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Abstract

The Herbrand theorem plays a fundamental role in automated theorem prov-
ing methods based on global variable or rigid variable approaches. The kernel
step in procedures based on such methods can be described as the corrob-
oration problem (also called the Herbrand skeleton problem), where, given
a positive integer m, called multiplicity, and a quantifier free formula, one
seeks for a valid or provable (in classical first-order logic) disjunction of m in-
stantiations of that formula. In logic with equality this problem was recently
shown to be undecidable.

The first main contribution of this paper is a logical theorem, that we
call the Partisan Corroboration Theorem, that enables us to show that, for a
certain interesting subclass of Horn formulas, corroboration with multiplicity
one can be reduced to corroboration with any given multiplicity.

The second main contribution of this paper is a finite tree automata for-
malization of a technique called shifted pairing for proving undecidability
results via direct encodings of valid Turing machine computations. We call
it the Shifted Pairing Theorem.

By using the Partisan Corroboration Theorem, the Shifted Pairing Theo-
rem, and term rewriting techniques in equational reasoning, we improve upon
a number of recent undecidability results related to the corroboration prob-
lem, the simultaneous rigid E-unification problem and the prenex fragment
of intuitionistic logic with equality.
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1 Introduction

We study classical first-order logic with equality but without any other rela-
tion symbols. The letters ¢ and 1 are reserved for quantifier-free formulas.
The signature of a syntactic object S (a term, a set of terms, a formula, etc.)
is the collection of function symbols in S augmented, in the case when S
contains no constants, with a constant c¢. The language of S is the language
of the signature of S.

Any syntactic object is ground if it contains no variables. A substitution
is ground if its range is ground, and it is said to be in a given language if the
terms in its range are in that language. A set of substitutions is ground if
each member is ground.

Given a positive integer m, a set of m ground substitutions {6y, ...,6,,}
is an m-corroborator for ¢ if the disjunction pf; V ---V @6, is provable.
A ground substitution 6 corroborates ¢ if {6} 1-corroborates ¢; such a @ is
called a corroborator for .

One popular form of the classical Herbrand theorem [e.g. Herbrand 1972]
is this:

An existential formula 3T(Z) is provable if and only if there exist
a positive integer m and an m-corroborator for ¢ in the language

of .

The minimal appropriate number m will be called the minimum mult:-
plicity for ¢. The minimum multiplicity for a formula may exceed one. Here
is a formula for which the minimum multiplicity is two, suggested by Erik
Palmgren in a different but similar context; we use ‘~’ for the formal equality
sign.

(cmcp=z~ci)AN(crer =z =)

The Herbrand theorem plays a fundamental role in automated theorem
proving methods known as the rigid variable methods [Voronkov 1997]. We
can identify the following procedure underlying such methods. Let 3Zp(%)
be a closed formula that we wish to prove.

The principal procedure of rigid variable methods

Step I: Choose a positive integer m.

Step II: Check if there exists an m-corroborator for ¢.

Step III: If Step IT succeeds then 3Fp(F) is provable, otherwise
increase m and return to Step IIL.

The kernel of the principal procedure is of course Step II or:



The Corroboration Problem
Instance: A quantifier free formula ¢ and a positive integer m.
Question: Is the minimum multiplicity for ¢ bounded by m?

Corroboration for a fixed m is called m-corroboration. A detailed discus-
sion of corroboration and related problems is given by Degtyarev, Gurevich
& Voronkov [1996]. It is important to us here that corroboration is inti-
mately related to existential intuitionistic provability and simultaneous rigid
E-unification [Gallier, Raatz & Snyder 1987]. The first of these problems is
easy to formulate:

The Existential Intuitionistic Provability Problem

Instance: An existential formula 3Zp(7).

Question: Is the formula provable in intuitionistic logic with
equality?

The second requires auxiliary definitions. A rigid equation is an expres-
sion F " e where F is a finite set of equations and e is an equation. A ground
substitution € solves a rigid equation E F' e if ef) is a logical consequence of
Ef. A system (that is a finite set) of rigid equations is solvable if there is
one substitution that solves all rigid equations in the system.

The Simultaneous Rigid E-Unification Problem (SREU)
Instance: A system of rigid equations.
Question: Is the system solvable?

The SREU problem has an interesting history [e.g. Degtyarev, Gurevich
& Voronkov 1996]. Several false decidability claims have been published
until, finally, Degtyarev & Voronkov [1995] proved SREU to be undecidable.
Moreover, Plaisted [1995] has shown that the fragment of SREU with ground
left-hand sides is already undecidable (the left-hand side of a rigid equation
Etreis E).

It is easy to see that SREU is essentially a special case of 1-corroboration
for Horn formulas. Hence, the result of Degtyarev & Voronkov shows that
corroboration is undecidable already in this very special case. Voronkov
[1997] has suggested the following generalization of the corroboration prob-
lem. Let f be a function that assigns a positive integer to every pair (k, )
where k is a positive integer and ¢ a formula in our logic. Moreover, it is
assumed that k£ < [ implies that f(k, ) < f(l,¢). Such a function is called
a strategy for multiplicity. The intended meaning of the first argument of a
strategy is the number of times that Step II of the principal procedure has
been executed.



The Corroboration Problem with Strategy f
Instance: A quantifier free formula ¢ and a positive integer k.
Question: Isthe minimum multiplicity for ¢ bounded by f(k, ¢)?

Corroboration with a strategy that does not depend on it arguments,
i.e., takes a constant value m for all arguments, is simply m-corroboration.
Voda & Komara [1995] have proved that, for each positive integer m, the
m-corroboration problem is undecidable. One important conclusion for au-
tomated theorem proving, drawn by Voda & Komara, is that there is no
m for which one can effectively determine whether m bounds the minimum
multiplicity for a given formula. Actually, we had hard time to understand
the proof of Voda & Komara until, finally, we convinced ourselves that they
have a proof. We wondered if there is a way to derive their result from the
Degtyarev—Voronkov theorem. It turns out that indeed there is such a way.

In order to formulate our results, we need to recall a few definitions and
give definitions of our own. Recall that a Horn clause is a disjunction of
negated atomic formulas and at most one non-negated atomic formula; a
Horn clause is often represented as a set of its disjuncts. Here we restrict
attention to Horn clauses that contain exactly one non-negated atom. A
Horn formula is a conjunction of Horn clauses. Since the equality sign is the
only relation symbol in our logic, every Horn clause v is equivalent to an
implication E = s =~ t where E is a conjunction of equalities.

We say that a collection of formulas is constant-disjoint if there is no
constant that occurs in two or more of the given formulas. Call a Horn
formula ¢ guarded if, for every variable x that occurs in ¢, there exists a
clause £ = s &~ t in ¢ where F and s are ground and x occurs in . Finally,
call a corroborator # of a disjunction ¢ partisan if 8 corroborates already one
of the disjuncts of ¢. Now we are ready to formulate our first result.

Partisan Corroboration Theorem
Every corroborator for a disjunction of constant-disjoint guarded
Horn formulas is partisan.

This theorem is proved in Section 3. We believe it is of independent
interest. It allows us an easy derivation of Voda & Komara’s [1995] result
from Degtyarev & Voronkov’s [1995] theorem in Section 4. Moreover, we
strengthen the theorem of Voda & Komara in several ways. For each m, we
effectively reduce SREU to the m-corroboration problem in such a way that
the positive-arity part of the signature remains unchanged. In particular, for
every m, the monadic (all function symbols are of arity at most one) SREU
reduces to monadic m-corroboration; this reduction is of interest because the
decidability of monadic SREU is an open problem.



In Section 5 we use finite tree automata theory to describe a powerful
technique, named shifted pairing by Plaisted [1995], for proving undecidabil-
ity results via encodings of valid Turing machine computations. The main
components are two finite tree automata Ay, Aiq and two ground term
rewrite systems II; and IT, that are obtained (effectively) from a given Tur-

ing machine M. Each term t recognized by A;q represents a sequence of IDs
of M:

S DR S N e I e

Each term s that is recognized by A, represents a sequence of mowves:

A S - Bs A

Note that, at this point the consecutive moves are not related, this is where
IT; and II, come into play. Namely, II; and II; serve the following purpose.
If s reduces in II; to ¢t then the first projection of s must coincide with ¢:

(RS COEE  COES  BOEE

Similarly, if s reduces in II, to the “tail” of ¢, then the second projection of
s must coincide with the tail of ¢:

M N M M My
N Al Ca o eal

The empty string (e) denotes the successor of any final ID of M. The
idea is thus, that the systems II; and II, are used to enforce ¢ to encode
a valid computation of M. The above outline explains the main role of
the parameters in the Shifted Pairing Theorem, that is the second main
contribution of this paper.

Shifted Pairing Theorem

There are two finite tree automata Ay and Aiq and two ground
rewrite systems 11, and Iy such that, it is undecidable whether,
given a ground term ty, Am, Tecognizes a term s and Aiq recog-
nizes a term t, such that s reduces in Iy to t and f(to,s) reduces
in 1I, to t.

There are some important additional properties on the tree automata
and the rewrite systems that are explained in Section 5. The shifted pairing
technique, and in particular the Shifted Pairing Theorem that is an improved
construction from [Veanes 1997, Gurevich & Veanes 1997], has recently been
applied successfully to settle several open decidability questions [Ganzinger,
Jacquemard & Veanes 1998, Levy & Veanes 1998, Veanes 1997, Veanes 1998|.



In Section 6, we use the Shifted Pairing Theorem to show the undecid-
ability of a fragment of SREU with only two variables and three rigid equa-
tions with ground left-hand sides, which constitutes the currently known least
undecidable fragment of SREU. Using this result and the Partisan Corrob-
oration Theorem, we show, for each positive integer m, the undecidability
of m-corroboration when each formula is a conjunction of 3m Horn clauses
with 2m variables and ground negative literals of bounded size.

In Section 7 we obtain some undecidability results related to the prenex
fragment of intuitionistic logic with equality and proof search in intuitionistic
logic with equality. Finally, in Section 8 we describe the current status of
SREU and related results and list some open problems.

2 Preliminaries

We will first establish some notation and terminology. We follow Chang &
Keisler [1990] regarding first order languages and structures. For the pur-
poses of this paper it is enough to assume that the first order languages that
we are dealing with are languages with equality and contain only function
symbols and constants, so we will assume that from here on. We will in
general use X, possibly with an index, to stand for a signature, i.e., ¥ is a
collection of function symbols with fixed arities. A function symbol of arity
0 is called a constant. We will always assume that ¥ contains at least one
constant.

2.1 Terms and formulas

Terms and formulas are defined in the standard manner and are called -
terms and X-formulas respectively whenever we want be precise about the
language. We refer to terms and formulas collectively as expressions. In the
following let X be an expression or a set of expressions or a sequence of such.

We write X(X) for the signature of X: the set of all function symbols
that occur in X, FV(X) for the set of all free variables in X and Con(X)
for the set of all constants in X. We write X (x1, 22, ..., z,) to express that
FV(X) C{x,xa,...,2,}. Let t1,ta,...,t, be terms, then X (t1,t2,...,1t,)
denotes the result of replacing each (free) occurrence of x; in X by ¢; for 1 <
t < n. By a substitution we mean a function from variables to terms. We will
use 6 to denote substitutions. We write X6 for X (6(z1),0(z2),...,0(z,)).

We say that X is closed or ground if FV(X) = (. By Ts or simply T we
denote the set of all ground X-terms. A substitution is called ground if its
range consists of ground terms.



A closed formula is called a sentence. Since there are no relation symbols
all the atomic formulas are equations, i.e., of the form ¢ ~ s where t and s
are terms and ‘x’ is the formal equality sign.

Atomic formulas and negated atomic formulas are called positive and
negative literals respectively. A clause is a disjunction of literals. By a Horn
clause we mean a clause with exactly one positive literal.! A Horn clause
can be written as F = s &~ t where F is a conjunction of equations, and s
and t are terms. By a Horn formula we understand a conjunction of Horn
clauses.

2.2 First-order structures

First order structures will (in general) be denoted by capital Gothic letters
like 2 and their domains by corresponding capital Roman letters like A. A
first order structure in a signature % is called a X-structure. For f € ¥ we
write f% for the interpretation of f in 2.

If 2 is a Y-structure and ¥’ C ¥ then 2A[Y' is the ¥'-structure that is
the reduction of 2 to signature ¥'. Let 20 and B be X-structures, 2 is a
substructure of B, in symbols A C B, if A C B and for each n-ary f € ¥,

A _ f% rAn_

For X a sentence or a set of sentences, 2 = X means that the structure
2 is a model of or satisfies X according to Tarski’s truth definition. A set
of sentences is called satisfiable if it has a model. If X and Y are (sets of)
sentences then X =Y means that Y is a logical consequence of X, i.e., that
every model of X is a model of Y. We write = X to say that X is valid, i.e.,
true in all models.

One easily establishes, by induction on terms and formulas that, if A C B
then for all quantifier free sentences ¢, 2 = ¢ if and only if B = .

By the free algebra over ¥ we mean the Y-structure 2, with domain
Tz, such that for each n-ary f € ¥ and t1,...,t, € T, f2(t1, .. tn) =
f(t1,...,tn). We let Ty also stand for the free algebra over X.

Let E be a set of ground equations. Define the equivalence relation =g
on T by s =g tif and only if E |= s = t. By Ts/g (or simply 7/g) we denote
the quotient of T, over =g. Thus, for all s,t € T,

TeEs~t & EEsxt

We call T/g the canonical model of E.

!By a Horn clause we mean thus a strict Horn clause.



2.3 Term rewriting

In some cases it is convenient to consider a system of ground equations as a
rewrite system. We will assume that the reader is familiar with basic notions
regarding ground term rewrite systems [e.g. Dershowitz & Jouannaud 1990].
We will only use very elementary properties. In particular, in the next section
we will use Birkhoff’s [1935] completeness theorem for equational logic. In
the case of ground equations it states simply that, given a ground set of
equations E and and a ground equation s ~ t, E = s ~ t if and only if
s can be reduced to t by using the equations in £ as rewrite rules in both
directions.

In Section 6 we will use the following property of canonical (or convergent)
rewrite systems [e.g. Dershowitz & Jouannaud 1990, Section 2.4]. Let R be a
ground and canonical rewrite system. Then for any two ground terms ¢ and
s, the equation t & s follows logically from R (seen as a set of equations) if
and only if the normal forms of ¢ and s with respect to R coincide, i.e.,

REtrs & tlg=slg.

Snyder [1989] has given a very simple but useful condition for showing that
a ground rewrite system R is canonical, namely that it is reduced: for each
rule s — ¢t in R, s is irreducible in R \ {s — t} and ¢ is irreducible in R. We
will use this test on several occasions, to show that a ground rewrite system
is canonical.

2.4 Finite tree automata

A finite tree automaton or TA is a quadruple (Q, %, R, Qf), where
e QO is a finite set of constants called states,
e Y is a signature that is disjoint from Q,

e R is a set of rules of the form f(qi,...,q,) — q, where f € ¥ has arity
n>0andq,q,...,q, € Q,

o Of C Q is the set of final states.

A TA is called deterministic or a DTA if there are no two different rules in
it with the same left-hand side. Terms are also called trees and a forest is a
set of trees. The forest recognized by a TA A = (Q, %, R, QF) is the following
set that is denoted by F(A):

{teTs|(Fge Ot rq}.

7



A forest is recognizable or reqular if it is recognized by some TA. A well-
known fact is that every regular forest is recognized by a DTA. Two finite
tree automata are called constant-disjoint if there is no constant that occurs
in both of them.

Example 1 Let A = ({q},%, R, {q}) be a TA, where

R = {c— q|cisaconstant in ¥ }U
{f(q,...,q9) — q| f is a function symbol in ¥ }.

This DTA recognizes the forest Ts. O

3 Partisan Corroboration Theorem

The following lemma is used in the Partisan Corroboration Theorem; it is
actually a consequence of Los-Tarski theorem (existential sentences are pre-
served under extensions). We say that two (sets of ) expressions X and Y are
constant-disjoint if Con(X) N Con(Y) = 0.

Lemma 2 Let ; fori € I, be pairwise constant-disjoint quantifier free sen-
tences. Then |=\/,.; @i implies |= p; for some i € I.

Proof. Fori € I,let &; = X(y;) and let ¥ = |J, &;. Assume by contradiction
that F£ ¢; for all i € I. Then there is (for each i € I) a ¥;-structure 2; such
that A; = —p;. Without loss of generality, take all the A;’s to be pairwise
disjoint.

We now construct a X-structure 2 such that 2A; C A[Y; for ¢ € I. First

let A = UZ.GI A;. For each i € I and constant ¢ € ¥; let ¢* = ¢%. For each
n-ary function symbol f in ¥ define f* as follows. For all@ = a4,...,a, € A,
A [ = ep =
wa ) fri@), ifde A;
Ja) = { a, otherwise.

It is clear that 2 is well-defined because of the disjointness criteria and that
2A; CAY; for i € 1. Hence A[Y; = —¢;, and thus 2 = —yp; for each i € T.
But this contradicts that = \/,.; ¢ X

If we drop the constant-disjointness criterion in Lemma 2, then of course
the lemma is false. A simple counterexample is

): co~c1V _‘(CO ~ Cl)-

We will state now some other obvious but useful lemmas. Lemma 3 is an
easy corollary of Birkhoff’s completeness theorem.

8



Lemma 3 Let t and s be ground terms and let E and E' be ground sets of
equations such that Con(E")N(Con(E)U Con(s)) = 0. The following is true.

1. IfE'UE Etrxsthen E=t~s.
2. If E =t~ s then ©(t) C L(F) U X(s).

Proof. Let E, E', s and t be given and assume that E' UFE =t ~ s. By
Birkhoft’s [1935] completeness theorem we know that s can be rewritten to
t by using E' U E as a set of rewrite rules. So there is a sequence of terms
S0y 81y --,8n_1,8, Where sg = s, s, =t and s; is rewritten to s;,; by using
some rule in E'UE, for 0 < i < n. By induction on ¢ (for i < n) follows that
Y(s;) C X(F,s) and only a rule from E can be used to rewrite s;. Part 1
follows again by the completeness theorem of Birkhoff and part 2 follows
immediately (take E' = 0). X

For a finite set E of equations we will write E also for a corresponding
conjunction of equations and let the context determine whether a set or a
formula is meant.

Lemma 4 Lett and s be ground terms and E' and E ground sets of equations
such that E s finite and Con(E") N (Con(E) U Con(s)) = 0. Then

Teue E(E=trs) = EE=>trs).

Proof. Let E, E', s and t be given. From T/pup = (E = t = s) follows
immediately that 7/pup =t ~ s and thus E'UE =t~ s. Hence E =t~ s
by Lemma 3, i.e., = (E =t &~ s). X

We will use the following definitions. Let ¢ be a quantifier free formula and
m a positive integer. A set of m ground substitutions © is an m-corroborator

for ¢ if
= \/ 6.

fcO

When © = {0} we say that 6 is a corroborator for ¢ or corroborates ¢.
The m-corroboration problem is the problem of determining whether a given
quantifier free formula has an m-corroborator.

For z € FV (p), a guard for x in ¢, if it exists, is a clause

E=txs
in ¢ such that £ and s are ground and x occurs in ¢. We say that

A
)

zEFV (p

9



is a guard of ¢ if each 1, is a guard for x in ¢; @ is is called guarded if it has
a guard.

Intuitively, in the light of the second part of Lemma 3, the notion of
a Horn formula being guarded is a sufficient condition to guarantee that if
there is a corroborator 6 for ¢ then ¥(¢f) = X(¢p).

SREU is, by definition, the 1-corroboration problem for Horn formulas.
However, we only need to consider guarded Horn formulas. To see that,
consider a Horn formula ¢; let ¥ be its signature and let ¢ be a constant in
Y. For each variable z in ¢, let Grg(z) denote the following Horn clause:

{cd ~c|c isaconstant in ¥\ {c} JU
{f(c,...,c)=c| fis a function symbol in ¥} = z ~c.

This is a very simple but useful construction that was first used by Degtyarev
& Voronkov to enforce certain solutions to be within a given signature. It is
easy to see that, for all terms ¢,

= Grg(t) = teTs.

Let now ¥ be the guarded Horn formula

( /\ Grs(z)) A p.

From Herbrand’s theorem follows that one only needs to consider corrobora-
tors in the language of ¢, therefore 1) has a corroborator if and only if ¢ has
one.

Example 5 A simple example of a guarded Horn formula is this

E2$y%02)/\
H1:>$%y)/\
(ly =2z ~t.y)

v = (By=zxxc)A
(
(

where Fy, Es, II;, II, and t are ground, c;, ¢, are constants, and ‘.’ is a binary
function symbol written in infix notation. A guard of v is

(E1:>.’L'%C]_)/\(E2jy%62).
An example of a Horn formula with a common guard for all variables is

¢ = (E=z.y~c)A
(ly=2z~t.y),

10



where E, Iy, II, and ¢ are ground and c is a constant. The guard of ¢ is
EFE=zxz.y~ec.
These formulas are of particular interest for us, see Section 6. O

We say that a corroborator of a disjunction ¢ is partisan, if it corroborates
some disjunct of . The main result of this section is the following theorem.

Theorem 6 (Partisan Corroboration Theorem) Every corroborator of
a disjunction of constant-disjoint guarded Horn formulas is partisan.

Proof. Let ¢ = \/,_; ¢; where all the ;s are constant-disjoint guarded Horn
formulas. Let € be a corroborator for ¢. We must prove that 6 corroborates
p; for some ¢ € I.

We can assume (without loss of generality) that there exist positive inte-
gers m and n such that each ; has the following form:

o = N\ (EEssxt) A N\ (DEsub ),
1<k<m 1<k<n
Ps

where 1; is a guard of ¢;, i.e., each E¥ and s¥ is ground and FV(y;) =
FV(¢;), for all i € I. Let C; = Con(y;) for i € I. We have that

cinC;=0 (Vi,jel,i#j). (1)

Let ¥ = X(p). For i € I let K; denote the class of all X-structures that
satisfy ¢;0, i.e,
IC; = { Z-structure A | A = ;0 }.

From the validity of 8 follows that each ¥-structure belongs to some IC;.
Let now J be any subset of I such that

= (Vie J). 2)
So
Con(pf) =C; (Vi e J). (3)

To see that, suppose (by contradiction) that Con(y;f) contains some ¢ ¢ C;.
Clearly, ¢ belongs to some zf where = occurs in the guard ;. By the second
part of Lemma 3, every constant in 26 belongs to C;. This gives the desired
contradiction.

11



If I = J then the theorem follows by (1), (3) and Lemma 2. Assume that
I # J. Below we prove the following statement:

If |~ ;6 for all i € J then |= ;0 for some ¢ € I\ J. (4)

Let now J be the mazimal subset of I such that (2) holds. In other words,
for all i € I\ J, |~ 9;0. By the contrapositive of (4) we conclude that for
some i € J, = ¢;0 and the theorem follows.

Proof of (4) Assume }~= ;0 for all i € J. Form an equation set D as follows.
o If J=0let D=0.

e If J # () then there is for each ¢ € J a clause in ;6 that is not valid
and by (2) this clause is not in ;6. In other words, there is a mapping
f:J—{1,2,...,n} such that

2 (DI = 0~ o/ Dyg (i e ). (5)

7

Let f be fixed and let D = | J,_, D/@4.

icJ
For each mapping g : I\ J — {1,2,...,m} let E, denote the following set of
equations: .

B, = | B/,
iel\J

and let 2, be the canonical model of DU Ey, i.e.,
919 = 77E'9UD-
We will now prove the following statement.

(6) Fix g : I\ J — {1,2,...,m}. There exists ¢ € I\ J such that
A, € K;.

Proof. Suppose, by contradiction, that (6) does not hold. (Assume
also that J # 0 or else (6) holds trivially.) Then 2, € IC; for some
7 € J. Fix such an appropriate j.

So 2, satisfies each clause in ¢;6 and in particular
A, = (D]Jf(j) - u;(j) ~ v]f(j))e_
Let D' = D]f(j)ﬁ, u = u;(j)ﬁ and v’ = v]’-c(j)ﬁ. By (3) follows that
Con(D',u',v") C C}

12



and

Con(E,, D\ D') = Con(E,)U Con(D\ D)
= Con(E,) U U C’on(Dif(i)G)

i€ i)
c Yau | G
iel\J 1€ Ji#]
i€l,i#£j

So, by (1),
Con(D',u',v") N Con(E,, D\ D') = 0.

It follows, by Lemma 4, that

But this contradicts (5). X

By using (6) we can now prove (4). Suppose, by contradiction, that there is
no ¢ € I\ J such that = ;0. Then there is for each i € I\ J a clause in ;0
that is not valid, i.e., there is a mapping g : I \ J — {1,2,...,m} such that

# B = 00~ 1990)  (vie I\ J).

(Note that only the ¢;’s can be nonground.) Fix such an appropriate g.
By using (6) we know that 2, € K; for some ¢ € I\ J. Choose such an
i. So 2, satisfies each clause in ¢;0 and in particular

A B = s~ (106).
But, by (3) and (1),
Con(Ef(i), sf(i)) N Con(E, \ Ef(i), D) = 0.

Hence, by Lemma 4,
= B9 = 00~ 1999)

which contradicts our choice of g. X

Remark Theorem 6, as well as its proof, remain correct if the disjunction
is infinite. We will not use this generalization.
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The following example illustrates why the conditions of being constant-
disjoint and guarded are important and cannot in general be discarded. In
each case there is a counterexample to the theorem.

Example 7 Let us first consider an example where the disjuncts are guarded
but not constant-disjoint. Let ¢(z) be the following guarded Horn formula:

(cr0=zx1)A(crl=2~x0)

where ¢, 0 and 1 are constants, and let ¢; = ¢(x1), o = p(zo) and ¢ =
©1 V o where x; and zy are distinct variables. Consider now any ground
substitution # such that #(z1) = 1 and 6(xy) = 0. It is easy to show by case
analysis that 6 corroborates 1, i.e., that

F (t=0=1x1)A(cr1=1=0)V
(c=0=0x~1)A(c=1=0=0)).
However, 6 corroborates neither ¢; nor .

Let us now consider the case when constant-disjointness is not violated
but the disjuncts are not guarded. Let ¢1(y, 1, ;) be the formula

(y= 0=z ~y) ANy~ y = x1 ~0))
and let po(zo, yo) be the formula
((cmy=2ox1)A(cx 1= 29~ Y))

where ¢, 0 and 1 are constants and x1, xo, y1, Yo, ¥ distinct variables. Let
¥ = @1 V . Let 0 be a ground substitution such that 8(z;) = 1, 8(zq) = 0,
B(y) = ¢, 6(y1) = 1 and O(yo) = 0. Then |= 98 but = @10 and = pof (the
situation is exactly the same as in the previous case). a

4 From corroboration to m-corroboration

As Degtyarev & Voronkov [1995] have shown, the corroboration problem
is undecidable. Shortly after, Voda & Komara [1995] have shown that m-
corroboration is undecidable for all multiplicities m. We show that the latter
result follows easily from the former result by using the Partisan Corrobora-
tion Theorem.

Theorem 8 (Degtyarev—Voronkov) Corroboration of guarded Horn for-
mulas is undecidable.
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For technical reasons it will be convenient to assume in the following that
we have a fixed signature ¥ with {c;, ¢, ...} as the set of distinct constants
in it. ¥ may also have other function symbols of arity > 1. Let us also be
precise about the variables that we allow in Y-expressions, by assuming that
all variables come from the collection {zy, o, ...}

For each natural number n, constant ¢ and variable z, let ¢(® denote a
new constant and let 2(™ denote a new variable. We define by induction on
any Y-expression X the corresponding expression X (™ as the one obtained
from X by replacing in it each variable  with z(® and each constant ¢ with
¢, For any substitution 6 of ¥-variables with -terms we let 8™ denote
a substitution that takes the variable (™) to the term (z8)™. So, for any
Y-expression X and natural number n,

(X6)™ = x (Mg,

The following property is immediate. For any X-sentence ¢ and natural

number n,
Fe & EFo.

Theorem 9 Let ¢ be a guarded Horn formula and n a positive integer. Then
¢ has a corroborator if and only if \;_, ©® has an n-corroborator.

Proof. The ‘=’ direction is immediate. We prove the ‘<=’ direction as
follows. Let I = {1,2,...,n} and let ¢ be the formula A, ; o, Assume
that 1) has an n-corroborator {6; | i € I }. So

= \/((p(l)gi Ao Ae@g A A (p(n)gi)_
icl
By using the distributive laws we can costruct an equivalent formula in
conjunctive normal form, including as one of the conjuncts the formula

Vier #96;. Hence
= \/ QO(i)ei-

icl
Let X; = FV (@) for i € I. Since all the X;’s are pairwise disjoint we can
let 8’ be a substitution such that #'[X; = 6;] X; for i € I, and it follows that

SAVE2RU
el

From the Partisan Corroboration Theorem 6 follows now that = @@’ for
some ¢ € I. Fix such an appropriate . But then, by Lemma 3, the range of
0'1X; is Ts (o), and thus there is a substitution 6 with range 7s such that
01 X; = 0'1X;. Hence = ¢80 and so |= ¢f. X
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Theorem 10 (Voda—Komara) For all n > 1, n-corroboration is undecid-
able.

Proof. The reduction in Theorem 9 is trivially effective. So, if we had a
decision procedure (for some n) for finding n-corroborators, we could use it
to find corroborators, but this would contradict Theorem 8. X

Assume that we are using an automated theorem proving method that is
based on the Herbrand theorem. Roughly, this involves a search for terms,
for a given multiplicity m. Voda-Komara theorem tells us that there is no m
for which we could effectively decide when to stop our search for such terms
in case they do not exist.

By using the fact that SREU is undecidable with ground left-hand sides
[Plaisted 1995], (i.e., variables occur only in positive literals in the corre-
sponding Horn formulas), and already in the guarded case with two variables
[Veanes 1996], we can sharpen the Voda-Komara theorem as follows.

Corollary 11 For all n > 1, n-corroboration is undecidable for guarded
Horn formulas with 2n variables and ground negative literals.

By a monadic signature or language we mean a signature or language
where all function symbols have arity at most one. By monadic SREU or cor-
roboration we understand the restriction of that decision problem to monadic
languages. The decidability of monadic SREU is currently one of the difficult
open problems related to SREU [Gurevich & Voronkov 1997]. An effectively
equivalent problem is the decidability of the prenex fragment of intuitionis-
tic logic with equality in monadic languages [Degtyarev & Voronkov 1996a].
Some evidence speaks in favor of that the problem is decidable although with
very high computational complexity (e.g., many subcases are decidable, see
Section 8). From Theorem 9 follows that:

Corollary 12 If monadic corroboration is undecidable, then so is monadic
n-corroboration for any n > 1, or equivalently, if monadic n-corroboration is
decidable for some n > 1 then so is monadic corroboration.

5 Shifted pairing with finite tree automata

Shifted pairing is a general technique for proving undecidability results. The
term shifted pairing was introduced by Plaisted [1995]. A variant of shifted
pairing was used already by Hopcroft & Ullman [1979] in establishing the
undecidability of the problem of testing nonemptiness of the intersection of
two context free languages. Goldfarb’s [1981] proof of the undecidability of
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Figure 1: Shifted pairing.

second-order unification uses also similar ideas. Finite tree automata provide
a suitable abstraction level for our purposes, for formalizing this technique as
a decision problem of finite tree automata. The shifted pairing technique is
illustrated in Figure 1. The main result of this section is the Shifted Pairing
theorem. In this section we use a binary function symbol ‘.’, and we write
it for better readability using infix notation and assume that it associates to
the right. For example, if ¢1, t; and t3 are terms, then the term .(¢q,.(t2, t3))
is written unambiguously as t; . t5 . 3.

Theorem 13 (Shifted Pairing Theorem) One can effectively construct
two constant-disjoint tree automata

Amv — (vaa Emva 7?fmva {va}), Aid = (Qida Eid, Rida {qid})a

and two ground and canonical rewrite systems
II € Tony X Ty o € Ty X Tags

such that, it is undecidable whether, given ty € Ts,,, there exists s € F(Amy)
and t € F(Aiq) such that s ——p, t and tg.s —m, t, where « € Sy

The rest of this section is devoted to the proof of the Shifted Pairing Theorem.

We consider a fixed deterministic Turing machine M with initial state qo,
final state g, a blank symbol ,. By (M) we denote the union of the states
and tape symbols of M including the blank symbol. All characters in ¥(M)
are considered to be constants. Moreover, M is only allowed to write a blank
when it erases the last nonblank symbol on the tape. This means that IDs
do not include blanks. However, overwriting the last nonblank symbol on
the tape by a blank, means erasing of the last input symbol on the tape. For
such a TM M we can assume, without loss of generality, that when M enters
the final state then its tape is empty. Given an ID v, we let v denote the
following string:

" successor of v, if v is nonfinal;
v = .
€, otherwise.
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Note that the final ID of M is the unique one character string gr and ¢ = e.

5.1 Words and trains

Here we use certain nonmonadic terms to represent strings, we call such
terms words. Similarly, we use certain terms, that we call trains, to represent
sequences of strings. Let ¢y, and ¢; be two distinct constants not in X(M).

e A term s is called a ¢y -word if either s is the constant ¢y, or s is the
term c. s’ for some constant ¢ and cy-word s’. The empty cy-word is
simply the constant c,.

e A term t is called a ci-train of cy-words if either t is the constant cq,
or t is the term s .t for some cy-word s and ci-train t'. The empty
c¢-train is simply the constant c;.

We use the following convenient notation for words and trains. A cy-word
CleCou***aCpaCy

is written simply as
C1C2 * ' *Cp « Cy

and is said to represent the string c;cs . ..c,. When we say that a cy-word is
i a set V of strings, we mean that the string represented by that cg-word
isin V.

Similarly, a cg-train

(V1 aCy)w (V2 aCy)uea(Vpacy)ucy

is said to represent the string sequence

(1,09, ..., 0y).

In this way one can of course easily represent arbitrary regular sets of strings
by corresponding regular forests of words. We use this fact in the Train
Lemma, that is our key tool in constructing the two tree automata A, and

Aid.

Lemma 14 (Train Lemma) Let V' be a regular set of strings over a sig-
nature ¥ of constants. Let ¢y and cy be distinct constants not in . Then
the set of all ci-trains of cy-words in V' is recognized by a DTA with one final
state.
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Proof. To begin with, let A; = (Q1,S U {.,cy}, R1, Q) be a DTA that
recognizes the set of all c,-words in V. Next, let p be a new state and let

A= (Ql U {p}a zU {'a Cw, Ct}a Rv {p})

where
R=RiU{cc = ptU{qg.p—p|lge O}

We prove that A is a DTA satisfying the claim. Clearly, it is a DTA. The
rest follows from the equivalence of the following statements for all terms ¢.

(7) t e F(A)
(8) tis a term over S U {., cy, ¢} and t —=z p

(9) tis a term over ¥ U {., ¢, ¢t} and there exist states ¢1,¢z,...,q, €
f n >0, such that

t ;>R1 Qo2 aQneCo —{cispy Q1 a2 aQnsP ;{q.p_)p\qegg} p
(10) there exist terms s1,82...,8, € F(A;), n > 0, such that ¢t =
S1 882828y Cq

(11) ¢ is a ¢-train of cy-words in V.

We show only the implication (8)=-(9). All the other cases are immediate
consequences of the involved definitions. Assume (8). The only rules in R
that involve p are the ones q.p — p for ¢ € Q! and the rule ¢, — p.

Hence, any reduction of ¢ in R to p is either, by induction on the number
of rewrite steps in reductions,

1. the rewrite step ¢ —,_,p p, and thus ¢t = ¢; and obviously (9) holds,

2. or else a reduction t —sx q.p —q.p—p P, for some g € Q! In this case
¢t must be a term s.t' where s —x ¢ and t' —% p. But if s —x ¢
then obviously s —x, gq. Hence t ——x, q.t' and (9) follows from the
induction hypothesis.

X

The set of all IDs of M is obviously a regular set of strings.
e A train of IDs is a ci-train of cy-words representing IDs of M.
The following statement is an immediate consequence of Lemma 14.

(12) There is a DTA Aiq = (Qia, Zia, Rid, {¢a}) that recognizes the set of all
trains of IDs, where g = Z(M) U {4, ¢y, ¢4}
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5.2 Trains of moves

We now want to represent moves of M in such a way that we can obtain a
statement corresponding to (12), but for moves. First of all, for technical
reasons that are relevant for constant-disjointness of the finite tree automata
in Theorem 13, we use a new constant ¢, for the empty word and a new
constant ¢ for the empty train. A naive representation of a move (v,v") as
the term (v.c ). (vt .cl) does of course not work for several reasons, to
mention one: such terms are not recognizable.

Instead, we use the fact that, in a move (v,v"), the number of symbols
in v is either equal to the length of v™, or it is one less than the length
of v (since M can write a new symbol at the end), or one more than the
length of vt (since M can erase the last tape symbol). Moreover, only a
finite substring of an ID is altered by a move. We encode moves by strings
of new characters where the ¢'th character encodes the i’th characters in the
components of the move. We now proceed with the formal construction.

Two new constants, denoted by (a,b) and (a,b)’, respectively, are intro-
duced for every pair of constants a and b in X(M). All these new constants
are assumed to be pairwise distinct. Let v be any ID of M and v™ its suc-
cessor, say

v = a0y,

U+ blbzbn

Note that m > 1 and m—1 < n < m+1. The only case when n = 0 is when
v is the final ID ¢r. We define (v, v™) as the following string.

<Cl1, b1><a2, b2> T <an—17 bn—1><u, bn>', ifm=mn—1;
(v,v7) = < (a1,b1)(az,b2) - (@m1,bm 1) (@m, ), HEm=n+1;
<a1a b1><a2a b2> e <amfla bm71><ama bm>la lf m=n.

we call such a string a move also. Intuitively, a blank is added at the end of
the shorter of the two strings of a move (in case they differ in length) and
the pair of the resulting strings is encoded character by character.

e A train of moves is a ¢-train of ¢, -words that represent moves.

(13) There is a DTA Ay = (Qmvs Ymvs Ruvs {qmv }) that recognizes the set
of all trains of moves, where

Ymy = {{a,b),{a,b) | a,b € Z(M) }U{., ¢, e}
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Proof. The set of moves is easily seen to be a regular set. For example,
the set of all moves corresponding to computation steps that do not
change the last tape symbol can be described by the following regular

set of strings:
V*%V* VI

where Vj is is a certain finite set of three-character or two-character
strings constructed from the transition function of M, e.g., if M upon
reading the symbol a in state ¢ writes the symbol o', moves right,
and enters state ¢/, then (g,a'){(a,q’) is in V;. The set V consists all
constants (a, a) such that a is an input symbol of M, and V"' is the set
of all constants (a, a)’ such that a is an input symbol of M. The other
cases are similar. The claim follows now from the Train Lemma 14. X

At this point let A;q and Ay, be fixed constant-disjoint DTAs given by (12)
and (13).

5.3 Main construction
Given a nonempty train ¢ of moves, say
E= (01,08} 2 &) (o) e i) oo (om0 1) )« (0,0} o )
define the first projection of t as the following train of IDs
T1(t) = (V1 ecy) e (VauCy) e o (Vg1 wCy) o (Vg « Cy) = G
and the second projection of t as the following train

cCyw) o (U e ey) ey, if v, = qr;

cCw) e n (U [ wew) e (v aey) e, otherwise.

Note that the purpose of taking the second-projection is twofold:
1. to check that the first component of the last move is the final ID, and
2. to return the train consisting of the second components of all the moves.
We say that t is the shifted pairing of its first projection if
m(t) = (v1« Cw) = m2(t)

and we refer to v; as the first ID of t. Recall that qq is the initial state of M.
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Lemma 15 Let vy be an input string for M. Then M accepts vy if and only
if there exists a train t of moves with first ID qyvg, such that t is the shifted
pairing of its first projection.

Proof. Let vy be given and ¢ a train of moves as above, with v; = qqvg. The
first projection of ¢ represents the ID sequence

(UlaUZa e 'akalavk))

and, if vy = ¢ then the second projection of ¢ represents

(v, vy, vt ).

To say that t is a shifted pairing of it first projection means that v, = ¢¢ and

( V1 , U2 , U3 , ... , UVUg-1 , Vi ) =
+ + + +
( Vo , Uy y Us Yyt Uk—2 ) Uk—l )’

which is tantamount to saying that the first projection of ¢ represents a valid
computation of M with input vy, i.e., M accepts vg. The proof of the converse
direction is similar. X

5.3.1 The rewrite systems II; and II,

The system II; contains all the following rules:
(14) For all a,b € (M), the rule {(a,b) — a.

(15) For all a,b € (M) such that a # , the rule (a,b)' ., — a . cy.
(16) For all b € (M), the rule (,b)' . ¢}, — cy-.

(17) The rule ¢, — ¢.

We conclude the following, by first observing from (14)-(17) that II; is re-
duced.

(18) The rewrite system Iy is canonical and II; C Ty, . X Ts,,

We therefore have the following relationship between II; and the notion of
first projection of a train of moves.

Lemma 16 For all trains s of moves and all trains t of IDs, s —, t if
and only if t = m(s).
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Proof. Let s and t be given. By (18) ¢ is irreducible in II; because ¥,,, and
Yia do not have any constants in common, and thus s ——, ¢ if and only if
slm, = t. It remains to check that s|g, = m(s), which is straightforward. X

The system II, contains all the following rules:

(19) For all a,b € (M), the rule (a,b) — b.

(20) For all a,b € (M) such that b # , the rule (a,b)' . ¢, — b.cy.
(21) For all a € ¥(M) such that a # g, the rule (a, )" . ¢}, — cy.
(22) The rule ({gs, )"« )« cf — 4.

Again, we conclude the following, by first observing from (19)—(22) that II,
is reduced.

(23) The rewrite system Iy is canonical and 11y C Ts,_, X Ts,,

We have also a similar relationship between II; and the second projection of
a train of moves, that implies the following.

Lemma 17 For all trains s of moves and all IDs v, (v.cy) s ——m, T1(5)
if and only if m1(s) = (v.cy) - ma(s).

Proof. Let s and v be given, say

s = ((v1,01) v cl) « ((2,03) v cy) w o e (V1,0 )« 0) « (ks 0) w €)

So
mT1(8) = (V1ecw) e (VauCy) e u (Vg1 0Cy) s (Vg « Cy) = .

= Assume that (v.cy) .5 —, 71(s). This is possible only if, by (23),
v =v, ((vy,v])uc)lm =vig1.cy for1<i<k, (24)

and

(((vr, )« €) €)= € (25)
(25) is possible only if vy = ¢ by using the rule in (22). In (24) only
the rules in (19)—(21) can be used and these imply that v;" = v;,; for
1 <1 < k. The rest is obvious.

< Assume that m(s) = (v.cy).m(s). Then v = vy, v = vy, for

1 <i<k,and v, = ¢ (24) and (25) follow easily. The rest is obvious.

X
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5.3.2 Proof of the Shifted Pairing Theorem

Proof. Let M in the above construction be a universal TM. Then the claim
in Theorem 13 is a consequence of the equivalence of the following statements.
The additional conditions on the rewrite systems IT; and I, follow from (18)
and (23).

26) M accepts vy.
27) There exists s € F(Amy) such that m1(s) = (qovo « ¢y ) « T2(8).

28) There exists s € F(Apy) such that (govg « cy) « 5 —1, T1(5).

(
(
(
(29) There exist s € F(Apy) and t € F(Ajq), such that s ——p, ¢ and

26)<(27) By Lemma 15 and (13).
27)<(28) By Lemma 17.
28)<(29) By Lemma 16 and (12).
X

6 Applications of Partisan Corroboration and
Shifted Pairing Theorems

The Shifted Pairing Theorem is used here to give a very elementary undecid-
ability proof of SREU. The latter result is then used, in combination with the
Partisan Corroboration Theorem to improve upon the undecidability result
of n-corroboration for arbitrary n.

6.1 Undecidability of SREU: minimal case

Consider fixed constant-disjoint DTAs Any = (Qmy, Zmv, Rmvs {qmv }) and
Aia = (Qid, Zid, Rid, {¢ia}), a binary function symbol f, and ground canonical
rewrite systems II; and Il given by the Shifted Pairing Theorem 13. Let ¢
be a new state and A the tree automaton (Q, %, R, QF), where

Q = va U Qid U {q}a

Y = Emv U Eida

R = RuwURiaU{f(qmv,qa) = q},
Q' = {q¢}.
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Obviously, A is still a deterministic tree automaton, because Ap, and Aiq
are constant-disjoint and deterministic. We have the following property as a
direct consequence of the constant-disjointness of A;q and Apy.

(30) For all ground terms s and t, f(s,t) —x q if and only if s ——x... Gmy
and t L>72id did -

We can now prove the following result.

Theorem 18 There is an integer n, such that SREU is undecidable under
the following restrictions:

(i) the left-hand sides are ground and have less than n symbols, and
(ii) there are at most two variables each occurring at most three times, and

(1ii) there are at most three rigid equations.

Proof. Let Si(z,y) be the following system of rigid equations where the
rewrite systems R, II; and II, are considered as sets of equations and ¢, is a
given ground term over 4.

R ' f(z,y) =q
S (z,y)=< I} F z=y
Hg l_r f(t(), ZU) ~ Y

First, we prove that the following statements are equivalent for all substitu-
tions 6:

(31) 6 solves Sy, (z,y)

(32) i) R [ f(20,y0) =~ q, and

i) Iy = 26 ~ yb and I, = f(ty, 20) ~ yb
(33) i) f(x6,y8) —= g, and

i) 20)m, = y0ln, and f(to, z6)lm, = y0lm,
(34) i) z6 . Gmy and y6 Lmid Gia, and
i) z0lm, = y0ln, and f(to, z0)lm, = y0lm,
(35) i) 20 € F(Amy) and yb € F(Aiq), and
ii) 20w, = yOln, and f(to, 20)In, = yblm,
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(36) i) 260 € F(Amy) and yb € F(Aiq), and

ii) 20 —1, yf and f(to, 20) — 1, yb

31)<(32) By definition.

(31)&(
(32)<(33) The rewrite systems are canonical and ¢ is irreducible in R.
(33)<(34) By (30).

(

34)<(35) Assume (34). (34)(i) implies that z6 € Ts,__ 0o, and yd €

Ts,u0,,- But 26 cannot include constants from Q,,, and yf cannot
include constants from Qyq, or else 6|, # y0lm, because the signature
of II; is included in ¥4 U Xy,,,. Hence z6 € T, and yf € Ty,,, and
thus (35)(i) holds by (34)(i).

(35)<>(36) The terms in F(A;q) are irreducible with respect to IT; and
IT,, and yf € F(Aiq).

We conclude that Sy, (z,y) is solvable if and only if there exists a term s €
F(Amy) and a term t € F(Ayq) such that s ——p, t and f(t,s) —m, t.
Hence, solvability of S, (z,y) is undecidable by Theorem 13. Consequently
SREU is undecidable, and the restrictions (i)-(iii) follow as properties of
St (z,y), where n is any integer greater than the number of symbols in R,
H1 and Hg.

the left-hand sides of the rigid equations in S; (z, y). X

6.1.1 Undecidability proofs of SREU

Degtyarev & Voronkov’s [1995] original proof of the undecidability of SREU
was by reduction of Baaz’s [1993] monadic semi-unification problem. This
proof was followed by other proofs by Degtyarev & Voronkov, first by reduc-
ing second-order unification to SREU [1996¢|, and then by reducing Hilbert’s
tenth problem to SREU [1996b4]. The undecidability of second-order unifi-
cation was proved by Goldfarb [1981]. Plaisted [1995] reduced Post’s Cor-
respondence Problem to SREU. From his proof follows that SREU is unde-
cidable already with ground left-hand sides. Veanes [1996] improved that
construction by using the halting problem for Turing machines and showed
that two variables and one binary function symbol is enough to obtain unde-
cidability. Here we have shown that, in addition, already three rigid equations
suffice for the undecidability.
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6.2 Undecidability of m-corroboration: minimal case

Consider the above system Sy, (z,y) of rigid equations and let ¢;, denote the
corresponding guarded Horn formula:

(R = f(z,y) = q) A

(H2 = f(to,$) ~ y)
We have the following result.

Theorem 19 For all m > 1, m-corroboration is undecidable already for
gquarded Horn formulas with ground negative literals, at most 2m wvariables,
and at most 3m clauses.

Proof. Let m and t, be given and construct the formula ¢y = A, gog?

By Theorem 9, ¢ has an m-corroborator if and only if ¢, has a corroborator.
But corroboration of ¢y, given a term ¢y, is undecidable by Theorem 18. X

7 Relations to intuitionistic logic

The decision problems in intuitionistic logic have not been as thoroughly
studied as the corresponding problems in classical logic [Borger, Gradel &
Gurevich 1997]. In particular, new results about the prenex fragment of in-
tuitionistic logic (i.e., closed prenex formulas that are intuitionistically prov-
able), have been obtained recently by Degtyarev & Voronkov in [1996b, 1996¢,
1996a] and Voronkov [1996]. Some of these results are:

1. Decidability, and in particular PSPACE-completeness, of the prenex
fragment of intuitionistic logic without equality [Degtyarev & Voronkov
19964].

2. Prenex fragment of intuitionistic logic with equality but without func-
tion symbols is PSPACE-complete [Degtyarev & Voronkov 1996a]. De-
cidability of this fragment was proved by Orevkov [1976].

3. Prenex fragment of intuitionistic logic with equality in the language
with one unary function symbol is decidable [Degtyarev & Voronkov
19964].

4. F*-fragment of intuitionistic logic with equality is undecidable [Degtyarev
& Voronkov 19965, Degtyarev & Voronkov 1996¢].
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In some of the above results, the corresponding result has first been obtained
for a fragment of SREU with similar restrictions. The undecidability of the
F*-fragment is improved by Veanes [1996] by showing that already the

5. d3-fragment of intuitionistic logic with equality is undecidable.
We can further improve the latter undecidability result.

Corollary 20 There is an integer n such that the 33-fragment of intuitionis-
tic logic with equality is undecidable already under the following restrictions:

1. The only connectives are A\ and at most three =’s.

2. The antecedents of all implications are ground and have less than n
symbols.

Proof. Given a system S(Z) = {E; F* s; =~ t; | 1 < i < k} of rigid
equations, let ¢(Z) be the following conjunction of implications:

/\ ((/\ e) = s; & t;).

1<i<k ecE;

It can be shown that AZp(Z) is provable in intuitionistic logic with equality if
and only if S(Z) is solvable [Degtyarev & Voronkov 1996¢]. Thus, the claim
follows from Theorem 18. X

In contrast, Degtyarev, Gurevich, Narendran, Veanes & Voronkov [19985]
have shown that the

6. V*dvV*-fragment of intuitionistic logic with equality is decidable.

7.1 A remark about proof search in LJ~

Proof search in intuitionistic logic with equality is closely connected with
SREU, and, unlike in the classical case, the handling of SREU is in fact
unavoidable in that context [Voronkov 1996]. Voronkov [1996] considers a
particular sequent calculus based proof system LJ~. In that context a skele-
ton is the structure of a derivation in LJ~, and skeleton instantiation is the
problem of the existence of a derivation of a given formula with a given skele-
ton. SREU is in fact polynomial time equivalent to skeleton instantiation in
LJ¥ [Voronkov 1996]. We get the following result. (We refer the reader to
[Voronkov 1996] for precise definitions.) Corollary 20 and Theorem 18 can be
used to exhibit a fixed skeleton for which the skeleton instantiation problem
in LJ? is undecidable. This improves the undecidability of the skeleton in-
stantiation problem in general [Voronkov 1996]. Such a skeleton is illustrated
in Figure 2
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— (A —=0) —— (A —0)
— (A —=0) — (—==) — (==)
— (—==) (= A)
(=)
— (=3
— (=3

Figure 2: Any derivation in LJ¥ of the formula constructed from the system
Sty (z,y) of rigid equations in Theorem 18, has this skeleton for any ¢;. The
values of ng, n1, and no are fixed integers corresponding to the number of
equations in R, Il;, and Ils, respectively.

7.2 Other fragments

Decidability problems for other fragments of intuitionistic logic have been
studied by Orevkov in [1965, 1976], Mints [1967], Statman [1979], and Lifs-
chitz [1967]. Orevkov [1965] proves that the =—V3-fragment of intuitionistic
logic with function symbols is undecidable. Lifschitz [1967] proves that in-
tuitionistic logic with equality and without function symbols is undecidable,
i.e., that the pure constructive theory of equality is undecidable. Orevkov
[1976] shows decidability of some fragments (that are close to the prenex
fragment) of intuitionistic logic with equality. Statman [1979] proves that
the intuitionistic propositional logic is PSPACE-complete.

8 Current status of SREU and open prob-
lems

Here we briefly summarize the current status of SREU and mention some
open problems. Many related results are already mentioned above. The
first decidability proof of rigid E-unification is given by Gallier, Narendran,
Plaisted & Snyder [1988]. De Kogel [1995] has presented a simpler proof,
without computational complexity considerations. We start with the solved
cases:

e Rigid E-unification with ground left-hand side is NP-complete [Kozen
1981]. Rigid F-unification in general is NP-complete and there exist
finite complete sets of unifiers [Gallier, Narendran, Plaisted & Snyder
1990, Gallier et al. 1988].
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Rigid F-unification with one variable, or, more generally, SREU with
one variable and a fized number of rigid equations is P-complete [Degtyarev
et al. 1998b).

If all function symbols have arity < 1 (the monadic case) then it fol-
lows that SREU is PSPACE-hard [Goubault 1994]. If only one unary
function symbol is allowed then the problem is decidable [Degtyarev,
Matiyasevich & Voronkov 1996]. If only constants are allowed then the
problem is NP-complete [Degtyarev, Matiyasevich & Voronkov 1996]
assuming that there are at least two constants.

About the monadic case it is known that if there are more than 1
unary function symbols then SREU is decidable if and only if it is
decidable with just 2 unary function symbols [Degtyarev, Matiyasevich
& Voronkov 1996].

If the left-hand sides are ground then the monadic case is decidable
[Gurevich & Voronkov 1997]. A more general problem is shown to be
decidable in [Ganzinger et al. 1998]. Monadic SREU with one variable
is PSPACE-complete [Gurevich & Voronkov 1997].

The word equation solving [Makanin 1977], which is an extremely hard
problem, can be reduced to monadic SREU [Degtyarev, Matiyasevich
& Voronkov 1996].

Monadic SREU is equivalent to a non-trivial extension of word equa-
tions [Gurevich & Voronkov 1997].

Monadic SREU is equivalent to the decidability problem of the prenex
fragment of intuitionistic logic with equality with function symbols of
arity < 1 [Degtyarev & Voronkov 1996a].

In general SREU is undecidable [Degtyarev & Voronkov 1995]. More-
over, SREU is undecidable under the following restrictions:

— The left-hand sides of the rigid equations are ground [Plaisted
1995].

— Furthermore, there are only two variables [Veanes 1996] and three
rigid equations with fixed ground left-hand sides.

SREU with one variable is decidable, in fact EXPTIME-complete [Degtyarev
et al. 1998b]. Moreover, SREU restricted to rigid equations that either
contain one variable, or have a ground left-hand side and a right-hand
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side that is an equality between two variables, is decidable [Degtyarev,
Gurevich, Narendran, Veanes & Voronkov 1998a].

e SREU is polynomial time equivalent with second-order unification [Levy
1998, Veanes 1998|.

The unsolved cases are:
e Decidability of monadic SREU.
e Decidability of SREU with two rigid equations.

Both problems are highly non-trivial. An intriguing problem is also the
corroboration problem with a given strategy. In particular, the following
open problem is posed by Voronkov [1997]:

e Does there exist a computable strategy f with which the corroboration
problem is decidable?

Further problems related to SREU and the Herbrand theorem are discussed
in [Voronkov 19986, Voronkov 1998a).

References

Baaz, M. (1993), Note on the existence of most general semi-unifiers, in
‘Arithmetic, Proof Theory and Computation Complexity’, Vol. 23 of
Ozford Logic Guides, Oxford University Press, pp. 20—29.

Birkhoff, G. (1935), ‘On the structure of abstract algebras’, Proc. Cambridge
Phil. Soc. 31, 433-454.

Borger, E., Gridel, E. & Gurevich, Y. (1997), The Classical Decision Prob-
lem, Springer Verlag.

Chang, C. & Keisler, H. (1990), Model Theory, third edn, North-Holland,
Amsterdam.

De Kogel, E. (1995), Rigid F-unification simplified, in P. Baumgartner,
R. Hahnle & J. Posegga, eds, ‘Theorem Proving with Analytic Tableaux
and Related Methods’, number 918 in ‘Lecture Notes in Artificial Intel-
ligence’, Schlofl Rheinfels, St. Goar, Germany, pp. 17-30.

Degtyarev, A. & Voronkov, A. (1995), Simultaneous rigid E-unification is
undecidable, UPMAIL Technical Report 105, Uppsala University, Com-
puting Science Department.

31



Degtyarev, A. & Voronkov, A. (1996a), Decidability problems for the prenex
fragment of intuitionistic logic, in ‘Eleventh Annual IEEE Symposium
on Logic in Computer Science (LICS’96)’;, IEEE Computer Society
Press, New Brunswick, NJ, pp. 503-512.

Degtyarev, A. & Voronkov, A. (1996b), Simultaneous rigid E-unification is
undecidable, in H. Kleine Biining, ed., ‘Computer Science Logic. 9th In-
ternational Workshop, CSL’95’, Vol. 1092 of Lecture Notes in Computer
Science, Paderborn, Germany, September 1995, pp. 178-190.

Degtyarev, A. & Voronkov, A. (1996¢), ‘The undecidability of simultaneous
rigid F-unification’, Theoretical Computer Science 166(1-2), 291-300.

Degtyarev, A., Gurevich, Y. & Voronkov, A. (1996), Herbrand’s theorem
and equational reasoning: Problems and solutions, in ‘Bulletin of the
European Association for Theoretical Computer Science’, Vol. 60. The
“Logic in Computer Science” column.

Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M. & Voronkov,
A. (1998a), ‘Decidability and complexity of simultaneous rigid E-
unification with one variable and related results’, Theoretical Computer
Science. To appear.

Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M. & Voronkov,
A. (1998b), The decidability of simultaneous rigid E-unification with
one variable, in T. Nipkow, ed., ‘Rewriting Techniques and Applica-
tions’, Vol. 1379 of Lecture Notes in Computer Science, Springer Verlag,
pp. 181-195.

Degtyarev, A., Matiyasevich, Y. & Voronkov, A. (1996), Simultaneous rigid
FE-unification and related algorithmic problems, in ‘Eleventh Annual
IEEE Symposium on Logic in Computer Science (LICS’96)’, IEEE Com-
puter Society Press, New Brunswick, NJ, pp. 494-502.

Dershowitz, N. & Jouannaud, J.-P. (1990), Rewrite systems, in
J. Van Leeuwen, ed., ‘Handbook of Theoretical Computer Science’, Vol.
B: Formal Methods and Semantics, North Holland, Amsterdam, chap-
ter 6, pp. 243-309.

Gallier, J., Narendran, P., Plaisted, D. & Snyder, W. (1988), Rigid E-
unification is NP-complete, in ‘Proc. IEEE Conference on Logic in Com-
puter Science (LICS)’, IEEE Computer Society Press, pp. 338—-346.

32



Gallier, J., Narendran, P., Plaisted, D. & Snyder, W. (1990), ‘Rigid E-
unification: NP-completeness and applications to equational matings’,
Information and Computation 87(1/2), 129-195.

Gallier, J., Raatz, S. & Snyder, W. (1987), Theorem proving using rigid E-
unification: Equational matings, in ‘Proc. IEEE Conference on Logic in
Computer Science (LICS)’, IEEE Computer Society Press, pp. 338-346.

Ganzinger, H., Jacquemard, F. & Veanes, M. (1998), Rigid reachability, Re-
search Report MPI-1-98-2-013, Max-Planck-Institut fiir Informatik, Im

Stadtwald, D-66123 Saarbriicken, Germany. Extended version of a paper
in ASIAN’98.

Goldfarb, W. (1981), ‘The undecidability of the second-order unification
problem’, Theoretical Computer Science 13, 225-230.

Goubault, J. (1994), Rigid E-unifiability is DEXPTIME-complete, in ‘Proc.
IEEE Conference on Logic in Computer Science (LICS)’, IEEE Com-
puter Society Press.

Gurevich, Y. & Veanes, M. (1997), Some undecidable problems related to the
Herbrand theorem, UPMAIL Technical Report 138, Uppsala University,
Computing Science Department.

Gurevich, Y. & Voronkov, A. (1997), Monadic simultaneous rigid FE-
unification and related problems, in P. Degano, R. Corrieri &
A. Marchetti-Spaccamella, eds, ‘Automata, Languages and Program-
ming, 24th International Colloquium, ICALP’97’, Vol. 1256 of Lecture
Notes in Computer Science, Springer Verlag, pp. 154-165.

Herbrand, J. (1972), Logical Writings, Harvard University Press.

Hopcroft, J. E. & Ullman, J. D. (1979), Introduction to Automata Theory,
Languages and Computation, Addison-Wesley Publishing Co.

Kozen, D. (1981), ‘Positive first-order logic is NP-complete’, IBM J. of Re-
search and Development 25(4), 327-332.

Levy, J. (1998), Decidable and undecidable second-order unification prob-
lems, in T. Nipkow, ed., ‘Rewriting Techniques and Applications, 9th
International Conference, RTA-98, Tsukuba, Japan, March/April 1998,
Proceedings’, Vol. 1379 of Lecture Notes in Computer Science, Springer
Verlag, pp. 47-60.

33



Levy, J. & Veanes, M. (1998), On unification problems in restricted second-
order languages, in ‘Annual Conference of the European Association for
Computer Science Logic (CSL’98), Brno, Czech Republic’.

Lifschitz, V. (1967), ‘Problem of decidability for some constructive theories
of equalities (in Russian)’, Zapiski Nauchnyh Seminarov LOMI 4, 78—
85. English Translation in: Seminars in Mathematics: Steklov Math.
Inst. 4, Consultants Bureau, NY-London, 1969, p.29-31.

Makanin, G. (1977), ‘The problem of solvability of equations in free semi-
groups’, Mat. Sbornik (in Russian)103(2), 147-236. English Translation
in American Mathematical Soc. Translations (2), vol. 117, 1981.

Mints, G. (1967), ‘Choice of terms in quantifier rules of constructive predicate
calculus (in Russian)’, Zapiski Nauchnyh Seminarov LOMI 4, 78-85.
English Translation in: Seminars in Mathematics: Steklov Math. Inst.
4, Consultants Bureau, NY-London, 1969, p.43—46.

Orevkov, V. (1965), ‘Unsolvability in the constructive predicate calculus of
the class of the formulas of the type ——V3 (in Russian)’, Soviet Mathe-
matical Doklady 163(3), 581-583.

Orevkov, V. (1976), ‘Solvable classes of pseudo-prenex formulas (in Russian)’,
Zapiski Nauchnyh Seminarov LOMI 60, 109-170. English translation
in: Journal of Soviet Mathematics.

Plaisted, D. (1995), Special cases and substitutes for rigid E-unification,
Technical Report MPI-1-95-2-010, Max-Planck-Institut fiir Informatik.

Snyder, W. (1989), Efficient ground completion: An O(nlogn) algorithm
for generating reduced sets of ground rewrite rules equivalent to a set
of ground equations E, in G. Goos & J. Hartmanis, eds, ‘Rewriting
Techniques and Applications’, Vol. 355 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 419-433.

Statman, R. (1979), ‘Lower bounds on Herbrand’s theorem’, Proc. American
Mathematical Society 75(1), 104-107.

Veanes, M. (1996), Uniform representation of recursively enumerable sets
with simultaneous rigid F-unification, UPMAIL Technical Report 126,
Uppsala University, Computing Science Department.

Veanes, M. (1997), The undecidability of simultaneous rigid E-unification
with two variables, in ‘Proc. Kurt Godel Colloquium KGC’97’, Vol. 1289
of Lecture Notes in Computer Science, Springer Verlag, pp. 305-318.

34



Veanes, M. (1998), The relation between second-order unification and simul-
taneous rigid E-unification, in ‘Proc. Thirteenth Annual IEEE Sympo-
sium on Logic in Computer Science, June 21-24, 1998, Indianapolis,
Indiana (LICS’98)’, IEEE Computer Society Press, pp. 264-275.

Voda, P. & Komara, J. (1995), On Herbrand skeletons, Technical report, In-
stitute of Informatics, Comenius University Bratislava. Revised January
1996.

Voronkov, A. (1996), Proof search in intuitionistic logic with equality, or
back to simultaneous rigid E-unification, in M. McRobbie & J. Slaney,
eds, ‘Automated Deduction — CADE-13’, Vol. 1104 of Lecture Notes in
Computer Science, New Brunswick, NJ, USA, pp. 32—46.

Voronkov, A. (1997), Strategies in rigid-variable methods, in M. Pollack,
ed., ‘Proc. of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97)’, Vol. 1, Nagoya, Japan, pp. 114-119.

Voronkov, A. (1998a), Herbrand’s theorem, automated reasoning and seman-
tic tableaux, in ‘Proc. Thirteenth Annual IEEE Symposium on Logic in
Computer Science, June 21-24, 1998, Indianapolis, Indiana (LICS’98)’,
IEEE Computer Society Press, pp. 252-263.

Voronkov, A. (1998b), ‘Simultaneous rigid E-unification and other decision

problems related to Herbrand’s theorem’, Theoretical Computer Science.
Article after invited talk at LFCS’97.

35



o

INFORMATIK

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-98-2-017 M. Tzakova, P. Blackburn Hybridizing Concept Languages

MPI-1-98-2-012 G. Delzanno, A. Podelski Model Checking Infinite-state Systems in CLP

MPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Calculi

MPI-I-98-2-010 S. Ramangalahy Strategies for Conformance Testing

MPI-I-98-2-009 S. Vorobyov The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

MPI-1-98-2-008 S. Vorobyov AE-Equational theory of context unification is
Co-RE-Hard

MPI-I1-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Direct Lower
Bound Proof)

MPI-I1-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-I-98-2-005 M. Veanes The Relation Between Second-Order Unification and
Simultaneous Rigid E-Unification

MPI-1-98-2-004 S. Vorobyov Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

MPI-1-98-2-003 R.A. Schmidt E-Unification for Subsystems of S4

MPI-I-98-1-023 Rational Points on Circles

MPI-1-98-1-022 C. Burnikel, J. Ziegler Fast Recursive Division

MPI-1-98-1-021 S. Albers, G. Schmidt Scheduling with Unexpected Machine Breakdowns

MPI-I-98-1-020 C. Riib On Wallace’s Method for the Generation of Normal
Variates

MPI-I1-98-1-019 2nd Workshop on Algorithm Engineering WAE ’98 -
Proceedings

MPI-1-98-1-018 D. Dubhashi, D. Ranjan On Positive Influence and Negative Dependence

MPI-1-98-1-017 A. Crauser, P. Ferragina, K. Mehlhorn, Randomized External-Memory Algorithms for Some

U. Meyer, E. Ramos Geometric Problems

MPI-I1-98-1-016 P. Krysta, K. Lory$ New Approximation Algorithms for the Achromatic
Number

MPI-I-98-1-015 M.R. Henzinger, S. Leonardi Scheduling Multicasts on Unit-Capacity Trees and
Meshes

MPI-1-98-1-014 U. Meyer, J.F. Sibeyn Time-Independent Gossiping on Full-Port Tori

MPI-I-98-1-013 G.W. Klau, P. Mutzel Quasi-Orthogonal Drawing of Planar Graphs

MPI-1-98-1-012 S. Mahajan, E.A. Ramos, Solving some discrepancy problems in NC*

K.V. Subrahmanyam
MPI-1-98-1-011 G.N. Frederickson, R. Solis-Oba Robustness analysis in combinatorial optimization



MPI-I-98-1-010

MPI-I-98-1-009

MPI-I-98-1-008

MPI-I-98-1-007

MPI-I-98-1-006

MPI-I-98-1-005

MPI-1-98-1-004

MPI-I-98-1-003

MPI-1-98-1-002

MPI-I-98-1-001
MPI-I-97-2-012

MPI-I-97-2-011
MPI-I-97-2-010

MPI-I-97-2-009
MPI-I-97-2-008

MPI-I-97-2-007
MPI-I-97-2-006
MPI-I-97-2-005
MPI-I-97-2-004
MPI-I-97-2-003
MPI-I-97-2-002

MPI-I-97-2-001
MPI-I-97-1-028

MPI-1-97-1-027

MPI-I-97-1-026
MPI-I-97-1-025

MPI-I-97-1-024

MPI-I-97-1-023
MPI-I-97-1-022

MPI-I-97-1-021
MPI-I-97-1-020

R. Solis-Oba

D. Frigioni, A. Marchetti-Spaccamela,
U. Nanni

M. Jiinger, S. Leipert, P. Mutzel

A. Fabri, G. Giezeman, L. Kettner,
S. Schirra, S. Sch’onherr

K. Jansen

K. Jansen

S. Schirra

S. Schirra

G.S. Brodal, M.C. Pinotti
T. Hagerup

L. Bachmair, H. Ganzinger, A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

A. Bockmayr, F. Eisenbrand
A. Bockmayr, T. Kasper

P. Blackburn, M. Tzakova
S. Vorobyov

L. Bachmair, H. Ganzinger
W. Charatonik, A. Podelski
U. Hustadt, R.A. Schmidt
R.A. Schmidt

D.A. Basin, S. Matthews, L. Vigano
M. Lermen, K. Reinert

N. Garg, G. Konjevod, R. Ravi

A. Fiat, S. Leonardi

N. Garg, J. Kénemann

S. Albers, N. Garg, S. Leonardi

S.A. Leonardi, A.P. Marchetti-Spaccamela
E. Althaus, K. Mehlhorn

J.F. Sibeyn
G.S. Brodal

2-Approximation algorithm for finding a spanning tree
with maximum number of leaves

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

A Note on Computing a Maximal Planar Subgraph
using PQ-Trees

On the Design of CGAL, the Computational Geometry
Algorithms Library

A new characterization for parity graphs and a coloring
problem with costs

The mutual exclusion scheduling problem for
permutation and comparability graphs

Robustness and Precision Issues in Geometric
Computation

Parameterized Implementations of Classical Planar
Convex Hull Algorithms and Extreme Point
Compuations

Comparator Networks for Binary Heap Construction
Simpler and Faster Static AC? Dictionaries

Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

On the Chvéatal Rank of Polytopes in the 0/1 Cube

A Unifying Framework for Integer and Finite Domain
Constraint Programming

Two Hybrid Logics

Third-order matching in A —-Curry is undecidable
A Theory of Resolution

Solving set constraints for greatest models

On evaluating decision procedures for modal logic

Resolution is a decision procedure for many
propositional modal logics

Labelled modal logics: quantifiers

The Practical Use of the A* Algorithm for Exact
Multiple Sequence Alignment

A polylogarithmic approximation algorithm for group
Steiner tree problem

On-line Network Routing - A Survey

Faster and Simpler Algorithms for Multicommodity
Flow and other Fractional Packing Problems

Minimizing Stall Time in Single and Parallel Disk
Systems

Randomized on-line call control revisited

Maximum Network Flow with Floating Point
Arithmetic

From Parallel to External List Ranking

Finger Search Trees with Constant Insertion Time



