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Abstract

This paper shows how to increase the expressivity of concept languages using

a strategy called hybridization. Building on the well-known correspondences

between modal and description logics, two hybrid languages are de�ned.

These languages are called `hybrid' because, as well as the familiar propo-

sitional variables and modal operators, they also contain variables across

individuals and a binder that binds these variables. As is shown, combining

aspects of modal and �rst-order logic in this manner allows the expressivity

of concept languages to be boosted in a natural way, making it possible to de-

�ne number restrictions, collections of individuals, irre
exivity of roles, and

TBox- and ABox-statements. Subsequent addition of the universal modality

allows the notion of subsumption to be internalized, and enables the rep-

resentation of queries to arbitrary �rst-order knowledge bases. The paper

notes themes shared by the hybrid and concept language literatures, and

draws attention to a little-known body of work by the late Arthur Prior.

Keywords

Knowledge Representation, Description Logics, Hybrid Languages, Modal

Logic, Arthur Prior



1 Introduction

Concept languages enable structured classes of objects to be represented

and reasoned about; a good examples is ALC, due to Schmidt-Schau� and

Smolka (1991), which o�ers the basic tools needed to build descriptions and

work with them. Of course, sometimes basic tools don't go far enough, so

extensions of ALC which o�er additional concept or role constructors, modal

operators and epistemic operators, have been investigated (see, for example,

Donini, Lenzerini, Nardi and Schaerf (1996)).

In this paper we explore a novel route to increased concept language

expressivity: hybridization. Building on the well-known correspondences be-

tween modal and description logics (and in particular, the fact that ALC is

a notational variant of the basic multi-modal language) we de�ne two hy-

brid languages. Our languages are called `hybrid' because, as well as the

familiar propositional variables and modal operators, they also contain vari-

ables across individuals and a binder that binds these variables. The indi-

vidual variables (which in their free variable form are known in the modal

literature as names or nominals; see Gargov and Goranko (1993) and Black-

burn (1993a)) are interpreted as singleton sets. Syntactically, individual

variables are used exactly as ordinary propositional variables: they can be

combined with Boolean and modal operators in the standard way. Seman-

tically, however, by identifying singletons with the individuals they contain,

we are free to view individual variables as �rst-order variables and to give

an essentially classical treatment of variable binding and quanti�cation in

an intrinsically modal framework. The resulting systems are thus a hybrid of

modal and classical ideas: they combine the naturalness of modal notation

with the power of variable binding.

As we shall see, hybridization greatly increases the expressivity of ALC.

Our basic language can de�ne number restrictions N and collections of indi-

viduals O and hence possesses at least the expressivity of the well-known con-

cept language ALCNO. Moreover, this language is also expressive enough

to de�ne both TBox- and ABox-statements. In fact, as we shall show, our

basic hybrid language is a general formalism in which a variety of descriptive

concepts can be formalized, and moreover, one in which the basic queries to

a knowledge base (such as subsumption, instance checking, concept satis�a-

bility and consistency) can be formulated as validity problems. If we go one

step further and add the universal modality

1

to the language we can inter-

nalize the notion of subsumption. The resulting language is powerful enough

1

Given a Kripke modelM and a world w 2M, the universal modality has the following

satisfaction de�nition: M; w j= A' i� M; w

0

j= ' for all worlds w

0

2M. This important

modality will be discussed in more detail later.
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to represent queries to arbitrary �rst-order knowledge bases.

As well as discussing the links with concept languages, we present an

axiomatization for the basic hybrid language, and prove it complete using

witnessed models as a bridge between modal and �rst-order completeness

techniques. We also show how this axiomatization, and the use of witnessed

models, can be extended to cover hybrid languages enriched with the univer-

sal modality; as we shall see, both the axiomatization and the completeness

proof for such enriched systems turn out to be signi�cantly simpler than for

the basic language, for the universal modality smoothly takes over much of

the deductive load.

Some historical remarks are in order. A number of other papers have ex-

plored correspondences between modal and description logics; we draw the

reader's attention to Schild (1991), de Rijke (1994), van der Hoek and de

Rijke (1995), and Kurtonina and de Rijke (1997). None of these papers,

however, explores the use of hybrid languages. Relatively weak hybrid lan-

guages (namely, the free variable fragment; that is, modal languages with

nominals) have been explored in a neighboring �eld, namely the study of

the feature logics used in computational linguistics. Here the key idea is

to use nominals for representing and reasoning about re-entrant Attribute-

Value structures (see Blackburn (1993, 1994), Blackburn and Spaan (1993),

and Reape (1991, 1994) for further discussion). But the idea of explicitly

binding names or nominals has received little attention in the applied logic

literature.

2

Nonetheless, hybridization has a surprisingly long history. It traces back

to Arthur Prior (see, in particular, Chapter 5 and Appendix B of Prior (1967),

and the posthumously published Prior and Fine (1977)) and was �rst ex-

plored technically in Bull (1970) in the setting of temporal logic. It was

independently reinvented by Passy and Tinchev (1985) as a tool for study-

ing enriched versions of Propositional Dynamic Logic, and the lengthy Passy

and Tinchev (1991), drafts of which were in circulation in the modal logic

community in the late 1980s, remains an indispensable technically-oriented

guide to strong hybrid languages. More recently, a handful of papers (see

Goranko (1996a, 1996b), Blackburn and Seligman (1995, 1998), Seligman

(1997), and Blackburn and Tzakova (1998, 1998a)) develop the idea in vari-

ous directions. But as far as we are aware, the papers just cited pretty much

2

Reape (1991), a lengthy unpublished predecessor of Reape (1994), is an interesting

exception. Although mostly concerned with the use of nominals, on pages 109 { 114

Reape notes the possibility of introducing binders, suggests some axioms, and sketches a

completeness proof. Although this part of his work is technically 
awed, Reape makes a

convincing case that nominals and hybrid languages have a role to play in formalizing the

Head Driven Phrase Structure Grammar (HPSG) uni�cation-based grammar framework.
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exhaust the literature on the subject. We believe hybridization is an inter-

esting and potentially useful idea that has not yet received the attention it

deserves. In particular, we believe that hybrid languages embody a number

of ideas of special relevance to the study of concept languages. The main

goal of this paper is to make these ideas explicit.

2 A basic hybrid language

We �rst review the syntax of the basic multi-modal language. Given a (count-

able) set of propositional variables PROP = fp; q; r; : : :g and a set of modal

operators f2

i

g

i2I

where I = f1; :::; ng, we de�ne well-formed formulae as

follows:

WFF := p j :' j ' ^  j 2

i

':

Other Boolean operators (_,!,$, ?, >, and so on) are de�ned in the usual

way, and 3

i

' := :2

i

:'.

We now hybridize this language. First, we add a countable set of new

symbols, INDIV = fx; y; z; : : :g, called individual variables. (Thus we have

two distinct sorts of variables in our language: PROP and INDIV.) Second,

we add an existential binder 9 to bind these individual variables. Well-formed

formulae are de�ned as follows:

WFF := p j x j :' j ' ^  j 2

i

' j 9x':

This syntax is a hybrid of �rst-order and modal ideas. On the one hand,

individual variables can be used exactly like ordinary propositional variables:

for example the expression :x ^ (:p ! 9x3

i

(x ^ q)) is well-formed. That

is, individual variables really are formulae. On the other hand, they are also

open to binding. Intuitively, 9x is read \select an individual and name it

x" or \select an individual and bind it to the individual variable x". The

dual universal binder is 8x' := :9x:'. Free and bound individual variables,

substitution and other syntactic concepts, are de�ned as in classical logic; for

example, in the above formula the �rst occurrence of the individual variable

x is free, while the second and third are bound.

3

A sentence is a formula

that contains no free variables. Given a formula ' and individual variables

3

It's perhaps worth being explicit about what it means for an individual variable z to

be substitutable for the individual variable x in formula '. If ' 2 PROP[INDIV, then z is

substitutable for x in '. Second, z is substitutable for x in :' or 2

i

' i� z is substitutable

for x in ', and z is substitutable for x in ' ^  i� z is substitutable for x in both ' and

 . Finally, z is substitutable for x in 9y' i� x does not occur free in ', or y 6= z and z is

substitutable for x in '.
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x and y, '[y=x] will denote the formula obtained from ' by substituting y

for all free occurrences of x.

Now for the semantics. As in modal logic, a (Kripke) modelM is a triple

(W; fR

i

g

i2I

; V ). W can be viewed as a non-empty set of worlds, but viewed

from the perspective of knowledge representation and concept languages, it

is best thought of as a set of individuals. For all i 2 I, R

i

is a binary relation

on W ; we can think of these relations as roles. If two worlds/individuals w

1

and w

2

in W are related via a relation/role R

i

, we will say that w

2

is an

R

i

-successor of w

1

. In modal logic, the function V : PROP �! Pow(W ) is

thought of as a valuation assigning meaning to propositional variables. In

this paper, it will be natural to view it as a function assigning subsets of

individuals to concept names.

So far, everything should be fairly familiar. The novel part comes with the

interpretation of the individual variables. This makes use of the �rst-order

concept of assignments of values to variables. An assignment on a model

M = (W; fR

i

g

i2I

; V ) is a function g : INDIV �! Pow(W ). An assignment g

on a modelM is standard i� for all individual variables x, g(x) is a singleton.

That is, individual variables will pick out exactly one individual. This is the

semantic mechanism which enables the individual variables (which, after all,

are formulae) to work like terms. For an individual variable x, the notation

g

0

x

� g means that g

0

and g are standard assignments that di�er, if at all,

only in what they assign to x. In this case we say that g

0

is an x-variant of

g.

The satisfaction de�nition for our basic hybrid language puts these two

ideas together: we simply relativize the usual Kripke-style de�nition to an

assignment g. Given a model M = (W; fR

i

g

i2I

; V ), a standard assignment

g on M and a world w 2 W we de�ne satis�ability by:

M; g; w j= p i� w 2 V (p); for all propositional variables p

M; g; w j= x i� w 2 g(x); for all individual variables x

M; g; w j= :' i� M; g; w 6j= '

M; g; w j= ' ^  i� M; g; w j= ' & M; g; w j=  

M; g; w j= 2

i

' i� for all w

0

(wR

i

w

0

)M; g; w

0

j= ')

M; g; w j= 9x' i� M; g

0

; w j= '; for some g

0

x

� g

Note that the clauses for individual variables are just like those for propo-

sitional variables, save that individual variables make use of the assignment,

whereas propositional variables use the valuation. A formula ' is satis�able

i� for some modelM, some standard assignment g onM, and some world w

in M, M; g; w j= '. A formula ' is valid i� for all models M, all standard

assignments g on M, and all worlds w in M, M; g; w j= '. If for all worlds
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w, M; g; w j= ' we write M; g j= '. We write M; w j= ' i� M; g; w j= '

for all standard assignments g.

Let us note two examples of expressivity our basic hybrid language o�ers.

Example 1. Number restrictions are de�nable. For example we can de�ne:

9

�2

R := 9x9y(3(x ^ :y) ^3(y ^ :x)):

9

�2

R is satis�ed at a world/individual w i� ' is satis�ed in at least two

distinct R-successors of w. (Here R is a relation/role underlying 3.) Read

this sentence as follows: it is possible to bind the variables x and y to two

R-successors in such a way that y is false at the world/individual named x,

and x is false at the world/individual named y.

Example 2. Many roles, such as \is a child of", are irre
exive. Irre
exivity

is not de�nable in ALC, but it can be expressed in our basic hybrid language

as follows:

8x(x! :3x):

Read this as follows: no matter which individual we bind to x, if x names the

current individual, then it is not possible to access the current individual by

making an R-transition. This sentence is guaranteed to hold precisely when

R is irre
exive.

3 The basic language as a concept language

In this section we embed the concept language ALCNO, a well-known ex-

tension of ALC (see Donini et al. (1996)), in our basic hybrid language. Like

other concept languages, ALCNO is used for representing structured classes

(concepts) of individuals. We start by recalling the syntax of ALC.

Given a set of concept names CONCEPT, and a set of role names ROLE =

fR

i

g

i2I

, where I = f1; :::; ng, we build concept expressions (or concepts) as

follows:

C := A j :C j C u D j C t D j 9R

i

:C j 8R

i

:C

(Here A 2 CONCEPT.)

One word of warning. There is a notational pitfall here. As is well-

known, the language ALC is a notational variant of the ordinary, unhy-

bridized, multi-modal language (reviewed at the start of the the previous

section). In particular, 9R

i

corresponds to 3

i

and 8R

i

corresponds to 2

i

.

They don't correspond to our hybrid binders 9 and 8. The translation given

below should make this clear.
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The language ALCNO is an extension of ALC with new concept con-

structors, namely number restrictions N and collections of individuals O.

The basic ingredients are sets CONCEPT and ROLE as for ALC expres-

sions; however, in addition, we can make use of ELEM, a set of so-called

ABox-elements. Here is the syntax of ALCNO:

C := A j :C j CuD j CtD j 9R

i

:C j 8R

i

:C j 9

�n

R

i

:C j 9

�n

R

i

:C j O(a

1

; :::a

n

):

(Here a

1

; : : : ; a

n

2 ELEM.)

Now for the semantics. An interpretation I = (W; �

I

) consists of a non-

empty domain (of individuals) W and an interpretation function �

I

. The

function �

I

maps concept names to subsets of W , role names to subsets of

W �W and ABox-elements to members of W . The homomorphic extension

of �

I

de�nes the meaning of all non-primitive concepts. Boolean operators

:, u and t are interpreted in the usual way, and:

(9R

i

:C)

I

:= fw 2 W j for some w

1

2 W : wR

I

i

w

1

& w

1

2 C

I

g

(8R

i

:C)

I

:= fw 2 W j for all w

1

2 W : wR

I

i

w

1

! w

1

2 C

I

g

(9

�n

R

i

:C)

I

:= fw 2 W j ]fw

1

j wR

I

i

w

1

& w

1

2 C

I

g � ng

(9

�n

R

i

:C)

I

:= fw 2 W j ]fw

1

j wR

I

i

w

1

& w

1

2 C

I

g � ng

(O(a

1

; :::; a

n

))

I

:= fa

I

1

; :::; a

I

n

g:

A concept expression C is called satis�able i� there is an interpretation I

such that C

I

6= ;.

Here's an example. The expression Parentu9Child:Male de�nes the set of

\all Parents that have at least one Male Child", while Parent u 9

�1

Child:Male

the class of `all Parents that have at most one Male Child'.

We can embed any ALCNO language in a basic hybrid language. In

particular, given an ALCNO concept expression built from elements drawn

from CONCEPT, ELEM, and some I-indexed set ROLE, proceed as follows.

Work with a hybrid language with an I-indexed collection of modalities that

uses the items in CONCEPT as propositional variables. Let 
 be an injective

function that maps each element of CONCEPT to itself, and each element

a of ELEM to some individual variable. We then extend 
 to an embedding

of ALCNO into the chosen hybrid language as follows:


(:C) = :
(C)


(C u D) = 
(C) ^ 
(D)


(9R

i

:C) = 3

i


(C)


(9

�2

R

i

:C) = 9x9y(3

i

(x ^ :y ^ 
(C)) ^3

i

(y ^ :x ^ 
(C)));

for some x and y not contained in 
(C)


(O(a

1

; :::; a

n

)) = 
(a

1

) _ ::: _ 
(a

n

)
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(Note that 
(9

�n

R

i

:C) for arbitrary n can be de�ned similarly.)

Two remarks are in order. First, as we mentioned above, note that 9R

i

corresponds to 3

i

, and not to the existential hybrid binder 9. Second, per-

haps the most interesting part of the above translation is the way it identi-

�es ABox-elements with individual variables. This comment deserves further

elaboration.

It has long been known that ALC, and even ALC enriched with num-

ber restrictions, are essentially notational variants of multi-modal languages

(see, for example, Schild (1991), de Rijke (1994), and van der Hoek and de

Rijke (1995)). But what exactly are ABox-elements and O expressions? It

should be clear that they are essentially mechanisms for obtaining `termlike'

or `individuating' entities in a modal setting. Now, at �rst blush, this may

seem a slightly odd, or even ad-hoc, kind of mechanism to want in a con-

cept language. Unsurprisingly, one of the fundamental claims of this paper

is that it is really extremely natural. In e�ect, with the introduction of

ABox-elements, concept languages are taking the �rst step on the path that

leads, via modal languages with nominals, to full-blown hybrid languages.

We return to this theme later in the paper.

It is not di�cult to see that the above translation is semantically cor-

rect. Note �rst that every pair (M; g), where M is a Kripke model and

g a standard assignment on M, can be viewed as an interpretation I, and

vice versa. More precisely, given a model M = (W; fR

i

g

i2I

; V ) and a stan-

dard assignment g, we de�ne an interpretation I = (W; �

I

) corresponding to

(M; g) as follows. Let A

I

:= V (
(A)) and a

I

:= g(
(a)) for A 2 CONCEPT,

a 2 ELEM, and R

I

i

:= R

i

, where i 2 I. Second, the following lemma holds:

Lemma 1 Let M = (W; fR

i

g

i2I

; V ) be a model, g a standard assignment

on M, and I an interpretation corresponding to (M; g). Then, for every

w 2 W , every a 2 ELEM and every concept C:

(1) w = a

I

i� M; g; w j= 
(a)

(2) w 2 C

I

i� M; g; w j= 
(C)

Proof. Clause (1) is immediate from our de�nition, since 
(a) is simply an

individual variable. Clause (2) follows by induction on the structure of C. a

So the basic hybrid language has all the expressivity of ALCNO. More-

over, it is strictly more expressive than ALCNO. One way to see this is as

follows: we saw in the previous section (see Example 2) that the basic hybrid
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language can de�ne irre
exivity, whereas ALCNO cannot. But here's a nice

example which demonstrates this in another way:

Example 3. Let Famous be a basic concept and let `descendent of' be a role

underlying 3. We can think of `descendent of' as the transitive closure of

the role `child of'. Then, the hybrid language can formalize statements like

\there is a minimal Famous descendent". This is not de�nable in ALCNO,

while in the basic hybrid language we need simply say:

9x(3(x ^ Famous) ^ 2(3x! :Famous)):

The formula says that it is possible to bind the variable x in such a way

that (1) the individual named x is a descendant and is famous, and (2) every

descendant which has x as a descendant is not famous. (Readers familiar

with temporal logic will realize that, in e�ect, we have used the basic hybrid

language to de�ne the Until operator, and used the standard Until de�nition

of minimality to pin down the required concept.)

To close this section, two remarks. These examples barely scratch the

surface of the available expressivity: the basic hybrid language is extremely

rich. It is certainly powerful enough to code undecidable problems with ease.

4

In fact, the reader may even suspect that by adding explicit quanti�cation

over worlds/individuals we have gained full �rst-order expressive power. In-

triguingly, this is false. While the basic hybrid language is strong, it's not

that strong; though as we shall see later there is an easy way to attain full

�rst-order expressive power.

But this is jumping ahead. We have de�ned the basic hybrid language

and shown that individual variables can be viewed as a generalization of the

idea of ABox-elements. But how well-behaved is the basic hybrid language?

In particular, does it give rise to easily analyzed logics? This is the question

to which we now turn.

4 Axiomatizing the basic logic

Given any (countable) hybrid language L, we now present an axiomatization

of the set of valid L-formulae. Our logic will be an extension of the usual

4

We won't prove this here. It can be established quite easily by a wide variety of meth-

ods. For example, the �rst-order encoding of Turing machine computations given in Boolos

and Je�rey (1989) adapts fairly straightforwardly to the basic hybrid language. Sharper

undecidability results for hybrid languages are proved in Blackburn and Seligman (1995,

1998).
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axiomatization for the minimal multi-modal logic K

(m)

. In what follows, v

and w are used as metavariables over individual variables.

H(K

(m)

), the hybrid logic of L, is de�ned to be the smallest set of L-

formulae that is closed under the following conditions. First, it must contain

the minimal multi-modal logic K

(m)

. That is, it contains all instances of

propositional tautologies, all instances of the distribution schema 2

i

(' !

 )! (2

i

'! 2

i

 ), for i 2 I, and is closed under modus ponens (if f'; '!

 g � H(K

(m)

) then  2 H(K

(m)

)) and necessitation (if ' 2 H(K

(m)

) then

2

i

' 2 H(K

(m)

), for i 2 I). In addition, it contains all instances of the

�ve axiom schemas listed below and is closed under generalization (if ' 2

H(K

(m)

) then 8v' 2 H(K

(m)

)).

Here are the required axiom schemas:

Q1 8v(' !  ) ! (' ! 8v ), where ' contains no free occur-

rences of v

Q2 8v'! '[w=v], where w is substitutable for v in '

Barcan 8v2

i

'! 2

i

8v', where i 2 I

Name 9vv

Nom 8v[3

(m)

(v ^ ') ! 2

(n)

(v ! ')], where m;n 2 ! and

3

(m)

= 3

j

1

:::3

j

m

, 2

(n)

= 2

k

1

:::2

k

n

for j

1

; :::; j

m

; k

1

; :::; k

n

2

I

Q1 and Q2 are the familiar axiom schemas governing the universal binder

8 found in �rst-order languages, and apply just as well to the hybrid universal

binder. Next, we have an analog of the Barcan axiom, familiar from �rst-

order modal logic.

5

One important remark. The Barcan axioms are not an

optional extra for the basic hybrid language. In �rst-order modal logic, the

Barcan schema is valid only under certain circumstances. This is not the

case with the hybrid analog: it is a fundamental validity, as we shall prove

below. It plays a crucial role in the completeness proof.

But we need more. None of the previous axioms gets to grips with the fact

that our variables range over world/individuals. Our variables `name' such

entities, and this needs to be re
ected in the logic. This is the role of Name

and Nom. Name is elegant: it re
ects the fact that it is always possible to

5

First-order modal languages result when ordinary �rst-order languages are enriched

with modalities. Thus, like hybrid languages, such systems contain both modalities and

quanti�ers. However the syntax is very di�erent (�rst-order languages certainly don't treat

terms as formulae) as is the semantics (the variables don't range over worlds/individuals

but over the elements of some underlying collection of �rst-order models). Hughes and

Cresswell (1996) contains an excellent introduction to the subject.

9



bind a variable to the current world/individual. Nom, it must be admitted,

is more complex; nonetheless its content is crystal clear. It says that if by

following some path (the one encoded in the modality sequence 3

(m)

in the

antecedent) we reach an individual named x bearing the information ', then,

no matter what path we may follow, if we ever reach a world named x, we

are guaranteed to �nd the information '. And this, of course, is exactly what

we want, for standard assignments permit exactly one world/individual to

be `named' by any variable. The soundness proof given below makes this

intuitive justi�cation precise. One �nal remark. Note that Name and Nom

are actually doing something rather familiar: in e�ect they are a modal

analog of the classical theory of equality.

Our �rst goal is to show that H(K

(m)

) is sound: that is, if ' belongs

to H(K

(m)

) then ' is valid. To prove this we need two preliminary lemmas

concerning variables and substitution.

Lemma 2 (Agreement Lemma) Let M be a model. For all standard assign-

ments g and h on M, all formulae ', and all worlds w in M, if g and h

agree on all variables occurring freely in ', then:

M; g; w j= ' i� M; h; w j= ':

Proof. By induction on the complexity of '. The only step of interest is that

for the binders. So suppose ' is 8x and M; g; w j= 8x . This holds i� for

all assignments g

0

such that g

0

x

� g,M; g

0

; w j=  . For every such assignment

g

0

, we de�ne an assignment h

0

as follows: h

0

x

� h and h

0

(x) = g

0

(x). As g

and h agree on all variables occurring freely in  , g

0

and h

0

do too, so by the

induction hypothesis M; g

0

; w j=  i� M; h

0

; w j=  . Now, it is clear that

every assignment that is an x-variant of h is one of these h

0

, hence having

that M; h

0

; w j=  for all such h

0

is equivalent to M; h; w j= 8x . a

Lemma 3 (Substitution Lemma) Let M be a model. For every standard

assignment g on M, every formula ', and every world w in M, if y is a

variable that is substitutable for x in ' then:

M; g; w j= '[y=x] i� M; g

0

; w j= '; where g

0

x

� g and g

0

(x) = g(y):

Proof. The proof is by induction on the complexity of '. The cases for atomic

or Boolean ' are straightforward. If ' is 3

i

 the required equivalence follows

from the inductive hypothesis for successor worlds.

Let ' be 8z and suppose �rst that x does not occur freely in 8z .

Then, since no substitution of y for x in 8z is possible, triviallyM; g; w j=

10



(8z )[y=x] i� M; g; w j= 8z . Moreover, since g and g

0

agree on variables

occurring freely in 8z , by the Agreement Lemma M; g

0

; w j= 8z .

Assume now that x has free occurrences in 8z . From the de�nition of

substitutability of y for x in 8z it follows that y 6= z and y is substitutable

for x in  . Hence M; g; w j= (8z )[y=x] i� M; g; w j= 8z( [y=x]). Now, by

de�nition, M; g; w j= 8z( [y=x]) i� for all assignments h such that h

z

� g,

M; h; w j=  [y=x]. For every assignment h, let h

0

be de�ned as follows:

h

0

z

� g

0

and h

0

(z) = h(z). Hence h

0

x

� h and h(y) = h

0

(x). By the inductive

hypothesis M; h; w j=  [y=x] i� M; h

0

; w j=  . That is, for all assignments

h

0

such that h

0

z

� g

0

, we haveM; h

0

; w j=  which is equivalent toM; g

0

; w j=

8z . a

Theorem 4 (Soundness) The logic H(K

(m)

) is sound with respect to the

class of all models.

Proof. To prove that H(K

(m)

) is sound we have to show that all H(K

(m)

)

theorems ' are valid; that is, for all modelsM, all standardM-assignments

g, and all worlds w in M, M; g; w j= '. Now it is clear that all instances of

the minimal multi-modal logic K

(m)

in H(K

(m)

) are valid, and moreover it is

clear that modus ponens, necessitation and generalization preserve validity,

so it only remains to check that all instances of the �ve additional schemas

are valid too.

(Q1 ). Let ' = 8x(' !  ) ! (' ! 8x ) and assume that M; g; w j=

8x(' !  ) and M; g; w j= '. It follows that for all assignments g

0

, where

g

0

x

� g, that M; g

0

; w j= ' !  and, moreover, by the Agreement Lemma,

that for all such g

0

,M; g

0

; w j= ' (note thatM; g

0

; w j= ' i�M; g; w j= ' as

' does not contain free occurrences of x). It follows that for all assignments

g

0

, where g

0

x

� g, thatM; g

0

; w j=  , but this is equivalent toM; g; w j= 8x ,

which is what we needed to show.

(Q2 ). Let ' = 8x'! '[y=x] be an instance of the Q2 schema. Suppose

that M; g; w j= 8x'. Proving that M; g; w j= '[y=x] is equivalent (by

the Substitution Lemma) to showing that M; g

0

; w j= ', where g

0

x

� g and

g

0

(x) = g(y). But as M; g; w j= 8x', it is immediate that M; g

0

; w j= '.

(Name). Let ' = 9xx. Then M; g; w j= ' i� for some assignment g

0

such that g

0

x

� g, M; g

0

; w j= x. Clearly a suitable g

0

exists: we need merely

stipulate that g

0

is the x-variant of g such that g

0

(x) = fwg.

(Nom). Let ' = 8x[3

(m)

(x ^ ') ! 2

(n)

(x! ')]. Then M; g; w j= ' i�

for all (standard) assignments g

0

such that g

0

x

� g,M; g

0

; w j= 3

(m)

(x^')!

2

(n)

(x ! '). But this is true since any (standard) assignment makes the

variable x true at precisely one world.

(Barcan). Assume that ' = 8x2

i

' ! 2

i

8x'. Then M; g; w j= 8x2

i

'

i� for all g

0

such that g

0

x

� g and all w

1

such that wR

i

w

1

, M; g

0

; w

1

j= '.

11



This is equivalent to: for all w

1

such that wR

i

w

1

and all g

0

such that g

0

x

� g,

M; g

0

; w

1

j= ', which is equivalent to M; g; w j= 2

i

8x' as required. a

But this, of course, is the easy part. The harder question is: how are we

to prove that H(K

(m)

) is complete?

5 Completeness

First some preliminaries. For any (countable) language L, if a formula '

belongs to H(K

(m)

) then we say that ' is a theorem of H(K

(m)

) and write

` '. By an H(K

(m)

)-proof in a language L we mean a �nite sequence

of L formula, each item of which is an axiom, or is obtained from earlier

items in the sequence using the rules of proof. If � is a set of formulae,

and ' a formula, then we say that ' is a consequence of � i� there is a

conjunction � of (�nitely many) formulae in � and ` � ! '; in such a

case we write � ` '. A set of L-formulae � is consistent i� it is not the

case that � `?, otherwise � is inconsistent . A set of L-formulae � is a

maximal consistent set in L (an L-MCS) i� it is consistent, and any set of L-

formulae that properly extends it is inconsistent. As H(K

(m)

) is an extension

of classical propositional logic, Lindenbaum Lemma holds: any consistent set

of L-formulae can be extended to an L-MCS. In what follows we make free use

of basic facts about deducibility in modal logic. (Actually, our presentation

is fairly self contained. However readers totally unfamiliar with modal logic

may �nd it useful to consult Hughes and Cresswell (1996).) We also make

free use of the following two lemmas:

Lemma 5 Suppose that y is substitutable for x in ', and that ' has no free

occurrences of y. Then ` 8x'$ 8y'[y=x].

Proof. As in �rst-order logic. a

Lemma 6 In H(K

(m)

) we have that:

1. ` ('! 9x )! 9x('!  )

2. ` (' ^ 9y )! 9y(' ^  ), where y is not free in '

3. ` 8x('!  )! (8x'! 8x ).

Proof. As in �rst-order logic. a

12



We now turn to the question of completeness: showing that every validity

is a theorem, or equivalently, that every consistent set of formulae has a

model. From modal logic we shall borrow the idea of canonical models:

De�nition 7 (Canonical models) For any countable language L, the canon-

ical model M

c

is (W

c

; fR

c

i

g

i2I

; V

c

), where W

c

is the set of all L-MCSs; for

all i, R

c

i

is the binary relation (called the canonical relation) on W

c

de�ned

by �R

c

i

� i� 2

i

' 2 � implies ' 2 �, for all L-formulae '; and V

c

is the

valuation de�ned by V

c

(p) = f� j p 2 �g, where p is a propositional variable.

Canonical models (and in particular, the canonical relation between MCSs)

are important because they give us the structure needed to prove a complete-

ness result, Henkin-style, for the modal component. However the basic hybrid

language also contains binders, so we shall need rather more structure than

the canonical model provides us with. In particular, we shall need to borrow

from classical logic the idea of witnessed MCSs.

De�nition 8 (Witnessed sets) Let L be some countable language and � an

L-MCS. � is called witnessed i� for any L-formula of the form 9x', there

is an individual variable y substitutable for x in ' such that 9x' ! '[y=x]

is in �.

Witnessed MCSs have the structure needed to handle the hybrid binders

Henkin-style. Roughly speaking, the model we shall eventually de�ne will

be made of witnessed MCSs related by the canonical relation. So, before we

go any further, we need to check that any consistent set of sentences can be

expanded to a witnessed MCS.

Lemma 9 (Extended Lindenbaum Lemma) Let L

o

and L

n

be two countable

languages such that L

n

is L

o

extended with a countably in�nite set of new

variables. Then every consistent set of L

o

-formulae � can be extended to a

witnessed MCS �

+

in the language L

n

.

Proof. Let E

v

= fy

1

; y

2

; y

3

:::g be an enumeration of the set of all variables

that are contained in L

n

but not in L

o

, and let E

f

= f'

1

; '

2

; '

3

:::g be an

enumeration of all L

n

-formulae. We de�ne the witnessed MCS �

+

we require

inductively. Let �

0

:= �. Note that �

0

contains no variables from E

v

(as it

is a set of L

o

-formulae) and that it is consistent when regarded as a set of

L

n

-formulae. (To see this, note that if we could prove ? by making use of

variables from E

v

, then by replacing all the (�nitely many) E

v

variables in

such a proof with variables from L

o

, we could construct a proof of ? in L

o

,

which is impossible.) We de�ne �

n

as follows. If �

n

[ f'

n

g is inconsistent,

then �

n+1

:= �

n

. Otherwise:

13



1. �

n+1

:= �

n

[ f'

n

g, if '

n

is not of the form 9x .

2. �

n+1

:= �

n

[f'

n

g[f [y=x]g, if '

n

= 9x . (Here y is the �rst variable

in the enumeration E

v

which is not used in the de�nitions of �

j

for all

j � n and also does not appear in '

n

.)

Let �

+

:=

S

n�0

�

n

. By construction it is maximal and witnessed; it

remains to show it is consistent. Now, if �

+

is inconsistent, then for some

n 2 !, �

n

is inconsistent, for all the (�nitely many) formulae required to prove

inconsistency belong to some �

n

. But, as we shall now show by induction,

all �

n

are consistent, hence �

+

is too.

In fact, all we need to check is that expansions using clause 2 preserve

consistency. To show this, we argue by contradiction. Suppose �

n+1

=

�

n

[ f'

n

g [ f [y=x]g is inconsistent. Then there is a formula � which is

a conjunction of a �nite number of formulae from �

n

[ f'

n

g, such that

` �! : [y=x]. By generalization and Q1 we have ` �! 8y: [y=x], where

y is a variable that does not occur in �. Hence �

n

[ f'

n

g ` 8y: [y=x],

and by Lemma 5 we obtain �

n

[ f'

n

g ` 8x: . But '

n

= 9x , and this

contradicts the consistency of �

n

[ f'

n

g. a

We now set about de�ning the models (and standard assignments) needed

to prove completeness. Here's the crucial concept:

De�nition 10 (Witnessed models) Let � be a witnessed MCS in some count-

able language L, let M

c

= (W

c

; fR

c

i

g

i2I

; V

c

) be the canonical model in L,

and let Wit(M

c

) be the set of all witnessed MCSs in M

c

. The witnessed

modelM

w

[�] yielded by � is (W

w

; fR

w

i

g

i2I

; V

w

), whereW

w

= f�g[f� j � 2

Wit(M

c

) & 9�

0

; :::;�

k

2 Wit(M

c

); 9R

0

; :::; R

k�1

2 fR

c

i

g

i2I

such that �

0

=

�;�

k

= �& �

j

R

j

�

j+1

8j � k � 1g, and R

w

i

and V

w

are restrictions of R

c

i

and V

c

respectively to W

w

.

As promised, witnessed models contain only witnessed MCSs. However

the really crucial thing about this de�nition is that witnessed models only

contain those witnessed MCSs reachable from the initial MCSs � via some

�nite successorship chain along the canonical relations. (To put it more

simply: we only take the witnessed MCSs reachable from �.) Witnessed

models don't quite provide us with all the structure we need | but as the

next lemma shows, they are well on the way to being the models we require.

This is the part of the proof where we put Nom to work.

Lemma 11 Let L be a countable language andM

w

[�] = (W

w

; fR

w

i

g

i inI

; V

w

)

the witnessed model yielded by some witnessed L-MCS �. Then, for all MCSs

�;� 2 M

w

[�] and every individual variable x, if x 2 � and x 2 �, then

� = �.
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Proof. Suppose � and � are di�erent MCSs. Then there is a formula ' such

that ' 2 � and :' 2 �. We know that there are �nite sequences R

(m)

=

(R

i

1

; :::; R

i

m

) and R

(n)

= (R

j

1

; :::; R

j

n

) of relations in fR

i

g

i2I

such that the

MCSs � and � are reachable from � via R

(m)

and R

(n)

, respectively. Let

3

(m)

= 3

i

1

:::3

i

m

and 3

(n)

= 3

j

1

:::3

j

n

be the sequences of modal operators

corresponding to R

(m)

and R

(n)

, respectively. Therefore, 3

(m)

(x ^ ') 2 �

and 3

(n)

(x ^ :') 2 �. As � contains every instance of the Nom schema,

8y[3

(m)

(y ^')! 2

(n)

(y ! ')] 2 �, for some variable y that does not occur

freely in '. Hence, by Q2, 3

(m)

(x ^ ') ! 2

(n)

(x ! ') 2 �, and therefore

2

(n)

(x ! ') 2 �. But because both 3

(n)

(x ^ :') 2 � and 2

(n)

(x ! ') 2

� it follows by easy modal reasoning that 3

(n)

(x ^ :' ^ ') 2 �, which

contradicts the consistency of �. We conclude that � and � are identical.

a

We almost have our required model. From the previous lemma we know

that individual variables are contained in at most one MCS in a witnessed

model, so it is natural to de�ne an assignment by stipulating that g(x) is

to be the set of MCSs containing x. There's just one little problem: we

have no guarantee that every individual variable is contained in at least one

MCS. But this isn't a real di�culty: whenever we have a witnessed model

M

w

such that some individual variable occurs in no MCS in M

w

, we shall

glue on a new dummy world/individual. We will then stipulate that any

individual variable not occurring in any MCS in M

w

will denote this new

world/individual. This motivates the following de�nition.

De�nition 12 (Completed models and completed assignments) Let M

w

[�]

be the witnessed model (W

w

; fR

w

i

g

i2I

; V

w

) yielded by some witnessed MCS

�. If every individual variable belongs to at least one MCS in W

w

, then

M[�], the completed model of M

w

[�], is simply M

w

[�] itself. Otherwise,

a completed model M[�] of M

w

[�] is a triple (W; fR

i

g

i2I

; V ), where W =

W

w

[f�g (where � is an entity that is not an MCS); for all i, R

i

= R

w

i

, and

for all propositional variables p, V (p) = V

w

(p).

If M[�] = (W; fR

i

g

i2I

; V ) is a completed model of a witnessed model

M

w

[�], then the completed assignment g on M[�] is de�ned as follows: for

all variables x, g(x) = f� 2 M

w

j x 2 �g if this set is non-empty, and

g(x) = f�g otherwise.

Clearly (by Lemma 11) completed assignments are standard, thus (by

Theorem 4) all theorems of the logic H(K

(m)

) are true in completed models

with respect to the relevant completed assignments.

So that's our model and assignment. But are they satisfactory? Note

that there is a potential di�culty. We know that the full canonical model
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works for the modal part of the language. But to cope with the binders, we

threw away all non-witnessed MCSs. We need a guarantee that we haven't

thrown away anything vital, and by making use of an elegant argument due

to Dov Gabbay for �rst-order modal logics containing the Barcan formula,

we will be able to provide one.

Assume we are working with some �xed language L; all variables, formu-

lae, and sets of formulae in what follows belong to this language. Call a set

of formulae � pre-witnessed (in L) i� for all formulae �, and all individual

variables x: if � [ f9x�g is consistent, then for some variable y that is sub-

stitutable for x in � we have that � [ f�[y=x]g is consistent. Note that the

contraposed form of this de�nition is: if for all individual variables y substi-

tutable for x in � we have that � ` �[y=x], then � ` 8x�. Further, note that

an MCS is pre-witnessed i� it is witnessed. But what makes pre-witnessing

such a useful notion is Gabbay's lemma:

6

Lemma 13 (Gabbay) Let L be some language. Then, for every i 2 I:

(1) If � is a witnessed L-MCS, then f j 2

i

 2 �g is pre-witnessed in L.

(2) If � is pre-witnessed in L, then for any formula ' in L, �[f'g is also

pre-witnessed in L.

Proof. For the �rst claim, suppose f j 2

i

 2 �g [ f9x�g is consistent and

further suppose for the sake of a contradiction that for all y substitutable for

x in �, f j 2

i

 2 �g[f�[y=x]g is inconsistent. That is, for any such y, there

are  

1

; : : : ;  

n

2 f j 2

i

 2 �g such that `  

1

^� � �^ 

n

! :�[y=x]. Now, by

simple modal reasoning we have that ` 2

i

 

1

^� � �^2

i

 

n

! 2

i

:�[y=x], hence

as 2

i

 

1

; : : : ;2

i

 

n

2 �, we have that 2

i

:�[y=x] 2 �. As � is witnessed, it is

pre-witnessed, hence as y is an arbitrary individual variable substitutable for

x in �, we have that 8x2

i

:� 2 � (that is, we have just used the contraposed

form of the pre-witnessing de�nition). Hence, by Barcan, 2

i

8x:� 2 �. Thus

8x:� 2 f j 2

i

 2 �g [ f9x�g, contradicting our assumption that this set

is consistent.

For the second claim, suppose that � is pre-witnessed in L, and let '

be a formula in L. Suppose that � [ f'g [ f9x�g is consistent. We need

to show that it is possible to consistently substitute a variable y for x in

�, but before trying to do so, we shall relabel the bound variable. Let z

be a variable that does not occur in ' or in 9x�, and let � be �[z=x]. By

6

The following lemma is essentially Lemmas 7.3 and 7.4 for �rst-order modal logic from

pages 40{41 of Gabbay [15]. The sets we call pre-witnessed are the sets Gabbay describes

as having property #.
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Lemma 5, ` 9x� $ 9z�. Thus our original set �[f'g[f9x�g is consistent

i� � [ f'g [ f9z�g is.

Suppose for the sake of a contradiction that for all variables y such that

y is substitutable for z in �, � [ f'g [ f�[y=z]g is inconsistent. That is,

� ` '! :�[y=z]. Because z does not occur in ', this is exactly the same as

saying that � ` ('! :�)[y=z]. But � is pre-witnessed, and y is an arbitrary

choice of substitutable variable, hence � ` 8z(' ! :�). Hence, using Q1 ,

� ` ' ! 8z:� which contradicts the consistency of � [ f'g [ f9z�g. We

conclude that there is y substitutable for z in � such that �[f'g[f�[y=z]g

is consistent. Therefore, as �[y=z] = �[y=x], �[ f'g [ f�[y=x]g is consistent

too. a

Lemma 14 (Existence Lemma) Let � be a witnessed MCS in a countable

language L. If for some i, 3

i

' 2 � then there is a witnessed L-MCS � such

that �R

i

� and ' 2 �.

Proof. Enumerate all formulas in L. De�ne �

�1

to be f j 2

i

 2 �g and

�

0

to be �

�1

[f'g. It is a standard (and straightforward) modal result that

�

0

is consistent, hence if it is possible to expand �

0

to a witnessed MCS �,

then � will be the required MCS. We have already made a useful start: note

that by the previous lemma, �

0

is pre-witnessed.

Suppose �

n

has been de�ned and is pre-witnessed, and let #

n

be the n-th

item in our formula enumeration. If �

n

[ f#

n

g is inconsistent, de�ne �

n+1

to be �

n

. If �

n

[ f#

n

g is consistent, and #

n

is not of the form 9x�, de�ne

�

n+1

to be �

n

[ f#

n

g. If �

n

[ f#

n

g is consistent, and #

n

is of the form 9x�,

de�ne �

n+1

to be a consistent set of the form �

n

[ f#

n

g [ f�[y=x]g, where y

is substitutable for x in � (such a set must exists for, as �

n

is pre-witnessed,

by clause 2 of the previous lemma, �

n

[ f#

n

g is pre-witnessed too).

Note that by clause 2 of the previous lemma, every item �

n

in the se-

quence we have de�ned is pre-witnessed. De�ne � to be

S

n2!

�

n

. It follows

easily that � is a witnessed MCS. a

Lemma 15 (Truth Lemma) Let L be some language and � a witnessed L-

MCS. IfM[�] = (W; fR

i

g

i2I

; V ) is the completed model in L yielded by �, g

the completedM[�]-assignment, and � an L-MCS inM[�] then, for every

formula ':

' 2 � i� M[�]; g;� j= ':

Proof. The proof is by induction on the complexity of '. Throughout the

proof we will use M to denote M[�]. If ' is an individual variable or

propositional variable the required equivalence follows from the de�nition of
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the modelM and the assignment g. The Boolean cases follow from obvious

properties of MCSs. For the modal case, note that the Existence Lemma

gives us precisely the information required to drive through the left to right

direction. The right to left direction is more or less immediate, though the

reader should observe the following: if for some i, M; g;� j= 3

i

 , then

there is w 2 W such that �R

i

w and M; g; w j=  . Since (by de�nition) no

MCS precedes �, we conclude that w cannot be �. Thus the successor to �

that satis�es  is itself some MCS, and so we really can apply the inductive

hypothesis.

Now for the binders. Let ' be 9x . Suppose 9x 2 �. Since � is

witnessed, there is y substitutable for x in  such that  [y=x] 2 �. By the

inductive hypothesis M; g;� j=  [y=x], hence by the contrapositive of the

Q2 axiom, M; g;� j= 9x .

For the other direction assume M; g;� j= 9x . This is, there exists an

w 2 M such that M; g

0

;� j=  , where g

0

x

� g and g

0

(x) = fwg. Now,

because of the way we de�ned completed models, we know that at least

one individual variable y is true at w with respect to g. Since y may not

be substitutable for x in  , we have to replace all bounded occurrences

of y in  by some variable that does not occur in  at all. Denote the

formula we obtained  

0

. It follows by Lemma 5 that  $  

0

is provable,

hence by soundness it is valid, and therefore M; g

0

;� j=  

0

. Since y is now

substitutable for x in  

0

, by the Substitution Lemma M; g;� j=  

0

[y=x].

By the induction hypothesis  

0

[y=x] 2 �, therefore, with the help of the

contrapositive of the Q2 axiom, 9x 

0

2 �. If we show that 9x 

0

$ 9x 

is provable then, 9x will be in � and we will complete the proof. So, it

remains to show show 9x 

0

$ 9x is provable. Since, by the previous,

 $  

0

is provable, we can use generalization rule to obtain 8x( $  

0

).

Then, with the help of clause 3 of Lemma 6, we have that 8x $ 8x 

0

is

provable and hence 9x $ 9x 

0

is provable too. a

Theorem 16 (Completeness) Every consistent set of formulae in a count-

able language L

o

is satis�able in a countable model with respect to a standard

assignment function.

Proof. Let � be a consistent set of L

o

-formulae. By the Extended Linden-

baum Lemma we can expand � to a witnessed MCS �

+

in a countable

language L

n

. LetM[�

+

] be the completed model in L

n

yielded by �

+

and g

the completed assignment on this model. It follows from the Truth Lemma

thatM[�

+

]; g;�

+

j= �

+

and soM[�

+

]; g;�

+

j= �. It remains to show that

M[�

+

] is a countable model. To see this, note �rst that every MCS � in

M[�

+

] contains at least one of the (countably many) individual variables

18



in L

n

. (This is because, since � is a witnessed MCS, � contains 9xx ! y

for some variable y and, as � contains the axiom 9xx, we obtain y 2 �.)

Second, by Lemma 11, every individual variable is contained in at most one

MCS in M[�

+

], and this completes the proof. a

6 Answering queries to a knowledge base

Concept languages form a basis for representing knowledge in description

logic systems: they are used for representing structured classes (concepts)

of individuals. Given a concept language, a knowledge base consists of as-

sertions de�ning relationships between classes and individuals. The basic

queries to a knowledge base that have to be present in description logic

systems are: concept satis�ability, subsumption, instance checking, and con-

sistency (see Donini et al. (1996)). In this section we �rst show that these

basic queries can be formalized as validity problems for the basic hybrid lan-

guage. We then suggest that there are good reasons for extending the basic

hybrid language with the universal modality.

Let's �rst make the basic ideas precise. A knowledge base � consists

of two di�erent components. First, it has a TBox T containing (�nitely

many) TBox-statements, assertions de�ning relationships between classes.

Second, it contains an ABox A consisting of (�nitely many) ABox-statements

relating individuals to classes or individuals to each other. TBox- and ABox-

statements have the following syntax:

C v D j C = D and C(a) j R

i

(a; b):

Given an interpretation I (see Section 3), we now de�ne semantics for

the TBox- and ABox-statements. TBox-statements C v D and C = D are

satis�ed by an interpretation I i� C

I

� D

I

and C

I

= D

I

respectively. If

C v D is satis�ed by all interpretations I we say that C is subsumed by D.

Similarly, C is equivalent to D i� C = D is satis�ed by all interpretations I.

The ABox-statements C(a) and R

i

(a; b) are satis�ed by I i� a

I

2 C

I

and

a

I

R

I

i

b

I

, respectively. The question of satis�ability of ABox-statements with

respect to arbitrary interpretations is known as instance checking.

Let � be a knowledge base. An interpretation I satis�es � i� it satis�es

all its statements. A concept C is satis�able with respect to � i� there is

an interpretation I such that I satis�es � and C

I

6= ;. C is subsumed by

D with respect to � i� every interpretation I that satis�es � satis�es also

C v D. An ABox-element a is an instance of C with respect to � i� C(a) is

satis�ed by every interpretation I that satis�es �. � is consistent i� there

is an interpretation that satis�es it.
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We will now see that | at least in a certain sense | even the basic hybrid

language has the expressivity to de�ne TBox- and ABox-statements. To see

this we extend the mapping 
 in Section 3 as follows:


(C v D) = 
(C)! 
(D)


(C = D) = 
(C)$ 
(D)


(C(a)) = 
(a)! 
(C)


(R

i

(a; b)) = 
(a)! 3

i


(b)

Then the following lemma holds:

Lemma 17 Let M = (W; fR

i

g

i2I

; V ) be a model, g a standard assignment

on M, and I the corresponding to (M; g) interpretation. If S is a TBox- or

an ABox-statement, then:

S is satis�ed by I i� M; g j= 
(S)

Proof. An easy consequence of Lemma 1. a

It follows straightforwardly from this lemma (together with Lemma 1)

that concept satis�ability, subsumption, instance checking and consistency of

� correspond to validity problems for the hybrid language. To see this, simply

use the observation made in Section 3 that every pair (M; g) consisting of a

model and a standard assignment can be viewed as an interpretation I, and

vice versa.

Now this is pleasant | but in one respect, somewhat unsatisfactory.

The method this lemma uses to capture TBox- and ABox-statements di�ers

from the method used in Lemma 1. Whereas the Lemma 1 used the local

notion of satisfaction in a model/assignment pair at a world/individual w

(that is, M; g; w j= '), Lemma 17 uses the global notion of satisfaction in a

model/assignment pair at all worlds/individuals w (that is,M; g j= '). This

loss of uniformity is unnecessary; as we shall now see, a simple mechanism

will correct it.

We are going to extend the hybrid language with a new modal operator:

the universal modality A. This has the following satisfaction de�nition:

M; g; w j= A' i� M; g; w

0

j= ' for all w

0

2 M:

That is, A lets us insist that a condition ' holds at all worlds/individuals

in a model. The dual operator E' is de�ned to be :A:'. Note that

M; g; w j= E' i� M; g; w

0

j= ' for some w

0

2 M:
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Thus E gives us a way of insisting that there exists a world/individual in the

model at which the condition ' holds.

7

Why A is a sensible choice? First, given our criticism of the previous

lemma, it is clear that we have added precisely what is required to improve

the situation. Our previous lemma told us that we could think of concept

satis�ability, subsumption, and instance checking as validity problems | but

only globally . Very well then: let's internalize the notion of globality in the

object language. This, of course, is precisely what the universal modality

does.

Second, note that adding the universal modality is precisely equivalent

to adding a subsumption modality ) to the language. De�ne

')  := A('!  ):

That is, a modal subsumption statement ' )  holds precisely when, no

matter where we are in the model, if we have the information ', then we

have also the information  . Conversely, suppose that instead of enriching

the basic language with A, we had added a primitive subsumption modality

) de�ned as above. Then we could de�ne the universal modality as follows:

A' := > ) ':

That is, saying that ' holds universally is the same as saying that ''s pre-

condition is trivial.

A historical remark is in order. Although we have referred to) as a sub-

sumption modality, it has a long history in modal logic, where it goes under

the name strict implication. (In fact, modern modal logic traces back to C.

I. Lewis's attempts to capture the logic of this connective; see Lewis (1918).)

Further, note that (given either A or )) it is straightforward to de�ne an

equivalence modality :

',  := (')  ) ^ ( ) '):

Obviously this de�nition `modalizes' the idea of equivalence, but it also has

a long history in modal logic under the name strict equivalence.

Using our new subsumption and equivalence modalities, it is trivial to

reformulate Lemma 17 so that it parallels Lemma 1. First, we change the

relevant clauses of 
 as follows:

7

Operators such as the universal modality and the closely related (though more power-

ful) D operator (M; g; w j= D' i� M; g; w

0

j= ' for some w

0

2M such that w

0

6= w; that

is, the condition ' holds at a di�erent world/individual) play an important role in con-

temporary modal logic. They increase the expressivity of the underlying modal language,

and make it possible to prove very general completeness results. For more on the universal

modality, see Goranko and Passy (1992). For the D-operator, see de Rijke (1992).
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(C v D) = 
(C)) 
(D)


(C = D) = 
(C), 
(D)


(C(a)) = 
(a)) 
(C)


(R

i

(a; b)) = 
(a)) 3

i


(b)

This reformulated translation has a very attractive feature: it treats both

kinds of ABox-statements as subsumptions. That is, given a hybrid approach

to concept representation, we can represent both ABox-statements relating

individuals to classes, and ABox-statements linking individuals to each other,

as modal subsumption statements (strict implications) linking formulae. This

is possible because of the fundamental mechanism underlying the hybrid ap-

proach: the treatments of terms as formulae. Because hybridization handles

all information democratically | and in particular, because it handles infor-

mation about individuals in the same way as it handles other kinds of infor-

mation | ABox constraints aren't something new and unexpected: they're

simply a certain type of subsumption statement.

Given the new version of 
, it is straightforward to reformulate the pre-

vious lemma in a way that parallels Lemma 1:

Lemma 18 Let M = (W; fR

i

g

i2I

; V ) be a model, g a standard assignment

on M, and I an interpretation corresponding to (M; g). If S is a TBox- or

an ABox-statement and w 2 W , then:

S is satis�ed by I i� M; g; w j= 
(S)

Proof. Again, an easy consequence of Lemma 1. a

Indeed, with A at our disposal it is easy to give natural hybrid formula-

tions of the basic operations on knowledge bases. Given a knowledge base

�, de�ne 
(�) to be the (�nite) conjunction of all 
(C) where C 2 �. Then

we have:

Lemma 19 Let � be a knowledge base, C and D concept expressions and a

an ABox-element. Then:

(1) � is consistent i� 
(�) is satis�able

(2) C is satis�able with respect to � i� A
(�) ^ 
(C) is satis�able

(3) C is subsumed by D with respect to � i� A
(�) ! (
(C) ! 
(D)) is

valid
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(4) a is an instance of C with respect to � i� A
(�) ! (
(a) ! 
(C)) is

valid

Proof. Use Lemma 1 and Lemma 18. a

Summing up, adding the universal modality is a natural move from the

perspective of concept languages. Strikingly, it was also one of the crucial

ideas that gave rise to hybrid languages in the �rst place.

As we mentioned in the introduction, the earliest work on hybrid lan-

guages we know of are the investigations of Arthur Prior (see Prior (1967)

and Prior and Fine (1977)). Like many contemporary concept language the-

orists, Prior was dissatis�ed with the analyses o�ered by classical logic. In

particular, he felt classical logic distorted our understanding of time, modal-

ity, individuals, and propositions, and that a modal analysis was called for.

Prior's program was ambitious.

8

It called for a re-thinking of some quite

basic logical ideas and the development of new technical tools. In broad

terms, the tools that Prior settled on were hybridization coupled with use

of the universal modality. Why these? Because they allowed him to formu-

late ABox-statements! Of course, Prior didn't use this terminology, but his

key observation amounts to the same thing: one can insist that a point of

time a precedes a point of time b by thinking of a and b as `instantaneous

propositions' and insisting that A(a! b) (that is, a) b). But this is just a

temporal ABox-statement. Similarly, to insist that a condition ' holds at a

time a, think of a as an instantaneous proposition and insist that A(a! ')

(that is, a) '). Again, this is a temporal ABox-statement.

In short, \universal modality + hybridization" is an interesting combi-

nation. It is natural from the concept language perspective, for it permits a

uniform treatment of knowledge bases in terms of subsumption statements.

Moreover, it is adequate to formalize arbitrary �rst-order knowledge bases.

(We didn't prove this, but should be fairly clear from the hybrid formal-

izations of ABox-statements given above. A translation and proof for �rst-

order languages of arbitrary signature can be found in Blackburn and Selig-

man (1995). The basic insight is due to Arthur Prior.) The use of the

universal modality in a hybrid framework can be independently motivated,

for Prior's work anchors �rmly into the philosophical universe. Moreover, as

8

Unfortunately, Prior did not live long enough to complete his program; his death in

1969 robbed philosophical logic of one of its most original thinkers. A reading of Prior and

Fine (1977) make the magnitude of the loss plain. This posthumously assembled collection

is all that exists of a book devoted to topics that Prior was working on at the time of his

death. The collection contains a lengthy Appendix by Kit Fine which explores, explains,

and reconstructs some of the central ideas.
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we shall now see, its introduction is going to simplify matters at the logical

level.

7 Logic with the Universal Modality

Given a hybrid language L, let L(A) be L enriched with the universal modal-

ity. We now show how our previous axiomatization can be adapted to yield

H(A), a complete axiomatization of L(A)-validity. We're in for a pleasant

surprise: the presence of the universal modality makes our task simpler. The

work that follows is an adaptation of a completeness proof given by Robert

Bull in his pioneering 1970 paper on hybrid languages; Bull's result is for

languages of tense logic enriched with both hybrid binders and A.

9

We shall make four changes to our earlier axiomatization. First we'll

replace all our earlier necessitation rules by the following single rule of ne-

cessitation: if ' 2 H(A) then A' 2 H(A). Second, we'll add as axioms all

instances of the following schema:

Inclusion A'! 2

i

', where i 2 I

That is, the universal modality `governs' all the other modalities. Obviously

the inclusion of these axioms immediately gives us back our necessitation

rules as derived rules, but it's going to do a lot of other work for us as well.

Third, we'll add the standard S5 axioms for A. That is, we'll add all

instances of the following four schemas:

Distribution A('!  )! (A'! A )

Re
exivity A'! ',

Symmetry '! AE',

Transitivity A'! AA'

It should be clear that these axioms are sound for A. After all, the universal

relation is an equivalence relation.

But now comes the big gain. We'll throw away our old version of Nom

and add all instances of the following three schemas.

Barcan

A

8vA'! A8v'

9

We strongly recommend Bull's little known paper to our readers. It is not of interest

solely for historical reasons: it makes a number of suggestions which seem of relevance to

contemporary applied logic and merit further exploration. Its use of Polish notation and

lack of explicit Tarski-style assignments of values to variables makes it somewhat heavy

going initially, but it amply repays the patient reader.
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Name

A

Ev

Nom

A

E(v ^ ')! A(v! ')

Note how simple Nom

A

is. We don't need to painstakingly spell out all

possible paths through the model using sequences of modalities | the A and

E modalities take care of everything in one step. (Of course, all instances

of our old Nom schema are provable; we can prove them with the help of

the Inclusion axioms.) The new axiom Name

A

also helps keeping things

straightforward. It says that (the dual of) the universal modality is strong

enough to see whatever world/individual a variable names. This will have a

concrete e�ect on our completeness proof: we won't have to glue on a dummy

world to our witnessed models, for everything we need will be there, right

from the start.

Another way to look at this axiomatization is to recall our earlier comment

that Nom and Name were essentially modal analogs of the theory of equality.

Adding the universal modality globalizes our earlier theory, yielding a logic as

powerful as classical equality theory, and simplifying matters in the process.

We leave the reader to check its soundness, and turn to a brief sketch of

completeness.

The proof is similar to our earlier one, but simpler. As before, we are

going to combine the idea of the canonical relation with that of witnessed

MCSs. First, we need to adjust our de�nition of canonical model to re
ect

the presence of the universal modality:

De�nition 20 (Canonical models for L(A)) For any countable language

L(A), the canonical model M

c

is (W

c

; fR

c

i

g

i2I

; R

c

; V

c

). W

c

is the set of all

L(A)-MCSs. R

c

i

(for i 2 I) and R

c

are binary relations (called the canonical

relations) on W

c

. �R

c

i

� i� 2

i

' 2 � implies ' 2 �, for all L(A)-formulae

'. �R

c

� i� A' 2 � implies ' 2 � for all L(A)-formulae '. V

c

is the

valuation de�ned by V

c

(p) = f� j p 2 �g, where p is a propositional variable.

However the de�nition of witnessed MCSs is unchanged and we can prove

the Extended Lindenbaum Lemma exactly as we did before. Now for the

crucial de�nition.

De�nition 21 (Witnessed models for L(A)) Let � be a witnessed MCS in

some countable language L(A). The witnessed model M

w

[�] yielded by � is

de�ned to be (W; fR

i

g

i2I

; R; V ). W is the set of all witnessed MCSs � such

that �R

c

�. For all i 2 I, R

i

is a restriction of R

c

i

to W � W . R is the

restriction of R

c

to W �W . V is the restriction of V

c

to W .
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This de�nition is simpler than one used in our earlier proof. First, note

that R isW�W . We see this as follows. Because our axiomatization contains

the S5 axiom schemas, R

c

is an equivalence relation. (This is standard: see

Hughes and Cresswell (1996).) As R is the restriction of R

c

toM

w

, it too is

an equivalence relation | and indeed, as is immediate from the de�nition of

W , it is simply R

c

restricted to an equivalence class. Hence R =W �W . As

a consequence, the proof of an analog of Lemma 11 for the language L(A)

is straightforward: instead of using the previous Nom schema we simply use

Nom

A

.

As well as a model we need a standard assignment. It follows from the

analog of Lemma 11 that every individual variable is contained in at most

one MCS. So, we can use this fact to de�ne an assignment g by stipulating

that g(x) is the MCS in the witnessed model containing x. We refer to the

assignment g as the canonical assignment. However, we have to ensure that

every individual variable is contained in at least one MCS in the witnessed

model for A. In contrast to the previous completeness proof, we don't need

to glue on a new dummy world. This is because every individual variable is

already contained in at least one MCS in a witnessed model. To prove this

we will need to have an Existence Lemma for A at our disposal, so let's take

care of this right away:

Lemma 22 (Existence Lemma for L(A)) Let � be a witnessed MCS in some

countable language L(A). If E' 2 � then there is a witnessed L(A)-MCS �

such that �R� and ' 2 �.

Proof. Because of the presence of Barcan

A

schema, an analog of Gabbay's

lemma (Lemma 13) holds for the universal modality. Then the proof is like

the one of the Existence Lemma in Section 5. a

Of course, the Existence Lemma for the ordinary modalities (that is

Lemma 14) holds as well. We shall need both Existence Lemmas to prove

the Truth Lemma.

Lemma 23 Let L(A) be some countable language and M

w

[�] the witnessed

model yielded by some witnessed L(A)-MCS �. Then, for all individual vari-

ables x there is an MCS � 2 M

w

[�] such that x 2 �.

Proof. As Ex is an the instance of the Name

A

schema, it is contained in �.

Then, by the Existence Lemma for A, there exists a witnessed MCS � such

that �R� and x 2 �. Note that � is contained inM

w

[�] and this completes

the proof. a
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It follows from the previous lemma that the canonical assignment g is

standard and we are ready for the �nal step:

Lemma 24 (Truth Lemma for L(A)) Given a countable language L(A) and

a witnessed L-MCS �, letM

w

[�] = (W; fR

i

g

i2I

; R; V ) be the witnessed model

in L(A) yielded by �, g the canonical M

w

[�]-assignment, and � an L(A)-

MCS in M

w

[�]. Then, for every formula ':

' 2 � i� M

w

[�]; g;� j= ':

Proof. The proof is the same as the proof of Lemma 15 with the exception of

the following two inductive cases. First, the case for the universal modality

uses the Existence Lemma for A (that is Lemma 22). Second, the case for the

modal operators 3

i

is more subtle than that in Lemma 15. The Existence

Lemma for 3

i

(that is from Lemma 14) tells us that for an MCS � containing

3

i

' there exists a witnessed MCS � such that �R

i

� and ' 2 �. Now, by the

de�nition of the completed models in the previous proof, � was automatically

contained in the completed model. Here, however, it requires a proof. But

the Inclusion schema gives us exactly what is required. To show that � is

contained in the witnessed model for A, it is enough to prove that �R�. For

this, suppose that ' 2 �. Since �R

i

� we have that 3

i

' 2 �. Then, by the

contrapositive of the Inclusion schema, E' 2 �. a

As before, the required completeness result is an immediate consequence

of the Truth Lemma.

8 Conclusion

We have introduced two hybrid languages. Both combine modal and �rst-

order ideas via a novel mechanism: viewing terms as formulae. A systematic

investigation of hybrid languages is in its infancy, nonetheless we believe they

are promising tools for exploring the landscape of concept logics. To conclude

this paper, we shall summarize our reasons for believing this, and indicate

promising directions for future work.

The correspondences between multi-modal languages and description log-

ics are well understood. Moreover, recent work has shown that modal tools

and techniques can be pro�tably imported to explore the landscape of de-

scription logics. (An impressive example of such work is Kurtonina and

de Rijke (1996), which shows how the key modal model-theoretic notion of

bisimulation can be adapted to yield expressivity results for description lan-

guages.) The principal contribution of the present paper is to extend these
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correspondences in an unexpected direction. At �rst glance, many impor-

tant enrichments of description logics don't seem particularly modal. This is

particularly true of extensions that make use of the idea of ABox-elements.

Such extensions are essentially attempts to obtain `referential' or `termlike'

mechanisms in an intrinsically modal setup. The key contention of this pa-

per is that this is a natural path to explore, for these are precisely the ideas

that underly a rather neglected branch of modal logic: the study of hybrid

languages.

As we have shown, the individual variables of hybrid languages are essen-

tially ABox-elements. The ability to bind such variables immediately yields

languages with the expressive power needed to cope with number restric-

tions, irre
exivity of roles, minimality via the Until operator, and much else

besides. Adding the universal modality allows a uniform view of TBox- and

ABox-statements: both are subsumptions. The associated logics are well-

behaved (this is particularly true of the language enriched by the universal

modality) and completeness theory can be handled using a blend of modal

and �rst-order techniques. Perhaps most signi�cantly, the key ideas under-

lying the approach aren't in any sense `hacks' or `tricks'; they are a natural

stage in the development of description logics and have extensive independent

motivation in the work of Arthur Prior. We �nd the emergence of such simi-

lar ideas in two distinct research communities signi�cant, and feel it deserves

further attention.

But where to next? There are a number of reasons to be optimistic about

the usefulness of the correspondences described in this paper. One concerns

hybrid proof theory. In this paper, we explored hybrid logic axiomatically.

However work by Seligman (see, in particular, Seligman (1997)) shows that it

is possible to develop better deductive apparatus for strong hybrid languages

(Seligman discusses both sequent calculi and natural deduction systems).

More recently, in unpublished work Tzakova has developed tableau systems

for a number of important hybrid languages (see Tzakova (1998)), and Black-

burn (1998) and Seligman (1998) have showed that sequent-based methods

can be applied in surprisingly varied and general ways to weaker hybrid lan-

guages. Such systems are far easier to use than axiomatic systems, but they

have an additional advantage which may well be more important: modularity.

Tableau and sequent systems make the logic of each individual connective

explicit. This allows the logic of subsystems to be analyzed in a way that

simply isn't practical with axiomatizations. In principle these developments

o�er a natural perspective from which to analyze concept languages proof

theoretically, for it makes it possible to isolate the logical contribution of

each component. Much remains to be done here, but this line of work is the

focus of our continuing investigations.
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Second, it is now clear that there is a whole hierarchy of hybrid languages

ranging from simple (and decidable) free variable system, to languages con-

taining powerful binders and perhaps the universal modality as well (see

Blackburn and Seligman (1995, 1998) for some options). Quite simply, there

is a �ne-grained menu of expressivity options, and as well as allowing us to

map the space of existing concept languages, this may suggest novel enrich-

ment methods. Now, in this paper we have focussed on the highly expressive

(and undecidable) end of the expressivity spectrum. However in recent work

(see Blackburn and Tzakova (1998a)) we have developed a general technique

for proving hybrid completeness results which works for a number of hybrid

languages (ranging from decidable free variable systems to full �rst-order

equivalent systems) in a uniform way. Moreover the tableaux and sequent

methods just mentioned extend to these systems and apply to many decid-

able fragments. So as far as we can see, there are no obvious impediments to

the further development of hybrid meta-theory; indeed the prospects seem

highly promising.
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