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Abstract

The construction of full-text indexes on very large text collections is nowadays

a hot problem. The su�x array [Manber-Myers, 1993] is one of the most at-

tractive full-text indexing data structures due to its simplicity, space e�ciency

and powerful/fast search operations supported. In this paper we analyze,

both theoretically and experimentally, the I/O-complexity and the working

space of six algorithms for constructing large su�x arrays. Three of them

are the state-of-the-art, the other three algorithms are our new proposals.

We perform a set of experiments based on three di�erent data sets (English

texts, Amino-acid sequences and random texts) and give a precise hierarchy

of these algorithms according to their working-space vs. construction-time

tradeo�. Given the current trends in model design [19, 47] and disk technol-

ogy [16, 40], we will pose particular attention to di�erentiate between \ran-

dom" and \contiguous" disk accesses, in order to reasonably explain some

practical I/O-phenomena which are related to the experimental behavior of

these algorithms and that would be otherwise meaningless in the light of

other simpler external-memory models.

At the best of our knowledge, this is the �rst study which provides a

wide spectrum of possible approaches to the construction of su�x arrays in

external memory, and thus it should be helpful to anyone who is interested

in building full-text indexes on very large text collections.

Finally, we conclude our paper by addressing two other issues. The

former concerns with the problem of building word-indexes; we show that

our results can be successfully applied to this case too, without any loss in

e�ciency and without compromising the simplicity of programming so to

achieve a uniform, simple and e�cient approach to both the two indexing

models. The latter issue is related to the intriguing and apparently counter-

intuitive \contradiction" between the e�ective practical performance of the

well-known BaezaYates-Gonnet-Snider's algorithm [24], veri�ed in our ex-

periments, and its unappealing (i.e., cubic) worst-case behavior. We devise

a new external-memory algorithm that follows the basic philosophy under-

lying that algorithm but in a signi�cantly di�erent manner, thus resulting

in a novel approach which combines good worst-case bounds with e�cient

practical performance.
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1 Introduction

In the information age, one of the fastest growing category of databases are the textual databases|like

AP-news, Digital Libraries, Genome databases, book collections [22]. Their ultimate impact heavily

depends on the ability to store and search e�ciently the information contained into them. The continued

decline in the cost of external storage devices (like disks and CD-ROMs) has made nowadays the storage

issue not much of a problem, compared to the challenges posed by the fast retrieval of the user-requested

informations. In order to achieve this goal, specialized indexing data structures and searching tools

have been introduced so far. Their main idea is to build an index that allows to focus the search for a

given pattern string only on a very small portion of the text collection. The improvement in the query-

performance is paid by the additional space necessary to store the index. Most of the research in this

�eld has been therefore directed to design indexing data structures which o�er a good trade-o� between

the query time and the space usage. The two main approaches are: word indexes and full-text indexes.

Word-indexes exploit the fact that for natural linguistic texts, the universe of distinct words is small.

They store all the occurrences of each word in a table that is indexed via a hashing function or a tree

structure (see e.g. [42]). To reduce the size of the table, common words are often not indexed (e.g. the, at,

a). The advantage is to support very fast word (or pre�x-word) queries, while the two obvious weaknesses

consist of the limited set of supported queries, which makes the search for phrases or complex regular

expressions complicated and ine�cient [24, 32], and the impossibility to index unstructured texts, like

DNA-sequences or Chinese texts [20]. (For alternative approaches to word-indexes see [17, 51].)

Full-text indexes have been designed to overcome the limitations above by dealing with arbitrary

(unstructured) texts and general queries, at the cost of an increase in the additional space occupied by the

underlying indexing data structure. Examples of such indexes are: su�x trees [7, 33, 13], su�x arrays [32]

(cfr. PAT-arrays [24]), PAT-trees [24], Su�x Cactus [26] and String B-trees [21]. They have been

successfully applied to fundamental string-matching problems (see e.g. [7]) as well text compression [11,

31], analysis of genetic sequences [25, 34, 10, 9] and recently to the indexing of special linguistic texts [20].

General full-text indexes are therefore the natural choice to perform fast complex searches without any

restrictions. The most important complexity measures for evaluating their e�ciency are [8, 48]: (i) the

time and the extra space required to build the index, (ii) the time required to search for a string,

and (iii) the space used to store the index. Points (ii) and (iii) have been largely studied in the scienti�c

literature [13, 21, 24, 32, 33]. In this paper, we will investigate Point (i) by addressing the e�cient

construction of full-text indexes on very large text collections. This is a hot topic nowadays

1

because the

construction phase may be a bottleneck that can even prevent these indexing tools to be used in large-scale

applications. In fact, known construction algorithms are very fast when employed on textual data that

�t in the internal memory of computers [6, 32, 41] but their performance immediately degenerates when

the text size becomes so large that the texts must be arranged on (slow) external storage devices [13, 21].

1

Zobel et al. [48] say that: \We have seen many papers in which the index simply `is', without discussion of how it was

created. But for an indexing scheme to be useful it must be possible for the index to be constructed in a reasonable amount

of time, .....".
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1.1 (Mechanical) Disk vs. (Electronic) Memories.

Although disks provide a large amount of space at low cost, their access time is from 10

5

to 10

6

times

slower than the time to access the internal memory of computers [39]. Unfortunately, the majority of

the known algorithms ignore this fact and use disks in the same manner as if all data were �tted into

the internal memory and could be accessible in unit time. Consequently, they su�er from the so called

I/O bottleneck: They spend most of the time in moving data to/from the disk. Since our aim is to

study the e�ciency of algorithms that operate on very large text collections, we need a computational

model that captures this I/O-phenomenon. Accurate disk models are complex [40, 43, 44, 47], and it is

virtually impossible to exploit all the �ne points of disk characteristics systematically, either in practice

or for theoretical analysis. In order to capture in an easy, yet signi�cant, way the di�erences between

the internal (electronic) memory and the external (mechanical) disk, we refer to the external-memory

model introduced by Vitter and Shriver [44]. Here a computer is abstracted to consist of a two-level

memory: a fast and small internal memory, of size M , and a slow and arbitrarily large external memory,

called disk. Data between the internal memory and the disk are transfered in blocks of size B (called disk

pages). Since disk accesses are the dominating factor in the running time of many algorithms the usual

accounting scheme [44, 47] consists of evaluating their asymptotic performance by counting the total

number of disk accesses performed during the computation. Although this is a workable approximation

for algorithm design, this accounting scheme does not accurately predict the running time of algorithms

on real machines because it does not take into account some important specialties of new disk systems [16].

In fact, disk access costs have mainly two components: the time to fetch the �rst bit of requested data

(seek time) and the time required to transmit the requested data (transfer rate). Transfer rates are more

or less stable but seek times are highly variable [16, 40]. Hence, it is very well known [16, 40, 48] that

accessing one page from the disk in most cases decreases the cost of accessing the page succeeding it, so

that \bulk" I/Os are less expensive per page than \random" I/Os. This di�erence becomes much more

prominent if we also consider the reading-ahead/bu�ering/caching optimizations which are common in

current disks and operating systems. To deal with these specialties and avoid the introduction of new

parameters, we adopt the simple, yet signi�cant, accounting scheme introduced by Farach et al. [19]:

Let c be a constant, a Bulk I/O is the reading/writing of a contiguous sequence of cM=B disk pages;

a random I/O is any single disk-page access which is not part of a bulk I/O. The performance of the

external-memory algorithms is therefore evaluated by measuring: (a) the number of I/Os (bulk and

random), (b) the internal running time (CPU time), and (c) the number of disk pages used during the

construction process (working space).

1.2 Previous Work.

For simplicity of exposition, we will use N to denote the size of the whole text collection and we will

assume throughout the paper that the index is built on only one text, obtained by concatenating all the

available texts separated by proper special characters (i.e., endmarkers).

The most famous full-text indexing data structure is the su�x tree [33, 49]. Its numerous applications

have been cataloged in [7]. In internal memory, a su�x tree can be constructed in O(N) time [33, 18];

in external memory, Farach et al. [19] showed that a su�x tree can be optimally constructed within the

same I/O-bound as sorting N atomic items; nonetheless, known practical construction algorithms [13]

for external memory still operate in a brute-force manner requiring �(N

2

) total I/Os in the worst-case.

The main limit of these algorithms is inherent in the working space which depends on the text structure,

is not predictable in advance and turns out to require between 16N and 26N bytes

2

(assuming that

the N � 2

32

[30, 32]). This makes them impractical even for moderately large text collections (consider

what happens for N � 100 Mbytes, the su�x tree would occupy 1:7Gbytes !). Searching for an arbitrary

2

[30] was able to reduce the working space to 10:1N � 20N . However, this was achieved by assuming that N < 2

27

.
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string of length p takes O(p) time in internal memory (which is optimal for bounded alphabets), but it

does not gain any speed up from the block-transfer when the su�x tree is stored on the disk [21].

To circumvent these drawbacks, Ferragina and Grossi introduced the String B-tree data structure [21].

Searching for an arbitrary pattern string of length p takes O(p=B + log

B

N) random I/Os (which is

optimal for unbounded alphabets). The total occupied space is asymptotically optimal, and needs 12:3N

bytes. The String B-tree is a dynamic data structure which supports e�cient update operations, but its

construction from scratch on a text collection of size N takes O(N log

B

N) random I/Os. Hence, space

and construction time may still be a bottleneck in large-scale applications.

Since the space occupancy is a crucial issue when building and using full-text indexes on very-large

text collections, Manber and Myers [32] proposed the su�x array data structure, which consists of an

array of pointers to text positions and thus occupies overall 4N bytes

3

(thus being 4 times smaller

than a su�x tree, and 3 times smaller than a String B-tree). Su�x arrays can be e�ciently constructed

in O(N log

2

N) time [32] and O((N=B)(log

2

N) log

M=B

(N=B)) random I/Os [1]. In external memory,

searching is not as fast as in String B-trees but it still achieves good I/O-performances. Su�x arrays have

been recently the subject of experimental investigations in internal memory [32, 41], external memory [24]

and distributed memory systems [28, 36]. The motivation has to be probably found in their simplicity,

reduced space occupancy, and in the small constants hidden in the big-Oh notation which make them

suitable for indexing very-large text collections in practical applications (without any surprise in the

�nal performances !). Su�x arrays also present some natural advantages over the other indexing data

structures for what concerns the construction phase. Indeed, their simple topology (i.e., an array of point-

ers) avoids at construction time all the problems related to the e�cient management of tree-based data

structures (like su�x trees and String B-trees) on external storage devices [29]. Additionally and more

importantly, e�cient practical procedures for building su�x arrays are de�nitively useful for e�ciently

constructing su�x trees, String B-trees and other powerful indexing data structures [35], so that they

can allow to overcome their main bottleneck (i.e., expensive construction phase).

1.3 Our Contribution.

With the exception of some preliminary and partial experimental works [32, 24, 36], to the best of

our knowledge, no full-range comparison exists among the known algorithms for building large su�x

arrays. This will be the main goal of our paper, where we will theoretically analyze and experimentally

study various su�x-array construction algorithms. Some of them are the state-of-the-art in the practical

setting [24], others are the most e�cient theoretical ones [32, 1], whereas three other algorithms are

our new proposals obtained either as slight variations of the previous ones or as a careful combination

of known techniques which were previously employed only in the theoretical setting. We will study

these algorithms by evaluating their working space and their construction complexity both in terms of

number of (random and bulk) I/Os and CPU-time. In the design of the new algorithms we will address

mainly two issues: (i) simple algorithmic structure, and (ii) reduced working space. The �rst issue has

clearly an impact on the predictability and practical e�ciency of the proposed algorithms, which are

also 
exible enough to be used in distributed memory systems. In fact, since our new algorithms will be

based on two basic routines|sorting and scanning of a set of items|they will immediately provide us

with very fast su�x-array construction algorithms also for D-disk arrays systems [12] (thus achieving a

speedup factor of approximately D [38, 44]) and clusters of P workstations (thus achieving a speedup

factor of approximately P [23]). Additionally, our algorithms will be not faced with the problems of

carefully setting some system parameters, as it happens in the results of [28, 36]. The second issue (i.e.,

space usage) will be also carefully taken into account because the real disk size is limited and thus a

large working space could prevent the use of a construction algorithm even for moderately large text

3

We assume that N � 2

32

.
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collections. Additionally, as Knuth [29][Sect. 6.5] says: \space optimization is closely related to time

optimization in a disk memory". Our aim will be therefore to keep the working space of our algorithms

as small as possible without worsening their total running time.

We will discuss all the algorithms according to these two resources and we will pose particular attention

to di�erentiate between random and bulk I/Os. This will allow us to take into account in the asymptotic

analysis of the most signi�cant disk characteristics, thus making reasonable predictions on the practical

behavior of these algorithms. To validate our conjectures, we will perform an extensive set of experiments

based on three text collections | English texts, Amino-acid sequences and random data. The various

parameters accounted for in our theoretical analysis, will allow us to reasonably explain some interesting

I/O-phenomena which arise during these experiments and which could not be explained in the light

of other simpler external-memory models (see e.g. [47] for a survey). As a result of the theoretical and

experimental analysis, we will give a precise hierarchy of su�x-array construction algorithms according to

their working-space vs. construction-time tradeo�; thus providing a wide spectrum of possible approaches

for anyone who is interested in building large full-text indexes.

This analysis leads us to additionally address two further issues: construction of word-indexes and

worst-case performance of the BaezaYates-Gonnet-Snider's algorithm [24], one of the most e�ective al-

gorithms in our proposed hierarchy. As far as the former issue is concerned, we show that our new

algorithms can be successfully applied to construct word-indexes without any loss in e�ciency and with-

out compromising the ease of programming so to achieve a uniform, simple and e�cient approach to

both the two indexing models. The latter issue deserves much attention and is related to the intrigu-

ing, and apparently counterintuitive, \contradiction" between the e�ective practical performance of the

BaezaYates-Gonnet-Snider's (BGS) algorithm [24], veri�ed in our experiments, and its unappealing (i.e.,

cubic) worst-case behavior. This fact motivated us to deeply study its algorithmic structure and exploit

more �ne-grained external-memory models [19] for explaining its experimental performances. This has

�nally lead us to devise a new external-memory construction algorithm that follows the BGS's basic

philosophy but in a signi�cantly di�erent manner, thus resulting in a novel approach which combines

good practical qualities with e�cient worst-case performances.

1.4 Map of the Paper.

In the next section, we give some basic de�nitions and �x our notation. In Section 2.1, we review

three well-known algorithms for constructing su�x arrays and analyze their space requirements. The

description may appear in some sense much detailed, but our aim is to make this paper as a self-contained

reference to anyone who is interested in building large su�x arrays. In Section 2.2, we describe three

new external-memory algorithms for constructing su�x arrays on large text collections. In Section 3,

we �rst overview the main features of the external-memory library LEDA-SM [15], used to implement all

tested algorithms; and then we introduce our benchmark suite and discuss our experimental settings.

In Section 4, we present and discuss the experimental results on the three data sets: Reuters corpus,

Amino-acid collection and random texts. In Section 5.1, we address the problem of constructing word-

indexes and show how our results can be easily extended to this indexing model in a natural way. In

Section 5.2, we describe a new algorithm for su�x-array construction which follows the basic philosophy

of BaezaYates-Gonnet-Snider's algorithm [24], one of the most interesting algorithms in our experiments,

but in a signi�cantly di�erent manner thus resulting e�ective both in theory and in practice. We conclude

the paper describing some open problems and discussing future directions of research.

6



2 The Su�x Array data structure

Given a string T [1; N ], let T [1; i] denote the i-th pre�x of T and T [i; N ] denote the i-th su�x of T .

The symbol �

L

denotes the lexicographic order between any two strings and the symbol �

i

denotes the

lexicographic order between their length-i pre�xes: S �

i

T if and only if S[1; i]�

L

T [1; i].

The su�x array SA built on the text T [1; N ] is an array containing the lexicographically ordered

sequence of su�xes of T , represented via pointers to their starting positions (i.e., integers). For instance,

if T = ababc then SA = [1; 3; 2; 4; 5]. This way, SA occupies 4N bytes if N � 2

32

. Manber and Myers [32]

introduced this data structure in the early 90s (cfr. PAT-array [24]) and proposed an interesting algorithm

to e�ciently search for an arbitrary string P [1; p] in T by taking advantage of the information coded into

SA. They proved that all the Pocc occurrences of P in T can be retrieved in O(p log

2

N + Pocc) time in

the worst-case using the plain SA, and that this bound can be improved to O(p + log

2

N + pocc) time

if another array of size 4N is provided. If SA is stored on the disk, divided into blocks of size B, the

search for P takes O(dp=Be log

2

N + Pocc=B) random I/Os. In practical cases it is p << B, so that

dp=Be = 1. The simplicity of the search procedure, the small constants (hidden in the big-Oh notation),

and the reduced space occupancy are the most important characteristics that make this data structure

very appealing for practical applications.

2.1 Constructing a su�x array

We now review three known algorithms for constructing the su�x array data structure on a string T [1; N ].

We analyze their construction time in terms of CPU-time and number of I/Os (both random and bulk) in

the external-memory model. We also address the issues related to their space requirements, by assuming

N � 2

32

so that 4 bytes are su�cient to encode a (su�x) pointer. We remark that the working space of all

algorithms is linear in the length N of the indexed text, and thus asymptotically optimal. However, since

the constants hidden in the big-Oh notation di�er a lot and the available disk space is not unlimited, we

will carefully evaluate the space usage of these algorithms in order to study their practical applicability

(see Table 2.1 for a summary).

2.1.1 The algorithm of Manber and Myers

It is the fastest theoretically known algorithm for constructing a su�x array in internal memory [32]. It

requires O(N log

2

N) worst-case time and consists of dlog

2

(N + 1)e stages, each taking O(N) time. In

the �rst stage, the su�xes are put into buckets according to their �rst symbol (via radix sort). Before the

generic h-th stage starts, the algorithm has inductively identi�ed a sequence of buckets, each containing

a set of su�xes. Any two su�xes in the same bucket share the �rst 2

h�1

characters, whereas any two

su�xes in two di�erent buckets are �

L

-sorted according to the bucket-ordering (initially, we have just

one bucket containing all of T 's su�xes). In stage h, the algorithm sorts lexicographically the su�xes of

each bucket according to their �rst 2

h

characters, thus forming new smaller buckets which preserve the

inductive hypothesis. After the last stage, all the buckets will contain one su�x, thus giving the �nal

7



Algorithm Working space CPU{time total number of I/Os

Manber{Myers (Sect. 2.1.1) 8N N log

2

N N log

2

N

BaezaYates{Gonnet{Snider (Sect. 2.1.2) 8N (N

3

log

2

M )=M (N

3

log

2

M )=(MB)

Doubling (Sect. 2.1.3) 24N N (log

2

N )

2

(N=B) (log

M=B

N=B) log

2

N

Doubling+Discard (Sect. 2.2.1) 24N N (log

2

N )

2

(N=B) (log

M=B

N=B) log

2

N

Doubling+Discard+Radix (Sect. 2.2.1) 12N N (log

2

N )

2

(N=B) (log

M=(B logN)

N ) log

2

N

Construction in L pieces (Sect. 2.2.3) maxf

24N

L

;

2NL+8N

L

g N (log

2

N )

2

(N=B) (log

M=B

(N=B)) log

2

N

New BGS (Sect. 5.2) 8N N

2

(log

2

M )=M (N

2

=MB)

Table 2.1: The CPU-time and the number of I/Os are expressed in big-Oh notation; the working space is

evaluated exactly; L is an integer constant greater than 1. BaezaYates-Gonnet-Snider algorithm (BGS),

and its new variant (called new BGS), operate via only disk scans, whereas all the other algorithms mainly

execute random I/Os. Notice that with a tricky implementation, the working space of the BGS-algorithm

can be reduced to 4N .

SA. The e�ciency of this algorithm depends on how fast is the sorting step in a generic stage. Manber

and Myers [32] showed how to perform it in linear time by using only two integer arrays, for a total of

8N bytes. If this algorithm is used in a virtual memory setting, it performs O(N log

2

N) random I/Os.

2.1.2 The algorithm of BaezaYates-Gonnet-Snider

The algorithm [24] computes incrementally the su�x array SA of the text string T [1; N ] in �(N=M)

stages. Let ` < 1 be a positive constant �xed below, and assume to set m = `M . The latter parameter

will denote the size of the text pieces loaded in memory at each stage. We also assume for the sake of

presentation that m divides N .

The algorithm maintains at each stage the following invariant: At the beginning of stage h, where

h = 1; 2; : : : ; N=m, the algorithm has stored on the disk an array SA

ext

containing the sequence of the

�rst (h � 1)m text su�xes ordered lexicographically and represented via their starting positions (i.e.,

integers).

During the hth stage, the algorithm incrementally updates SA

ext

by properly inserting into it the text

su�xes which start in the substring T [(h� 1)m+ 1; hm], and by maintaining their lexicographic order.

This preserves the invariant above. Hence, after all the N=m stages are executed, it is SA

ext

= SA. We

are therefore left with showing how the generic h-th stage works.

The text substring T [(h � 1)m + 1; hm] is loaded into internal memory, and the su�x array SA

int

containing only the su�xes starting in that text substring is built by possibly accessing the disk, if

needed.

1

Then, SA

int

is merged with the current SA

ext

to produce the new array and preserve the

invariant. This merging process is executed in two steps with the help of a counter array C[1; m+1]. In the

former step, the text T is scanned rightwards and the lexicographic position j of each text su�x T [i; N ],

with 1 � i � (h � 1)m, is determined in SA

int

via a binary search. The entry C[j] is then incremented

by one unit in order to record the fact that T [i; N ] lexicographically lies between the SA

int

[j � 1]-th

and the SA

int

[j]-th su�x of T . In the latter step, the information kept in the array C is employed to

quickly merge SA

int

with SA

ext

: entry C[j] indicates how many consecutive su�xes in SA

ext

follow the

SA

int

[j � 1]-th text su�x and precede the SA

int

[j]-th text su�x. This implies that a simple disk scan

of SA

ext

is su�cient to perform such a merging process. At the end of these two steps, the invariant on

SA

ext

has been properly preserved so that h can be incremented and the next stage can correctly start.

Some comments are in order at this point. It is clear that a phase proceeds by mainly executing two

disk scans: one is performed to load T [(h�1)m+1; hm] in internal memory, and another is performed to

merge SA

int

and SA

ext

via the counter-array C. However, some random disk accesses may be necessary in

1

The comparison between any two su�xes can require to access the substring T [hm + 1; N ], which is still on disk, thus

inducing some random I/Os.
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two distinct situations: either when SA

int

is built or when the lexicographic positions of each text su�x

T [i; N ] is determined in SA

int

. In both these two cases, we may need to compare a pair of text su�xes

which share a long pre�x not entirely available in internal memory (i.e., out of T [(h� 1)m+ 1; hm]). In

the worst case, this comparison will require two sequential disk scans (initiated at the starting positions

of these two su�xes) taking O(N=M) bulk I/Os.

As far as the worst-case I/O-complexity is concerned, let us consider the pathological case in which

we have T = a

N

. Here, we need O((m log

2

m)N=m) bulk I/Os to build SA

int

; O((h�1)m(log

2

m)(N=m))

bulk I/Os to compute the array C; and O(hm=M) = O(h) bulk I/Os to merge SA

int

with SA

ext

. No

random I/Os are executed, so that the global number of bulk I/Os is O(

P

N=m

h=1

hm(log

2

m)(N=m)) =

O((N

3

log

2

M)=M

2

). Since the algorithm processes each loaded block, we may assume that it takes

�(M) CPU-time to operate on each of them, thus requiring O((N

3

log

2

M)=M) overall CPU-time. The

total space required is 4N bytes for SA

ext

and 8m bytes for both C and SA

int

; plus m bytes

2

to keep

T [(h � 1)m + 1; hm] in internal memory (`'s value is derived consequently). The merging step can be

easily implemented using some extra space (indeed additional 4N bytes), or by employing just the space

allocated for SA

int

and SA

ext

via a more tricky implementation. We adopt for simplicity the former

strategy.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would classify this

algorithm much less interesting than the others discussed in the following sections (see Table 2.1). But

there are some considerations that are crucial to shed new light on it, and look at this algorithm from

a di�erent perspective. First of all, we must observe that in practical situations, it is very reasonable to

assume that each su�x comparison �nds in internal memory all the (usually, constant number of) charac-

ters needed to compare the two involved su�xes. Consequently, the practical behavior is more reasonably

described by the formula: O(N

2

=M

2

) bulk I/Os and O((N

2

log

2

M)=M) CPU time. Additionally, the

accounting scheme adopted in this paper allows us to evidence some positive features that would undergo

unobserved without this accounting model. Indeed, the analysis above has pointed out that all the I/Os

are sequential and that the actual number of random seeks is O(N=M) (i.e., at most a constant number

per stage). Consequently, the algorithm takes fully advantage of the large bandwidth of current disks

and of the high computation-power of current processors [16, 40]. Moreover, the reduced working space

facilitates the prefetching and caching policies of the underlying operating system (remember Knuth's

quote cited in the Introduction) and �nally, a careful look to the algebraic calculations shows that the

constants hidden in the big-Oh notation are very small. As a result, the adopted accounting scheme does

not label the BGS-algorithm as \worse" but drives us to conjecture good practical performances, leaving

the �nal judgment to depend on disk and system specialties. These aspects will be addressed in Section 4.

Implementation Issues. The implementation of this algorithm including automatic accounting is

tricky if one wants to take into account various pathological cases occurring in the merging step of SA

int

and SA

ext

, and in the construction of SA

int

. These cases could lead the algorithm to execute many I/Os

that would apparently be classi�ed as random (according to the accounting scheme) but which are likely

to be bu�ered by the system and thus can be executed much faster. This is not so harmful in itself but

would destroy the accounting results. Our main idea is twofold:

� The array SA

int

is built only on the �rst m � B su�xes of T [(h � 1)m+ 1; hm], thus we discard

the last B su�xes (one page) of that text piece. These discarded su�xes will be (re)considered

in the next stage. In such a way, during the construction of SA

int

, each su�x is guaranteed to

have a pre�x of at least B characters available in internal memory, hence signi�cantly reducing the

probability of a page fault for a su�x comparison.

� To merge SA

int

and SA

ext

we need to load the su�xes starting in T [1; (h� 1)m] and search them

into SA

int

. These su�xes are loaded via a rightward scan of T , which brings into internal memory

2

We assume that the alphabet size is smaller than 256.
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text pieces whose size is twice the size of a bulk I/O. Then, only the su�xes starting in the �rst

half of this piece are searched in SA

int

, thus guaranteeing to have in internal memory at least cM

characters for their comparison.

These two simple tricks avoid some \border cases" which are very likely to induce random I/Os and

that instead can be easily canceled via a careful programming. We experimented a dramatic reduction

in the total number of random I/Os and a consequent signi�cant speedup in the �nal performance of the

implemented BGS-algorithm (see Section 4).

2.1.3 The doubling algorithm

This algorithm was introduced in [1] as a variant of the labeling technique of [27], properly adapted to work

in external memory. The main idea is �rst to logically pad T at the end with N special blank characters

which are smaller than any other of T 's characters; and then to assign names (i.e. small integers) to the

power-of-two length substrings of T [1; 2N ] in order to satisfy the so called lexicographic naming property:

Given two substrings � and � of length 2

h

occurring in T , it is � �

L

� if and only if the name of

� is smaller than the name of �. These names are computed inductively by exploiting the following

observation: the lexicographic order between any two substrings �; � of length 2

h

can be obtained by

splitting them into two equal-length parts � = �

1

�

2

and � = �

1

�

2

, and by using the order between

the two pairs of names inductively assigned to (�

1

; �

2

) and (�

1

; �

2

). After q = dlog

2

(N + 1)e stages,

the algorithm has computed the lexicographic names for the 2

q

-length substrings of T [1; 2N ] starting at

positions 1; : : : ; N (where 2

q

� N). Consequently, the order between any two su�xes of T , say T [i; N ]

and T [j; N ], can be obtained in constant time by comparing the lexicographic names of T [i; i+ 2

q

� 1]

and T [j; j + 2

q

� 1]. This is the rationale behind the doubling algorithm in [1], whose implementation

details are sketched below.

At the beginning, the algorithm scans the string T [1; N ] and creates a list of N tuples each consisting

of four components, say h0; 0; i; T [i]i (the third component will remain �xed afterwards)

3

. During all

q = dlog

2

(N + 1)e stages, the algorithm manipulates these tuples by preserving the following invariant:

At the beginning of stage h (initially h = 1), tuple h�; �; j; n

j

i keeps some information about the substring

T [j; j + 2

h�1

� 1] and indeed n

j

is its lexicographic name.

4

After the last q-th stage, the su�x array

of T is obtained by executing two steps: (i) sort the tuples in output from stage q according to their

fourth component; (ii) construct SA by reading from left-to-right the third component of the tuples in

the ordered sequence.

We are therefore left with showing how stage h can preserve the invariant above by computing the

lexicographic names of the substrings of length 2

h

with the help of the names inductively assigned to the

2

h�1

-length substrings. This is done in four steps as follows.

1. The N tuples (in input to stage h) are sorted according to their third component, thus producing

a list such that its i-th tuple has the form h�; �; i; n

i

i and thus keeps the information regarding the

substring T [i; i+ 2

h�1

� 1].

2. This list is scanned rightwards and the i-th tuple is substituted with hn

i

; n

i+2

h�1
; i; 0i, where n

i+2

h�1

is the value contained in the fourth component of the (i+ 2

h�1

)-th tuple in the list.

5

3. The list of tuples is sorted according to their �rst two components (lexicographic naming property).

3

The blank characters are only logically appended to the end of T .

4

In what follows, the symbol � is used to denote an arbitrary value for a component of a tuple, which is actually not

important in the discussion.

5

The rationale behind this step is to represent each substring T [i; i+2

h

�1] by means of the lexicographic names assigned

to its pre�x and its su�x of length 2

h�1

. These names are inductively available at the beginning of stage h.
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4. The sorted sequence is scanned rightwards and di�erent tuples are assigned (in their fourth com-

ponent) with increasing integer numbers. This way, the lexicographic naming property is preserved

for the substrings of T having length 2

h

.

The correctness of this approach immediately derives from the lexicographic naming property and

from the invariant preserved at every stage h which actually guarantees that:

Property 1 Each tuple h�; �; i; �i contains some compact lexicographic information about the 2

h

-length

pre�x of the su�x T [i; N ].

As far as the I/O complexity is concerned, each stage applies twice a sorting routine (steps 1 and 3)

and twice a scanning routine (steps 2 and 4) on a sequence of N tuples. The total number of random

I/Os is therefore O(sort(N) log

2

N), and the total number of bulk I/Os is O((N=M) log

2

N), where

sort(N) = (N=B) log

M=B

(N=B) is the (random) I/O-complexity of an optimal external-memory sorting

algorithm [44]. The CPU-time is O(N log

2

2

N) since we perform O(log

2

N) sorting steps on N items. As

far as the space complexity is concerned, this algorithm sorts tuples of four components, each consisting

of an integer (i.e., 4 bytes). Hence, it seems that 16 bytes per tuple are necessary. Instead, by carefully

redesigning the code it is possible to save one entry per tuple, thus using only 12 bytes (overall 12N

bytes). In summary, the total space complexity is 24N bytes because the implementation of the multiway

mergesort routine [29], used in our experiments to sort the tuples, needs 2Xb bytes for sorting X items

of b bytes each (see Section 3).

Two practical improvements are still possible. The �rst improvement can be obtained by coding

four consecutive characters of T into one integer before that the �rst stage is executed. This allows the

saving of the �rst two stages and hence overall four sorting and four scanning steps. This improvement

is not negligible in practice due to the time required by the sorting routine (see Figure 3.1). The second

improvement comes from the observation that it is not necessary to perform �(log

2

N) iterations, but

the doubling process can be stopped as soon as all the 2

h

-length substrings of T are di�erent (i.e. all

tuples get di�erent names in step 4). This modi�cation does not change the worst-case complexity of the

algorithm, but it ensures that only six stages

6

are usually su�cient for natural texts [13].

2.2 Our three new proposals

In this section we introduce three new algorithms which asymptotically improve upon the previously

known ones by o�ering better trade-o�s between total number of I/Os and working space. Their algo-

rithmic structure is simple because they are based only upon sorting and scanning routines. This feature

has two immediate advantages: The algorithms are expected to be fast in practice because they can

bene�t from the prefetching of the disk [39]; they can be easily adapted to work e�ciently on D-disk

arrays and clusters of P workstations. It su�ces to plug-in proper sorting/scanning routines to obtain a

speed-up of a factor D [38] or P [23], approximately (cfr. [28, 36]).

2.2.1 Doubling combined with a discarding stage

Our �rst new algorithm is based on the following observation: In each stage of the doubling approach, all

tuples are considered although the �nal position in SA of some of them might be already known. Therefore

all those tuples could be discarded from the succeeding sorting steps, thus reducing the overall number

of operations (hence I/Os) executed in the next stages. Although this discarding strategy does not give

an asymptotic speed up on the overall performance of the algorithm, it is nonetheless expected to induce

6

In natural texts, su�xes share the �rst 64 characters on average. This accounts for six stages. Together with the �rst

improvement, four stages are su�cient on average.
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a signi�cant improvement on experimental data sets because it tends to reduce the number of items on

which the sorting/scanning routines are required to work on.

7

The main idea is therefore to identify in the step 4 of the doubling algorithm (see Section 2.1.3), all

the tuples whose �nal lexicographic position can be inferred using the available information, and then

discard them from the next sorting stages. However, these tuples cannot be completely excluded because

they might be necessary in the step 1 of the succeeding stages in order to compute the names of longer

pre�xes of su�xes whose position has been not yet established. In what follows, we describe how to cope

with this problem (see Property 2).

As in the original doubling algorithm, we assume that a tuple has three entries (the fourth one has

been dropped, see Section 2.1.3), and we call a tuple �nished if its second component is set to �1. The

new algorithm inductively keeps two lists of tuples: FT (�nished tuples) and UT (un�nished tuples). The

former is a sorted list of tuples corresponding to su�xes whose �nal position in SA is known; they have

the form hpos;�1; ii, where pos is the �nal position of su�x T [i; N ] in SA (i.e., SA[pos] = i). UT is a

list of tuples hx; y; ii, corresponding to su�xes whose �nal position is not yet known, and are such that

x; y � 0 denote lexicographic names and T [i; N ] is the su�x to which this (un�nished) tuple refers.

At the beginning, the algorithm creates the list UT with tuples having the form h0; T [i]; ii, for 1 � i �

N , sets FT to the empty list and initializes the counter j = 0. Then, the algorithm proceeds into stages

each consisting of the following steps:

1. Sort the tuples in UT according to their �rst two components. If UT is empty goto step 6.

2. Scan UT, mark the \�nished" tuples and assign new names to all tuples in UT. Formally, a tuple is

\�nished" if it is preceded and followed in UT by two tuples which are di�erent in at least one of

their �rst two components; in this case, the algorithm marks \�nished" the current tuple by setting

its second component to �1. The new names for all tuples of UT are computed di�erently from

what was done in step 4 of the doubling algorithm (see Section 2.1.3). Indeed, the �rst component

of a tuple t = hx; y; �i is now set equal to (x+ c), where c is the number of tuples that precede t in

UT and have the form hx; p; �i with p 6= y.

3. Sort UT according to the third component of its tuples (i.e., according to the starting position of

the corresponding su�x).

4. Merge the lists UT and FT according to the third component of their tuples. UT will keep the �nal

merged sequence, whereas FT will be emptied.

5. Scan UT and for each not-�nished tuple t = hx; y; ii (with y 6= �1), take the next tuple at distance

2

j

(say hz; �; i+ 2

j

i) and change t to hx; z; ii. If a tuple is marked \�nished" (i.e., y = �1), then it

is discarded from UT and put into FT. Finally set j = j + 1 and go to step 2.

6. (UT is empty) FT is sorted according to the �rst component of its tuples. The third component of

the sorted tuples read rightwards, give the �nal su�x array SA.

The correctness can be proved by the following invariant:

Property 2 At a generic stage j (j � 0), the execution of step 2 ensures that a tuple t = hx; y; ii

satis�es the property that x is the number of T 's su�xes whose pre�x of length 2

j

is strictly smaller than

T [i; i+ 2

j

� 1].

Proof: Before step 2 is executed, x inductively accounts for the number of su�xes in T whose 2

j�1

-length

pre�x is lexicographically smaller than the corresponding one of T [i; N ]. At the �rst stage (j = 0), the

7

Knuth [29][Sect. 6.5] says: \space optimization is closely related to time optimization in a disk memory".
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algorithm has indeed safely set the �rst component of each tuple to 0. When step 2 is executed and

tuple t is processed, the variable c accounts for the number of su�xes whose 2

j�1

-length pre�x is equal to

T [i; i+ 2

j�1

� 1] but their 2

j

-length pre�x is smaller than T [i; i+ 2

j

� 1]. From the inductive hypothesis

on the value of x, it then follows that the new value (x+ c) correctly accounts for the number of su�xes

of T whose 2

j

-length pre�x is lexicographically smaller than the corresponding one of T [i; N ].

The logic underlying the algorithm above is similar to the one behind the original doubling algorithm

(see Section 2.1.3). However, here the new names are assigned in step 2 by following a completely di�erent

approach which guarantees not only the lexicographic naming property but also a proper coding of some

useful informations (Property 2). This way when a tuple is marked \�nished", its �rst component

correctly gives the �nal position in SA of the corresponding su�x (denoted by its third component).

Therefore, the tuple can be safely discarded from UT and put into FT (step 5).

Doubling combined with the discarding strategy performs O((N=B)(log

M=B

(N=B)) log(N)) random

I/Os, O((N=M) log

2

N) bulk I/Os, and occupies 24N bytes (see Section 2.1.3), exactly the same I/O-

complexity as the Doubling algorithm. In our implementation, we will also use the compression scheme

discussed at the end of Section 2.1.3, to save the �rst two stages and thus four sorting and four scanning

steps. As Section 4 shows, the discarding strategy induces a speed-up in the practical performance of the

Doubling approach.

2.2.2 Doubling+Discard and Radix Heaps

Although the doubling technique gives the two most I/O-e�cient algorithms for constructing large su�x

arrays, it has the major drawback that its working space is large (i.e. 24N bytes) compared to the other

known approaches (see also Table 2.1). This is due to the fact that it uses an external mergesort [29]

for ordering the list of tuples and this requires an auxiliary array to store the intermediate results. Our

new idea here is to reduce the overall space requirements by making use of an external version of the

radix heap data structure introduced in [3]. This data structure [14] uses an exact number N=B of

disk pages to store N items, and it is a monotone integer priority queue that supports the insertion

of a new item in amortized O(1=B) I/Os and the deletion of the item having minimum priority in

amortized O(1=B log

M=(B log

2

V )

V ) I/Os, where V is the maximum priority value. Hence radix heaps are

space e�cient but their I/O-performance degenerates when V is large. Our new construction algorithm

replaces the mergesort in the Doubling+Discard algorithm (see steps 1 and 3 in Section 2.2.1) with a

sorting routine based on that external radix heap. This reduces the overall required space to 12N bytes,

but at the cost of increasing the I/O{complexity to O((N=B) (log

M=(B log

2

N)

N) log

2

N) random I/Os

(and O((N=M) log

2

N) bulk I/Os), because V = N in the step 3 of Section 2.2.1 (indeed, the third

component of the sorted tuples ranges in [1; N ]). We observe that this algorithm should outperform the

doubling approach during the �rst stages because the range of assigned names, and thus the value of V ,

is su�ciently small to take advantage from the radix-heap structure. On the other hand, the algorithm

performance degenerates as more stages are executed because V becomes larger and larger. It is therefore

interesting to experimentally investigate this solution since it signi�cantly saves space and is expected to

behave well in practice even in the light of the reduction in the number of tuples to be sorted in each

stage.

2.2.3 Construction in L pieces

The approaches described before are I/O-e�cient but they use at least 8N bytes of working space. If

the space issue is a primary concern, and we still wish to keep the total number of I/Os small (un-

like [24]), di�erent approaches must be devised that require much less space but still guarantee good
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I/O-performances

8

. In this section, we describe one such approach which improves over all previous

algorithms in terms of both I/O complexity, CPU time and space occupancy. It constructs the su�x

array into pieces of equal sizes and thus it turns out useful either when the underlying application does

not need the su�x array as a unique data structure, but allows to keep it in a distributed fashion [10];

or when we operate in a distributed-memory environment [28, 36].

The most obvious way to achieve this goal might be to partition the original text string T [1; N ] into

equal-length substrings and then apply on these pieces any known su�x-array construction algorithm.

However, this approach should cope with the problem of correctly handling the su�xes which start close

to the border of any two text pieces. To circumvent this problem, some authors [28, 36] reduce the

su�x array construction process to a string sorting process associating to each su�x of T , its pre�x of

length X , and then sorting N strings of length X each. Clearly, the correctness of this approach heavily

depends on the value ofX which also in
uences the space occupancy (it is actually NX bytes). Statistical

considerations and structural informations about the underlying text might help, but anyway the choice

of the parameter X strongly in
uences the �nal performance (see e.g. [28, 36]).

The approach we introduce below is very simple and applies in a di�erent way, useful for practical

purposes, a basic idea known so far only in the theoretical setting (see e.g. [18]). Let us denote by A

sa

any external-memory algorithm for building a su�x array, A

string

any external-memory algorithm for

sorting a set of strings, and let L be a constant integer parameter to be �xed later. For simplicity of

exposition, we assume that N is a multiple of L, and that T is logically padded with L blank characters.

The new approach constructs L su�x arrays, say SA

1

; SA

2

; : : : ; SA

L

each of size �(N=L). Array SA

i

stores the lexicographically ordered sequence of su�xes fT [i; N ]; T [i+ L;N ]; T [i+ 2L;N ]; : : : ; g. The

logic underlying our algorithm is to �rst construct SA

L

, by using A

sa

and A

string

, and then derive all the

others arrays SA

L�1

; SA

L�2

; : : : ; SA

1

by means of a simple external-memory algorithm for sorting triples

of integers (e.g., multiway mergesort [29]).

The su�x array SA

L

is built in two main stages: In the �rst stage, the string set S = fT [L; 2L�

1]; T [2L; 3L�1] : : : ; T [N�L;N �1]; T [N;N+L�1]g is formed and lexicographically sorted by means of

algorithm A

string

. In the second stage, a compressed text T

0

of length N=L is derived from T [L;N+L�1]

by replacing each string having the form T [iL; (i+1)L�1], for i � 1, with its rank in the sorted S. Then,

algorithm A

sa

builds the su�x array SA

0

of T

0

, and �nally derives SA

L

by setting SA

L

[j] = SA

0

[j] � L,

for j = 1; 2; : : : ; N=L.

Subsequently, the other L � 1 su�x arrays are constructed by exploiting the following observation:

Any su�x T [i + kL;N ] in SA

i

can be seen as the concatenation of the character T [i + kL] and the

su�x T [i+ 1 + kL;N ] occurring to SA

i+1

. So that, if SA

i+1

is known, the order between T [i+ kL;N ]

and T [i + hL;N ] can be obtained by comparing the two pairs of integers hT [i + kL]; pos

i+1+kL

i and

hT [i + hL]; pos

i+1+hL

i, where pos

s

is the position in SA

i+1

of su�x T [s;N ]. This immediately means

that the construction of SA

i

can be reduced to sorting �(N=L) tuples, once SA

i+1

is known.

Sorting via A

string

the short strings of length L takes O(Sort(N)) random I/Os and 2N +

8N=L bytes, where Sort(N) = (N=B) log

M=B

(N=B) [1]. Building the L su�x arrays SA

i

takes

O(Sort(N=L) log

2

(N=L)+LSort(N=L)) = O(Sort(N) log

2

N) random I/Os, O(N=M log

2

(N=M)) bulk

I/Os and 24N=L bytes. Of course, the larger is the constant L, the larger is the number of su�x arrays

that will be constructed, but the smaller is the working space required. By setting L = 4, we get an inter-

esting algorithm for constructing large su�x arrays: it needs 6N bytes working space, O(Sort(N) log

2

N)

random I/Os and O(N=M log

2

(N=M)) bulk I/Os. Its practical performance will be evaluated in Section 4.

Notice that this approach builds four su�x arrays, thus its query performance is slowed down by a con-

stant factor four, but this is practically negligible in the light of su�x-array search performance [32].

8

See the footnote 7 and refer to [48] where Zobel et al. say that: \A space-economical index is not cheap if large amounts

of working storage are required to create it."

14



3 Our experimental settings

3.1 An external-memory library

We implemented all algorithms discussed so far by using a recently developed external-memory library of

algorithms and data structures called LEDA-SM [15] (an acronym for \LEDA for Secondary Memory").

1

This library is an extension of the internal-memory library LEDA [37] and therefore follows its main

underlying ideas. One of them is portability to a variety of platforms and another one is high level

speci�cation of data structures. Library LEDA-SM consists of a sizeable collection of e�cient data structures

and algorithms explicitly designed to work in an external memory setting. The system underlying LEDA-SM

re
ects a real view of the external memory model [44]: The internal memory is directly provided by the

internal memory of the computer; whereas the D abstract disks are modeled by the �le system, which

also provides proper tools for implementing the low-level I/O via block transfers. Each disk is modeled

with a single �le and it is divided into logical blocks of a �xed size B (disk pages). The size of this

�le is �xed, thus modeling the fact that real disk space is bounded. Since LEDA-SM uses the �le system,

it explicitly takes advantage of the underlying I/O-bu�ering and read-ahead strategy at no additional

implementation e�ort.

2

The part of the system which controls the I/O is the so called external memory

manager. It is implemented as an interface to which are connected all high level data structures and

algorithms, thus guaranteeing that the I/O and the management of the data on the disks is hidden to

the programmer. Nevertheless, the programmer can still keep track of the number of disk accesses (bulk,

random and total) performed by his/her algorithms, because the system allows the explicit counting of

the number of both writes and reads to the D disks. At the moment, LEDA-SM provides the possibility

to choose among �ve di�erent �le system access methods, namely standard I/O (stdio), system call I/O

(syscall), asynchronous I/O (aio), serial �le I/O (s�o) and memory mapped I/O (mmap io) (see [45] for

a deeper discussion). Both the external memory manager and the data structures provided by LEDA-SM

are implemented in C++ as a set of template classes and functions. The specialty of LEDA-SM's data

structures is that during their constructions it is possible to specify (and therefore control) the maximum

amount of internal memory that they are allowed to use. Combining this feature with the counting of

I/Os, library LEDA-SM allows the programmer to experimentally investigate how the model parameters

M and B in
uence the performance of an external-memory algorithm.

For what concerns the implementation of our su�x-array construction algorithms, we used the external

array data structure and the external sorting/scanning algorithms provided by LEDA-SM library. In

particular, we used an implementation of multiway mergesort that needs 2Xb bytes for sorting X items

of b bytes each (see Figure 3.1). The other in-core algorithms and data structures used in our experiments

are taken from the LEDA-library. To avoid that the internal-memory size prevents the use of Manber-

Myers' algorithm on large text collections, we run it in a virtual memory setting by using swap space.

All other algorithms are not faced with this problem because they are directly designed to work in

1

There exist other external memory libraries, the most notable one is TPIE [46].

2

As the �le system is allowed to bu�er disk pages, some of the disk requests can immediately be satis�ed by the I/O{bu�er.

This notably speeds up the real performances of the external-memory algorithms, as we discussed in Section 1.
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Figure 3.1: Comparison between LEDA-quicksort and LEDA-SM multiway mergesort. Quicksort is al-

lowed to use at most 64 Mbytes of internal memory, the further needs of memory are satis�ed by using

swap space. Multiway mergesort is only allowed to use 12 Mbytes of internal memory.

external memory. All the construction algorithms for su�x arrays discussed in this paper are available

and necessitate both the LEDA and LEDA-SM libraries, please contact one of the authors if you wish to

play with them.

3.1.1 System parameters

The computer used in our experiments is a SUN ULTRA-SPARC 1/143 with 64 Mbytes of internal

memory running the SUN Solaris 2.5.1 operating system. It is connected to one single Seagate Elite-9

SCSI disk via a fast-wide di�erential SCSI controller. The external memory library LEDA-SM provides

logical disks of maximum size of 2 Gbytes (this is the �le size limit of Solaris 2.5.1), the disks are divided

into blocks ofB = 8 Kbytes

3

. We have chosen the standard I/O (stdio) for the �le system accesses because

it is available on almost every system. We have designed our external-memory algorithms so that they

use approximately 36 Mbytes of internal memory. This is obtained by properly choosing the internal

memory size dedicated to the external memory data structures (e.g. external arrays and mergesort

buckets). Thus, we guarantee that the studied algorithms do not incur in the paging phenomenon even

for accessing their internal data structures and furthermore, that there is left room in internal memory

to keep the I/O bu�ers of the operating system.

3.1.2 Choosing the bulk-load size

Modern SCSI disk drives are equipped with a large cache, which is used to hide the speed gap between

the SCSI bus and the disk drive. The disk drive prefetches some data into the cache before it initiates

the transfer of the requested data from cache to main memory, in order to hide the di�erence between

the rotational delay of the disk and the bandwidth of the bus. Moreover, during read accesses the disk

3

We note that B = 64 Kbytes is \optimal" for random disk access. We have chosen B = 8 Kbytes because we also

compare to virtual memory algorithms that use the machine's page size which is exactly 8 Kbytes.
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prefetches further data into the cache in order to hopefully serve the next read requests directly from the

disk cache, thus avoiding the costly (mechanical) seek operation or su�er losses due to rotational delay.

According to the accounting scheme we adopted in this paper (see Section 1), we need to choose a

reasonable value for the bulk load size (notice that the parameters B and M are �xed by default according

to the computer features). Since the transfer rates are more or less stable (and currently large) while

seek times are highly variable and costly (because of their mechanical nature), our idea is to choose a

value for the bulk size which allows to hide the extra cost induced by the seek step when data are fetched.

This would allow us to access \uniformly" to every datum stored on the disk, thus working at the highest

speed allowed by its bandwidth. In some sense, we would like to hide the mechanical nature of the disk

system [16].

Let the transfer time be described by the formula t seek + bulk size/disk bandwidth [40]. We

wish that the �rst term is much smaller than the second one. Consequently, from one side we should

increase bulk size as much as possible (at maximum M=B), but from the other side a large bulk size

might reduce the signi�cance of our accounting scheme because many long sequential disk scans could

result shorter than bulk size and thus counted as `random', whereas they nicely exploit the disk caching

and prefetching strategies [19]. Hence a proper \tuning" of this parameter is needed according to the

mechanical features of the underlying disk system.

In the disk used for our experiments, the average t seek is 11 msecs, the disk bandwidth is

7 Mbytes/sec. We have therefore chosen bulk size = 64 disk pages, for a total of 512 Kbytes. It

follows that t seek is 15% of the total transfer time needed for a bulk I/O. Additionally, the bulk size

of 512 Kbytes allows us to achieve 81% of the maximum data transfer rate of our disk while keeping the

service time of the requests still low.

According to our considerations above (see also [16]), we think that this is a reasonable choice even

in the light of the disk cache size of 1 Mbytes. Surprisingly, we also noticed in our experiments that this

value allows us to catch the execution of numerous bulk I/Os by subroutines (e.g. multiway mergesort)

which were de�ned \mainly random" at a theoretical investigation. Clearly, other values for bulk size

might be chosen and experimented, thus achieving di�erent trade-o�s between random/bulk disk accesses.

However, the qualitative considerations on the algorithmic performance drawn at the end of the next

section will remain mostly unchanged, thus �tting our experimental desires.

3.2 Textual data collections

For our experiments we collected over various WEB sites three textual data sets. They consist of:

� The Reuters corpus

4

together with other natural English texts whose size sum up to 26 Mbytes.

This collection has the nice feature of presenting long repeated substrings.

� A set of amino-acid sequences taken from a SWISSPROT database

5

summing up to around

26 Mbytes. This collection has the nice feature of being an unstructured text so that full-text

indexing is the obvious choice to process these data.

� A set of randomly generated texts consisting of three collections: one formed by texts randomly

drawn from an alphabet of size 4, another formed by texts randomly drawn from an alphabet of

size 16, and the last one formed by texts randomly drawn from an alphabet of size 64. These

collections have two nice features: they are formed by unstructured texts, and they constitute a

good test-bed to investigate the in
uence of the length of the repeated substrings on the performance

4

We used the text collection \Reuters-21578, Distribution 1.0" available from David D. Lewis' professional home page,

currently: http://www.research.att.com/�lewis

5

See the site: http://www.bic.nus.edu.sg/swprot.html
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of some studied algorithms. For each alphabet size we consider texts of 25 Mbytes and 50 Mbytes,

thus further enlarging the spectrum of text sizes on which the algorithms are tested.

A comment is in order at this point. The reader might observe that, although this paper is on

constructing su�x arrays on large text collections, our experimental data sets seem indeed \not very

large" ! If we look just to their sizes, the involved numbers are actually not very big (at most 50 Mbytes);

but, as it will soon appear clear, our data sets are su�ciently large to evaluate/compare in a fair way

the I/O-performance of the analyzed algorithms, and investigate their scalability in an external-memory

setting. In fact, the su�x array SA needs 4N bytes to index a text of length N . Hence, the text plus

SA globally occupy 200 Mbytes, when N = 50 Mbytes. Additionally, each of the algorithms discussed

in our paper requires at least 8N bytes of working space; this means 400 Mbytes for the largest text

size. In summary, more than 600 Mbytes will be used during the overall construction of SA in each of

the experimented algorithms, when N = 50 Mbytes ! Now, since 64 Mbytes is the size of the available

internal memory of our computer, all the experiments will run on disk, and therefore the performance of

the studied algorithms will properly re
ect their I/O-behavior.
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4 Experimental Results

4.1 Experiments on natural data

We now comment the results obtained for our six di�erent construction algorithms: Manber and Myers'

algorithm (MM), BaezaYates-Gonnet-Snider's algorithm (BGS), original doubling (Doubl), doubling with

discarding (Doubl+Disc), doubling with discarding and external radix heaps (Doubl+Disc+Radix), and

the `construction into pieces' approach (L-pieces). The overall results are reported in Figure 4.1, and

they are detailed in Tables 4.1 and 4.2 below.

The Reuters corpus

N MM BGS Doubl Doubl+Disc Doubl+Disc+Radix L-pieces

1324350 67 125 828 982 1965 331

2578790 141 346 1597 1894 3739 582

5199134 293 1058 3665 4070 7833 1119

10509432 223200 4808 8456 8812 16257 2701

20680547 { 16670 23171 20434 37412 5937

26419271 { 27178 42192 28937 50324 7729

The Amino-Acid Test

26358530 { 20703 37963 24817 41595 6918

Table 4.1: Construction time (in seconds) of all experimented algorithms on two text collections: the

Reuters corpus and the Amino-acid data set. N is the size of the text collection in bytes. The symbol `{'

indicates that the test was stopped after 63 hours.

4.1.1 Results for the Manber-Myers' algorithm.

It is not astonishing to observe that the construction time of MM-algorithm is outperformed by every other

algorithm studied in this paper as soon as the working space exceeds the memory size (i.e., 64 Mbytes).

This worse behavior is due to the fact that the algorithm accesses the su�x array in an unstructured

and unpredictable way. In fact its paging activity almost crashes the system, as we monitored by using

the Solaris-tool vmstat. The vmstat value sr, which monitors the number of page scans per second,

was constantly higher than 200. According to the Solaris system guide, this indicates that the system is

constantly out of memory. Looking at Table 2.1, we infer that MM-algorithm should be chosen only when

the text is shorter than M=8. In this case, every data structure �ts in internal memory and thus the disk

is never used. In our experimental setting, this actually happens forN � 8 Mbytes. When N > 8 Mbytes,

the time complexity of MM-algorithm is still quasi-linear but the constant hidden in the big-Oh notation

is very large due to the paging activity, thus making the algorithmic behavior unacceptable.
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The Reuters corpus

N BGS Doubl Doubl+Disc Doubl+Disc+Radix L-pieces

1324350 120/7865 2349/256389 2242/199535 4872/377549 837/57282

2578790 317/20708 4517/500151 4383/395018 10075/787916 1693/177003

5199134 929/60419 9095/1009359 8916/809603 22466/1761273 3386/360210

10509432 4347/282320 18284/2041285 18126/1655751 47571/3728159 6849/730651

20680547 14377/933064 35935/4017664 35904/3293234 96292/7550794 14243/1530995

26419271 24185/1568947 45911/5132822 45842/4202902 129071/10001152 18178/1956557

The Amino-Acid Test

26358530 24181/1568773 41709/4656578 39499/3539148 105956/8222236 16118/1719883

Table 4.2: Number of I/Os (bulk/total) of all experimented algorithms on two text collections: the Reuters

corpus and the Amino-acid data set. N is the size of the text collection in bytes; 64 disk pages form a

bulk-I/O.

4.1.2 Results for the BaezaYates{Gonnet{Snider's algorithm.

As observed in Section 2.1.2, the main theoretical drawback of this algorithm is the high (i.e., cubic)

worst-case asymptotic complexity, but its small working space, its regular pattern of disk accesses and

the small constants hidden in its big-Oh complexity has lead us in the previous sections to think favorably

of BGS for practical uses. Moreover, we conjectured a quadratic I/O-behavior in practice because of the

short repeated substrings which usually occur in real texts. Our experiments show that we were right in

all these suppositions. Indeed, if we double the text size, the running time increases by nearly a factor of

four (see Table 4.1), and the number of bulk and random I/Os increase quadratically (see Table 4.2). The

number of total and bulk I/Os is nearly identical for all data sets (Reuters, Amino-Acid and Random, see

table 4.4), so that the practical behavior is actually quadratic. Furthermore, it is not astonishing to verify

experimentally that BGS is faster than any Doubling variant on the Reuters corpus and the Amino-Acid

data set (see Figure 4.1). Consequently, it turns out to be the fastest algorithm for building a (unique)

su�x array when N � 25 Mbytes. This scenario probably remains unchanged for text collections which

are slightly larger than the ones we experimented in this paper; after that, the quadratic behavior of BGS

will be probably no longer \hidden" by its nice algorithmic properties (largely discussed in Section 2.1.2).

In Table 4.2, we notice that (i) only the 1% of all disk accesses are random I/Os (hence, most of

them are bulk I/Os !); (ii) the algorithm performs the least number of random I/Os on both the data

sets; (iii) BGS is the fastest algorithm to construct one unique su�x array, and it is the second fastest

algorithm in general. Additionally, we observe that the quadratic CPU-time complexity of the BGS-

algorithm heavily in
uences (i.e., slows down) its e�ciency and thus I/O is not the only bottleneck.

In summary, the BGS-algorithm is amazingly fast on medium-size text collections, and remains rea-

sonably fast on larger data sets. It is not absolutely the fastest on larger and larger text collections

because of its quadratic CPU- and I/O-complexities. Nonetheless, the small working space (possibly 4N

bytes via a tricky implementation) and the ease of programming make the BGS-algorithm very appealing

for software developers and practitioners, especially in applications where the space issue is the primary

concern.

4.1.3 Results for the Doubling algorithm.

The doubling algorithm performs 11 stages on the Reuters corpus, hence it performs 21 scans and 21 sort-

ing steps on N tuples, where N is the text size. Consequently, we can conclude that there is a repeated

substring in this text collection of length about 2

12

(namely we detected a duplicated article). Figure 4.1
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Figure 4.1: Run-time of all construction approaches on the Reuters corpus.

shows that the Doubling algorithm scales well in the tested input range:

1

If the size of the text doubles,

the total running time doubles too. Among all disk accesses the 41% of them are random, and the num-

ber of bulk and random I/Os is larger than the ones executed by every other tested algorithm, except

the Doubl+Disc+Radix variant which has higher worst-case complexity but smaller working space (see

Table 4.2 and Section 2.2). Due to the high number of random I/Os and to the large working space (see

Table 2.1), the Doubling algorithm is expected to surpass the performance of BGS only for very large

values of N .

In summary, although theoretically interesting and almost asymptotically optimal, the Doubling al-

gorithm is not appealing in practice; this motivated our development of the two variants discussed in

Section 2.2 (namely, Doubl+Disc and Doubl+Disc+Radix algorithms).

4.1.4 Results for the Doubl+Disc algorithm.

If we add the discarding strategy described in Section 2.2.1 to the Doubling algorithm, we achieve better

performances as conjectured. The gain induced by the discarding step is approximately the 32% of the

original running time both for the Reuters corpus and the Amino-acid data set (for large N). If we look

in detail at the number of discarded tuples (see Figure 4.3), we see that for the Reuters corpus, this

1

Notice that the curve for Doubling is not always linear. There is a \jump" in the running time as soon as the input

has size 21 � 10

6

. This is due to the system's pager-daemon that is responsible for managing the memory-pages. During

the merge-step of multiway-mergesort, the number of free pages falls below a given threshold and the pager-daemon tries

to free some memory pages. This goal can't be achieved because the mergesort constantly loads new blocks into memory.

Therefore, this pager process runs almost all the time and increases the CPU-time of the merge-step of a factor of two.
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Figure 4.2: Bulk and Random I/Os for all construction approaches. The bulk size is 64 disk pages.

is small in the �rst two stages, while it becomes signi�cant in stages three and four, where nearly 55%

of the tuples are thrown away. Since we double the length of the substrings at each stage and we use

the compression scheme of Section 2.1.3, we can infer that the Reuters corpus has a lot of substrings of

length 16 � 32 that occur once in the collection but their pre�xes of length 8 � 16 occur at least twice.

We also point out that the curve indicating the number of discarded tuples is nearly the same as the size

of the test set increases. This means that the number of discarded tuples is a \function" of the structure

of the indexed text. For our experimental data sets, we save approximately 19% of the I/Os compared

to Doubling. The percentage of random I/Os is 28%, this is much less than Doubling (42%), and drives

naturally us to observe that discarding helps in reducing mainly the random I/Os (see also Table 4.2).

The saving induced by the discarding strategy is expected to pay much more on larger text collections,

because of the signi�cant reduction in the number of manipulated tuples at the early stages, which should

facilitate caching and prefetching operations (see footnote 7). Consequently, if the time complexity is a

much more important concern than the space occupancy, the Doubl+Disc algorithm is de�nitively the

choice for building (unique) very large su�x arrays.

4.1.5 Results for the Doubl+Disc+Radix algorithm.

This algorithm is not as fast as we conjectured in Section 2.2.2, even for the tuple ordering of Step 2. The

reason we have drawn from the experiments is the following. Notice that radix heaps are integer priority

queues, and thus we cannot keep the parameter V small (to exploit Radix Heaps properties) by de�ning

the �rst two components of a tuple as its priority. Hence, the sorting in Step 2 must be implemented via
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Figure 4.3: The percentage of discarded tuples at each stage of the Doubl+Disc algorithm on the Reuters

corpus.

two sorting phases and this naturally doubles the work executed in Step 2. Additionally, the compression

scheme of Section 2.1.3 cannot be used here because it would increase V too much in the early stages.

Hence, the algorithm performs two more stages than Doubl-algorithm, and furthermore it does not

take advantage of the discarding strategy because the number of discarded tuples in this two initial

stages is very small. This way, it is not surprising to observe in Table 4.2 that the Doubl+Disc+Radix

algorithm performs twice the I/Os of the other Doubling variants, and it is the slowest among all the

tested algorithms. This result allows us to conclude that the compensation conjectured in Section 2.2.2

between the number of discarded tuples and the increase in the I/O-complexity do not actually arises in

practice.

In summary, the Doubl+Disc+Radix algorithm can be interesting only in the light of its space

requirements. However, if we compare the space vs. time trade-o� we can reasonably consider the

Doubl+Disc+Radix algorithm worse than the BGS-algorithm because the former requires larger working

space and it is expected to surpass the BGS-performance only for very large text collections (see Section 6

for further comments).

4.1.6 Results for the L-pieces algorithm.

We �xed L = 4, used multi-way mergesort for sorting short strings and the Doubl-algorithm for construct-

ing SA

L

(see Section 2.2.3). Looking at Table 4.2 we notice that 40% of the total I/Os are random I/Os,

and that the algorithm executes slightly more I/Os than the BGS-algorithm. Nonetheless, as shown in

Figure 4.1 this algorithm is the fastest one. It is three to four times faster than BGS (due to its quadratic

CPU-time) and four times faster than the Doubl+Disc algorithm (due to the larger number of I/Os). The

running time distributes as follows: 63% of the overall time is used to build the compressed su�x array

SA

L

; the sorting of the short strings required only 4% of the overall time; the rest is used to build the

other three su�x arrays. It must be said that for our test sizes, the short strings �t in internal memory

at once thus making their sorting stage very fast. However, it is also clear that sorting short strings takes

no more time than the one needed by one stage of the Doubl-algorithm. Furthermore, the construction of
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the other three su�x arrays, when executed entirely on disk, would account for no more than 1:5 stages

of the Doubl-algorithm. Consequently, even in the case where the short strings and the other three su�x

arrays reside on the disk, it is not hazardous to conjecture that this algorithm is still signi�cantly faster

than all the other approaches. The only \limit" of this algorithm is that it constructs the su�x array

in four distinct pieces. Clearly, if the underlying text retrieval applications does not impose to have one

unique su�x array, then this approach turns out to be de-facto `the' choice for constructing such a data

structure (see Section 6 for further discussions).

4.1.7 Comparison of all construction approaches.

We �rst compare all algorithms with respect to their time performances for increasing text lengths (see

Figure 4.1). It is obvious from the discussions above that the MM-algorithm is the fastest one when the

su�x array can be built entirely in internal memory. As soon as the working space crosses the `memory

border', there are various possible choices. The L-pieces algorithm is the natural choice whenever the

splitting of the su�x array does not prevent its use in the underlying application. If instead a unique

su�x array is needed, then the choice lies between the BGS-algorithm and the Doubl+Disc algorithm.

For text collections which are not very big, the BGS-algorithm is preferable: it o�ers fast performance

and very small working space. For larger text collections, the choice depends on the primary resource to

be minimized: time or space? In the former case, the Doubl+Disc algorithm is the winning choice; in the

latter case, the BGS-algorithm is the best.

The Doubl+Disc+Radix variant could be interesting on huge text collections but this consideration

cannot be claimed for sure because when N grows, the internal-memory size is also expected to grow !

Consequently, although the idea of using a space-e�cient external-memory heap to implement the sorting

step is valuable, a di�erent heap structure should be devised to e�ciently cope with large integer priorities

and e�cient I/O-performance. (This topic will be addressed in Section 6.)

With respect to the ease of programming, the BGS-algorithm seems still the best choice, unless the

software developer has a library of general external sorting routines, in which case all Doubling variants

turns out to be simple too.

4.2 Experiments on random data

The previous section left open three important questions:

1. How do the structural properties of the indexed text in
uence the performance of the Doubl+Disc

algorithm? Do these properties decrease the number of stages, and thus signi�cantly improve its

overall performance? How big is the improvement induced by the discarding strategy on more

structured texts?

2. What happens to the BGS-algorithm if we increase the text size? Is its practical behavior \inde-

pendent" of the text structure?

3. What happens to the L-pieces algorithm when the four su�x arrays reside on disk? Is this algorithm

still signi�cantly faster than all the other ones?

In this section we will answer positively all these questions by performing an extensive set of experiments

on three sets of textual data which are randomly and uniformly drawn from alphabets of size 4 (random-

small), size 16 (random-middle) and size 64 (random-large), respectively. For each alphabet size, we will

indeed generate two text collections of 25 Mbytes and 50 Mbytes.

The choice of \randomly generated data sets" is motivated by the following two observations. By

varying the alphabet size we can study the impact that the average length of the repeated substrings
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has on the performance of the discarding strategy. Indeed, the smaller is this length, the larger should

be the number of tuples which are discarded at earlier stages, and thus the bigger should be the speed-

up obtained by the Doubl+Disc algorithm. The experiments carried out on the Reuters corpus (see

Section 4) did not allow us to complete this analysis because of the structural properties of this text

collection. Unfortunately, the Reuters corpus represents a pathological case because it has many long

repeated text-substrings and this is usually untypical for natural linguistic texts. This was the reason

why we conjectured at the end of Section 4 a much larger gain from the discarding strategy on more

structured texts. An early validation of this conjecture was provided by the experiments carried out on

the Amino-acid data set (see Table 4.1). Now we expect that the two random collections will be a good

test-bed for providing further evidence. The same thing can be said about the BGS-algorithm whose

\independent behavior from the structure of the indexed text in practice", conjectured in Section 4, can

now be tested on variously structured text collections.

Second, by varying the size of the indexed collection we can investigate the behavior of the L-pieces

algorithm when the ordering of the short strings and the construction of the su�x arrays SA

1

; SA

2

; SA

3

operate directly on the disk (and not in internal memory). We can also test if the average length of

the repeated substrings can in
uence the performance of A

sa

when building SA

4

. We notice that the

construction of the other three su�x arrays is clearly not in
uenced by the structure of the underlying

text, because it consists of just three sorting steps executed on a sequence of integer triples. In Section 4

we conjectured that a larger text collection should not signi�cantly in
uence the overall performance of the

L-pieces algorithm because, apart from the construction of SA

4

, all the other algorithmic steps account

for 2:5 stages of the Doubl-algorithm. Consequently, the overall work should be always much smaller

than the one executed by all the Doubling variants. In what follows, we will validate this conjecture by

running the L-pieces algorithm on larger data sets.

4.2.1 Results for the BGS-algorithm.

It may appear surprising that BGS is the slowest algorithm on the random texts, after its successes on

real text collections claimed in Section 4. It is more than twice slower than Doubl+Disc and up to nine

times slower than L-pieces. However, nothing strange is going on in these experiments on random data

because if we compare Table 4.4 to Table 4.2, we notice two things: (i) the number of bulk and total I/Os

executed by BGS do not depend on the alphabet size and they are almost identical to those obtained on

the Reuters corpus; (ii) the execution time of BGS decreases as the alphabet size grows, and it is smaller

than the time required on the Reuters corpus (when N � 25 Mbytes). The former observation implies

that our conjecture on the \ quadratic I/O-behavior in practice" is true, and in fact if we double the

text size, the total number of I/Os increases by a factor of approximately four. The latter observation

allows us to conclude that the CPU-time of BGS is a�ected by the length of the repeated substrings

occurring in the data set. As the alphabet size increases, this length decreases on the average, and in

turn decreases the running time of BGS. Such a dependence also shows that both I/O and CPU-time are

signi�cant bottlenecks for BGS, as pointed out already in Section 4.

4.2.2 Results for the Doubl+Disc algorithm.

The algorithm performs 4 stages on alphabet size 4, and 3 stages on alphabet sizes 16 and 32. Therefore,

the random test with alphabet size 4 is the worst case for Doubl+Disc. In fact, the gain of the �rst two

stages is negligible (0:8 � 10

�8

% discarded tuples); in the third stage, 98% of the tuples are discarded; the

rest of the tuples is thrown away in the last fourth stage. This gives us the following insight: There are

many di�erent text substrings of 32 characters (i.e., 98%) whose 16-length pre�x occurs at least twice in

the collection. This validates our conjecture that the Doubl+Disc performance heavily depends on the

average length of the repeated text-substrings.
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Running times on the random texts

N L-pieces Doubl+Disc BGS

Alphabet Size 4

25000000 4133 14130 21485

50000000 8334 34599 72552

Alphabet Size 16

25000000 3838 11011 16162

50000000 7753 26450 62001

Alphabet Size 64

25000000 3400 10080 15195

50000000 6802 25606 58417

Table 4.3: Construction time (in seconds) required for random texts built on alphabet-sizes 4, 16 and 64.

I/Os (bulk/total) on the random texts

N L-pieces Doubl+Disc BGS

Alphabet Size 4

25000000 9466/970256 20661/2068791 22347/1449884

50000000 18912/1942979 41418/4143990 85481/5543929

Alphabet Size 16

25000000 8499/860120 15320/1518126 22347/1449884

50000000 16984/1722707 30738/3042700 85481/5543929

Alphabet Size 64

25000000 7531/749984 14643/1434118 22347/1449884

50000000 15056/1502435 30375/2996868 85481/5543929

Table 4.4: Bulk and total I/Os required for random texts built on alphabets of size 4, 16 and 64.

If we look at the results on alphabet size 64 (see Tables 4.3 and 4.4), we see that the gain of the

�rst stage is much bigger (about 5%), whereas the second stage throws away about 94% of the tuples.

Consequently, for increasing alphabet sizes (approaching natural texts), Doubl+Disc gets faster and

faster. Apart from the Reuters corpus, which seems indeed a pathological case, we therefore expect a

much better performance on natural (and more structured) texts. So that we suggest its use in practice

in place of the (plain) Doubling algorithm.

At this point it is worth to notice that the former two stages of Doubl+Disc do not discard any

signi�cant number of tuples (like on Reuters). Looking carefully to their algorithmic structure, we

observe that these stages execute more work than the one required by the corresponding stages of Doubling

because of Step 4 (Section 2.2.1). We experimentally checked this fact by running the Doubling algorithm

on the random data sets and verifying an improvement of a factor of two ! Clearly, in the early two stages,

the algorithm compares short substrings of length 1�16, and therefore it is unlikely that those substrings

occur only once in a long text (and can be then discarded). Consequently, an insight coming from these

experiments is that a tuned Doubl+Disc should follow an hybrid approach to gain the highest advantage

from both the doubling and the discarding strategies: (plain) Doubling executed in the early (e.g. two)

stages, Doubl+Disc for the next stages.
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4.2.3 Results for the L-pieces algorithm.

We again �x L = 4 and use the Doubling algorithm to construct SA

4

. Using bigger texts (up to

50 Mbytes), we are ensured that all the steps of this algorithm operate on disk. The running time

distributes as follows: 6% is used to sort short strings, 37% is used to build SA

4

, and 47% is used to build

the other three su�x arrays (via multiway mergesort).

2

Comparing Table 4.1 to Table 4.3, we conclude

that the ordering of the short strings remains fast even when it is executed on disk, and it will never

be a bottleneck. Moreover, the time required to build SA

4

clearly depends on the length of the longest

repeated substring (see comments on Doubling), but A

sa

is executed on a compressed text (of size N=4)

where that length is reduced by a factor 4. Consequently, the L-pieces algorithm is usually up to 2:9

times faster than Doubl+Disc (see Table 4.3). This speed-up is larger than the one we observed on the

Reuters corpus (see Section 4), and thus validates our conjecture that a bigger text collection does not

slow down the L-pieces algorithm.

4.2.4 Concluding remarks on our experiments

We �rst compare all experimented algorithms with respect to their time performance for increasing text

lengths (see Table 4.1 for a summary). It is obvious from the previous discussions that the MM-algorithm

is the fastest one when the su�x array can be built entirely in internal memory. As soon as the working

space exceeds the memory size, we can choose among di�erent algorithms depending on the resource to

be minimized, either time or space. The L-pieces algorithm is the obvious choice whenever the splitting

of the su�x array does not prevent its use in the underlying application. It is more than 3 times faster

on the Reuters corpus than any other experimented algorithm; it is more than twice faster than the best

Doubling variant on random texts. If, instead, a unique su�x array is needed, the choice depends on

the structural properties of the text to be indexed. In presence of long repeated substrings, BGS is a

good choice till reasonably large collections. For very large text collections, the hybrid variant of the

Doubl+Disc algorithm is de�nitely worth to be used.

If the space resource is of primary concern, then BGS is a very good choice till reasonably large text

collections. For huge sizes, Doubl+Disc+Radix is expected to be better in the light of its asymptotic

I/O- and CPU-time complexity. However if one is allowed to keep the su�x array distributed into pieces,

then the best construction algorithm results de�nitely the L-pieces algorithm: It is both the fastest and

the cheapest in term of space occupancy (it only needs 6N bytes).

We wish to conclude this long discussion on our experimental data and tested algorithms by making

a further, and we think necessary, consideration. The running time evaluations indicated in the previous

tables and pictures are not clearly intended to be de�nitive. Algorithmic engineering and software tuning

of the C++-code might de�nitively lead to improvements without anyway changing the algorithmic

features of the experimented algorithms, and therefore without a�ecting signi�cantly the scenario that

we have depicted in these pages. Consequently, we feel not con�dent to give an absolute quantitative

measure of the time performance of these algorithms in order to claim which is the \winner". There are

too many system parameters (M , bu�er size, cache size, memory bandwidth), disk parameters (B, seek,

latency, bandwidth, cache), and structural properties of the indexed text that heavily in
uence those

times. Nevertheless, the qualitative analysis developed in these sections should, in our opinion, safely

route and clarify to the software developers which is the algorithm that best �ts their wishes and needs.

We conclude our paper by addressing two other issues. The former concerns with the problem of

building word-indexes on large text collection; we show in the next section that our results can be

successfully applied to this case too without any loss in e�ciency and without compromising the ease of

programming so to achieve a uniform, simple and e�cient approach to both the two indexing models.

2

An attentive reader might observe the the distribution of the time only sums up to 90% of the total construction time.

The missing 10% is required to copy back the computed su�x array.
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The latter issue is related to the intriguing, and apparently counterintuitive, \contradiction" between

the e�ective practical performance of the BGS-algorithm and its unappealing (i.e., cubic) worst-case

behavior. In Section 5.2, we deeply study its algorithmic structure and propose a new approach that

follows its basic philosophy but in a signi�cantly di�erent manner, thus resulting in a novel algorithm

which combines good practical qualities with e�cient worst-case performances.
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5 Extensions

5.1 Constructing word-indexes

By using a simple and e�cient preprocessing phase, we are also able to build a su�x array on a text

where only the beginning of each word is indexed (hereafter called word-based su�x array). Our idea

is based on a proposal of Andersson et al. [5] which was formulated in the context of su�x trees. We

greatly simplify their presentation by exploiting the properties of su�x arrays. The preprocessing phase

consists of the following steps:

1. Scan the text T and de�ne as index points the text positions where a non-alphabetic character is

followed by an alphabetic one.

2. Form a sequence S of strings which correspond to substrings of T occurring between consecutive

index points.

3. Sort the strings in S via multiway mergesort.

4. Associate with each string its rank in the lexicographically ordered sequence, so that given s

1

; s

2

2 S:

if s

1

= s

2

then name(s

1

) = name(s

2

), and if s

1

<

L

s

2

then name(s

1

) < name(s

2

).

5. Sort (backwards) S according to the starting positions in the original text T of its strings.

6. Create a compressed text T

0

via a simultaneous scan of T and (the sorted) S. Here, every substring

of T occurring in S is replaced with its rank.

The symbols of T

0

are now integers in the range [1; N ]. It is easy to show that the word-based

su�x array for T is exactly the same as the su�x array of T

0

. Indeed, let us consider two su�xes

T [i; N ] and T [j; N ] starting at the beginning of a word. They occur also in T

0

in a \compressed form"

which preserves their lexicographic order because of the naming process. Consequently, the lexicographic

comparison between T [i; N ] and T [j; N ] is the same as the one among the corresponding compressed

su�xes of T

0

.

The cost of the preprocessing phase is dominated by the cost of sorting the string set S (step 2). As

the average length of an English word is six characters [13], we immediately obtain from [1] (model A,

strings shorter than B) that the I/O complexity of step 2 is �(N=B log

M=B

N=B), where N is the total

number of string characters. Multiway mergesort is therefore an optimal algorithm to solve the string

sorting problem in step 3. In general, we can guarantee that each string of S is always shorter than

B characters by introducing some dummy index points that split the long substrings of T into equal-

length shorter pieces. This approach does not su�er from the existence of very long repeated substrings

that was reported by the authors of [36] in their quicksort/mergesort{based approaches; and therefore it

is expected to work better on very large texts. With respect to [5], our approach does not use tries to

manage S's strings and thus it does not incur in the very well-known problems related to the management
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of unbalanced trees in external memory [29]. Additionally, it reduces the overall working space by making

use of arrays. Finally, since the preprocessing phase is based on sorting and scanning routines, we can

again infer that this approach scales well on multi-disk and multi-processor machines, as we have largely

discussed in the previous sections.

From the experiments executed on the L-pieces algorithm, we know that step 3 and step 5 above will

be fast in practice. Furthermore, the compression in step 6 reduces the length of the repeated substrings

in T , so that Doubl+Disc is expected to require very few stages when applied on T

0

. Consequently, we

can expect that constructing word-indexes via su�x arrays is e�ective in real situations, and can bene�t

a lot from the study carried out in this paper.

5.2 The new BGS-algorithm

The experimental results of the previous sections have lead us to conclude that the BGS-algorithm is

attractive for software developers because requires only 4N bytes of working space (see footnote 7),

it accesses the disk in a sequential manner (thus taking fully advantage from the caching/prefetching

strategies of current disks as well as from their high bandwidth [40, 16]), and �nally it is very simple

to be programmed. However, its worst-case performance is poor and thus its real behavior is not well

predictable but heavily depends on the structure of the indexed text. This limits the broad applicability

of BGS, making it questionable at theoretical eyes.

In this section, we propose a new algorithm which deploys the basic philosophy underlying BGS (i.e.,

very long disk scans) but in a completely di�erent manner: the text T is examined from the right to the

left. The algorithm will choreograph this new approach with some additional data structures that allow

to perform the su�x comparisons using only the information available in internal memory, thus avoiding

the random I/Os in the worst case. The resulting algorithm still uses small working space (i.e. 8N bytes

on disk), it is very simple to be programmed, it has small constants, and additionally it achieves e�ective

worst-case performance (namely O(N

2

=M

2

) worst-case bulk I/Os). This makes the practical behavior of

the �nal algorithm guaranteed on any indexed text independently of its structure, thus overcoming the

(theoretical) limitations of the BGS-algorithm, and still keeping its attractive practical properties.

Let us set m = `M , where ` < 1 is a positive constant to be �xed later in order to guarantee that

some auxiliary data structures can be �t into the internal memory. In order to simplify our discussion,

let us also assume that N is a multiple of m, say N = km for a positive integer k.

We divide the text T into k non-overlapping substrings of length m each, namely T = T

k

T

k�1

� � �T

2

T

1

(they are numbered going from the right to the left, thus re
ecting the \stage" when the algorithm will

process each of them). For the sake of presentation, we also introduce an operator � that allows to go

from absolute positions of T to relative positions in the text pieces constituting T . Namely, x � m =

((x� 1)modm) + 1: This way, if T [x] lies in the text piece T

h

then T [x] = T

h

[x �m].

The algorithm executes �(k) = �(N=M) stages (like BGS) and processes the text from the right to the

left (unlike BGS). The following invariant is kept inductively before stage h starts: S = T

h�1

T

h�2

� � �T

1

is the text part processed in the previous (h � 1) stages. The algorithm has computed and stored on disk

the following two data structures: The su�x array SA

ext

of the string S and its \inverse" array Pos

ext

,

which keeps at each entry Pos

ext

[j] the position in SA

ext

of the su�x S[j; jSj]. (See Figure 5.1.) After

all k stages are executed, we have S = T and thus SA = SA

ext

.

The main idea underlying the leftward-scanning of the text is that when the h-th stage processes the

text su�xes starting in T

h

, it has already accumulated into SA

ext

and Pos

ext

some informations about

the text su�xes starting to the right of T

h

. This way, the comparison of the former text su�xes will

eventually exploit these two arrays, and thus use only localized information which eliminates the need of

random I/Os. The next Lemma formalizes this intuition:
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Lemma 1 A text su�x T [i; N ] starting into the substring T

h

can be represented succinctly via the pair

(T [i; i+m� 1]; Pos

ext

[(i+m) �m]). Consequently, all the text su�xes starting in T

h

can be represented

using overall O(m) space.

Proof: Text su�x T [i; N ] can be seen as the concatenation of two strings T [i; i+m�1] and T [i+m;N ],

where the second string is an arbitrarily long text su�x. The position i+m occurs in T

h�1

� � �T

1

(= S)

and in particular T [i+m;n] = S[(i+m)�m; jSj]. This string can be succinctly represented with a number

which denotes its (lexicographic) position among S's su�xes (i.e., its position in SA

ext

). This number

is Pos

ext

[(i+ m) �m]. The space-bound easily holds by storing in internal memory the text substring

T

h

� T

h�1

and the array Pos

ext

[2; m+ 1].

Stage h preserves the invariant above and thus updates SA

ext

and Pos

ext

by properly inserting into

them the \information" regarding the text su�xes of T which start in T

h

. This way, the new SA

ext

and

Pos

ext

will correctly refer to the \extended" string T

h

� S (T

h

concatenated with S), thus preserving the

invariant for the next (h+ 1)th stage (where S = T

h

�S = T

h

T

h�1

� � �T

2

T

1

). Details on the stage h follow

(see Figure 5.1 below).

T3 T2
SA*

refer to T [1,m]*

S

T1

T = a b a b c a b a b a b a b d d a 
 1     2      3     4     5     6     7      8     9     10    11   12    13   14    15   16

 1     2      3     4      5     6      7     8  

T*

 1     2     3     4      5      6      7     8  

SA

ext

ext
= [ 8, 2, 4, 1, 3, 5, 7, 6 ]

= [ 4, 2, 5, 3, 6, 8, 7, 1]Pos

refer to

string S}

Pos ext
[1,m]Pos = [ 4, 2, 5, 3 ]int

= [ 4, 1, 3, 2 ]Pos*

= [ 2, 4, 3, 1 ] }
Figure 5.1: The �gure depicts the data structures used during stage h = 3, where T

�

= T

3

� T

2

and

S = T

2

�T

1

. SA

�

contains only the �rst m su�xes of T

�

. Notice the order in SA

�

of the two text su�xes

starting at positions 2 and 4 of T

�

(i.e., 6 and 8 of T ). Restricted to their pre�xes lying into T

�

, these two

su�xes satisfy the relation 4 �

L

2, but considering them in their entirety (till the end of T ), it is 2 �

L

4.

We can represent compactly T [6; 16] via the pair h `abab'; 2i and T [8; 16] via the pair h `abab'; 3i; hence

the comparison of those pairs gives the correct order and can be executed in internal memory (Lemma 1).

1. Load T

h

and T

h�1

in the internal memory and set T

�

= T

h

� T

h�1

. (O(1) bulk I/Os.)

2. Load the �rst m entries of Pos

ext

into the array Pos

int

. (O(1) bulk I/Os.)

3. Construct the su�x array SA

�

which contains the lexicographically ordered sequence of the text

su�xes starting into T

h

(recall that they extend till the end of T ). This is done by means of three

substeps which exploit the information kept in internal memory:

(a) Build the su�x array of the string T

�

using any internal memory algorithm (e.g. [32]). Then,

throw away all su�xes of T

�

which start in its second half. (No I/Os are required.)

(b) Store the remaining m entries into SA

�

.

1

(No I/Os are required.)

1

Notice that this is not yet the correct SA

�

because there might exist two text su�xes which start in T

�

but have a

common pre�x which extends outside T

�

. The next Step 3c does this computation without accessing the disk !
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(c) Re�ne the order in SA

�

taking into account the su�xes in their entirety (i.e., considering also

their characters outside T

�

). This is done as follows. Let T

�

[x; 2m] and T

�

[y; 2m] be two

su�xes which lie adjacent into the current array SA

�

, namely SA

�

[j] = x and SA

�

[j + 1] = y

for some value j, and such that one of them is the pre�x of the other. Their order in SA

�

may

possibly be not correct (see Figure 5.1). Hence, the correct order is computed by comparing

the two pairs hT

�

[x; x+m� 1]; Pos

int

[(x+m) �m]i and T

�

[y; y+m� 1]; Pos

int

[(y+m) �m]

(see Lemma 1).

2

This comparison is done for all the su�xes of T

�

for which the ambiguity

above arises. (No I/Os are required.)

4. Scan simultaneously the string S and the array Pos

ext

(O(h) bulk I/Os in total). For each su�x

S[j; jSj] do the following substeps:

(a) Via a binary search, �nd the lexicographic position pos(j) of that su�x into SA

�

so that

S[j; jSj] follows the su�x of T starting at position SA

�

[pos(j)�1] of T

h

and precedes the su�x

of T starting at position SA

�

[pos(j)] of T

h

. Lemma 1 allows to perform the su�x comparisons

of the binary search using only the internal memory.

(b) Increment C[pos(j)] by one unit.

(c) Update the entry Pos

ext

[j] = Pos

ext

[j] + pos(j)� 1.

5. Build the new array SA

ext

[1; hm] by merging the old (external and shorter) array SA

ext

with the

(internal) array SA

�

by means of the information available into C[1; m+1]. This requires a single disk

scan (like BGS) during which the algorithm also executes the computation SA

ext

[j] = SA

ext

[j]+m,

in order to take into account the fact that in the next (h+1)th stage the new string S has appended

in front the text piece T

h

. (Globally O(h) bulk I/Os.)

6. Process in internal memory the array C as follows (no I/Os are executed):

(a) Compute the Pre�x-Sum of C.

(b) Set C[j] = C[j] + j, for j = 1; : : : ; m+ 1.

(c) Compute Pos

�

[1; m] as the inverse of SA

�

, and then permute C[1; m] according to Pos

�

[1; m].

Namely, C[i] = C[Pos

�

[i]], simultaneously for all i = 1; 2; : : : ; m.

7. Build the new array Pos

ext

[1; hm] by appending C[1; m] to the front of the current Pos

ext

. Namely,

Pos

ext

= C[1; m] � Pos

ext

. (O(h) bulk I/Os.)

The correctness of the algorithm immediately comes from Lemma 1 and from the following observations.

As far as Step 6 is concerned, we observe that:

� Step 6a determines for each entry C[j] the number of text su�xes which start in S and are lexico-

graphically smaller than the text su�x starting at position SA

�

[j] of T

h

.

� Step 6b keeps into account also the number of su�xes which start in T

h

and are lexicographically

smaller than the text su�x starting at position SA

�

[j] of T

h

. These su�xes are (j � 1), so that

the algorithm sums j to compute the �nal rank of that su�x (i.e., the one starting at T

h

[SA

�

[j]])

among all the su�xes of the string T

h

� S.

� Step 6c permutes the array C so that C[j] gives the rank of the text su�x starting at T

h

[j] among

all su�xes of the string T

h

� S = T

h

� � �T

1

.

2

This step is executed by employing the extra-space available into C and not yet used.
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Since the string T

h

� � �T

1

corresponds to the string S of the next (h+1)th stage, we can conclude that

Step 6 correctly stores in C the �rst m entries of the new array Pos

ext

(Step 7). Finally, we point out

that Step 4c correctly updates the entries of Pos

ext

[1; (h� 1)m] by taking into account the insertion in

SA

ext

of the m text su�xes starting in T

h

; and Step 5 correctly updates the entries of SA

ext

[1; (h� 1)m]

by taking into account the insertion in front of S of the m su�xes starting in T

h

. In summary we can

state the following result,

Theorem 1 The su�x array of a text T [1; N ] can be constructed in O(N

2

=M

2

) bulk-I/Os, no random-

I/Os, and 8N disk space in the worst case. The overall CPU time is O(

N

2

M

log

2

M).

The above parameter ` is set to �t SA

�

, Pos

�

, Pos

int

, T

�

and C into internal memory (notice that some

space can be reused). We remark that the algorithm requires 4N bytes more than the space-optimized

variant of the BGS-algorithm (see Section 2.1.2). Nonetheless, we can still get the 4N space-bound if we

accept to compute only the array Pos

ext

= SA

�1

(implicit SA). In any case, the overall working space is

much less than the one required by all Doubling variants, and it is exactly equal to the one required by our

implementation of the BGS-algorithm. The new BGS-algorithm is also very simple to be programmed

and has small constants (hidden in the big-Oh notation). Therefore, it preserves the good algorithmic

properties of BGS, but it now guarantees good worst-case performances.

33



6 Conclusions

It is often observed that practitioners use algorithms which tend to be di�erent from what is claimed as

optimal by theoreticians. This is doubtless because theoretical models tend to be simpli�cations of reality,

and theoretical analysis needs to use conservative assumptions. Our paper provided to some extent an

example of this phenomenon|apparently \bad" theoretical algorithms are good in practice (see BGS

and new-BGS). In the present paper we actually tried to \bridge" this di�erence by analyzing more

deeply some su�x-array construction algorithms via the new accounting scheme of [19], taking more into

account the specialties of current disk systems. This has lead us to a reasonable and signi�cant taxonomy

of all these algorithms. As it appears clear from the experiments, the �nal choice of the \best" algorithm

depends on the available disk space, on the disk characteristics (which induce di�erent trade-o�s between

random and bulk I/Os), on the structural features of the indexed text, and also on the patience of the

user to wait for the completion of the su�x-array construction. The moral we draw from our experiments

is that the design of an external-memory algorithm must take more and more into account the current

technological trends [16], which boost interest toward the development of algorithms which prefer bulk

rather than random I/Os because this paradigm can take advantage of the large disk-bandwidth and the

high computational power of current computer systems.

The description of all algorithms discussed in this paper may have been much detailed, but our aim

has been to make this paper as much self-contained and readable as possible, without leaving \dangling

pointers" to the literature in order to additionally o�er a unique reference for anyone who is interested in

building large su�x arrays. The study and experiments so far conducted leads us to indicate some other

directions of research that in our opinion deserve further investigation:

� Radix Heaps were chosen to reduce the space requirements of the doubling algorithm. Recently,

in [14] has been presented a novel external-memory heap mainly based on an array topology, which

requires strictly linear space and an optimal number of I/Os. The performance of this heap does

not depend on the value of the priorities stored into it, so that it has the space-advantages of

the radix-heap but it overcomes its drawbacks. Additionally, since the priority data type is not

restricted to integers, this heap may allow us to perform the Step 1 of Doubling (see Section 2.2.1)

in one shot without increasing the overall work (as instead happens with radix-heaps). Therefore,

it would be interesting to plug this new data structure into the Doubl+Disc algorithm and evaluate

its time vs. space tradeo�.

� In [50], it is discussed a variant of the multiway mergesort which uses NX + (N=B)� bytes to

sort N items of size X bytes each (� > 0). This approach is I/O-optimal but the pattern of disk

accesses is distributed randomly so that it is unclear how it might behave in real situations. It is

therefore interesting to evaluate how this approach compares with the sorting routine above based

on array-heaps [14].

� The algorithm presented in Section 2.2.3 is very e�cient both in terms of I/Os and working space,

but it produces L = 4 distinct su�x arrays. It would be interesting to establish how much it costs
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in practice to merge these four arrays into one unique su�x array. In this respect, it would be

worth to use the lazy-trie data structure proposed in [1]. Although this approach would be not

I/O-e�cient from a theoretical point of view (it may take more than N I/Os in the worst case),

the properties of the lazy trie and the limited (i.e., four) number of sequences to be merged, seem

to o�er an hope to achieve good performance in practice.

� In Section 5.1 we proposed a method for constructing word-based su�x arrays and conjectured its

good practical performance based on the promising experimental results shown in Section 4. In the

near future, we would like to validate this conjecture by performing some experimental tests.

� Recently, Farach et al. [19] devised the �rst I/O-optimal algorithm for building su�x trees. Although

asymptotically optimal (both in time and space), that algorithm uses more space than the algorithms

discussed in this paper because it operates on a tree topology. It is not yet clear how this approach

could be used to directly construct su�x arrays. This is an important problem both theoretically

and experimentally.

� Our new algorithms scale theoretically well in a distributed environment where D disks or P work-

stations are available. However, there are only few practical experiments in this setting [36]. We

hope in the future to extend our results to this high-performance environment.
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