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Abstra
t

The Herbrand theorem plays a fundamental role in automated theorem prov-

ing methods based on global variable or rigid variable approa
hes. The kernel

step in pro
edures based on su
h methods 
an be des
ribed as the 
orrob-

oration problem (also 
alled the Herbrand skeleton problem), where, given

a positive integer m, 
alled multipli
ity, and a quanti�er free formula, one

seeks for a valid or provable (in 
lassi
al �rst-order logi
) disjun
tion of m in-

stantiations of that formula. In logi
 with equality this problem was re
ently

shown to be unde
idable.

The �rst main 
ontribution of this paper is a logi
al theorem, that we


all the Partisan Corroboration Theorem, that enables us to show that, for a


ertain interesting sub
lass of Horn formulas, 
orroboration with multipli
ity

one 
an be redu
ed to 
orroboration with any given multipli
ity.

The se
ond main 
ontribution of this paper is a �nite tree automata for-

malization of a te
hnique 
alled shifted pairing for proving unde
idability

results via dire
t en
odings of valid Turing ma
hine 
omputations. We 
all

it the Shifted Pairing Theorem.

By using the Partisan Corroboration Theorem, the Shifted Pairing Theo-

rem, and term rewriting te
hniques in equational reasoning, we improve upon

a number of re
ent unde
idability results related to the 
orroboration prob-

lem, the simultaneous rigid E-uni�
ation problem and the prenex fragment

of intuitionisti
 logi
 with equality.

Keywords

logi
 with equality; Herbrand's theorem; �nite tree automata



1 Introdu
tion

We study 
lassi
al �rst-order logi
 with equality but without any other rela-

tion symbols. The letters ' and  are reserved for quanti�er-free formulas.

The signature of a synta
ti
 obje
t S (a term, a set of terms, a formula, et
.)

is the 
olle
tion of fun
tion symbols in S augmented, in the 
ase when S


ontains no 
onstants, with a 
onstant 
. The language of S is the language

of the signature of S.

Any synta
ti
 obje
t is ground if it 
ontains no variables. A substitution

is ground if its range is ground, and it is said to be in a given language if the

terms in its range are in that language. A set of substitutions is ground if

ea
h member is ground.

Given a positive integer m, a set of m ground substitutions f�

1

; : : : ; �

m

g

is an m-
orroborator for ' if the disjun
tion '�

1

_ � � � _ '�

m

is provable.

A ground substitution � 
orroborates ' if f�g 1-
orroborates '; su
h a � is


alled a 
orroborator for '.

One popular form of the 
lassi
al Herbrand theorem [e.g. Herbrand 1972℄

is this:

An existential formula 9~x'(~x) is provable if and only if there exist

a positive integer m and an m-
orroborator for ' in the language

of '.

The minimal appropriate number m will be 
alled the minimum multi-

pli
ity for '. The minimum multipli
ity for a formula may ex
eed one. Here

is a formula for whi
h the minimum multipli
ity is two, suggested by Erik

Palmgren in a di�erent but similar 
ontext; we use `�' for the formal equality

sign.

(
 � 


0

) x � 


1

) ^ (
 � 


1

) x � 


0

)

The Herbrand theorem plays a fundamental role in automated theorem

proving methods known as the rigid variable methods [Voronkov 1997℄. We


an identify the following pro
edure underlying su
h methods. Let 9~x'(~x)

be a 
losed formula that we wish to prove.

The prin
ipal pro
edure of rigid variable methods

Step I: Choose a positive integer m.

Step II: Che
k if there exists an m-
orroborator for '.

Step III: If Step II su

eeds then 9~x'(~x) is provable, otherwise

in
rease m and return to Step II.

The kernel of the prin
ipal pro
edure is of 
ourse Step II or:
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The Corroboration Problem

Instan
e: A quanti�er free formula ' and a positive integer m.

Question: Is the minimum multipli
ity for ' bounded by m?

Corroboration for a �xed m is 
alled m-
orroboration. A detailed dis
us-

sion of 
orroboration and related problems is given by Degtyarev, Gurevi
h

& Voronkov [1996℄. It is important to us here that 
orroboration is inti-

mately related to existential intuitionisti
 provability and simultaneous rigid

E-uni�
ation [Gallier, Raatz & Snyder 1987℄. The �rst of these problems is

easy to formulate:

The Existential Intuitionisti
 Provability Problem

Instan
e: An existential formula 9~x'(~x).

Question: Is the formula provable in intuitionisti
 logi
 with

equality?

The se
ond requires auxiliary de�nitions. A rigid equation is an expres-

sion E `

r

e where E is a �nite set of equations and e is an equation. A ground

substitution � solves a rigid equation E `

r

e if e� is a logi
al 
onsequen
e of

E�. A system (that is a �nite set) of rigid equations is solvable if there is

one substitution that solves all rigid equations in the system.

The Simultaneous Rigid E-Uni�
ation Problem (SREU)

Instan
e: A system of rigid equations.

Question: Is the system solvable?

The SREU problem has an interesting history [e.g. Degtyarev, Gurevi
h

& Voronkov 1996℄. Several false de
idability 
laims have been published

until, �nally, Degtyarev & Voronkov [1995℄ proved SREU to be unde
idable.

Moreover, Plaisted [1995℄ has shown that the fragment of SREU with ground

left-hand sides is already unde
idable (the left-hand side of a rigid equation

E `

r

e is E).

It is easy to see that SREU is essentially a spe
ial 
ase of 1-
orroboration

for Horn formulas. Hen
e, the result of Degtyarev & Voronkov shows that


orroboration is unde
idable already in this very spe
ial 
ase. Voronkov

[1997℄ has suggested the following generalization of the 
orroboration prob-

lem. Let f be a fun
tion that assigns a positive integer to every pair (k; ')

where k is a positive integer and ' a formula in our logi
. Moreover, it is

assumed that k < l implies that f(k; ') � f(l; '). Su
h a fun
tion is 
alled

a strategy for multipli
ity. The intended meaning of the �rst argument of a

strategy is the number of times that Step II of the prin
ipal pro
edure has

been exe
uted.
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The Corroboration Problem with Strategy f

Instan
e: A quanti�er free formula ' and a positive integer k.

Question: Is the minimum multipli
ity for ' bounded by f(k; ')?

Corroboration with a strategy that does not depend on it arguments,

i.e., takes a 
onstant value m for all arguments, is simply m-
orroboration.

Voda & Komara [1995℄ have proved that, for ea
h positive integer m, the

m-
orroboration problem is unde
idable. One important 
on
lusion for au-

tomated theorem proving, drawn by Voda & Komara, is that there is no

m for whi
h one 
an e�e
tively determine whether m bounds the minimum

multipli
ity for a given formula. A
tually, we had hard time to understand

the proof of Voda & Komara until, �nally, we 
onvin
ed ourselves that they

have a proof. We wondered if there is a way to derive their result from the

Degtyarev{Voronkov theorem. It turns out that indeed there is su
h a way.

In order to formulate our results, we need to re
all a few de�nitions and

give de�nitions of our own. Re
all that a Horn 
lause is a disjun
tion of

negated atomi
 formulas and at most one non-negated atomi
 formula; a

Horn 
lause is often represented as a set of its disjun
ts. Here we restri
t

attention to Horn 
lauses that 
ontain exa
tly one non-negated atom. A

Horn formula is a 
onjun
tion of Horn 
lauses. Sin
e the equality sign is the

only relation symbol in our logi
, every Horn 
lause  is equivalent to an

impli
ation E ) s � t where E is a 
onjun
tion of equalities.

We say that a 
olle
tion of formulas is 
onstant-disjoint if there is no


onstant that o

urs in two or more of the given formulas. Call a Horn

formula ' guarded if, for every variable x that o

urs in ', there exists a


lause E ) s � t in ' where E and s are ground and x o

urs in t. Finally,


all a 
orroborator � of a disjun
tion ' partisan if � 
orroborates already one

of the disjun
ts of '. Now we are ready to formulate our �rst result.

Partisan Corroboration Theorem

Every 
orroborator for a disjun
tion of 
onstant-disjoint guarded

Horn formulas is partisan.

This theorem is proved in Se
tion 3. We believe it is of independent

interest. It allows us an easy derivation of Voda & Komara's [1995℄ result

from Degtyarev & Voronkov's [1995℄ theorem in Se
tion 4. Moreover, we

strengthen the theorem of Voda & Komara in several ways. For ea
h m, we

e�e
tively redu
e SREU to the m-
orroboration problem in su
h a way that

the positive-arity part of the signature remains un
hanged. In parti
ular, for

every m, the monadi
 (all fun
tion symbols are of arity at most one) SREU

redu
es to monadi
 m-
orroboration; this redu
tion is of interest be
ause the

de
idability of monadi
 SREU is an open problem.
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In Se
tion 5 we use �nite tree automata theory to des
ribe a powerful

te
hnique, named shifted pairing by Plaisted [1995℄, for proving unde
idabil-

ity results via en
odings of valid Turing ma
hine 
omputations. The main


omponents are two �nite tree automata A

mv

, A

id

and two ground term

rewrite systems �

1

and �

2

that are obtained (e�e
tively) from a given Tur-

ing ma
hine M . Ea
h term t re
ognized by A

id

represents a sequen
e of IDs

of M :

( ID

1

; ID

2

; � � � ; ID

k�1

; ID

k

)

Ea
h term s that is re
ognized by A

mv

represents a sequen
e of moves:

( ; ; � � � ; ; )

M M M M

Note that, at this point the 
onse
utive moves are not related, this is where

�

1

and �

2


ome into play. Namely, �

1

and �

2

serve the following purpose.

If s redu
es in �

1

to t then the �rst proje
tion of s must 
oin
ide with t:

( ID

1

; ID

2

; � � � ; ID

k�1

; ID

k

)

M M M M

Similarly, if s redu
es in �

2

to the \tail" of t, then the se
ond proje
tion of

s must 
oin
ide with the tail of t:

( ID

2

; ID

3

; � � � ; ID

k

; � )

M M M M

The empty string (�) denotes the su

essor of any �nal ID of M . The

idea is thus, that the systems �

1

and �

2

are used to enfor
e t to en
ode

a valid 
omputation of M . The above outline explains the main role of

the parameters in the Shifted Pairing Theorem, that is the se
ond main


ontribution of this paper.

Shifted Pairing Theorem

There are two �nite tree automata A

mv

and A

id

and two ground

rewrite systems �

1

and �

2

su
h that, it is unde
idable whether,

given a ground term t

0

, A

mv

re
ognizes a term s and A

id

re
og-

nizes a term t, su
h that s redu
es in �

1

to t and f(t

0

; s) redu
es

in �

2

to t.

There are some important additional properties on the tree automata

and the rewrite systems that are explained in Se
tion 5. The shifted pairing

te
hnique, and in parti
ular the Shifted Pairing Theorem that is an improved


onstru
tion from [Veanes 1997, Gurevi
h & Veanes 1997℄, has re
ently been

applied su

essfully to settle several open de
idability questions [Ganzinger,

Ja
quemard & Veanes 1998, Levy & Veanes 1998, Veanes 1997, Veanes 1998℄.
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In Se
tion 6, we use the Shifted Pairing Theorem to show the unde
id-

ability of a fragment of SREU with only two variables and three rigid equa-

tions with ground left-hand sides, whi
h 
onstitutes the 
urrently known least

unde
idable fragment of SREU. Using this result and the Partisan Corrob-

oration Theorem, we show, for ea
h positive integer m, the unde
idability

of m-
orroboration when ea
h formula is a 
onjun
tion of 3m Horn 
lauses

with 2m variables and ground negative literals of bounded size.

In Se
tion 7 we obtain some unde
idability results related to the prenex

fragment of intuitionisti
 logi
 with equality and proof sear
h in intuitionisti


logi
 with equality. Finally, in Se
tion 8 we des
ribe the 
urrent status of

SREU and related results and list some open problems.

2 Preliminaries

We will �rst establish some notation and terminology. We follow Chang &

Keisler [1990℄ regarding �rst order languages and stru
tures. For the pur-

poses of this paper it is enough to assume that the �rst order languages that

we are dealing with are languages with equality and 
ontain only fun
tion

symbols and 
onstants, so we will assume that from here on. We will in

general use �, possibly with an index, to stand for a signature, i.e., � is a


olle
tion of fun
tion symbols with �xed arities. A fun
tion symbol of arity

0 is 
alled a 
onstant. We will always assume that � 
ontains at least one


onstant.

2.1 Terms and formulas

Terms and formulas are de�ned in the standard manner and are 
alled �-

terms and �-formulas respe
tively whenever we want be pre
ise about the

language. We refer to terms and formulas 
olle
tively as expressions. In the

following let X be an expression or a set of expressions or a sequen
e of su
h.

We write �(X) for the signature of X: the set of all fun
tion symbols

that o

ur in X, FV (X) for the set of all free variables in X and Con(X)

for the set of all 
onstants in X. We write X(x

1

; x

2

; : : : ; x

n

) to express that

FV (X) � fx

1

; x

2

; : : : ; x

n

g. Let t

1

; t

2

; : : : ; t

n

be terms, then X(t

1

; t

2

; : : : ; t

n

)

denotes the result of repla
ing ea
h (free) o

urren
e of x

i

in X by t

i

for 1 �

i � n. By a substitution we mean a fun
tion from variables to terms. We will

use � to denote substitutions. We write X� for X(�(x

1

); �(x

2

); : : : ; �(x

n

)).

We say that X is 
losed or ground if FV (X) = ;. By T

�

or simply T we

denote the set of all ground �-terms. A substitution is 
alled ground if its

range 
onsists of ground terms.

5



A 
losed formula is 
alled a senten
e. Sin
e there are no relation symbols

all the atomi
 formulas are equations, i.e., of the form t � s where t and s

are terms and `�' is the formal equality sign.

Atomi
 formulas and negated atomi
 formulas are 
alled positive and

negative literals respe
tively. A 
lause is a disjun
tion of literals. By a Horn


lause we mean a 
lause with exa
tly one positive literal.

1

A Horn 
lause


an be written as E ) s � t where E is a 
onjun
tion of equations, and s

and t are terms. By a Horn formula we understand a 
onjun
tion of Horn


lauses.

2.2 First-order stru
tures

First order stru
tures will (in general) be denoted by 
apital Gothi
 letters

like A and their domains by 
orresponding 
apital Roman letters like A. A

�rst order stru
ture in a signature � is 
alled a �-stru
ture. For f 2 � we

write f

A

for the interpretation of f in A.

If A is a �-stru
ture and �

0

� � then A↾�0

is the �

0

-stru
ture that is

the redu
tion of A to signature �

0

. Let A and B be �-stru
tures, A is a

substru
ture of B, in symbols A � B, if A � B and for ea
h n-ary f 2 �,

f

A

= f

B↾An.

For X a senten
e or a set of senten
es, A j= X means that the stru
ture

A is a model of or satis�es X a

ording to Tarski's truth de�nition. A set

of senten
es is 
alled satis�able if it has a model. If X and Y are (sets of)

senten
es then X j= Y means that Y is a logi
al 
onsequen
e of X, i.e., that

every model of X is a model of Y . We write j= X to say that X is valid, i.e.,

true in all models.

One easily establishes, by indu
tion on terms and formulas that, if A � B

then for all quanti�er free senten
es ', A j= ' if and only if B j= '.

By the free algebra over � we mean the �-stru
ture A, with domain

T

�

, su
h that for ea
h n-ary f 2 � and t

1

; : : : ; t

n

2 T

�

, f

A

(t

1

; : : : ; t

n

) =

f(t

1

; : : : ; t

n

). We let T

�

also stand for the free algebra over �.

Let E be a set of ground equations. De�ne the equivalen
e relation =

E

on T by s =

E

t if and only if E j= s � t. By T

�=E

(or simply T

=E

) we denote

the quotient of T

�

over =

E

. Thus, for all s; t 2 T ,

T

=E

j= s � t , E j= s � t:

We 
all T

=E

the 
anoni
al model of E.

1

By a Horn 
lause we mean thus a stri
t Horn 
lause.

6



2.3 Term rewriting

In some 
ases it is 
onvenient to 
onsider a system of ground equations as a

rewrite system. We will assume that the reader is familiar with basi
 notions

regarding ground term rewrite systems [e.g. Dershowitz & Jouannaud 1990℄.

We will only use very elementary properties. In parti
ular, in the next se
tion

we will use Birkho�'s [1935℄ 
ompleteness theorem for equational logi
. In

the 
ase of ground equations it states simply that, given a ground set of

equations E and and a ground equation s � t, E j= s � t if and only if

s 
an be redu
ed to t by using the equations in E as rewrite rules in both

dire
tions.

In Se
tion 6 we will use the following property of 
anoni
al (or 
onvergent)

rewrite systems [e.g. Dershowitz & Jouannaud 1990, Se
tion 2.4℄. Let R be a

ground and 
anoni
al rewrite system. Then for any two ground terms t and

s, the equation t � s follows logi
ally from R (seen as a set of equations) if

and only if the normal forms of t and s with respe
t to R 
oin
ide, i.e.,

R j= t � s , t#

R

= s#

R

:

Snyder [1989℄ has given a very simple but useful 
ondition for showing that

a ground rewrite system R is 
anoni
al, namely that it is redu
ed : for ea
h

rule s! t in R, s is irredu
ible in Rnfs! tg and t is irredu
ible in R. We

will use this test on several o

asions, to show that a ground rewrite system

is 
anoni
al.

2.4 Finite tree automata

A �nite tree automaton or TA is a quadruple (Q;�;R;Q

f

), where

� Q is a �nite set of 
onstants 
alled states,

� � is a signature that is disjoint from Q,

� R is a set of rules of the form f(q

1

; : : : ; q

n

) ! q, where f 2 � has arity

n � 0 and q; q

1

; : : : ; q

n

2 Q,

� Q

f

� Q is the set of �nal states.

A TA is 
alled deterministi
 or a DTA if there are no two di�erent rules in

it with the same left-hand side. Terms are also 
alled trees and a forest is a

set of trees. The forest re
ognized by a TA A = (Q;�;R;Q

f

) is the following

set that is denoted by F(A):

f t 2 T

�

j (9q 2 Q

f

) t

�

�!

R

q g:

7



A forest is re
ognizable or regular if it is re
ognized by some TA. A well-

known fa
t is that every regular forest is re
ognized by a DTA. Two �nite

tree automata are 
alled 
onstant-disjoint if there is no 
onstant that o

urs

in both of them.

Example 1 Let A = (fqg;�;R; fqg) be a TA, where

R = f 
! q j 
 is a 
onstant in � g[

f f(q; : : : ; q) ! q j f is a fun
tion symbol in � g:

This DTA re
ognizes the forest T

�

. 2

3 Partisan Corroboration Theorem

The following lemma is used in the Partisan Corroboration Theorem; it is

a
tually a 
onsequen
e of  Lo�s-Tarski theorem (existential senten
es are pre-

served under extensions). We say that two (sets of) expressions X and Y are


onstant-disjoint if Con(X) \ Con(Y ) = ;.

Lemma 2 Let '

i

for i 2 I, be pairwise 
onstant-disjoint quanti�er free sen-

ten
es. Then j=

W

i2I

'

i

implies j= '

i

for some i 2 I.

Proof. For i 2 I, let �

i

= �('

i

) and let � =

S

i

�

i

. Assume by 
ontradi
tion

that 6j= '

i

for all i 2 I. Then there is (for ea
h i 2 I) a �

i

-stru
ture A
i

su
h

that A
i

j= :'

i

. Without loss of generality, take all the A

i

's to be pairwise

disjoint.

We now 
onstru
t a �-stru
ture A su
h that A
i

� A↾�
i

for i 2 I. First

let A =

S

i2I

A

i

. For ea
h i 2 I and 
onstant 
 2 �

i

let 


A

= 


A

i

. For ea
h

n-ary fun
tion symbol f in � de�ne f

A

as follows. For all ~a = a

1

; : : : ; a

n

2 A,

f

A

(~a) =

�

f

A

i

(~a); if ~a 2 A

i

;

a

1

; otherwise.

It is 
lear that A is well-de�ned be
ause of the disjointness 
riteria and that

A
i

� A↾�
i

for i 2 I. Hen
e A↾�
i

j= :'

i

, and thus A j= :'

i

for ea
h i 2 I.

But this 
ontradi
ts that j=

W

i2I

'

i

. ⊠

If we drop the 
onstant-disjointness 
riterion in Lemma 2, then of 
ourse

the lemma is false. A simple 
ounterexample is

j= 


0

� 


1

_ :(


0

� 


1

):

We will state now some other obvious but useful lemmas. Lemma 3 is an

easy 
orollary of Birkho�'s 
ompleteness theorem.

8



Lemma 3 Let t and s be ground terms and let E and E

0

be ground sets of

equations su
h that Con(E

0

)\(Con(E)[Con(s)) = ;. The following is true.

1. If E

0

[ E j= t � s then E j= t � s.

2. If E j= t � s then �(t) � �(E) [ �(s).

Proof. Let E, E

0

, s and t be given and assume that E

0

[ E j= t � s. By

Birkho�'s [1935℄ 
ompleteness theorem we know that s 
an be rewritten to

t by using E

0

[ E as a set of rewrite rules. So there is a sequen
e of terms

s

0

; s

1

; : : : ; s

n�1

; s

n

where s

0

= s, s

n

= t and s

i

is rewritten to s

i+1

by using

some rule in E

0

[E, for 0 � i < n. By indu
tion on i (for i � n) follows that

�(s

i

) � �(E; s) and only a rule from E 
an be used to rewrite s

i

. Part 1

follows again by the 
ompleteness theorem of Birkho� and part 2 follows

immediately (take E

0

= ;). ⊠

For a �nite set E of equations we will write E also for a 
orresponding


onjun
tion of equations and let the 
ontext determine whether a set or a

formula is meant.

Lemma 4 Let t and s be ground terms and E

0

and E ground sets of equations

su
h that E is �nite and Con(E

0

) \ (Con(E) [ Con(s)) = ;. Then

T

=E

0

[E

j= (E ) t � s) ) j= (E ) t � s):

Proof. Let E, E

0

, s and t be given. From T

=E

0

[E

j= (E ) t � s) follows

immediately that T

=E

0

[E

j= t � s and thus E

0

[E j= t � s. Hen
e E j= t � s

by Lemma 3, i.e., j= (E ) t � s). ⊠

We will use the following de�nitions. Let ' be a quanti�er free formula and

m a positive integer. A set of m ground substitutions � is an m-
orroborator

for ' if

j=

_

�2�

'�:

When � = f�g we say that � is a 
orroborator for ' or 
orroborates '.

The m-
orroboration problem is the problem of determining whether a given

quanti�er free formula has an m-
orroborator.

For x 2 FV ('), a guard for x in ', if it exists, is a 
lause

E ) t � s

in ' su
h that E and s are ground and x o

urs in t. We say that

^

x2FV (')

 

x

9



is a guard of ' if ea
h  

x

is a guard for x in '; ' is is 
alled guarded if it has

a guard.

Intuitively, in the light of the se
ond part of Lemma 3, the notion of

a Horn formula being guarded is a suÆ
ient 
ondition to guarantee that if

there is a 
orroborator � for ' then �('�) = �(').

SREU is, by de�nition, the 1-
orroboration problem for Horn formulas.

However, we only need to 
onsider guarded Horn formulas. To see that,


onsider a Horn formula '; let � be its signature and let 
 be a 
onstant in

�. For ea
h variable x in ', let Gr

�

(x) denote the following Horn 
lause:

f 


0

� 
 j 


0

is a 
onstant in � n f
g g[

f f(
; : : : ; 
) � 
 j f is a fun
tion symbol in � g ) x � 
:

This is a very simple but useful 
onstru
tion that was �rst used by Degtyarev

& Voronkov to enfor
e 
ertain solutions to be within a given signature. It is

easy to see that, for all terms t,

j= Gr

�

(t) , t 2 T

�

:

Let now  be the guarded Horn formula

(

^

x2FV (')

Gr

�

(x)) ^ ':

From Herbrand's theorem follows that one only needs to 
onsider 
orrobora-

tors in the language of ', therefore  has a 
orroborator if and only if ' has

one.

Example 5 A simple example of a guarded Horn formula is this

 = (E

1

) x � 


1

) ^

(E

2

) y � 


2

) ^

(�

1

) x � y) ^

(�

2

) x � t � y)

where E

1

, E

2

, �

1

, �

2

and t are ground, 


1

, 


2

are 
onstants, and `�' is a binary

fun
tion symbol written in in�x notation. A guard of  is

(E

1

) x � 


1

) ^ (E

2

) y � 


2

):

An example of a Horn formula with a 
ommon guard for all variables is

' = (E ) x � y � 
) ^

(�

1

) x � y) ^

(�

2

) x � t � y);

10



where E, �

1

, �

2

and t are ground and 
 is a 
onstant. The guard of ' is

E ) x � y � 
:

These formulas are of parti
ular interest for us, see Se
tion 6. 2

We say that a 
orroborator of a disjun
tion ' is partisan, if it 
orroborates

some disjun
t of '. The main result of this se
tion is the following theorem.

Theorem 6 (Partisan Corroboration Theorem) Every 
orroborator of

a disjun
tion of 
onstant-disjoint guarded Horn formulas is partisan.

Proof. Let ' =

W

i2I

'

i

where all the '

i

's are 
onstant-disjoint guarded Horn

formulas. Let � be a 
orroborator for '. We must prove that � 
orroborates

'

i

for some i 2 I.

We 
an assume (without loss of generality) that there exist positive inte-

gers m and n su
h that ea
h '

i

has the following form:

'

i

=

^

1�k�m

(E

k

i

) s

k

i

� t

k

i

)

| {z }

 

i

^

^

1�k�n

(D

k

i

) u

k

i

� v

k

i

);

where  

i

is a guard of '

i

, i.e., ea
h E

k

i

and s

k

i

is ground and FV ('

i

) =

FV ( 

i

), for all i 2 I. Let C

i

= Con('

i

) for i 2 I. We have that

C

i

\ C

j

= ; (8i; j 2 I; i 6= j): (1)

Let � = �('). For i 2 I let K

i

denote the 
lass of all �-stru
tures that

satisfy '

i

�, i.e,

K

i

= f�-stru
ture A j A j= '

i

� g:

From the validity of '� follows that ea
h �-stru
ture belongs to some K

i

.

Let now J be any subset of I su
h that

j=  

i

� (8i 2 J): (2)

So

Con('

i

�) = C

i

(8i 2 J): (3)

To see that, suppose (by 
ontradi
tion) that Con('

i

�) 
ontains some 
 =2 C

i

.

Clearly, 
 belongs to some x� where x o

urs in the guard  

i

. By the se
ond

part of Lemma 3, every 
onstant in x� belongs to C

i

. This gives the desired


ontradi
tion.

11



If I = J then the theorem follows by (1), (3) and Lemma 2. Assume that

I 6= J . Below we prove the following statement:

If 6j= '

i

� for all i 2 J then j=  

i

� for some i 2 I n J . (4)

Let now J be the maximal subset of I su
h that (2) holds. In other words,

for all i 2 I n J , 6j=  

i

�. By the 
ontrapositive of (4) we 
on
lude that for

some i 2 J , j= '

i

� and the theorem follows.

Proof of (4) Assume 6j= '

i

� for all i 2 J . Form an equation set D as follows.

� If J = ; let D = ;.

� If J 6= ; then there is for ea
h i 2 J a 
lause in '

i

� that is not valid

and by (2) this 
lause is not in  

i

�. In other words, there is a mapping

f : J ! f1; 2; : : : ; ng su
h that

6j= (D

f(i)

i

) u

f(i)

i

� v

f(i)

i

)� (8i 2 J): (5)

Let f be �xed and let D =

S

i2J

D

f(i)

i

�.

For ea
h mapping g : I nJ ! f1; 2; : : : ; mg let E

g

denote the following set of

equations:

E

g

=

[

i2InJ

E

g(i)

i

;

and let A
g

be the 
anoni
al model of D [ E

g

, i.e.,

A
g

= T

=E

g

[D

:

We will now prove the following statement.

(6) Fix g : I n J ! f1; 2; : : : ; mg. There exists i 2 I n J su
h that

A
g

2 K

i

.

Proof. Suppose, by 
ontradi
tion, that (6) does not hold. (Assume

also that J 6= ; or else (6) holds trivially.) Then A
g

2 K

j

for some

j 2 J . Fix su
h an appropriate j.

So A
g

satis�es ea
h 
lause in '

j

� and in parti
ular

A
g

j= (D

f(j)

j

) u

f(j)

j

� v

f(j)

j

)�:

Let D

0

= D

f(j)

j

�, u

0

= u

f(j)

j

� and v

0

= v

f(j)

j

�. By (3) follows that

Con(D

0

; u

0

; v

0

) � C

j

12



and

Con(E

g

; D nD

0

) = Con(E

g

) [ Con(D nD

0

)

= Con(E

g

) [

[

i2J;i 6=j

Con(D

f(i)

i

�)

�

[

i2InJ

C

i

[

[

i2J;i 6=j

C

i

=

[

i2I;i 6=j

C

i

:

So, by (1),

Con(D

0

; u

0

; v

0

) \ Con(E

g

; D nD

0

) = ;:

It follows, by Lemma 4, that

j= (D

f(j)

j

) u

f(j)

j

� v

f(j)

j

)�:

But this 
ontradi
ts (5). ⊠

By using (6) we 
an now prove (4). Suppose, by 
ontradi
tion, that there is

no i 2 I n J su
h that j=  

i

�. Then there is for ea
h i 2 I n J a 
lause in  

i

�

that is not valid, i.e., there is a mapping g : I n J ! f1; 2; : : : ; mg su
h that

6j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�) (8i 2 I n J):

(Note that only the t

i

's 
an be nonground.) Fix su
h an appropriate g.

By using (6) we know that A
g

2 K

i

for some i 2 I n J . Choose su
h an

i. So A
g

satis�es ea
h 
lause in '

i

� and in parti
ular

A
g

j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�):

But, by (3) and (1),

Con(E

g(i)

i

; s

g(i)

i

) \ Con(E

g

n E

g(i)

i

; D) = ;:

Hen
e, by Lemma 4,

j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�);

whi
h 
ontradi
ts our 
hoi
e of g. ⊠

Remark Theorem 6, as well as its proof, remain 
orre
t if the disjun
tion

is in�nite. We will not use this generalization.
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The following example illustrates why the 
onditions of being 
onstant-

disjoint and guarded are important and 
annot in general be dis
arded. In

ea
h 
ase there is a 
ounterexample to the theorem.

Example 7 Let us �rst 
onsider an example where the disjun
ts are guarded

but not 
onstant-disjoint. Let '(x) be the following guarded Horn formula:

(
 � 0 ) x � 1) ^ (
 � 1 ) x � 0)

where 
, 0 and 1 are 
onstants, and let '

1

= '(x

1

), '

0

= '(x

0

) and  =

'

1

_ '

0

where x

1

and x

0

are distin
t variables. Consider now any ground

substitution � su
h that �(x

1

) = 1 and �(x

0

) = 0. It is easy to show by 
ase

analysis that � 
orroborates  , i.e., that

j= ((
 � 0 ) 1 � 1) ^ (
 � 1 ) 1 � 0)) _

((
 � 0 ) 0 � 1) ^ (
 � 1 ) 0 � 0)):

However, � 
orroborates neither '

1

nor '

0

.

Let us now 
onsider the 
ase when 
onstant-disjointness is not violated

but the disjun
ts are not guarded. Let '

1

(y; x

1

; y

1

) be the formula

((y � 0 ) x

1

� y

1

) ^ (y � y

1

) x

1

� 0))

and let '

0

(x

0

; y

0

) be the formula

((
 � y

0

) x

0

� 1) ^ (
 � 1 ) x

0

� y

0

))

where 
, 0 and 1 are 
onstants and x

1

; x

0

; y

1

; y

0

; y distin
t variables. Let

 = '

1

_ '

0

. Let � be a ground substitution su
h that �(x

1

) = 1, �(x

0

) = 0,

�(y) = 
, �(y

1

) = 1 and �(y

0

) = 0. Then j=  � but 6j= '

1

� and 6j= '

0

� (the

situation is exa
tly the same as in the previous 
ase). 2

4 From 
orroboration to m-
orroboration

As Degtyarev & Voronkov [1995℄ have shown, the 
orroboration problem

is unde
idable. Shortly after, Voda & Komara [1995℄ have shown that m-


orroboration is unde
idable for all multipli
ities m. We show that the latter

result follows easily from the former result by using the Partisan Corrobora-

tion Theorem.

Theorem 8 (Degtyarev{Voronkov) Corroboration of guarded Horn for-

mulas is unde
idable.

14



For te
hni
al reasons it will be 
onvenient to assume in the following that

we have a �xed signature � with f


1

; 


2

; : : :g as the set of distin
t 
onstants

in it. � may also have other fun
tion symbols of arity � 1. Let us also be

pre
ise about the variables that we allow in �-expressions, by assuming that

all variables 
ome from the 
olle
tion fx

1

; x

2

; : : :g.

For ea
h natural number n, 
onstant 
 and variable x, let 


(n)

denote a

new 
onstant and let x

(n)

denote a new variable. We de�ne by indu
tion on

any �-expression X the 
orresponding expression X

(n)

as the one obtained

from X by repla
ing in it ea
h variable x with x

(n)

and ea
h 
onstant 
 with




(n)

. For any substitution � of �-variables with �-terms we let �

(n)

denote

a substitution that takes the variable x

(n)

to the term (x�)

(n)

. So, for any

�-expression X and natural number n,

(X�)

(n)

= X

(n)

�

(n)

:

The following property is immediate. For any �-senten
e ' and natural

number n,

j= ' , j= '

(n)

:

Theorem 9 Let ' be a guarded Horn formula and n a positive integer. Then

' has a 
orroborator if and only if

V

n

i=1

'

(i)

has an n-
orroborator.

Proof. The `)' dire
tion is immediate. We prove the `(' dire
tion as

follows. Let I = f1; 2; : : : ; ng and let  be the formula

V

i2I

'

(i)

. Assume

that  has an n-
orroborator f �

i

j i 2 I g. So

j=

_

i2I

('

(1)

�

i

^ � � � ^ '

(i)

�

i

^ � � � ^ '

(n)

�

i

):

By using the distributive laws we 
an 
ostru
t an equivalent formula in


onjun
tive normal form, in
luding as one of the 
onjun
ts the formula

W

i2I

'

(i)

�

i

. Hen
e

j=

_

i2I

'

(i)

�

i

:

Let X

i

= FV ('

(i)

) for i 2 I. Sin
e all the X

i

's are pairwise disjoint we 
an

let �

0

be a substitution su
h that �

0↾X
i

= �

i

↾X
i

for i 2 I, and it follows that

j=

_

i2I

'

(i)

�

0

:

From the Partisan Corroboration Theorem 6 follows now that j= '

(i)

�

0

for

some i 2 I. Fix su
h an appropriate i. But then, by Lemma 3, the range of

�

0↾X
i

is T

�('

(i)

)

, and thus there is a substitution � with range T

�

su
h that

�

(i)↾X
i

= �

0↾X
i

. Hen
e j= '

(i)

�

(i)

and so j= '�. ⊠
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Theorem 10 (Voda{Komara) For all n � 1, n-
orroboration is unde
id-

able.

Proof. The redu
tion in Theorem 9 is trivially e�e
tive. So, if we had a

de
ision pro
edure (for some n) for �nding n-
orroborators, we 
ould use it

to �nd 
orroborators, but this would 
ontradi
t Theorem 8. ⊠

Assume that we are using an automated theorem proving method that is

based on the Herbrand theorem. Roughly, this involves a sear
h for terms,

for a given multipli
ity m. Voda{Komara theorem tells us that there is no m

for whi
h we 
ould e�e
tively de
ide when to stop our sear
h for su
h terms

in 
ase they do not exist.

By using the fa
t that SREU is unde
idable with ground left-hand sides

[Plaisted 1995℄, (i.e., variables o

ur only in positive literals in the 
orre-

sponding Horn formulas), and already in the guarded 
ase with two variables

[Veanes 1996℄, we 
an sharpen the Voda-Komara theorem as follows.

Corollary 11 For all n � 1, n-
orroboration is unde
idable for guarded

Horn formulas with 2n variables and ground negative literals.

By a monadi
 signature or language we mean a signature or language

where all fun
tion symbols have arity at most one. By monadi
 SREU or 
or-

roboration we understand the restri
tion of that de
ision problem to monadi


languages. The de
idability of monadi
 SREU is 
urrently one of the diÆ
ult

open problems related to SREU [Gurevi
h & Voronkov 1997℄. An e�e
tively

equivalent problem is the de
idability of the prenex fragment of intuitionis-

ti
 logi
 with equality in monadi
 languages [Degtyarev & Voronkov 1996a℄.

Some eviden
e speaks in favor of that the problem is de
idable although with

very high 
omputational 
omplexity (e.g., many sub
ases are de
idable, see

Se
tion 8). From Theorem 9 follows that:

Corollary 12 If monadi
 
orroboration is unde
idable, then so is monadi


n-
orroboration for any n > 1, or equivalently, if monadi
 n-
orroboration is

de
idable for some n > 1 then so is monadi
 
orroboration.

5 Shifted pairing with �nite tree automata

Shifted pairing is a general te
hnique for proving unde
idability results. The

term shifted pairing was introdu
ed by Plaisted [1995℄. A variant of shifted

pairing was used already by Hop
roft & Ullman [1979℄ in establishing the

unde
idability of the problem of testing nonemptiness of the interse
tion of

two 
ontext free languages. Goldfarb's [1981℄ proof of the unde
idability of
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Figure 1: Shifted pairing.

se
ond-order uni�
ation uses also similar ideas. Finite tree automata provide

a suitable abstra
tion level for our purposes, for formalizing this te
hnique as

a de
ision problem of �nite tree automata. The shifted pairing te
hnique is

illustrated in Figure 1. The main result of this se
tion is the Shifted Pairing

theorem. In this se
tion we use a binary fun
tion symbol `�', and we write

it for better readability using in�x notation and assume that it asso
iates to

the right. For example, if t

1

, t

2

and t

3

are terms, then the term �(t
1

; �(t
2

; t

3

))

is written unambiguously as t

1

� t
2

� t
3

.

Theorem 13 (Shifted Pairing Theorem) One 
an e�e
tively 
onstru
t

two 
onstant-disjoint tree automata

A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g); A

id

= (Q

id

;�

id

;R

id

; fq

id

g);

and two ground and 
anoni
al rewrite systems

�

1

� T

�

mv

� T

�

id

; �

2

� T

�

mv

� T

�

id

;

su
h that, it is unde
idable whether, given t

0

2 T

�

id

, there exists s 2 F(A

mv

)

and t 2 F(A

id

) su
h that s

�

�!

�

1

t and t

0

� s
�

�!

�

2

t, where � 2 �

mv

.

The rest of this se
tion is devoted to the proof of the Shifted Pairing Theorem.

We 
onsider a �xed deterministi
 Turing ma
hine M with initial state q

0

,

�nal state q

f

, a blank symbol  . By �(M) we denote the union of the states

and tape symbols of M in
luding the blank symbol. All 
hara
ters in �(M)

are 
onsidered to be 
onstants. Moreover, M is only allowed to write a blank

when it erases the last nonblank symbol on the tape. This means that IDs

do not in
lude blanks. However, overwriting the last nonblank symbol on

the tape by a blank, means erasing of the last input symbol on the tape. For

su
h a TM M we 
an assume, without loss of generality, that when M enters

the �nal state then its tape is empty. Given an ID v, we let v

+

denote the

following string:

v

+

=

�

su

essor of v; if v is non�nal;

�; otherwise:
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Note that the �nal ID of M is the unique one 
hara
ter string q

f

and q

+

f

= �.

5.1 Words and trains

Here we use 
ertain nonmonadi
 terms to represent strings, we 
all su
h

terms words. Similarly, we use 
ertain terms, that we 
all trains, to represent

sequen
es of strings. Let 


w

and 


t

be two distin
t 
onstants not in �(M).

� A term s is 
alled a 


w

-word if either s is the 
onstant 


w

, or s is the

term 
 � s0 for some 
onstant 
 and 


w

-word s

0

. The empty 


w

-word is

simply the 
onstant 


w

.

� A term t is 
alled a 


t

-train of 


w

-words if either t is the 
onstant 


t

,

or t is the term s � t0 for some 


w

-word s and 


t

-train t

0

. The empty




t

-train is simply the 
onstant 


t

.

We use the following 
onvenient notation for words and trains. A 


w

-word




1

� 

2

� � � � � 

n

� 

w

is written simply as




1




2

� � � 


n

� 

w

and is said to represent the string 


1




2

: : : 


n

. When we say that a 


w

-word is

in a set V of strings, we mean that the string represented by that 


w

-word

is in V .

Similarly, a 


t

-train

(v

1

� 

w

) � (v

2

� 

w

) � � � � � (v

n

� 

w

) � 

t

is said to represent the string sequen
e

(v

1

; v

2

; : : : ; v

n

):

In this way one 
an of 
ourse easily represent arbitrary regular sets of strings

by 
orresponding regular forests of words. We use this fa
t in the Train

Lemma, that is our key tool in 
onstru
ting the two tree automata A

mv

and

A

id

.

Lemma 14 (Train Lemma) Let V be a regular set of strings over a sig-

nature � of 
onstants. Let 


t

and 


w

be distin
t 
onstants not in �. Then

the set of all 


t

-trains of 


w

-words in V is re
ognized by a DTA with one �nal

state.

18



Proof. To begin with, let A

1

= (Q

1

;� [ f�; 

w

g;R

1

;Q

f

1

) be a DTA that

re
ognizes the set of all 


w

-words in V . Next, let p be a new state and let

A = (Q

1

[ fpg;� [ f�; 

w

; 


t

g;R; fpg)

where

R = R

1

[ f


t

! pg [ f q � p! p j q 2 Q

f

1

g:

We prove that A is a DTA satisfying the 
laim. Clearly, it is a DTA. The

rest follows from the equivalen
e of the following statements for all terms t.

(7) t 2 F(A)

(8) t is a term over � [ f�; 

w

; 


t

g and t

�

�!

R

p

(9) t is a term over � [ f�; 

w

; 


t

g and there exist states q

1

; q

2

; : : : ; q

n

2

Q

f

1

, n � 0, su
h that

t

�

�!

R

1

q

1

� q
2

� � � � � q
n

� 

t

�!

f


t

!pg

q

1

� q
2

� � � � � q
n

� p
�

�!

f q�p!pjq2Q

f

1

g

p

(10) there exist terms s

1

; s

2

: : : ; s

n

2 F(A

1

), n � 0, su
h that t =

s

1

� s
2

� � � � � s
n

� 

t

(11) t is a 


t

-train of 


w

-words in V .

We show only the impli
ation (8))(9). All the other 
ases are immediate


onsequen
es of the involved de�nitions. Assume (8). The only rules in R

that involve p are the ones q � p! p for q 2 Q

f

1

and the rule 


t

! p.

Hen
e, any redu
tion of t in R to p is either, by indu
tion on the number

of rewrite steps in redu
tions,

1. the rewrite step t �!




t

!p

p, and thus t = 


t

and obviously (9) holds,

2. or else a redu
tion t

�

�!

R

q �p �!
q�p!p

p, for some q 2 Q

f

1

. In this 
ase

t must be a term s � t0 where s

�

�!

R

q and t

0

�

�!

R

p. But if s

�

�!

R

q

then obviously s

�

�!

R

1

q. Hen
e t

�

�!

R

1

q � t0 and (9) follows from the

indu
tion hypothesis.

⊠

The set of all IDs of M is obviously a regular set of strings.

� A train of IDs is a 


t

-train of 


w

-words representing IDs of M .

The following statement is an immediate 
onsequen
e of Lemma 14.

(12) There is a DTA A

id

= (Q

id

;�

id

;R

id

; fq

id

g) that re
ognizes the set of all

trains of IDs, where �

id

= �(M) [ f�; 

w

; 


t

g.

19



5.2 Trains of moves

We now want to represent moves of M in su
h a way that we 
an obtain a

statement 
orresponding to (12), but for moves. First of all, for te
hni
al

reasons that are relevant for 
onstant-disjointness of the �nite tree automata

in Theorem 13, we use a new 
onstant 


0

w

for the empty word and a new


onstant 


0

t

for the empty train. A naive representation of a move (v; v

+

) as

the term (v � 
0
w

) � (v

+ � 
0
w

) does of 
ourse not work for several reasons, to

mention one: su
h terms are not re
ognizable.

Instead, we use the fa
t that, in a move (v; v

+

), the number of symbols

in v is either equal to the length of v

+

, or it is one less than the length

of v

+

(sin
e M 
an write a new symbol at the end), or one more than the

length of v

+

(sin
e M 
an erase the last tape symbol). Moreover, only a

�nite substring of an ID is altered by a move. We en
ode moves by strings

of new 
hara
ters where the i'th 
hara
ter en
odes the i'th 
hara
ters in the


omponents of the move. We now pro
eed with the formal 
onstru
tion.

Two new 
onstants, denoted by ha; bi and ha; bi

0

, respe
tively, are intro-

du
ed for every pair of 
onstants a and b in �(M). All these new 
onstants

are assumed to be pairwise distin
t. Let v be any ID of M and v

+

its su
-


essor, say

v = a

1

a

2

� � �a

m

;

v

+

= b

1

b

2

� � � b

n

:

Note that m � 1 and m�1 � n � m+ 1. The only 
ase when n = 0 is when

v is the �nal ID q

f

. We de�ne hv; v

+

i as the following string.

hv; v

+

i =

8

<

:

ha

1

; b

1

iha

2

; b

2

i � � � ha

n�1

; b

n�1

ih ; b

n

i

0

; if m = n� 1;

ha

1

; b

1

iha

2

; b

2

i � � � ha

m�1

; b

m�1

iha

m

;  i

0

; if m = n + 1;

ha

1

; b

1

iha

2

; b

2

i � � � ha

m�1

; b

m�1

iha

m

; b

m

i

0

; if m = n:

we 
all su
h a string a move also. Intuitively, a blank is added at the end of

the shorter of the two strings of a move (in 
ase they di�er in length) and

the pair of the resulting strings is en
oded 
hara
ter by 
hara
ter.

� A train of moves is a 


0

t

-train of 


0

w

-words that represent moves.

(13) There is a DTA A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g) that re
ognizes the set

of all trains of moves, where

�

mv

= f ha; bi; ha; bi

0

j a; b 2 �(M) g [ f�; 
0
w

; 


0

t

g:
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Proof. The set of moves is easily seen to be a regular set. For example,

the set of all moves 
orresponding to 
omputation steps that do not


hange the last tape symbol 
an be des
ribed by the following regular

set of strings:

V

�

V

Æ

V

�

V

0

where V

Æ

is is a 
ertain �nite set of three-
hara
ter or two-
hara
ter

strings 
onstru
ted from the transition fun
tion of M , e.g., if M upon

reading the symbol a in state q writes the symbol a

0

, moves right,

and enters state q

0

, then hq; a

0

iha; q

0

i is in V

Æ

. The set V 
onsists all


onstants ha; ai su
h that a is an input symbol of M , and V

0

is the set

of all 
onstants ha; ai

0

su
h that a is an input symbol of M . The other


ases are similar. The 
laim follows now from the Train Lemma 14. ⊠

At this point let A

id

and A

mv

be �xed 
onstant-disjoint DTAs given by (12)

and (13).

5.3 Main 
onstru
tion

Given a nonempty train t of moves, say

t = (hv

1

; v

+

1

i � 
0
w

) � (hv

2

; v

+

2

i � 
0
w

) � � � � � (hv

k�1

; v

+

k�1

i � 
0
w

) � (hv

k

; v

+

k

i � 
0
w

) � 
0
t

de�ne the �rst proje
tion of t as the following train of IDs

�

1

(t) = (v

1

� 

w

) � (v

2

� 

w

) � � � � � (v

k�1

� 

w

) � (v

k

� 

w

) � 

t

and the se
ond proje
tion of t as the following train

�

2

(t) =

�

(v

+

1

� 

w

) � (v

+

2

� 

w

) � � � � � (v

+

k�1

� 

w

) � 

t

; if v

k

= q

f

;

(v

+

1

� 

w

) � (v

+

2

� 

w

) � � � � � (v

+

k�1

� 

w

) � (v

+

k

� 

w

) � 

t

; otherwise.

Note that the purpose of taking the se
ond-proje
tion is twofold:

1. to 
he
k that the �rst 
omponent of the last move is the �nal ID, and

2. to return the train 
onsisting of the se
ond 
omponents of all the moves.

We say that t is the shifted pairing of its �rst proje
tion if

�

1

(t) = (v

1

� 

w

) � �
2

(t)

and we refer to v

1

as the �rst ID of t. Re
all that q

0

is the initial state of M .
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Lemma 15 Let v

0

be an input string for M . Then M a

epts v

0

if and only

if there exists a train t of moves with �rst ID q

0

v

0

, su
h that t is the shifted

pairing of its �rst proje
tion.

Proof. Let v

0

be given and t a train of moves as above, with v

1

= q

0

v

0

. The

�rst proje
tion of t represents the ID sequen
e

(v

1

; v

2

; : : : ; v

k�1

; v

k

);

and, if v

k

= q

f

then the se
ond proje
tion of t represents

(v

+

1

; v

+

2

; : : : ; v

+

k�1

):

To say that t is a shifted pairing of it �rst proje
tion means that v

k

= q

f

and

( v

1

; v

2

; v

3

; : : : ; v

k�1

; v

k

) =

( q

0

v

0

; v

+

1

; v

+

2

; : : : ; v

+

k�2

; v

+

k�1

);

whi
h is tantamount to saying that the �rst proje
tion of t represents a valid


omputation of M with input v

0

, i.e., M a

epts v

0

. The proof of the 
onverse

dire
tion is similar. ⊠

5.3.1 The rewrite systems �

1

and �

2

The system �

1


ontains all the following rules:

(14) For all a; b 2 �(M), the rule ha; bi ! a.

(15) For all a; b 2 �(M) su
h that a 6=  , the rule ha; bi

0 � 
0
w

! a � 

w

.

(16) For all b 2 �(M), the rule h ; bi

0 � 
0
w

! 


w

.

(17) The rule 


0

t

! 


t

.

We 
on
lude the following, by �rst observing from (14){(17) that �

1

is re-

du
ed.

(18) The rewrite system �

1

is 
anoni
al and �

1

� T

�

mv

� T

�

id

We therefore have the following relationship between �

1

and the notion of

�rst proje
tion of a train of moves.

Lemma 16 For all trains s of moves and all trains t of IDs, s

�

�!

�

1

t if

and only if t = �

1

(s).
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Proof. Let s and t be given. By (18) t is irredu
ible in �

1

be
ause �

mv

and

�

id

do not have any 
onstants in 
ommon, and thus s

�

�!

�

1

t if and only if

s#

�

1

= t. It remains to 
he
k that s#

�

1

= �

1

(s), whi
h is straightforward. ⊠

The system �

2


ontains all the following rules:

(19) For all a; b 2 �(M), the rule ha; bi ! b.

(20) For all a; b 2 �(M) su
h that b 6=  , the rule ha; bi

0 � 
0
w

! b � 

w

.

(21) For all a 2 �(M) su
h that a 6= q

f

, the rule ha;  i

0 � 
0
w

! 


w

.

(22) The rule (hq

f

;  i

0 � 
0
w

) � 
0
t

! 


t

.

Again, we 
on
lude the following, by �rst observing from (19){(22) that �

2

is redu
ed.

(23) The rewrite system �

2

is 
anoni
al and �

2

� T

�

mv

� T

�

id

We have also a similar relationship between �

2

and the se
ond proje
tion of

a train of moves, that implies the following.

Lemma 17 For all trains s of moves and all IDs v, (v � 

w

) � s
�

�!

�

2

�

1

(s)

if and only if �

1

(s) = (v � 

w

) � �
2

(s).

Proof. Let s and v be given, say

s = (hv

1

; v

+

1

i � 
0
w

) � (hv

2

; v

+

2

i � 
0
w

) � � � � � (hv

k�1

; v

+

k�1

i � 
0
w

) � (hv

k

; v

+

k

i � 
0
w

) � 
0
t

:

So

�

1

(s) = (v

1

� 

w

) � (v

2

� 

w

) � � � � � (v

k�1

� 

w

) � (v

k

� 

w

) � 

t

:

) Assume that (v � 

w

) � s
�

�!

�

2

�

1

(s). This is possible only if, by (23),

v

1

= v; (hv

i

; v

+

i

i � 
0
w

)#

�

2

= v

i+1

� 

w

for 1 � i < k; (24)

and

((hv

k

; v

+

k

i � 
0
w

) � 
0
t

)#

�

2

= 


t

: (25)

(25) is possible only if v

k

= q

f

by using the rule in (22). In (24) only

the rules in (19){(21) 
an be used and these imply that v

+

i

= v

i+1

for

1 � i < k. The rest is obvious.

( Assume that �

1

(s) = (v � 

w

) � �
2

(s). Then v = v

1

, v

+

i

= v

i+1

for

1 � i < k, and v

k

= q

f

. (24) and (25) follow easily. The rest is obvious.

⊠
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5.3.2 Proof of the Shifted Pairing Theorem

Proof. Let M in the above 
onstru
tion be a universal TM. Then the 
laim

in Theorem 13 is a 
onsequen
e of the equivalen
e of the following statements.

The additional 
onditions on the rewrite systems �

1

and �

2

follow from (18)

and (23).

(26) M a

epts v

0

.

(27) There exists s 2 F(A

mv

) su
h that �

1

(s) = (q

0

v

0

� 

w

) � �
2

(s).

(28) There exists s 2 F(A

mv

) su
h that (q

0

v

0

� 

w

) � s
�

�!

�

2

�

1

(s).

(29) There exist s 2 F(A

mv

) and t 2 F(A

id

), su
h that s

�

�!

�

1

t and

(q

0

v

0

� 

w

) � s
�

�!

�

2

t.

(26),(27) By Lemma 15 and (13).

(27),(28) By Lemma 17.

(28),(29) By Lemma 16 and (12).

⊠

6 Appli
ations of Partisan Corroboration and

Shifted Pairing Theorems

The Shifted Pairing Theorem is used here to give a very elementary unde
id-

ability proof of SREU. The latter result is then used, in 
ombination with the

Partisan Corroboration Theorem to improve upon the unde
idability result

of n-
orroboration for arbitrary n.

6.1 Unde
idability of SREU: minimal 
ase

Consider �xed 
onstant-disjoint DTAs A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g) and

A

id

= (Q

id

;�

id

;R

id

; fq

id

g), a binary fun
tion symbol f , and ground 
anoni
al

rewrite systems �

1

and �

2

given by the Shifted Pairing Theorem 13. Let q

be a new state and A the tree automaton (Q;�;R;Q

f

), where

Q = Q

mv

[Q

id

[ fqg;

� = �

mv

[ �

id

;

R = R

mv

[R

id

[ ff(q

mv

; q

id

) ! qg;

Q

f

= fqg:
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Obviously, A is still a deterministi
 tree automaton, be
ause A

mv

and A

id

are 
onstant-disjoint and deterministi
. We have the following property as a

dire
t 
onsequen
e of the 
onstant-disjointness of A

id

and A

mv

.

(30) For all ground terms s and t, f(s; t)

�

�!

R

q if and only if s

�

�!

R

mv

q

mv

and t

�

�!

R

id

q

id

.

We 
an now prove the following result.

Theorem 18 There is an integer n, su
h that SREU is unde
idable under

the following restri
tions:

(i) the left-hand sides are ground and have less than n symbols, and

(ii) there are at most two variables ea
h o

urring at most three times, and

(iii) there are at most three rigid equations.

Proof. Let S

t

0

(x; y) be the following system of rigid equations where the

rewrite systems R, �

1

and �

2

are 
onsidered as sets of equations and t

0

is a

given ground term over �

id

.

S

t

0

(x; y) =

8

<

:

R `

r

f(x; y) � q

�

1

`

r

x � y

�

2

`

r

f(t

0

; x) � y

First, we prove that the following statements are equivalent for all substitu-

tions �:

(31) � solves S

t

0

(x; y)

(32) i) R j= f(x�; y�) � q, and

ii) �

1

j= x� � y� and �

2

j= f(t

0

; x�) � y�

(33) i) f(x�; y�)

�

�!

R

q, and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2

(34) i) x�

�

�!

R

mv

q

mv

and y�

�

�!

R

id

q

id

, and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2

(35) i) x� 2 F(A

mv

) and y� 2 F(A

id

), and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2
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(36) i) x� 2 F(A

mv

) and y� 2 F(A

id

), and

ii) x�

�

�!

�

1

y� and f(t

0

; x�)

�

�!

�

2

y�

(31),(32) By de�nition.

(32),(33) The rewrite systems are 
anoni
al and q is irredu
ible in R.

(33),(34) By (30).

(34),(35) Assume (34). (34)(i) implies that x� 2 T

�

mv

[Q

mv

and y� 2

T

�

id

[Q

id

. But x� 
annot in
lude 
onstants from Q

mv

and y� 
annot

in
lude 
onstants fromQ

id

, or else x�#

�

1

6= y�#

�

1

be
ause the signature

of �

1

is in
luded in �

id

[ �

mv

. Hen
e x� 2 T

�

mv

and y� 2 T

�

id

, and

thus (35)(i) holds by (34)(i).

(35),(36) The terms in F(A

id

) are irredu
ible with respe
t to �

1

and

�

2

, and y� 2 F(A

id

).

We 
on
lude that S

t

0

(x; y) is solvable if and only if there exists a term s 2

F(A

mv

) and a term t 2 F(A

id

) su
h that s

�

�!

�

1

t and f(t

0

; s)

�

�!

�

2

t.

Hen
e, solvability of S

t

0

(x; y) is unde
idable by Theorem 13. Consequently

SREU is unde
idable, and the restri
tions (i){(iii) follow as properties of

S

t

0

(x; y), where n is any integer greater than the number of symbols in R,

�

1

and �

2

.

the left-hand sides of the rigid equations in S

t

0

(x; y). ⊠

6.1.1 Unde
idability proofs of SREU

Degtyarev & Voronkov's [1995℄ original proof of the unde
idability of SREU

was by redu
tion of Baaz's [1993℄ monadi
 semi-uni�
ation problem. This

proof was followed by other proofs by Degtyarev & Voronkov, �rst by redu
-

ing se
ond-order uni�
ation to SREU [1996
℄, and then by redu
ing Hilbert's

tenth problem to SREU [1996b℄. The unde
idability of se
ond-order uni�-


ation was proved by Goldfarb [1981℄. Plaisted [1995℄ redu
ed Post's Cor-

responden
e Problem to SREU. From his proof follows that SREU is unde-


idable already with ground left-hand sides. Veanes [1996℄ improved that


onstru
tion by using the halting problem for Turing ma
hines and showed

that two variables and one binary fun
tion symbol is enough to obtain unde-


idability. Here we have shown that, in addition, already three rigid equations

suÆ
e for the unde
idability.
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6.2 Unde
idability of m-
orroboration: minimal 
ase

Consider the above system S

t

0

(x; y) of rigid equations and let '

t

0

denote the


orresponding guarded Horn formula:

(R ) f(x; y) � q) ^

(�

1

) x � y) ^

(�

2

) f(t

o

; x) � y):

We have the following result.

Theorem 19 For all m � 1, m-
orroboration is unde
idable already for

guarded Horn formulas with ground negative literals, at most 2m variables,

and at most 3m 
lauses.

Proof. Let m and t

0

be given and 
onstru
t the formula  =

V

1�i�m

'

(i)

t

0

.

By Theorem 9,  has an m-
orroborator if and only if '

t

0

has a 
orroborator.

But 
orroboration of '

t

0

, given a term t

0

, is unde
idable by Theorem 18. ⊠

7 Relations to intuitionisti
 logi


The de
ision problems in intuitionisti
 logi
 have not been as thoroughly

studied as the 
orresponding problems in 
lassi
al logi
 [B�orger, Gr�adel &

Gurevi
h 1997℄. In parti
ular, new results about the prenex fragment of in-

tuitionisti
 logi
 (i.e., 
losed prenex formulas that are intuitionisti
ally prov-

able), have been obtained re
ently by Degtyarev & Voronkov in [1996b, 1996
,

1996a℄ and Voronkov [1996℄. Some of these results are:

1. De
idability, and in parti
ular PSPACE-
ompleteness, of the prenex

fragment of intuitionisti
 logi
 without equality [Degtyarev & Voronkov

1996a℄.

2. Prenex fragment of intuitionisti
 logi
 with equality but without fun
-

tion symbols is PSPACE-
omplete [Degtyarev & Voronkov 1996a℄. De-


idability of this fragment was proved by Orevkov [1976℄.

3. Prenex fragment of intuitionisti
 logi
 with equality in the language

with one unary fun
tion symbol is de
idable [Degtyarev & Voronkov

1996a℄.

4. 9

�

-fragment of intuitionisti
 logi
 with equality is unde
idable [Degtyarev

& Voronkov 1996b, Degtyarev & Voronkov 1996
℄.
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In some of the above results, the 
orresponding result has �rst been obtained

for a fragment of SREU with similar restri
tions. The unde
idability of the

9

�

-fragment is improved by Veanes [1996℄ by showing that already the

5. 99-fragment of intuitionisti
 logi
 with equality is unde
idable.

We 
an further improve the latter unde
idability result.

Corollary 20 There is an integer n su
h that the 99-fragment of intuitionis-

ti
 logi
 with equality is unde
idable already under the following restri
tions:

1. The only 
onne
tives are ^ and at most three )'s.

2. The ante
edents of all impli
ations are ground and have less than n

symbols.

Proof. Given a system S(~x) = fE

i

`

r

s

i

� t

i

j 1 � i � k g of rigid

equations, let '(~x) be the following 
onjun
tion of impli
ations:

^

1�i�k

((

^

e2E

i

e) ) s

i

� t

i

):

It 
an be shown that 9~x'(~x) is provable in intuitionisti
 logi
 with equality if

and only if S(~x) is solvable [Degtyarev & Voronkov 1996
℄. Thus, the 
laim

follows from Theorem 18. ⊠

In 
ontrast, Degtyarev, Gurevi
h, Narendran, Veanes & Voronkov [1998b℄

have shown that the

6. 8

�

98

�

-fragment of intuitionisti
 logi
 with equality is de
idable.

7.1 A remark about proof sear
h in LJ

�

Proof sear
h in intuitionisti
 logi
 with equality is 
losely 
onne
ted with

SREU, and, unlike in the 
lassi
al 
ase, the handling of SREU is in fa
t

unavoidable in that 
ontext [Voronkov 1996℄. Voronkov [1996℄ 
onsiders a

parti
ular sequent 
al
ulus based proof system LJ

�

. In that 
ontext a skele-

ton is the stru
ture of a derivation in LJ

�

, and skeleton instantiation is the

problem of the existen
e of a derivation of a given formula with a given skele-

ton. SREU is in fa
t polynomial time equivalent to skeleton instantiation in

LJ

�

[Voronkov 1996℄. We get the following result. (We refer the reader to

[Voronkov 1996℄ for pre
ise de�nitions.) Corollary 20 and Theorem 18 
an be

used to exhibit a �xed skeleton for whi
h the skeleton instantiation problem

in LJ

�

is unde
idable. This improves the unde
idability of the skeleton in-

stantiation problem in general [Voronkov 1996℄. Su
h a skeleton is illustrated

in Figure 2

28



(�)

.

.

.

(^ !

n

0

)

(^ !

0

)

(!))

(�)

.

.

.

(^ !

n

1

)

(^ !

0

)

(!))

(�)

.

.

.

(^ !

n

2

)

(^ !

0

)

(!))

(! ^)

(! ^)

(! 9)

(! 9)

Figure 2: Any derivation in LJ

�

of the formula 
onstru
ted from the system

S

t

0

(x; y) of rigid equations in Theorem 18, has this skeleton for any t

0

. The

values of n

0

, n

1

, and n

2

are �xed integers 
orresponding to the number of

equations in R, �

1

, and �

2

, respe
tively.

7.2 Other fragments

De
idability problems for other fragments of intuitionisti
 logi
 have been

studied by Orevkov in [1965, 1976℄, Mints [1967℄, Statman [1979℄, and Lifs-


hitz [1967℄. Orevkov [1965℄ proves that the ::89-fragment of intuitionisti


logi
 with fun
tion symbols is unde
idable. Lifs
hitz [1967℄ proves that in-

tuitionisti
 logi
 with equality and without fun
tion symbols is unde
idable,

i.e., that the pure 
onstru
tive theory of equality is unde
idable. Orevkov

[1976℄ shows de
idability of some fragments (that are 
lose to the prenex

fragment) of intuitionisti
 logi
 with equality. Statman [1979℄ proves that

the intuitionisti
 propositional logi
 is PSPACE-
omplete.

8 Current status of SREU and open prob-

lems

Here we brie
y summarize the 
urrent status of SREU and mention some

open problems. Many related results are already mentioned above. The

�rst de
idability proof of rigid E-uni�
ation is given by Gallier, Narendran,

Plaisted & Snyder [1988℄. De Kogel [1995℄ has presented a simpler proof,

without 
omputational 
omplexity 
onsiderations. We start with the solved


ases:

� Rigid E-uni�
ation with ground left-hand side is NP-
omplete [Kozen

1981℄. Rigid E-uni�
ation in general is NP-
omplete and there exist

�nite 
omplete sets of uni�ers [Gallier, Narendran, Plaisted & Snyder

1990, Gallier et al. 1988℄.
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� Rigid E-uni�
ation with one variable, or, more generally, SREU with

one variable and a �xed number of rigid equations is P-
omplete [Degtyarev

et al. 1998b℄.

� If all fun
tion symbols have arity � 1 (the monadi
 
ase) then it fol-

lows that SREU is PSPACE-hard [Goubault 1994℄. If only one unary

fun
tion symbol is allowed then the problem is de
idable [Degtyarev,

Matiyasevi
h & Voronkov 1996℄. If only 
onstants are allowed then the

problem is NP-
omplete [Degtyarev, Matiyasevi
h & Voronkov 1996℄

assuming that there are at least two 
onstants.

� About the monadi
 
ase it is known that if there are more than 1

unary fun
tion symbols then SREU is de
idable if and only if it is

de
idable with just 2 unary fun
tion symbols [Degtyarev, Matiyasevi
h

& Voronkov 1996℄.

� If the left-hand sides are ground then the monadi
 
ase is de
idable

[Gurevi
h & Voronkov 1997℄. A more general problem is shown to be

de
idable in [Ganzinger et al. 1998℄. Monadi
 SREU with one variable

is PSPACE-
omplete [Gurevi
h & Voronkov 1997℄.

� The word equation solving [Makanin 1977℄, whi
h is an extremely hard

problem, 
an be redu
ed to monadi
 SREU [Degtyarev, Matiyasevi
h

& Voronkov 1996℄.

� Monadi
 SREU is equivalent to a non-trivial extension of word equa-

tions [Gurevi
h & Voronkov 1997℄.

� Monadi
 SREU is equivalent to the de
idability problem of the prenex

fragment of intuitionisti
 logi
 with equality with fun
tion symbols of

arity � 1 [Degtyarev & Voronkov 1996a℄.

� In general SREU is unde
idable [Degtyarev & Voronkov 1995℄. More-

over, SREU is unde
idable under the following restri
tions:

{ The left-hand sides of the rigid equations are ground [Plaisted

1995℄.

{ Furthermore, there are only two variables [Veanes 1996℄ and three

rigid equations with �xed ground left-hand sides.

� SREU with one variable is de
idable, in fa
t EXPTIME-
omplete [Degtyarev

et al. 1998b℄. Moreover, SREU restri
ted to rigid equations that either


ontain one variable, or have a ground left-hand side and a right-hand
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side that is an equality between two variables, is de
idable [Degtyarev,

Gurevi
h, Narendran, Veanes & Voronkov 1998a℄.

� SREU is polynomial time equivalent with se
ond-order uni�
ation [Levy

1998, Veanes 1998℄.

The unsolved 
ases are:

� De
idability of monadi
 SREU.

� De
idability of SREU with two rigid equations.

Both problems are highly non-trivial. An intriguing problem is also the


orroboration problem with a given strategy. In parti
ular, the following

open problem is posed by Voronkov [1997℄:

� Does there exist a 
omputable strategy f with whi
h the 
orroboration

problem is de
idable?

Further problems related to SREU and the Herbrand theorem are dis
ussed

in [Voronkov 1998b, Voronkov 1998a℄.
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