatible and has the multiset property (Wald-

mann [15℄), the ompleteness proof is still justi�ed.

8

In the one-sorted ase onsidered in this paper, standard superposition inferenes from

fully abstrated lauses are impossible. In the general many-sorted ase, standard super-

position inferenes must not be ignored.

9



6 Deiding the Theory of DTAGs

A refutationally omplete alulus derives a ontradition (and terminates)

whenever the set of input formulae is inonsistent. To show that a refuta-

tionally omplete alulus is atually a deision proedure, one has to prove

that it terminates even on onsistent inputs. Following this general sheme,

we will now demonstrate that the alulus D
abs

is a deision proedure for

the theory of divisible torsion-free abelian groups.

Let us denote by D the lass of all losed �rst-order formulae with arbi-

trary quanti�ers and logial onnetives and ontaining not more than the

funtion symbols + (binary), 0 (onstant), � (unary), div-by

k

(unary) for

k 2 N

>

0

, and the binary prediate symbol �. Given a formula F 2 D, our

task is to deide whether F is equivalent to true or to false with respet to

the theory of divisible torsion-free abelian groups. As the theory of DTAGs

is omplete, every formula in D is equivalent either to true or to false, hene

F is equivalent to true if and only if it is satis�able.

We an �rst of all eliminate the symbols � and div-by

k

from F by re-

ursively replaing any atom s[�t℄ � s

0

by 8x(: x + t � 0 _ s[x℄ � s

0

)

and any atom s[div-by

k

(t)℄ � s

0

by 8x(: kx � t _ s[x℄ � s

0

), where x is

a new variable. The resulting formula F

1

is then onverted into a formula

F

2

in prenex normal form. By skolemization, F

2

an be further translated

into a formula F

3

without existentially quanti�ed variables, suh that F

3

is satis�able if and only if F is satis�able. Skolemization replaes the ex-

istentially quanti�ed variables of F

2

by terms f

k

(x

1

; : : : ; x

i

), where the x

j

are universally quanti�ed variables and f

k

is a new free funtion symbol.

Finally, the formula F

3

an be transformed into onjuntive normal form,

whih we represent as a �nite set of lauses. This set of lauses is a subset

of the lass D



de�ned as follows: A lause C is ontained in D



if and only

if there exists a �nite sequene of distint variables x

1

; : : : ; x

n

suh that, for

every literal s

:

� s

0

in C, both s and s

0

are sums

P

n

k

t

k

, and eah t

k

is

either a variable x

i

or an atomi term f(x

1

; : : : ; x

i

) for some i � n. The

lass of all lauses C in D



without unshielded variables is denoted by D

elim



.

We laim that there is a strategy for D
abs

-superposition that is guaranteed

to terminate on every �nite subset of D

elim



. Termination implies that with

this strategy D
abs

-superposition beomes a deision proedure for the satis-

�ability of �nite subsets of D

elim



(and hene of formulae in D) with respet

to ACUKT [DivInvNt.

In the rest of this paper, we assume � to be a lexiographi path or-

dering based on a preedene relation that respets the arity of funtion

symbols (greater arity implying higher preedene). Apart from satisfying

this restrition, the preedene an be arbitrary (but has to be total). With-

out loss of generality, we assume that the funtion symbols ourring in the

input lauses are f

m

� � � � � f

1

. We note that f

j

(x

1

; : : : ; x

l

) � f

k

(x

1

; : : : ; x

i

)

if and only if f

j

� f

k

if and only if j > k.

10



In the one-sorted ase, the inferene system D
abs

onsists of the elimi-

nating and the instantiating variants of the rules anellation, equality reso-

lution, anellative superposition, and anellative equality fatoring. We will

show that for the speial lass of lauses D

elim



, instantiating inferenes are

not needed:

Lemma 6.1 Every D
abs

-inferene from lauses in D

elim



is an eliminating

inferene.

Proof. Assume that there is an instantiating D
abs

-inferene

C

n

: : : C

1

C

0

�

with premises in D

elim



. Then

C

n

: : : C

1

C

0

is a K-inferene with pivotal literal A, pivotal term u, and pivotal substitu-

tion �. Furthermore, the multiset di�erene elim(C

0

) n C

0

ontains a literal

A

1

with the same polarity as A, and u� = u

1

� for some atomi term u

1

o-

urring at the top of A

1

. As elim(C

0

) 6=C

0

, the lause C

0

must ontain some

unshielded variable x, and sine the premises have no unshielded variables,

x must our in the pivotal term u. Now, as the premises C

i

are lauses in

D

elim



, there exists a �xed list of variables x

1

; x

2

; : : : suh that all atomi

terms in C

i

�, and thus in C

0

and elim(C

0

), have the form f

j

(x

1

; : : : ; x

l

) for

some j and l. Consequently, any two atomi terms in C

i

�, C

0

, and elim(C

0

)

are either equal or not uni�able. By assumption, u and u

1

have the uni�er

� , hene u = u

1

. So x ours in u

1

, and thus in an atomi term in elim(C

0

),

and thus in an atomi term in C

0

. Hene x is shielded in C

0

, whih refutes

our assumption. 2

For a lause C, let sfat(C) be the lause obtained from C by syntati

fatoring, that is, by replaing every repeated literal A _ : : : _ A by A. Let

san(C) be the lause obtained from C by syntati anellation, that is,

by replaing every literal s+ t

:

� s

0

+ t with non-zero t by s

:

� s

0

.

Unlike syntati fatoring, syntati anellation may introdue un-

shielded variables (if the term that was anelled out was the last term

shielding some variable). During elimination of these unshielded variables,

the Coalese rule may again produe syntatially equal terms on both sides

of a literal. Let the binary relation !

se

over lauses be de�ned in suh a

way that C

0

!

se

C

1

if and only if C

1

= elim(san(C)) and C

1

6= C

0

. It

is easy to show that !

se

terminates. Let us denote the normal form of a

lause C with respet to !

se

by san

�

(C), and let simp(C) be the lause

sfat(san

�

(C)).

11



Lemma 6.2 For every lause C in D

elim



, replaing C by simp(C) is a sim-

pli�ation.

9

In desriptions of resolution or paramodulation style inferene systems,

one assumes onventionally that all lauses are variable disjoint, so that

overlapping terms or literals an always be uni�ed in the inferene rules. To

simplify the termination proof, we will exploit the fat that the partiular

struture of D

elim



allows us to use quite the opposite approah: Consider a

D
abs

-inferene from two lauses C

2

and C

1

in D

elim



. During this inferene,

the maximal atomi term of C

2

, say f

k

(x

00

1

; : : : ; x

00

i

), and the maximal atomi

term of C

1

, say f

k

(x

0

1

; : : : ; x

0

i

), are overlapped. By de�nition of the ordering

and of the lass D

elim



, the set of variables of C

1

is exatly fx

0

1

; : : : ; x

0

i

g, and

all atomi terms in C

1

have the form f

j

(x

0

1

; : : : ; x

0

l

) with j � k and l � i (and

analogously for C

2

). Therefore, essentially the same inferene is also possible,

if we assume that all lauses share the same variables x

1

; x

2

; : : : , and all non-

variable terms ourring in the lause set have the form f

j

(x

1

; : : : ; x

l

) for

some j and l. The pivotal substitution an then always be assumed to be

the identity mapping, and it is trivial to hek that the onlusion of any

D
abs

-inferene uses again the variables x

1

; x

2

; : : : in the required way.

To saturate a given �nite subset of the lass D

elim



, we use the following

strategy:

Let N be the set of all input lauses.

Let f

m

� � � � � f

1

be the funtion symbols ourring in N .

Let N

�

m+1

= f sfat(C) j C 2 N g.

For k = m;m�1; : : : ; 1:

If N

�

k+1

is de�ned, let N

0

k

be the set obtained from N

�

k+1

by replaing

every lause C whose maximal funtion symbol is f

k

by simp(C).

For r = 0; 1; : : : :

If N

r

k

is de�ned and if there are non-redundant anellative su-

perposition or anellative equality fatoring D
abs

-inferenes from

lauses in N

r

k

with pivotal term f

k

(x

1

; : : : ; x

i

), pik one of them

\don't are" non-deterministially, let C be its onlusion, and let

N

r+1

k

= N

r

k

[ fsfat(C)g;

if N

r

k

is de�ned and if there is no suh inferene, let N

�

k

= N

r

k

.

If N

�

1

is de�ned, let N

�

be the union of N

�

1

and the set of all on-

lusions of all non-redundant equality resolution D
abs

-inferenes from

lauses in N

�

1

.

Lemma 6.3 Let k 2 f1; : : : ;mg. If N

�

k+1

is de�ned, then there exists an

r 2 N suh that there is no non-redundant anellative superposition or

anellative equality fatoring D
abs

-inferene from lauses inN

r

k

with pivotal

term f

k

(x

1

; : : : ; x

i

).

9

The restrition to lauses in D

elim



is ruial for the orretness of this lemma.
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Proof. Every D
abs

-inferene is redundant with respet to N

r

k

if its on-

lusion C or an equivalent smaller lause, suh as sfat(C), is ontained in

N

r

k

. All inlusions in the sequene N

0

k

� N

1

k

� � � � � N

r

k

� : : : must there-

fore be strit. A lause an partiipate in an inferene with pivotal term

f

k

(x

1

; : : : ; x

i

) only if it ontains f

k

and if it does not ontain any f

j

with

j > k, or in other words, if f

k

(x

1

; : : : ; x

i

) is its maximal atomi term. The

set of all suh lauses in N

0

k

is obviously �nite. We will show below that

the number of suh lauses in

S

r

N

r

k

is �nitely bounded. From these �nitely

many lauses only �nitely many onlusions of inferenes an be derived,

hene

S

r

N

r

k

must be �nite. As the inlusions in the sequene are strit, the

sequene is �nite.

It remains to be proved that the number of lauses with maximal atomi

term f

k

(x

1

; : : : ; x

i

) in

S

r

N

r

k

is �nitely bounded. Let M be the subset of N

0

k

ontaining all lauses with maximal atomi term f

k

(x

1

; : : : ; x

i

). Let L be

the set of all literals of lauses in M , let L

1

be the set of all literals in L in

whih f

k

ours, and let L

0

= L n L

1

. Note that there is no literal in L

1

in

whih f

k

ours on both sides. Let L

0

0

be the set of all literals A, suh that

there is a anellative superposition K-inferene

A

2

A

1

A

with literals A

1

and A

2

from L

1

. Let L

00

0

be the set of all literals A, suh

that there is a anellative equality fatoring K-inferene

A

2

_ A

1

A _ A

2

with literals A

1

and A

2

from L

1

. Note that f

k

does not our in literals

from L

0

0

[ L

00

0

. Let M

�

be the set of all lauses onsisting of literals in

L

0

[ L

0

0

[ L

00

0

[ L

1

(without dupliated literals).

Consider an arbitrary eliminating anellative superposition or anella-

tive equality fatoring D
abs

-inferene

C

n

: : : C

1

elim(C

0

)

from premises in M

�

with pivotal term f

k

(x

1

; : : : ; x

i

) and onlusion D =

elim(C

0

). If f

k

(x

1

; : : : ; x

i

) ours in sfat(D), then it ours also in C

0

. In

this ase, all variables in C

0

are shielded, thus elim(C

0

) = C

0

. Sine

C

n

: : : C

1

C

0

is a anellative superposition or anellative equality fatoring K-inferene,

sfat(D) = sfat(C

0

) is again ontained in M

�

. As M � M

�

, we an on-

lude that all lauses in

S

r

N

r

k

with maximal atomi term f

k

(x

1

; : : : ; x

i

) are

ontained in M

�

. Sine M

�

is �nite, this ompletes the proof. 2

13



Corollary 6.4 N

�

k

and N

�

are de�ned for every k 2 f1; : : : ;m+ 1g.

Corollary 6.5 N ` N

�

m+1

` N

0

m

` N

1

m

` : : : ` N

�

m

` : : : ` N

0

1

` N

1

1

` : : : `

N

�

1

` N

�

is a �nite theorem proving derivation; N and N

�

are equivalent

modulo ACUKT [DivInvNt.

Lemma 6.6 Let 1 � k � j �m. Then all D
abs

-inferenes with pivotal term

f

j

(x

1

; : : : ; x

l

) from lauses in N

�

k

are redundant with respet to N

�

k

.

Proof. By indution, we may assume that all D
abs

-inferenes with pivotal

term f

p

(x

1

; : : : ; x

l

), p > k from lauses in N

�

k+1

are redundant with respet

to N

�

k+1

.

The lauses in N

�

k

n N

�

k+1

ontain only funtion symbols f

p

with p �

k. Therefore, every D
abs

-inferene from lauses in N

�

k

with pivotal term

f

p

(x

1

; : : : ; x

i

) and p > k is an inferene from lauses in N

�

k+1

, hene it is

redundant with respet to N

�

k+1

. As all lauses in N

�

k+1

nN

�

k

are redundant

with respet to N

�

k+1

, every inferene that is redundant with respet to

N

�

k+1

is also redundant with respet to N

�

k

. Therefore it suÆes to show

that all D
abs

-inferenes with pivotal term f

k

(x

1

; : : : ; x

i

) from lauses in N

�

k

are redundant with respet to N

�

k

.

It is easy to hek that literals with f

k

ourring on both sides an-

not our at all in lauses in N

�

k

n N

0

k

, and that they an our in a

lause C in N

0

k

only if some f

p

with p > k ours in C. Hene there are

no anellation inferenes with pivotal term f

k

(x

1

; : : : ; x

i

) from lauses in

N

�

k

= N

0

k

[ (N

�

k

n N

0

k

). This means that all inferenes from lauses in N

�

k

with pivotal term f

k

(x

1

; : : : ; x

i

) are either anellative superposition or an-

ellative equality fatoring inferenes, hene they are redundant with respet

to N

�

k

by onstrution of N

�

k

. 2

Theorem 6.7 All inferenes from lauses in N

�

are redundant with respet

to N

�

.

Proof. By the previous lemma, all D
abs

-inferenes with pivotal terms

f

j

(x

1

; : : : ; x

l

) from lauses in N

�

1

are redundant with respet to N

�

1

(and

hene with respet to N

�

). Furthermore, by onstrution of N

�

, all equal-

ity resolution inferenes from lauses in N

�

1

are redundant with respet to

N

�

. Sine equality resolution applies only to lauses with maximal literals

0 6� 0 and sine no lause in N

�

1

ontains repeated literals, no inferenes are

possible from lauses in N

�

nN

�

1

. 2

As N

�

is saturated, it ontains the empty lause if and only if it is

unsatis�able modulo ACUKT [ DivInvNt. Sine N and N

�

are equivalent

modulo the theory axioms, the main theorem of the this paper is proved:

Theorem 6.8 A �nite set N � D

elim



is unsatis�able modulo ACUKT [

DivInvNt if and only if the saturation strategy derives the empty lause

from N .
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7 Conlusions

In previous work, we have demonstrated that the anellative superposition

alulus K an be augmented by a variable elimination algorithm for DTAGs.

The resulting alulus D
abs

is refutationally omplete with respet to the

axioms of divisible torsion-free abelian groups and allows us to dispense with

variable overlaps altogether. As variable overlaps are one of the most proli�

types of inferenes in resolution or superposition style aluli, integration of

the variable elimination algorithm leads to a dramatially redued searh

spae ompared with the usual anellative superposition alulus or, even

worse, AC or ACU superposition aluli.

Sine 1976 several resolution or superposition aluli have been shown to

be deision proedures for ertain lasses of formulae (e.g., [3, 5, 7℄). If the

aluli in question are known to be refutationally omplete, then showing

that they are atually deision proedures amounts to proving that they ter-

minate even on onsistent inputs. In the present paper we have demonstrated

that the alulus D
abs

is powerful enough to solve the deision problem for

divisible torsion-free abelian groups. Following the general sheme desribed

above, the termination proof is peuliar in two respets: First, we require

that the set of lauses is saturated in a strati�ed way. Termination follows

from the two fats that the number of strata is �nite and that the number

of new lauses derived during eah stratum is �nite. Seond, the partiular

struture of the literals and lauses makes it possible to assume that all

lauses share the same variables and that the pivotal substitution is always

the identity mapping { in some sense, variables are treated as if they were

onstants.

What remains open at present is the preise omputational omplexity of

our deision proedure. The time bound that an be derived in a straight-

forward manner from the saturation strategy is non-elementary. Possibly

signi�antly better bounds an be obtained for sublasses of D

elim



, but this

is still a matter of further researh.
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