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Abstract

We introduce a new class of �nite automata. They are usual bottom-up tree

automata that run on DAG representations of �nite trees. We prove that the

emptiness problem for this class of automata is NP-complete. Using these

automata we prove the decidability of directional type checking for logic pro-

grams, and thus we improve earlier results by Aiken and Lakshman. We also

show an application of these automata in solving systems of set constraints,

which gives a new view on the satis�ability problem for set constraints with

negative constraints.
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1 Introduction

We introduce a new class of �nite automata, which we call automata on

t-dags. They are usual bottom-up tree automata that run on DAG rep-

resentations of ground terms over given signature. The class of languages

recognizable by these automata contains all DAG representations of regular

sets of terms and is closed under union and intersection. We prove decid-

ability of the membership and emptiness problems for these automata. The

emptiness test presented here, based on ideas from [15], is an adaptation

of the standard pumping techniques to the case of t-dags. In Sections 2

and 3 we introduce our automata, show their basic properties and prove the

NP-completeness of the emptiness problem.

The main di�erence between the introduced class and the automata on

directed acyclic graphs that are known in the literature [28, 29, 30, 12, 33,

35, 36] is that the considered DAGs have to maximally share structure, i.e.,

they do not contain two isomorphic copies of the same subgraph. Moreover,

graphs from [12, 28, 29] are always planar (we do not require planarity),

and graphs from [30] are in�nite. Tiling systems from [35, 36] work on much

more general classes of graphs, in particular the emptiness problem for them

is undecidable.

Our automata are closely related to tree set automata of [24, 25], which

accept mappings from Herbrand universe. The requirement that the ac-

cepted object is a function has the same consequence as the sharing of struc-

ture in case of DAGs: the automaton cannot assign two di�erent states to

two occurrences of the same [representation of a] tree. The di�erence is that

both kinds of automata recognize di�erent kinds of objects; in particular, we

do not see any connection between tree set automata and directional types

in logic programs. However, our emptiness test gives an alternative (and as

we believe, a simpler) proof of the decidability of the emptiness problem for

tree set automata.

Directional types form a type system for logic programs which is based

on the view of a predicate as a directional procedure which, when applied

to a tuple of input terms, generates a tuple of output terms. There is a

rich literature on types and directional types for which we can give only

some entry points. Directional types occur as predicate pro�les in [34], as

mode dependencies in [14], and simply as types in [9, 7, 8]. Our use of

the terminology \directional type" stems from [5]. More pointers to the

literature can be found in [13].

It is pointed in [5] that the type checking problem is undecidable for ar-

bitrary types. Therefore one has to restrict himself to regular (or even more

restricted, e.g. discriminative) types. In [5], Aiken and Lakshman present

an algorithm for automatic type checking of logic programs wrt. given (reg-

ular) directional types. The algorithm runs in NEXPTIME; they show that
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the problem is DEXPTIME-hard in general and PSPACE-hard for discrimi-

native types. The algorithm works via set constraint solving; its correctness

relies on a connection between the well-typedness conditions and the set

constraints to which they are translated. The connection is such that the

type check is sound and complete for discriminative types (it is still sound

for general regular types). Another decidability proof (without complex-

ity analysis) for type-checking for discriminative directional types is given

in [13]. In [19] we proved that directional type checking wrt. discriminative

types is DEXPTIME-complete and gave an algorithm for inferring (regular,

not necessarily discriminative) directional types.

The methods used in the mentioned papers are not strong enough to

prove the decidability of directional type checking wrt. general regular types.

In Section 4, using automata on t-dags, we prove the decidability of this

problem. This improves the results by Aiken and Lakshman [5], Boye [13],

and Charatonik and Podelski [19], where decidability is restricted to dis-

criminative types.

Set constraints. There are several kinds of automata used in solving

systems of set constraints: tree set automata with free variables [24], tree set

automata [25], �-graph automata [26], as well as standard tree automata [17,

18, 22]. These non-standard ones are seen as acceptors for mappings from

the Herbrand universe over given signature to some �nite set. Usually it

is quite di�cult to understand the essence of the di�erence between them

and standard automata. In particular, the de�nition of �-graph automaton

is rather sophisticated. In this paper, we extract the essence of these three

kinds of automata: we remove all non-standard constructs and replace them

by a single requirement that an automaton runs on DAG representations of

trees. This gives a very simple and intuitive de�nition of the automaton.

The automata used for solving negative set constraints have rather com-

plicated procedure for testing emptiness, with a very sophisticated correct-

ness proof. The proof presented here, based on ideas from [15], is an adap-

tation of the standard pumping techniques to the case of t-dags.

In Section 5 we present an application of t-dag automata to solving

system of set constraints. It gives a uni�ed view for three di�erent methods

for solving positive set constraints and simpli�es rather complicated proofs

of decidability of the problem for positive and negative set constraints [25,

4, 15]. The key point of the reduction is the decidability of the emptiness

test for t-dag automata.

2 Preliminaries

A subgraph G

0

of a directed graph G is closed if G

0

contains with every node

v all the successors of v in G.
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Figure 1: A t-dag representing the term g(f(a; f(a; a)); f(a; a); f(f(a; a); a))

and a graph not being a t-dag.

De�nition 1 (t-dag) A DAG representation of a ground term (t-dag in

short) over a signature � is a directed acyclic ordered graph whose nodes

are labeled with function symbols from � such that

� if a node is labeled with a function symbol of arity n then it has n

immediate successors in the graph, and

� it does not contain two di�erent isomorphic closed subgraphs.

DAG representations of trees are known in the literature on uni�cation.

The second condition in the de�nition above is known as maximal sharing

of structure. The assumption that a t-dag is ordered (that is, the successors

of each node are ordered) is needed to assure that the t-dags representing

f(a; b) and f(b; a) are not isomorphic. Figure 1 shows an example of a t-dag,

and a graph which is not a t-dag because it contains two isomorphic copies

of the graph representing f(f(a; a); f(a; a)).

De�nition 2 (t-dag automaton) A t-dag automaton is a tuple

h�; Q; F;�i where � is a �nite signature, Q is a �nite set of states,

F � Q is the set of �nal states, and � is a set of transitions of the form

f(q

1

; : : : ; q

n

)! q with q; q

1

; : : : ; q

n

2 Q, f 2 � and n being the arity of f .

An automaton is called complete if for each f 2 � and each sequence

q

1

; : : : ; q

n

of the appropriate length (the arity of f) there is q 2 Q such that

f(q

1

; : : : ; q

n

) ! q belongs to �. It is called deterministic if for each f and

q

1

; : : : ; q

n

there exists at most one such q, and nondeterministic otherwise.

Note that up till now there is no di�erence between t-dag automata and

standard bottom-up tree automata. The di�erence is that t-dag automata

run on t-dags and not trees.
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De�nition 3 (run) A run of a t-dag automaton h�; Q; F;�i on a given

t-dag G is a mapping r from the set of nodes of G to the set of states

Q such that for each node v and each f 2 �, if v is labeled with f

and v

1

; : : : ; v

n

are immediate successors of v, then � contains a transition

f(r(v

1

); : : : ; r(v

n

))! r(v). A run is successful if it maps the root of G to a

�nal state.

We say that a state q accepts a sub-t-dag rooted at a node v for a given

run r if r(v) = q. An automaton A accepts a t-dag G if there exists a

successful run of A on G.

Example 4 The automaton hfa; f(�; �)g; fq

1

; q

2

; qg; fqg; fa ! q

1

; a ! q

2

;

f(q

1

; q

2

)! qgi accepts f(a; a) as a tree automaton, but as a t-dag automaton

it does not accept any t-dag representation of any tree.

2.1 Recognizable sets of t-dags

A set T of t-dags is recognizable if there exists a t-dag automaton A such

that T = fG j A accepts Gg. We write then T = L(A)

Proposition 5 For every regular set T of trees, the set t-dag(T ) of t-dag

representations of trees from T is recognizable.

Proof. T can be recognized by a deterministic tree automaton A. As a

t-dag automaton, A recognizes t-dag(T ). 2

Proposition 6 The class of recognizable sets of t-dags is closed under union

and intersection.

Proof. Let A = h�; Q; F;�i and A

0

= h�

0

; Q

0

; F

0

;�

0

i be the automata

recognizing the sets T and T

0

, respectively. We assume that Q \Q

0

= ;.

The set T [ T

0

is recognized by the automaton

A

[

= h� [ �

0

; Q [Q

0

; F [ F

0

;� [�

0

i:

The set T \ T

0

is recognized by the automaton

A

\

= h� \ �

0

; Q�Q

0

; F

\

;�

\

i;

where F

\

= fhq; q

0

i j q 2 F; q

0

2 F

0

g and

�

\

= ff(hq

1

; q

0

1

i; : : : ; hq

n

; q

0

n

i)! hq; q

0

i j

f(q

1

; : : : ; q

n

)! q 2 �; f(q

0

1

; : : : ; q

0

n

)! q

0

2 �

0

g:

2

As we have seen above, the standard methods from tree automaton

theory show that the class of recognizable sets of t-dags is closed under
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union and intersection. These methods fail however to show closedness

under complementation. In case of trees, one proves recognizability of

the complement of a regular set by determinisation of the corresponding

automaton. In case of the automaton from Example 4 the determinisa-

tion procedure yields the automaton hfa; f(�; �)g; ffq

1

; q

2

g; fqgg; ffqgg; fa !

fq

1

; q

2

g; f(fq

1

; q

2

g; fq

1

; q

2

g) ! fqggi, which is correct for tree automata,

but not for t-dag automata. We do not know answers to the following ques-

tions.

Questions.

1. Are t-dag automata determinisable?

2. Is the class of recognizable sets of t-dags closed under complementa-

tion?

3. Does there exist a recognizable set T of t-dags such that the set tree(T )

of trees represented in T is not regular?

A positive answer to the �rst question would imply a positive answer to

the second one and negative answer to the third one. A negative answer to

the �rst question is known for the related classes of �-graph automata [26]

and general automata on directed acyclic graphs [33]. The counter-examples

presented in both these papers do not work here. In case of [26], the example

exploits the in�nite character of accepted objects (and a particular accepting

condition). There are two counter-examples in [33]. One of them essentially

depends on isomorphic subgraphs, and the other one uses the fact that the

input is restricted to graphs representing (n� n)-grids. These grids can be

seen as t-dags, but the set of (n�n)-grids is not recognizable, which can be

proved by use of the pumping lemma (Claim 3 in Section 3).

Proposition 7 The membership problem for t-dag automata is decidable in

nondeterministic linear time.

Proof. For a given t-dag G and automaton A it is enough to guess a

successful run of A on G. 2

Note that for tree automata the membership problem is decidable in

polynomial time. The proof uses however a determinisation technique (one

computes on the 
y a run of the deterministic version of the given automaton

on a given tree) and therefore does not work for t-dag automata.

3 Emptiness problem

In this section we prove NP-completeness of the emptiness problem for t-

dag automata, that is, the problem of answering the question whether there

exists a t-dag accepted by a given automaton. For the upper bound, we use

5



here a sort of pumping lemma technique; the main idea comes from [15]. We

present it here as natural extension of the analogous proof for tree automata.

The lower bound for the emptiness problem is rather easy encoding of the

SAT problem.

Theorem 8 The emptiness problem for t-dag automata is NP-complete.

The upper bound follows from Theorem 14: it is enough to guess a t-dag of

size at most 2jQj

3

where Q is the set of states, and a successful run of the

automaton on this t-dag. The lower bound is proved in Theorem 16.

3.1 Intuition: tree automata

To make the understanding of our approach easier, we �rst show our view

on the emptiness problem for bottom-up tree automata. We show that if

the language recognized by an automaton A = h�; Q; F;�i is nonempty,

then there is a tree of depth at most jQj, accepted by A.

Consider a tree t accepted by A, and a path of maximal length in this

tree. If this path is longer then jQj, there must be a state in jQj assigned

to two di�erent nodes v and v

0

in t, and one can remove all nodes between

v and v

0

. One should not, however, forget here about the paths to other

states that are needed to reach the �nal state and do not lie on the chosen

path. The formalization of this method leads to the following notion of a

skeleton of a run of an automaton on a tree. For the sake of simplicity we

identify here a tree with its graph representation, and a node in this graph

with a tree rooted at this node.

De�nition 9 A skeleton of a run r of a tree automaton A on a tree t is a

subgraph G of t such that

� G contains the root of t, and

� for each node v in G, the maximal subterm of v in G is in G

0

, and

� each node v in G is labeled with the transition used by A to reach v

and the position of the maximal subterm of v, and

� if a state q is used in a transition labeling a node v then it is provided

by a transition labeling some other node below v.

If any path in a skeleton contains twice the same state, we can remove

the appropriate part of the path, just as one does it in pumping lemma for

string automata. It is easy to see how one can reconstruct from a skeleton

a tree accepted by the automaton.

6



Example 10 Consider an automaton with � = fa; b; g(�); f(�; �)g, Q =

fq

0

; q

1

; q

2

; qg, F = fqg, and

� = fa! q

0

; b! q

0

; g(q

0

)! q

0

; g(q

1

)! q

1

;

f(q

0

; q

0

)! q

1

; f(q

0

; q

0

)! q

2

; f(q

1

; q

2

)! qg:

Figure 2 shows an example of a tree accepted by A and a skeleton of a run of

A on this tree. Figure 3 shows the \pumped-out" skeleton and the accepted

tree induced by this skeleton.
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f(q

1

; q

2

)! q

��

g(q

1

)! q

1

��

f(q

0

; q

0

)! q

1

��

f(q

0

; q

0

)! q

2

��

g(q

0

)! q

0

��

g(q

0

)! q

0

��

a! q

0

a! q

0

Figure 2: An accepted tree and a skeleton. Underlined states indicate the

position of the maximal subterm.

This method does not work for t-dag automata. The reason is that the

skeleton may contain two nodes with the same left-hand sides of the labeling

transitions, the same paths below them, but di�erent right-hand sides of

f(q

1

; q

2

)! q

��

f(q

0

; q

0

)! q

1

��

f(q

0

; q

0

)! q

2

��

a! q

0

a! q

0

f

��
&&MMMMMMMMMMMMMM

f

�� ��
>>

>>
>>

>>
f

�� ��
>>

>>
>>

>>

a a a a

Figure 3: An pumped-out skeleton and a smaller accepted tree.
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the transitions (like the nodes labeled f(q

0

; q

0

) ! q

1

and f(q

0

; q

0

) ! q

2

on Figures 2 and 3). Such two nodes induce the same tree and thus must

be identi�ed in a DAG representation. On the other hand, they must be

di�erent in order to provide two di�erent states in the run. To overcome

this problem we extend the skeleton in order to obtain di�erent graphs that

are induced in such nodes. In case of trees, in both nodes labeled with a

transitions starting with f(q

0

; q

0

) we used the least tree providing the state

q

0

. In case of t-dags, we will use two di�erent t-dags (the least and the least

but one providing q

0

) which we note q

0

[1] and q

0

[2]. The technical problem

here is to make sure that we have enough nodes providing given state and

to estimate the size of the skeleton.

3.2 Notations

A leaf in a t-dag is a node without immediate successors, labeled with a

constant symbol. The main path for a given node v in G is the longest path

leading from v to a leaf in G; if there are several paths of the same (biggest)

length, then the leftmost of them is the main one. The length of the main

path for a given node is called the depth of the node. The depth of a t-dag

is the depth of its root.

The main successor of a node v is the immediate successor of v lying

on the main path for v. The position of the main successor (that is, the

number identifying this node in the ordered sequence of successors of v) is

called the main position. Note the \leftmost" requirement above; it implies

that if v

1

; : : : ; v

n

are the immediate successors of v in G, and v

i

lies on the

main path for v, then the main paths for v

1

; : : : ; v

i�1

are strictly shorter

than the path for v

i

.

We say that a node v lies below a node v

0

if the main path for v is shorter

than the main path for v

0

(that is, the depth of v is smaller than the depth

of v

0

), and we �x some linear order � on nodes that extends the \lies below"

partial order.

States occurring on the left-hand side of the arrow in a transition are

called used by this transition; the state on the right-hand side is called

provided by this transition. We say that a state q accepts a sub-t-dag rooted

at a node v (equivalently, that the node v provides the state q) for a given

run r if r(v) = q.

A pointer is a pair (q; i), where q is a state and i is a number. We write

q[i] instead of (q; i). For a given t-dag G and a run r we say that the pointer

q[i] points to the i-th (according to the order �) node providing the state q.

By index of a given node v (in symbols, ind

r

(v)) we mean such a number i

that the pointer r(v)[i] points to v. A transition with pointers is an expres-

sion of the form f(q

1

[i

1

]; : : : ; q

k�1

[i

k�1

]; q

k

; q

k+1

[i

k+1

]; : : : ; q

n

) ! q. We say

that such a transition is compatible with the transition f(q

1

; : : : ; q

n

) ! q

and the k-th position.
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f(q

1

; q

2

[1])! q

g(q

1

)! q

1

f(q

0

; q

0

[1])! q

1

f(q

0

; q

0

[2])! q

2

g(q

0

)! q

0

a! q

0

b! q

0

Figure 4: A t-dag and a skeleton

De�nition 11 (skeleton) A skeleton of a run r of an automaton A on a

t-dag G is a subgraph G

0

of G such that

� G

0

contains the root of G, and

� for each node v in G

0

, the main successor of v in G is in G

0

, and

� each node v in G

0

is labeled with a transition with pointers, compatible

with the transition used by A to reach v and the position of the main

successor of v, and

� if a pointer q[i] is used in a transition labeling a node v then q[i] points

to some node v

0

in G, v

0

lies below v, and v

0

is in G

0

, and

� the graph induced from G

0

(see De�nition 13 below) is a t-dag.

Example 12 Figure 4 shows an example of a t-dag accepted by the au-

tomaton from Example 10 (this time we view it as a t-dag automaton) and

a skeleton of a successful run r on this t-dag. If v

a

is the node labeled with

a and v

b

is the node labeled with b, and assuming that v

a

� v

b

, we have

ind

r

(v

a

) = 1; ind

r

(v

b

) = 2, the index of the root is 1 and the indexes of the

nodes corresponding to g(a) and g(b) are 3 and 4.

Note that a skeleton need to be a connected graph.

De�nition 13 (induced graph) A graph induced from a skeleton S is a

directed acyclic graph G such that

� the set of nodes in G is the same as the set of nodes in S, and

9



� if a node v is labeled with f(q

1

[i

1

]; : : : ; q

k

; : : : ; q

n

[i

n

])! q in S then

{ v is labeled with f in G, and

{ the k-th successor of v in G is the successor of v in S, and

{ for j = 1; : : : ; k � 1; k + 1; : : : ; n, the j-th successor of v in G is

the i

j

-th node (according to the ordering �) providing the state

q

j

.

Figure 5 shows an example of a graph induced from a skeleton.

Note that a node in a skeleton cannot have two immediate predeces-

sors with the same left-hand side f(q

1

[i

1

]; : : : ; q

k

; : : : ; q

n

[i

n

]) of the labels

(otherwise the induced graph is not a t-dag).

3.3 Upper bound

Let us �x an automaton A = h�; Q; F;�i, a t-dag G and a successful run

r of A on G. Below we show that if G is big enough then we can �nd a

smaller t-dag G

0

and a successful run r

0

on G

0

.

Theorem 14 If an automaton A = h�; Q; F;�i accepts a t-dag then there

exists another t-dag with at most 2jQj

3

nodes, accepted by A.

Let r be a successful run of A on a t-dag G. The idea of the proof is

quite simple: �rst we prove that there exists a skeleton of r. If this skeleton

is too big, then we \pump it out". We obtain the other t-dag as the graph

induced from the pumped-out skeleton. Figures 4 and 5 give an example

of this procedure. Figure 4 shows an example of a t-dag accepted by the

automaton from Example 10 (this time as an automaton over t-dags, not

trees) and a skeleton of a successful run r on this t-dag. Figure 5 shows the

same skeleton after pumping it out, and the induced t-dag, accepted by the

same automaton.

Construction of the skeleton S. We de�ne S as the smallest graph

satisfying the conditions

� S contains the root of G

� for each node v in S, the main successor of v is in S

� S satis�es the fork condition below

� for each pointer q[i] used in a label of a node in S, the node pointed

by q[i] is in S

10



f(q

1

; q

2

[1])! q

f(q

0

; q

0

[1])! q

1

f(q

0

; q

0

[2])! q

2

g(q

0

)! q

0

a! q

0

b! q

0

f

f f

g

a b

Figure 5: A pumped-out skeleton and the induced t-dag

A fork of degree m � 1 in a skeleton S is a node having m di�erent

immediate predecessors with the same left-hand side of the corresponding

transition of the automaton (that is, the transition compatible with the label

of the node) and the same position of the main successor. On Figure 4 there

is one fork of degree 2.

De�nition 15 (fork, fork condition) We say that v is a fork of degree

m � 1 in a skeleton S of a run r on a t-dag G if v has m predecessors

v

1

; : : : ; v

m

with the following properties

� for each i = 1; : : : ;m, v is the main successor of v

i

, and

� all nodes v

1

; : : : ; v

m

are labeled with the same n-ary function symbol f

in G, and

� there exist states q

1

; : : : ; q

n

such that for all successors v

1

1

; : : : ; v

n

1

; : : : ;

v

1

m

; : : : ; v

n

m

of v

1

; : : : ; v

m

in the graph G, we have q

i

= r(v

i

1

) = r(v

i

2

) =

: : : = r(v

i

m

) for i = 1; : : : ; n.

Let hv

01

1

; : : : ; v

0

k�1

1

; v

0

k+1

1

; : : : ; v

0n

1

i; : : : ; hv

01

m

; : : : ; v

0k�1

m

; v

0k+1

m

; : : : ; v

0n

m

i be the

�rst (according to the lexicographic extension of �) m sequences of nodes

providing the states q

1

; : : : ; q

k�1

; q

k+1

; : : : ; q

n

, where k is the position of v in

the list of successors of v

i

. The fork condition is that the predecessor v

i

is

labeled with

f(q

1

[ind

r

(v

01

i

)]; : : : ; q

k

; : : : ; q

n

[ind

r

(v

0n

i

)])! r(v

i

):

Claim 1 S is a skeleton.

We have to prove that each used pointer points to some node below and

that the induced graph is a t-dag (the last two conditions in De�nition 11).

11



For the �rst of them, note that in the de�nition of S pointers q

j

[ind

r

(v

0

j

i

)]

are used in labels of nodes v

i

. Since q

j

[ind

r

(v

0

j

i

)] points to v

0

j

i

and v

0

j

i

� v

j

i

,

we have that v

0

j

i

lies below or at the same depth as v

j

i

, which lies below v

i

.

For the second condition, we have to show that for every pair G

1

; G

2

of

closed subgraphs of the graph induced from S, G

1

andG

2

are not isomorphic.

Without loss of generality we can assume that G

1

and G

2

are t-dags, rooted

at nodes v

1

and v

2

respectively. If v

1

and v

2

are of di�erent depth then

the graphs are obviously non-isomorphic, so suppose they are of the same

depth. Now the proof goes by induction on this depth.

For the base case, if G

1

and G

2

are t-dags of depth 1, then they both

consist of a single node labeled with a constant symbol. If v

1

is di�erent

from v

2

, then the constants labeling them are di�erent, and thus G

1

and G

2

are not isomorphic.

For the induction step, assume that no two graphs of depth n are iso-

morphic, and that v

1

and v

2

are nodes of depth n+1. Suppose that G

1

and

G

2

are isomorphic. Then v

1

and v

2

must have the same main successor v

(otherwise, from the induction assumption the corresponding subgraphs are

non-isomorphic). If the main successor occurs on the same position (in case

of a fork) then by construction the labels used at v

1

and v

2

in S are di�erent

and G

1

and G

2

cannot be isomorphic. Suppose v occurs on two di�erent po-

sitions in the lists of successors of v

1

and v

2

in G. Then v

1

and v

2

are labeled

in S with transitions of the form f(q

1

[i

1

]; : : : ; q

i

; : : : ; q

j

[i

j

]; : : : ; q

n

[i

n

]) ! q

and f(q

1

[i

1

]; : : : ; q

i

[i

i

]; : : : ; q

j

; : : : ; q

n

[i

n

])! q

0

, with q

i

= q

j

and i < j. Sup-

pose v

1

is labeled with the �rst one. By the de�nition of the main path (for

v

2

in the graph G), the i-th successor of v

2

lies strictly below the node v and

thus the graph rooted at q

i

[i

i

] cannot be isomorphic with the graph rooted

at v, which is required by the isomorphism between G

1

and G

2

. 2

A node v in S is called a milestone if it is the root of G or there exist a

pointer q[i] used in a label in S, pointing to v.

Claim 2 S contains at most jQj

2

milestones.

First note that each node in S is either a milestone of index 1 (this

includes the root of G), or a milestone of index greater than 1, or lies on a

main path for some milestone.

How many milestones do we need to obtain di�erent labels for all pre-

decessors of a fork of degree m? If k

1

; : : : ; k

n

are the numbers of milestones

providing the states q

1

; : : : ; q

n

, respectively, then we can construct k

1

� : : : �k

n

di�erent sequences of the form hv

0

1

; : : : ; v

0

n

i (cf. the fork condition). We need

m such sequences, and since k

1

� : : : � k

n

� (k

1

� 1) + : : :+ (k

n

� 1) + 1, it is

enough if (k

1

� 1) + : : : + (k

n

� 1) � m � 1. Therefore a fork of degree m

requires at most m� 1 milestones of index greater than 1.

The degree of a fork cannot exceed the number of nodes of the same

depth in S, we call this number the width of S.

12



There are at most jQj milestones of index 1 (one per state). Hence,

for each d there are at most jQj nodes of depth d lying on main paths for

milestones of index 1. To estimate the width of S note that a milestone

of index greater than 1 is introduced only to satisfy the fork condition for

some fork. A fork of degree m at depth d is the only successor of m nodes of

depth d+1 in S, and thus it decreases the width of S at depth d and below

by m� 1; on the other hand it may introduce at most m� 1 milestones of

index greater than 1 (and below them the nodes on main paths for them)

at depth d or below, and thus it may increase the width of S at depth d or

below by at most m� 1. Hence, the width at each depth is bounded by jQj.

Since the degree of every fork is bounded by the width of S (which is

bounded by jQj), each fork requires at most jQj � 1 milestones of index

greater than 1. Thus the maximal index of a milestone does not exceed jQj

and there are at most jQj

2

milestones. 2

A node which is neither milestone nor have more than one predecessor

in S is called ordinary.

Claim 3 (pumping lemma) Let the skeleton S contain a path v

0

! v

1

!

: : :! v

m

such that

� the states provided by v

1

and v

m

are the same, and

� all the nodes v

1

; : : : ; v

m

are ordinary.

If S

0

is a graph obtained from S by removing the nodes v

1

; : : : ; v

m�1

and

de�ning v

m

as the immediate successor of v

0

then the graph induced from S

0

is a t-dag accepted by the automaton A.

Note that S

0

need not be a skeleton, since it may contain nodes v with

labels using pointers to nodes that do not lie below v (the last condition

in De�nition 11), but still it induces a directed acyclic graph G

0

. We have

to show that G

0

is a t-dag and that A accepts it. The latter thing is quite

simple: the mapping assigning to each node of G

0

the state provided by this

node in S

0

is a successful run. Hence, it is enough to show that G

0

is a t-dag.

Suppose G

0

contains two di�erent closed isomorphic subgraphs G

0

1

and

G

0

2

. If none of them contain the node v

m

, then both G

0

1

and G

0

2

are closed

subgraphs of G, which contradicts the fact that G is a t-dag. Suppose G

0

1

contains v

m

. Then G

0

2

contains an isomorphic copy of the subgraph rooted

at v

m

, which must be a subgraph of G (the di�erences between G and G

0

start on the level above v

m

). Since the only closed subgraph of G isomorphic

to the subgraph rooted at v

m

is the subgraph rooted at v

m

, G

0

2

also contains

v

m

. Hence the di�erence between G

0

1

and G

0

2

must occur somewhere above

v

m

. Since v

m

is a node with only one predecessor v

0

in S

0

(and thus in G

0

,

too), both G

0

1

and G

0

2

contain v

0

. Now let G

1

and G

2

be the two graphs

obtained from G

0

1

and G

0

2

by replacing the edge v

0

! v

m

with the path

13



v

0

! v

1

! : : :! v

m

together with all induced edges. Now the isomorphism

between G

0

1

and G

0

2

can be extended to an isomorphism between G

1

and

G

2

, which contradicts the fact that G is a t-dag. 2

Proof of Theorem 14. By repeated applications of the procedure

above we can construct a t-dag H accepted by the automaton A such that

the skeleton S

H

constructed for H does not contain any path whose nodes

are ordinary and two of them provide the same state. Thus every path

consisting of ordinary nodes has the length bounded by jQj. Every maximal

path of this form has a unique predecessor which is not ordinary. Since

each root (that is, a node without predecessors in S

H

) is a milestone, the

number of nodes that have more than one predecessor in S

H

is bounded by

the number of milestones. Therefore, there are at most 2jQj

2

nodes which

are not ordinary, and the number of nodes in S

H

(equal to the number of

nodes in H) is bounded by 2jQj

3

. 2

3.4 Lower bound

Theorem 16 The emptiness problem for t-dag automata is NP-hard.

Proof. We will encode the 3-SAT problem, that is the problem whether

a given propositional logic formula in conjunctive normal form where each

conjunct is a clause consisting of exactly three literals, is satis�able. It is

well-known that 3-SAT is an NP-complete problem.

Let C

1

^ : : : ^ C

n

be an instance of the 3-SAT problem, where every

clause C

i

is a disjunction of the three literals L

i

1

_L

i

2

_L

i

3

and every literal

L

i

j

2 fx

1

; : : : ; x

k

;:x

1

; : : : ;:x

k

g.

Let � consist of k + n constant symbols a

1

; : : : ; a

k

; b

1

; : : : ; b

n

, binary

function symbol c and n-ary function symbol f . Let

Q = fX

1

; : : : ;X

k

;X

0

1

; : : : ;X

0

k

; B

1

; : : : ; B

n

; C

1

; : : : ; C

n

; qg;

F = fqg, and

� = fa

i

! X

i

; a

i

! X

0

i

j i = 1; : : : ; kg

[ fb

i

! B

i

j i = 1; : : : ; ng

[ fc("(L

i

1

); B

i

)! C

i

; c("(L

i

2

); B

i

)! C

i

; c("(L

i

3

); B

i

)! C

i

j

i = 1; : : : ; ng

[ ff(C

1

; : : : ; C

n

)! qg

where "(L

i

j

) =

(

X

i

j

if L

i

j

= x

i

j

X

0

i

j

if L

i

j

= :x

i

j

.

Suppose that C

1

^: : :^C

n

is satis�ed by an assignment � : fx

1

: : : ; x

n

g !

ftrue; falseg. Let L

i

be the literal that makes the clause C

i

true

and let x

j

i

be the variable used in the literal L

i

. It is not di�cult

14



to see that A = h�; Q; F;�i accepts the t-dag representing the term

f(c(a

j

1

; b

1

); : : : ; c(a

j

n

; b

n

)). The constants b

1

; : : : ; b

n

are used here to make

sure that the subgraphs corresponding to di�erent clauses are not isomor-

phic.

Conversely, if there exists a t-dag G accepted by A, then the assignment

� given by �(x

i

) = true i� the run assigns X

i

(and not X

0

i

) to the node

representing a

i

, satis�es C

1

^ : : : ^ C

n

. 2

Note that the signature � used in the proof above depends on the

instance C

1

^ : : : ^ C

n

. One can prove the same result for a �xed sig-

nature consisting of one constant and one binary symbol by replacing

a

1

; : : : ; a

k

; b

1

; : : : ; b

n

with k + n di�erent ground terms and constructing A

in such a way that X

i

and X

0

i

accept the t-dag representing the i-th of

them, B

i

accepts the k+ i-th, and q is reached from a subgraph representing

c(C

1

; c(C

2

; : : : ; c(C

n�1

; C

n

) : : :)).

4 Directional type checking

In this section we prove that the directional type checking for logic pro-

grams wrt. to general regular types is decidable in NEXPTIME. This huge

complexity does not seem to be a really big problem, since the types used in

practice are usually not big (e.g. the automaton recognizing the set of lists

has only two states). We do not have, however, an implementation of the

method presented here.

If � is a signature and Var is a set of variables then T

�

is the set of

ground terms and T

�(Var)

is the set of non-ground terms over � and Var.

We write Var(t) for the set of variables occurring in the term t.

A type T is a set of terms t closed under substitution [7]. A ground type

is a set of ground terms (i.e., trees), and thus a special case of a type. A term

t has type T , in symbols t : T , if t 2 T . A type judgment is an implication

t

1

: T

1

^ : : : ^ t

n

: T

n

! t

0

: T

0

that holds under all term substitutions � :

Var! T

�(Var)

.

We recall that a set of ground terms is regular if it can be de�ned by a

�nite tree automaton (or, equivalently, by a ground set expression as in [5]

or a regular grammar as in [21]). The de�nition below coincides with the

types used in [5], it extends the de�nition from [21] by allowing non-ground

types, and is equivalent to the de�nition from [13].

De�nition 17 (Regular type) A type is regular if it is of the form

Sat(T ) for a regular set T of ground terms, where the set Sat(T ) of terms

satisfying T is the type

Sat(T ) = ft 2 T

�(Var)

j �(t) 2 T for all ground substitutions � : Var! T

�

g:
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De�nition 18 (Directional type of a program [14, 5]) A directional

type of a program P is a family T = (I

p

! O

p

)

p2Pred

assigning to each

predicate p of P an input type I

p

and an output type O

p

such that, for each

clause p

0

(t

0

) p

1

(t

1

); : : : ; p

n

(t

n

) of P, the following type judgments hold.

t

0

:I

p

0

! t

1

:I

p

1

t

0

:I

p

0

^ t

1

:O

p

1

! t

2

:I

p

2

.

.

.

t

0

:I

p

0

^ t

1

:O

p

1

^ : : : ^ t

n�1

:O

p

n�1

! t

n

:I

p

n

t

0

:I

p

0

^ t

1

:O

p

1

^ : : : ^ t

n

:O

p

n

! t

0

:O

p

0

We then also say that P is well-typed wrt. T .

We do not use discriminative types in this paper. We include the de�-

nition below to show what the contribution of the paper is. The notion of a

path-closed set below originates from [23]. It is equivalent to other notions

occurring in the literature: tuple-distributive [31, 34], discriminative [5], or

deterministic.

De�nition 19 (Discriminative type) A regular set of ground terms is

called path-closed if it can be de�ned by a deterministic top-down tree au-

tomaton. A directional type is called discriminative if it is of the form

(Sat(I

p

)! Sat(O

p

))

p2Pred

, where the sets I

p

; O

p

are path-closed.

A deterministic �nite tree automaton translates to a logic program

which does not contain two di�erent clauses with the same head (mod-

ulo variable renaming), e.g., p(f(x

1

; : : : ; x

n

))  p

1

(x

1

); : : : ; p

n

(x

n

) and

p(f(x

1

; : : : ; x

n

))  p

0

1

(x

1

); : : : ; p

0

n

(x

n

). A discriminative set expression as

de�ned in [5] translates to a deterministic �nite tree automaton, and vice

versa. That is, discriminative set expressions denote exactly path-closed

regular sets. It is argued in [5] that discriminative set expressions are quite

expressive and are used to express commonly used data structures. Note

that lists, for example, can be de�ned by the program with the two clauses

list(cons(x; y)) list(y) and list(nil).

There are, however, many regular types which are not discriminative.

The simplest is the set ff(a; a); f(b; b)g. Other regular but not path-closed

sets are for example lists of numbers containing exactly one element of

a given type (which can be useful in reasoning about critical sections in

in�nite-state transition systems modeled by logic programs, cf. [20]) or the

set consisting of triples hx; y; zi where either x and y are lists and z is any

term or x and y are any terms and z is a list (which is useful for typing of

the predicate append used either for concatenating of the lists x and y or for

splitting the list z).
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We transform the well-typedness condition in De�nition 18 into a logic

program P

InOut

by replacing t : I

p

with the atom p

In

(t) and t : O

p

with p

Out

(t). The following theorem is proved in [19]. Essentially, it says

that a directional type of the form T = (Sat(I

p

) ! Sat(O

p

))

p2Pred

, for

ground types I

p

; O

p

� T

�

, satis�es a type judgment if and only if the corre-

sponding directional ground type T

g

= (I

p

! O

p

)

p2Pred

does.

Theorem 20 (Types and models of type programs) The program P

is well-typed wrt. the directional type

T = (Sat(I

p

)! Sat(O

p

))

p2Pred

(with ground types I

p

; O

p

) if and only if the subset of the Herbrand base

corresponding to T ,

M

T

= fp

In

(t) j t 2 I

p

g [ fp

Out

(t) j t 2 O

p

g;

is a model of the type program P

InOut

.

The immediate consequence of this theorem is that the type-checking

problem for directional types reduces to the following model-checking prob-

lem:

Problem 1 Given a clause p

0

(t

0

) p

1

(t

1

); : : : ; p

n

(t

n

) and a family of reg-

ular sets T

0

; T

1

; : : : ; T

n

, where T

i

= T

j

whenever p

i

= p

j

, decide whether the

set

S

n

i=0

fp

i

(t) j t 2 T

i

g is a model of the clause.

To prove the decidability of this problem, we need the following lemma.

Lemma 21 Let A

i

= h�; Q

i

; F

i

;�

i

i for i = 0; : : : ; n be tree automata with

disjoint sets of states, and let g 62 � be a fresh function symbol of arity n+1.

There exists a tree automaton A = h� [ fgg; Q; F;�i such that

� A is deterministic, and

� all states of A are reachable, and

� A recognizes the set g(T

�

�L(A

0

);L(A

1

); : : : ;L(A

n

)), and

� A can be e�ectively constructed from A

0

; : : : ;A

n

in single exponential

time.

Proof. By standard complementation and determinisation methods we

construct an automaton A

0

= h�[fgg; Q

0

; F

0

;�

0

i that satis�es all conditions

except reachability of states. The only problem here is that we have to

complement and determinize at the same time to avoid a doubly-exponential

blowup. Then we obtain A by removing non-reachable states from A

0

.
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We can assume that A

0

is a complete automaton, otherwise we can

simply add a new non-�nal state q (so-called \dead state") to Q

0

and all

possible transitions with q on the right-hand side to �

0

.

Let Q

0

= 2

Q

0

[:::[Q

n

[ fs

�n

g be the powerset of Q

0

[ : : : [ Q

n

plus one

additional state s

�n

, which is the only �nal state of A

0

, that is F

0

= fs

�n

g.

For s

1

; : : : ; s

k

2 Q

0

and k-ary f 2 � we de�ne that f(s

1

; : : : ; s

k

) ! s 2 �

0

if s is the set

fq 2 Q

0

[ : : :[Q

n

j 9q

1

2 s

1

: : : 9q

k

2 s

k

; f(q

1

; : : : ; q

k

)! q 2 �

0

[ : : :[�

n

g:

For s

0

; : : : ; s

n

2 Q

0

we de�ne that g(s

0

; : : : ; s

n

)! s

�n

2 �

0

if

s

0

\ F

0

= ;; s

1

\ F

1

6= ;; : : : ; s

n

\ F

n

6= ;:

Finally we de�neQ as the set of reachable states fromQ

0

(it is well-known

that reachability for tree automata can be tested in polynomial time), � as

the restriction of �

0

to Q, and F as F

0

.

The correctness of the construction follows immediately from the obser-

vation that for each i, the automaton A

0

i

= h� [ fgg; Q; fs 2 Q j s \ F

i

6=

;g;�i recognizes exactly the set L(A

i

), and A

0

0

restricted to � is complete.

2

Decidability of Problem 1. Let the clause p

0

(t

0

) p

1

(t

1

); : : : ; p

n

(t

n

)

and the family of regular sets T

0

; T

1

; : : : ; T

n

be an instance of Problem 1. We

did not specify here the formalism in which the sets T

0

; T

1

; : : : ; T

n

are given,

but without loss of generality we can assume that the automata recognizing

them are known. The translation from other formalisms like ground set

expressions from [5] or regular grammars from [21] is straightforward.

The idea of the proof is to test the emptiness of the intersection of the

automaton constructed in Lemma 21 with the set of instances of the term

g(t

0

; : : : ; t

n

). Due to non-linear occurrences of variables in g(t

0

; : : : ; t

n

) this

last set is, however, not regular. Automata on t-dags help us to handle these

nonlinearities.

For each variable x 2 Var(g(t

0

; : : : ; t

n

)) we introduce a fresh constant

symbol a

x

. Let G be the t-dag representing the ground term g(t

0

; : : : ; t

n

)�

where � is the substitution assigning to each variable x 2 Var(g(t

0

; : : : ; t

n

))

the respective constant a

x

.

Let A

1

= h�; Q; F;�

1

i be a deterministic tree automaton without un-

reachable states, recognizing g(T

��fgg

� T

0

; T

1

; : : : ; T

n

), as constructed in

Lemma 21.

Let A be a t-dag automaton h�

0

; Q; F;�i where �

0

= � [ fa

x

j x 2

Var(g(t

0

; : : : ; t

n

))g and � = �

1

[ fa

x

! qjq 2 Q;x 2 Var(g(t

0

; : : : ; t

n

))g.

Claim 1 The set

S

n

i=0

fp

i

(t) j t 2 T

i

g is not a model of the clause p

0

(t

0

) 

p

1

(t

1

); : : : ; p

n

(t

n

) if and only if the t-dag G is accepted by the automaton A.
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Proof. The above set is not a model of the clause if and only if there exists

a substitution � : Var(g(t

0

; : : : ; t

n

))! T

��fgg

such that t

1

� 2 T

1

; : : : ; t

n

� 2

T

n

and t

0

� 62 T

0

. This is equivalent to the existence of such a � that the

automaton A

1

accepts the term g(t

0

; : : : ; t

n

)�. Thus it enough to prove the

equivalence of the last condition with the acceptance of G by A. Recall that

G is a t-dag representing g(t

0

; : : : ; t

n

)�.

Now we prove this equivalence. If A

1

accepts g(t

0

; : : : ; t

n

)� then let q

x

be

the state assigned to the tree x�. We assign q

x

to the node labeled with a

x

in G. Using a direct correspondence between A and A

1

(as in Proposition 5;

that is why A

1

must be deterministic) we can extend this assignment to a

successful run of A on G.

Conversely, if G is accepted by A then let q

x

be the state assigned to the

node labeled a

x

in a successful run of A. Since all states in Q are reachable

(by the tree automaton A

1

), there exists a tree t

x

accepted by the state q

x

.

Putting �(x) = t

x

for all x 2 Var(g(t

0

; : : : ; t

n

)) we obtain a � such that A

1

accepts the term g(t

0

; : : : ; t

n

)�. 2

Theorem 22 Problem 1 is decidable in NEXPTIME.

Proof. This is a direct consequence of Proposition 7 and the claim above.

2

The following corollary is a direct consequence of Theorems 20 and 22.

Corollary 23 Directional type checking for logic programs wrt. arbitrary

regular types is decidable in NEXPTIME.

5 Automata on t-dags and set constraints

Decidability of the satis�ability problem for positive set constraints was �rst

proved by Aiken and Wimmers [6] by syntactic transformations of set con-

straints. Three other proofs were given by Aiken, Kozen, Vardi and Wim-

mers [3] (techniques based on hypergraphs), Bachmair, Ganzinger andWald-

mann [10] (techniques based on the equivalence between set constraints and

monadic logic), and Gilleron, Tison and Tommasi [24] (automata-theoretic

techniques). The results in [4, 15, 25] extend the respective techniques to

prove decidability of the satis�ability problem for mixed positive and nega-

tive set constraints.

In this section we give another proof based on t-dag automata. We

believe that it simpli�es the three di�erent approaches to solving negative

set constraints [4, 15, 25].

Set constraints. Set constraints denote relations between sets of ground

terms. They have numerous applications in program analysis and type in-

ference (for pointers to the literature, see the overviews [2, 27, 32]).
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Syntactically, a positive and negative set constraints are inclusions of the

form E � E

0

and E 6� E

0

where the expressions E and E

0

are given by the

grammar

E ::= X j > j ? j E [E j E \E j E j f(E; : : : ; E)

where X stands for a variable from a given set, and f is a function symbol

from a given signature �.

Semantically, the variables range over sets of ground terms from the

Herbrand universe T

�

over �, the symbols > and ? are interpreted as the

T

�

and the empty set, respectively, the Boolean connectives are interpreted

in the usual way and

f(S

1

; : : : ; S

n

) = ff(t

1

; : : : ; t

n

) j t

1

2 S

1

; : : : ; t

n

2 S

n

g:

A system SC of set constraints is satis�able if there exists an assignment of

subsets of T

�

to the variables satisfying all the constraints in SC.

Let SC be a �xed system of set constraints. De�ne E(SC) as the set

of all expressions occurring in SC, except expressions of the form E. For

example, if SC is the constraint f(X;Y ) � g(> \X) then

E(SC) = ff(X;Y );X; Y; g(> \X);> \X;>g:

Consider the set of Boolean functions 2

E(SC)

from E(SC) to

ftrue; falseg. Each such function ' can be seen as a set

fE j '(E) = trueg [ fE j '(E) = falseg:

If '(E) = true then we say that E occurs positively in ', otherwise we say

that E occurs negatively in '.

Below we de�ne an automaton, whose states are such Boolean functions.

Intuitively, a state ' accepts the t-dags that represent ground terms which

belong to all sets E occurring positively in ' and do not belong to all sets

E occurring negatively in '. For example, if ' = ff(X;Y );X; Y; g(> \

X);> \X;>g then the state ' should accept all the t-dags representing the

terms from f(X;Y ) \ X \ Y \ g(> \ X) \ > \X \ >. The construction

is essentially the same as in [24, 25], with some in
uence of the monadic

formulas from [10].

The automaton corresponding to SC. Let Q � 2

E(SC)

be the set of

Boolean functions ' : E(SC)! ftrue; falseg such that

� '(SC) = true, that is, if E � E

0

2 SC and E occurs positively in '

then E

0

occurs positively in ',

� if > 2 E(SC) then > occurs positively in ',

20



if ? 2 E(SC) then ? occurs negatively in ',

� if E

1

[ E

2

occurs positively in ' then at least one of E

1

; E

2

occurs

positively in ',

if E

1

[E

2

occurs negatively in ' then both E

1

; E

2

occur negatively in

',

� if E

1

\E

2

occurs positively in ' then both E

1

; E

2

occur positively in

', and

if E

1

\ E

2

occurs negatively in ' then at least one of E

1

; E

2

occurs

negatively in '.

Let � be the set of transitions of the form f('

1

; : : : ; '

n

)! ' such that

� f 2 �, the arity of f is n, and '

1

; : : : ; '

n

; ' 2 Q,

� ' does not contain any positive occurrence of an expression of the form

g(E

1

; : : : ; E

m

) where g 2 � is a symbol di�erent from f (this includes

the case of g being a constant, if m = 0), and

� f(E

1

; : : : ; E

n

) occurs positively in ' i� for all i = 1; : : : ; n, the expres-

sion E

i

occurs positively in '

i

.

5.1 Positive set constraints

In case of positive set constraints we do not care about accepting states, so

we de�ne F as the empty set.

Below we consider a t-dag representation of the Herbrand universe, which

is an in�nite graph where each node corresponds to a ground term (more

precisely, the closed subgraph rooted at this node represents the term).

An automaton h�; Q; F;�i is a sub-automaton of h�; Q

0

; F

0

;�

0

i if Q �

Q

0

, F � F

0

and � � �

0

.

Theorem 24 Let SC be a system of positive set constraints, A =

h�; Q; ;;�i be the automaton corresponding to SC as de�ned above, and

let H be the t-dag representing the Herbrand universe T

�

. The following

conditions are equivalent

1. SC is satis�able

2. there exists a run of A on the t-dag H

3. the automaton A has a complete sub-automaton
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Sketch of the proof. First we consider the equivalence between 1 and

2. If SC is satis�ed by a valuation � then the assignment of the set

fE 2 E(SC) j t 2 �(E)g [ fE j E 2 E(SC); t 62 �(E)g to the node

representing the term t de�nes a correct run of A on H. Conversely, if

there exist a run of A on H then let T (') be the set of the terms repre-

sented by the nodes accepted by the state '. The assignment of the set

S

fT (') j X occurs positively in 'g to the variable X satis�es SC.

The equivalence between 2 and 3 is quite simple: if there exists a run r

of A on H then A restricted to the states that are reachable in r (that is,

to the image of r) de�nes the desired sub-automaton. Conversely, if A

0

is

a closed sub-automaton of A then one can inductively de�ne r on a node

representing f(t

1

; : : : ; t

n

) as the state q such that f(q

1

; : : : ; q

n

) ! q is a

transition of A

0

and r assigns q

i

to the node representing t

i

, for i = 1; : : : ; n.

2

Relations to the other approaches. Below we show a correspondence

between this and other approaches to solving set constraints. In case of

positive set constraints this correspondence gives a uni�ed view on di�erent

techniques. In case of positive and negative set constraints, however, this

correspondence together with our emptiness test simpli�es quite signi�cantly

the proofs of the main results in corresponding papers.

A t-dag automaton can be seen as a hypergraph, where the states corre-

spond to the nodes, and the transitions correspond to the hyperedges of the

hypergraph. We believe that up to minor details, the construction of the

t-dag automaton corresponding to a system of set constraints coincide with

the analogous construction of the hypergraph corresponding to the same

system of set constraints in [3, 4]. Under this correspondence, the equiv-

alence between the conditions 1 and 3 coincide with Theorem 1 in [3] and

Theorem 3 in [4].

A t-dag automaton behaves in the same way as a corresponding tree set

automaton as de�ned in [24, 25]. The equivalence between the conditions 1

and 2 directly corresponds to Theorem 15 in [24], the equivalence between

2 and 3 to Theorem 4 in [24].

In [10], the authors prove that a system of positive set constraints is satis-

�able i� the correspondingmonadic formula is satis�able. All predicates that

occur in the formula are named P

E

for some E 2 E(SC). If we replace the

phrase \E occurs positively in '" by \P

E

(')" in the conjunction of the item-

ized conditions de�ning the automaton A above, then essentially we obtain

the formula from [10], corresponding to SC. Now a complete sub-automaton

A

0

of A can be seen as the model of this formula: states of the automaton

are elements of the model and the interpretation of predicates are given by:

P

E

(') holds i� E occurs positively in '. The transitions f('

1

; : : : ; '

n

)! '

give the interpretation of the skolem function for the formula in the model
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(if the formula is of the form 8x

1

: : : 8x

n

9y  (x

1

; : : : ; x

n

; y) then the skolem

function assigns to each sequence x

1

; : : : ; x

n

such a y that  (x

1

; : : : ; x

n

; y)

holds). The sub-automaton must be complete to ensure that f is de�ned

for all elements of the model. Thus, the theorem reducing satis�ability

of set constraints to satis�ability of monadic formulas can be seen as the

equivalence between conditions 1 and 3, together with a standard result on

monadic logic (see [1], page 34) saying that a monadic formula with predi-

cates from a given set P is satis�able i� it has a model consisting of elements

from 2

P

.

5.2 Positive and negative set constraints

First note that a system of set constraints with n negative constraints can be

reduced to an equivalent system with one negative constraint only. Simply

note that E 6� E

0

is equivalent to E\E

0

6� ? and replace E

1

� E

0

1

; : : : ; E

n

�

E

0

n

with

f(E

1

\E

0

1

; : : : ; f(E

n�1

\E

0

n�1

; E

n

\E

0

n

) : : :) 6� ?;

where f is a binary function symbol in �.

Let SC be a system of set constraints with one negative constraint E 6�

?. De�ne the set of accepting states of the automaton corresponding to SC

as

F = f' 2 Q j E occurs positively in 'g:

Theorem 25 Let A = h�; Q; F;�i be the automaton corresponding to SC

as de�ned above. The following conditions are equivalent

1. SC is satis�able

2. there exists a complete sub-automaton A

0

of the automaton A and a

�nite t-dag G accepted by A

0

Proof. It is enough to note that in the proof of Theorem 24 above, the cor-

respondence between a run of the automaton and a solution of set constraint

is such that a �nal state is reachable i� the set assigned to E is nonempty.

2

Again there are strong relations between this theorem and the main theo-

rems in the three papers showing decidability of the satis�ability problem for

negative set constraints [4, 15, 25]. In [4], satis�ability for negative set con-

straints is reduced to another problem (Problem 4 in [4]), which translates

(if SC contains one negative constraint) directly to the emptiness problem

for a closed sub-automaton. The relation with [25] is also direct, since the

satis�ability problem is there reduced to the emptiness problem of the cor-

responding tree set automaton. In case of [15], the emptiness problem is
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reduced to existence of a model of the corresponding formula (which trans-

lates to a complete sub-automaton) satisfying some property (essentially,

existence of an accepted t-dag). Moreover, the technique we used here for

testing emptiness is based on the technique in [15].

6 Conclusion and future work

We introduced automata on t-dags and proved the basic properties of the

languages that they recognize: closure under union and intersection, NP-

completeness of the emptiness problem, decidability in NP of the member-

ship problem.

Using these automata, we proved the decidability of directional type

checking of logic programs wrt. to general regular types. We also have shown

another application of these automata to solving set-constraint problems.

There are several possible directions for future work. We did not an-

swer the questions regarding determinisability of t-dag automata. We do

not know whether the membership problem can be solved in deterministic

polynomial time. We left a gap between the upper (NEXPTIME) and the

lower (DEXPTIME) bounds for the directional type checking. It would also

be interesting to have an implementation of the type check to see how it

behaves in practice.

We plan to use the approach from Section 5 to simplify the proof of decid-

ability of the satis�ability problem for set constraints with projections [16].

It should be also possible to extend these techniques to automata with equal-

ity tests [11] and use them for solving negative set constraints with equal-

ity [15].
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