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Abstrat

The Herbrand theorem plays a fundamental role in automated theorem prov-

ing methods based on global variable or rigid variable approahes. The kernel

step in proedures based on suh methods an be desribed as the orrob-

oration problem (also alled the Herbrand skeleton problem), where, given

a positive integer m, alled multipliity, and a quanti�er free formula, one

seeks for a valid or provable (in lassial �rst-order logi) disjuntion of m in-

stantiations of that formula. In logi with equality this problem was reently

shown to be undeidable.

The �rst main ontribution of this paper is a logial theorem, that we

all the Partisan Corroboration Theorem, that enables us to show that, for a

ertain interesting sublass of Horn formulas, orroboration with multipliity

one an be redued to orroboration with any given multipliity.

The seond main ontribution of this paper is a �nite tree automata for-

malization of a tehnique alled shifted pairing for proving undeidability

results via diret enodings of valid Turing mahine omputations. We all

it the Shifted Pairing Theorem.

By using the Partisan Corroboration Theorem, the Shifted Pairing Theo-

rem, and term rewriting tehniques in equational reasoning, we improve upon

a number of reent undeidability results related to the orroboration prob-

lem, the simultaneous rigid E-uni�ation problem and the prenex fragment

of intuitionisti logi with equality.

Keywords
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1 Introdution

We study lassial �rst-order logi with equality but without any other rela-

tion symbols. The letters ' and  are reserved for quanti�er-free formulas.

The signature of a syntati objet S (a term, a set of terms, a formula, et.)

is the olletion of funtion symbols in S augmented, in the ase when S

ontains no onstants, with a onstant . The language of S is the language

of the signature of S.

Any syntati objet is ground if it ontains no variables. A substitution

is ground if its range is ground, and it is said to be in a given language if the

terms in its range are in that language. A set of substitutions is ground if

eah member is ground.

Given a positive integer m, a set of m ground substitutions f�

1

; : : : ; �

m

g

is an m-orroborator for ' if the disjuntion '�

1

_ � � � _ '�

m

is provable.

A ground substitution � orroborates ' if f�g 1-orroborates '; suh a � is

alled a orroborator for '.

One popular form of the lassial Herbrand theorem [e.g. Herbrand 1972℄

is this:

An existential formula 9~x'(~x) is provable if and only if there exist

a positive integer m and an m-orroborator for ' in the language

of '.

The minimal appropriate number m will be alled the minimum multi-

pliity for '. The minimum multipliity for a formula may exeed one. Here

is a formula for whih the minimum multipliity is two, suggested by Erik

Palmgren in a di�erent but similar ontext; we use `�' for the formal equality

sign.

( � 

0

) x � 

1

) ^ ( � 

1

) x � 

0

)

The Herbrand theorem plays a fundamental role in automated theorem

proving methods known as the rigid variable methods [Voronkov 1997℄. We

an identify the following proedure underlying suh methods. Let 9~x'(~x)

be a losed formula that we wish to prove.

The prinipal proedure of rigid variable methods

Step I: Choose a positive integer m.

Step II: Chek if there exists an m-orroborator for '.

Step III: If Step II sueeds then 9~x'(~x) is provable, otherwise

inrease m and return to Step II.

The kernel of the prinipal proedure is of ourse Step II or:
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The Corroboration Problem

Instane: A quanti�er free formula ' and a positive integer m.

Question: Is the minimum multipliity for ' bounded by m?

Corroboration for a �xed m is alled m-orroboration. A detailed disus-

sion of orroboration and related problems is given by Degtyarev, Gurevih

& Voronkov [1996℄. It is important to us here that orroboration is inti-

mately related to existential intuitionisti provability and simultaneous rigid

E-uni�ation [Gallier, Raatz & Snyder 1987℄. The �rst of these problems is

easy to formulate:

The Existential Intuitionisti Provability Problem

Instane: An existential formula 9~x'(~x).

Question: Is the formula provable in intuitionisti logi with

equality?

The seond requires auxiliary de�nitions. A rigid equation is an expres-

sion E `

r

e where E is a �nite set of equations and e is an equation. A ground

substitution � solves a rigid equation E `

r

e if e� is a logial onsequene of

E�. A system (that is a �nite set) of rigid equations is solvable if there is

one substitution that solves all rigid equations in the system.

The Simultaneous Rigid E-Uni�ation Problem (SREU)

Instane: A system of rigid equations.

Question: Is the system solvable?

The SREU problem has an interesting history [e.g. Degtyarev, Gurevih

& Voronkov 1996℄. Several false deidability laims have been published

until, �nally, Degtyarev & Voronkov [1995℄ proved SREU to be undeidable.

Moreover, Plaisted [1995℄ has shown that the fragment of SREU with ground

left-hand sides is already undeidable (the left-hand side of a rigid equation

E `

r

e is E).

It is easy to see that SREU is essentially a speial ase of 1-orroboration

for Horn formulas. Hene, the result of Degtyarev & Voronkov shows that

orroboration is undeidable already in this very speial ase. Voronkov

[1997℄ has suggested the following generalization of the orroboration prob-

lem. Let f be a funtion that assigns a positive integer to every pair (k; ')

where k is a positive integer and ' a formula in our logi. Moreover, it is

assumed that k < l implies that f(k; ') � f(l; '). Suh a funtion is alled

a strategy for multipliity. The intended meaning of the �rst argument of a

strategy is the number of times that Step II of the prinipal proedure has

been exeuted.
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The Corroboration Problem with Strategy f

Instane: A quanti�er free formula ' and a positive integer k.

Question: Is the minimum multipliity for ' bounded by f(k; ')?

Corroboration with a strategy that does not depend on it arguments,

i.e., takes a onstant value m for all arguments, is simply m-orroboration.

Voda & Komara [1995℄ have proved that, for eah positive integer m, the

m-orroboration problem is undeidable. One important onlusion for au-

tomated theorem proving, drawn by Voda & Komara, is that there is no

m for whih one an e�etively determine whether m bounds the minimum

multipliity for a given formula. Atually, we had hard time to understand

the proof of Voda & Komara until, �nally, we onvined ourselves that they

have a proof. We wondered if there is a way to derive their result from the

Degtyarev{Voronkov theorem. It turns out that indeed there is suh a way.

In order to formulate our results, we need to reall a few de�nitions and

give de�nitions of our own. Reall that a Horn lause is a disjuntion of

negated atomi formulas and at most one non-negated atomi formula; a

Horn lause is often represented as a set of its disjunts. Here we restrit

attention to Horn lauses that ontain exatly one non-negated atom. A

Horn formula is a onjuntion of Horn lauses. Sine the equality sign is the

only relation symbol in our logi, every Horn lause  is equivalent to an

impliation E ) s � t where E is a onjuntion of equalities.

We say that a olletion of formulas is onstant-disjoint if there is no

onstant that ours in two or more of the given formulas. Call a Horn

formula ' guarded if, for every variable x that ours in ', there exists a

lause E ) s � t in ' where E and s are ground and x ours in t. Finally,

all a orroborator � of a disjuntion ' partisan if � orroborates already one

of the disjunts of '. Now we are ready to formulate our �rst result.

Partisan Corroboration Theorem

Every orroborator for a disjuntion of onstant-disjoint guarded

Horn formulas is partisan.

This theorem is proved in Setion 3. We believe it is of independent

interest. It allows us an easy derivation of Voda & Komara's [1995℄ result

from Degtyarev & Voronkov's [1995℄ theorem in Setion 4. Moreover, we

strengthen the theorem of Voda & Komara in several ways. For eah m, we

e�etively redue SREU to the m-orroboration problem in suh a way that

the positive-arity part of the signature remains unhanged. In partiular, for

every m, the monadi (all funtion symbols are of arity at most one) SREU

redues to monadi m-orroboration; this redution is of interest beause the

deidability of monadi SREU is an open problem.
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In Setion 5 we use �nite tree automata theory to desribe a powerful

tehnique, named shifted pairing by Plaisted [1995℄, for proving undeidabil-

ity results via enodings of valid Turing mahine omputations. The main

omponents are two �nite tree automata A

mv

, A

id

and two ground term

rewrite systems �

1

and �

2

that are obtained (e�etively) from a given Tur-

ing mahine M . Eah term t reognized by A

id

represents a sequene of IDs

of M :

( ID

1

; ID

2

; � � � ; ID

k�1

; ID

k

)

Eah term s that is reognized by A

mv

represents a sequene of moves:

( ; ; � � � ; ; )

M M M M

Note that, at this point the onseutive moves are not related, this is where

�

1

and �

2

ome into play. Namely, �

1

and �

2

serve the following purpose.

If s redues in �

1

to t then the �rst projetion of s must oinide with t:

( ID

1

; ID

2

; � � � ; ID

k�1

; ID

k

)

M M M M

Similarly, if s redues in �

2

to the \tail" of t, then the seond projetion of

s must oinide with the tail of t:

( ID

2

; ID

3

; � � � ; ID

k

; � )

M M M M

The empty string (�) denotes the suessor of any �nal ID of M . The

idea is thus, that the systems �

1

and �

2

are used to enfore t to enode

a valid omputation of M . The above outline explains the main role of

the parameters in the Shifted Pairing Theorem, that is the seond main

ontribution of this paper.

Shifted Pairing Theorem

There are two �nite tree automata A

mv

and A

id

and two ground

rewrite systems �

1

and �

2

suh that, it is undeidable whether,

given a ground term t

0

, A

mv

reognizes a term s and A

id

reog-

nizes a term t, suh that s redues in �

1

to t and f(t

0

; s) redues

in �

2

to t.

There are some important additional properties on the tree automata

and the rewrite systems that are explained in Setion 5. The shifted pairing

tehnique, and in partiular the Shifted Pairing Theorem that is an improved

onstrution from [Veanes 1997, Gurevih & Veanes 1997℄, has reently been

applied suessfully to settle several open deidability questions [Ganzinger,

Jaquemard & Veanes 1998, Levy & Veanes 1998, Veanes 1997, Veanes 1998℄.
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In Setion 6, we use the Shifted Pairing Theorem to show the undeid-

ability of a fragment of SREU with only two variables and three rigid equa-

tions with ground left-hand sides, whih onstitutes the urrently known least

undeidable fragment of SREU. Using this result and the Partisan Corrob-

oration Theorem, we show, for eah positive integer m, the undeidability

of m-orroboration when eah formula is a onjuntion of 3m Horn lauses

with 2m variables and ground negative literals of bounded size.

In Setion 7 we obtain some undeidability results related to the prenex

fragment of intuitionisti logi with equality and proof searh in intuitionisti

logi with equality. Finally, in Setion 8 we desribe the urrent status of

SREU and related results and list some open problems.

2 Preliminaries

We will �rst establish some notation and terminology. We follow Chang &

Keisler [1990℄ regarding �rst order languages and strutures. For the pur-

poses of this paper it is enough to assume that the �rst order languages that

we are dealing with are languages with equality and ontain only funtion

symbols and onstants, so we will assume that from here on. We will in

general use �, possibly with an index, to stand for a signature, i.e., � is a

olletion of funtion symbols with �xed arities. A funtion symbol of arity

0 is alled a onstant. We will always assume that � ontains at least one

onstant.

2.1 Terms and formulas

Terms and formulas are de�ned in the standard manner and are alled �-

terms and �-formulas respetively whenever we want be preise about the

language. We refer to terms and formulas olletively as expressions. In the

following let X be an expression or a set of expressions or a sequene of suh.

We write �(X) for the signature of X: the set of all funtion symbols

that our in X, FV (X) for the set of all free variables in X and Con(X)

for the set of all onstants in X. We write X(x

1

; x

2

; : : : ; x

n

) to express that

FV (X) � fx

1

; x

2

; : : : ; x

n

g. Let t

1

; t

2

; : : : ; t

n

be terms, then X(t

1

; t

2

; : : : ; t

n

)

denotes the result of replaing eah (free) ourrene of x

i

in X by t

i

for 1 �

i � n. By a substitution we mean a funtion from variables to terms. We will

use � to denote substitutions. We write X� for X(�(x

1

); �(x

2

); : : : ; �(x

n

)).

We say that X is losed or ground if FV (X) = ;. By T

�

or simply T we

denote the set of all ground �-terms. A substitution is alled ground if its

range onsists of ground terms.
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A losed formula is alled a sentene. Sine there are no relation symbols

all the atomi formulas are equations, i.e., of the form t � s where t and s

are terms and `�' is the formal equality sign.

Atomi formulas and negated atomi formulas are alled positive and

negative literals respetively. A lause is a disjuntion of literals. By a Horn

lause we mean a lause with exatly one positive literal.

1

A Horn lause

an be written as E ) s � t where E is a onjuntion of equations, and s

and t are terms. By a Horn formula we understand a onjuntion of Horn

lauses.

2.2 First-order strutures

First order strutures will (in general) be denoted by apital Gothi letters

like A and their domains by orresponding apital Roman letters like A. A

�rst order struture in a signature � is alled a �-struture. For f 2 � we

write f

A

for the interpretation of f in A.

If A is a �-struture and �

0

� � then A↾�0

is the �

0

-struture that is

the redution of A to signature �

0

. Let A and B be �-strutures, A is a

substruture of B, in symbols A � B, if A � B and for eah n-ary f 2 �,

f

A

= f

B↾An.

For X a sentene or a set of sentenes, A j= X means that the struture

A is a model of or satis�es X aording to Tarski's truth de�nition. A set

of sentenes is alled satis�able if it has a model. If X and Y are (sets of)

sentenes then X j= Y means that Y is a logial onsequene of X, i.e., that

every model of X is a model of Y . We write j= X to say that X is valid, i.e.,

true in all models.

One easily establishes, by indution on terms and formulas that, if A � B

then for all quanti�er free sentenes ', A j= ' if and only if B j= '.

By the free algebra over � we mean the �-struture A, with domain

T

�

, suh that for eah n-ary f 2 � and t

1

; : : : ; t

n

2 T

�

, f

A

(t

1

; : : : ; t

n

) =

f(t

1

; : : : ; t

n

). We let T

�

also stand for the free algebra over �.

Let E be a set of ground equations. De�ne the equivalene relation =

E

on T by s =

E

t if and only if E j= s � t. By T

�=E

(or simply T

=E

) we denote

the quotient of T

�

over =

E

. Thus, for all s; t 2 T ,

T

=E

j= s � t , E j= s � t:

We all T

=E

the anonial model of E.

1

By a Horn lause we mean thus a strit Horn lause.
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2.3 Term rewriting

In some ases it is onvenient to onsider a system of ground equations as a

rewrite system. We will assume that the reader is familiar with basi notions

regarding ground term rewrite systems [e.g. Dershowitz & Jouannaud 1990℄.

We will only use very elementary properties. In partiular, in the next setion

we will use Birkho�'s [1935℄ ompleteness theorem for equational logi. In

the ase of ground equations it states simply that, given a ground set of

equations E and and a ground equation s � t, E j= s � t if and only if

s an be redued to t by using the equations in E as rewrite rules in both

diretions.

In Setion 6 we will use the following property of anonial (or onvergent)

rewrite systems [e.g. Dershowitz & Jouannaud 1990, Setion 2.4℄. Let R be a

ground and anonial rewrite system. Then for any two ground terms t and

s, the equation t � s follows logially from R (seen as a set of equations) if

and only if the normal forms of t and s with respet to R oinide, i.e.,

R j= t � s , t#

R

= s#

R

:

Snyder [1989℄ has given a very simple but useful ondition for showing that

a ground rewrite system R is anonial, namely that it is redued : for eah

rule s! t in R, s is irreduible in Rnfs! tg and t is irreduible in R. We

will use this test on several oasions, to show that a ground rewrite system

is anonial.

2.4 Finite tree automata

A �nite tree automaton or TA is a quadruple (Q;�;R;Q

f

), where

� Q is a �nite set of onstants alled states,

� � is a signature that is disjoint from Q,

� R is a set of rules of the form f(q

1

; : : : ; q

n

) ! q, where f 2 � has arity

n � 0 and q; q

1

; : : : ; q

n

2 Q,

� Q

f

� Q is the set of �nal states.

A TA is alled deterministi or a DTA if there are no two di�erent rules in

it with the same left-hand side. Terms are also alled trees and a forest is a

set of trees. The forest reognized by a TA A = (Q;�;R;Q

f

) is the following

set that is denoted by F(A):

f t 2 T

�

j (9q 2 Q

f

) t

�

�!

R

q g:

7



A forest is reognizable or regular if it is reognized by some TA. A well-

known fat is that every regular forest is reognized by a DTA. Two �nite

tree automata are alled onstant-disjoint if there is no onstant that ours

in both of them.

Example 1 Let A = (fqg;�;R; fqg) be a TA, where

R = f ! q j  is a onstant in � g[

f f(q; : : : ; q) ! q j f is a funtion symbol in � g:

This DTA reognizes the forest T

�

. 2

3 Partisan Corroboration Theorem

The following lemma is used in the Partisan Corroboration Theorem; it is

atually a onsequene of  Lo�s-Tarski theorem (existential sentenes are pre-

served under extensions). We say that two (sets of) expressions X and Y are

onstant-disjoint if Con(X) \ Con(Y ) = ;.

Lemma 2 Let '

i

for i 2 I, be pairwise onstant-disjoint quanti�er free sen-

tenes. Then j=

W

i2I

'

i

implies j= '

i

for some i 2 I.

Proof. For i 2 I, let �

i

= �('

i

) and let � =

S

i

�

i

. Assume by ontradition

that 6j= '

i

for all i 2 I. Then there is (for eah i 2 I) a �

i

-struture A
i

suh

that A
i

j= :'

i

. Without loss of generality, take all the A

i

's to be pairwise

disjoint.

We now onstrut a �-struture A suh that A
i

� A↾�
i

for i 2 I. First

let A =

S

i2I

A

i

. For eah i 2 I and onstant  2 �

i

let 

A

= 

A

i

. For eah

n-ary funtion symbol f in � de�ne f

A

as follows. For all ~a = a

1

; : : : ; a

n

2 A,

f

A

(~a) =

�

f

A

i

(~a); if ~a 2 A

i

;

a

1

; otherwise.

It is lear that A is well-de�ned beause of the disjointness riteria and that

A
i

� A↾�
i

for i 2 I. Hene A↾�
i

j= :'

i

, and thus A j= :'

i

for eah i 2 I.

But this ontradits that j=

W

i2I

'

i

. ⊠

If we drop the onstant-disjointness riterion in Lemma 2, then of ourse

the lemma is false. A simple ounterexample is

j= 

0

� 

1

_ :(

0

� 

1

):

We will state now some other obvious but useful lemmas. Lemma 3 is an

easy orollary of Birkho�'s ompleteness theorem.

8



Lemma 3 Let t and s be ground terms and let E and E

0

be ground sets of

equations suh that Con(E

0

)\(Con(E)[Con(s)) = ;. The following is true.

1. If E

0

[ E j= t � s then E j= t � s.

2. If E j= t � s then �(t) � �(E) [ �(s).

Proof. Let E, E

0

, s and t be given and assume that E

0

[ E j= t � s. By

Birkho�'s [1935℄ ompleteness theorem we know that s an be rewritten to

t by using E

0

[ E as a set of rewrite rules. So there is a sequene of terms

s

0

; s

1

; : : : ; s

n�1

; s

n

where s

0

= s, s

n

= t and s

i

is rewritten to s

i+1

by using

some rule in E

0

[E, for 0 � i < n. By indution on i (for i � n) follows that

�(s

i

) � �(E; s) and only a rule from E an be used to rewrite s

i

. Part 1

follows again by the ompleteness theorem of Birkho� and part 2 follows

immediately (take E

0

= ;). ⊠

For a �nite set E of equations we will write E also for a orresponding

onjuntion of equations and let the ontext determine whether a set or a

formula is meant.

Lemma 4 Let t and s be ground terms and E

0

and E ground sets of equations

suh that E is �nite and Con(E

0

) \ (Con(E) [ Con(s)) = ;. Then

T

=E

0

[E

j= (E ) t � s) ) j= (E ) t � s):

Proof. Let E, E

0

, s and t be given. From T

=E

0

[E

j= (E ) t � s) follows

immediately that T

=E

0

[E

j= t � s and thus E

0

[E j= t � s. Hene E j= t � s

by Lemma 3, i.e., j= (E ) t � s). ⊠

We will use the following de�nitions. Let ' be a quanti�er free formula and

m a positive integer. A set of m ground substitutions � is an m-orroborator

for ' if

j=

_

�2�

'�:

When � = f�g we say that � is a orroborator for ' or orroborates '.

The m-orroboration problem is the problem of determining whether a given

quanti�er free formula has an m-orroborator.

For x 2 FV ('), a guard for x in ', if it exists, is a lause

E ) t � s

in ' suh that E and s are ground and x ours in t. We say that

^

x2FV (')

 

x

9



is a guard of ' if eah  

x

is a guard for x in '; ' is is alled guarded if it has

a guard.

Intuitively, in the light of the seond part of Lemma 3, the notion of

a Horn formula being guarded is a suÆient ondition to guarantee that if

there is a orroborator � for ' then �('�) = �(').

SREU is, by de�nition, the 1-orroboration problem for Horn formulas.

However, we only need to onsider guarded Horn formulas. To see that,

onsider a Horn formula '; let � be its signature and let  be a onstant in

�. For eah variable x in ', let Gr

�

(x) denote the following Horn lause:

f 

0

�  j 

0

is a onstant in � n fg g[

f f(; : : : ; ) �  j f is a funtion symbol in � g ) x � :

This is a very simple but useful onstrution that was �rst used by Degtyarev

& Voronkov to enfore ertain solutions to be within a given signature. It is

easy to see that, for all terms t,

j= Gr

�

(t) , t 2 T

�

:

Let now  be the guarded Horn formula

(

^

x2FV (')

Gr

�

(x)) ^ ':

From Herbrand's theorem follows that one only needs to onsider orrobora-

tors in the language of ', therefore  has a orroborator if and only if ' has

one.

Example 5 A simple example of a guarded Horn formula is this

 = (E

1

) x � 

1

) ^

(E

2

) y � 

2

) ^

(�

1

) x � y) ^

(�

2

) x � t � y)

where E

1

, E

2

, �

1

, �

2

and t are ground, 

1

, 

2

are onstants, and `�' is a binary

funtion symbol written in in�x notation. A guard of  is

(E

1

) x � 

1

) ^ (E

2

) y � 

2

):

An example of a Horn formula with a ommon guard for all variables is

' = (E ) x � y � ) ^

(�

1

) x � y) ^

(�

2

) x � t � y);

10



where E, �

1

, �

2

and t are ground and  is a onstant. The guard of ' is

E ) x � y � :

These formulas are of partiular interest for us, see Setion 6. 2

We say that a orroborator of a disjuntion ' is partisan, if it orroborates

some disjunt of '. The main result of this setion is the following theorem.

Theorem 6 (Partisan Corroboration Theorem) Every orroborator of

a disjuntion of onstant-disjoint guarded Horn formulas is partisan.

Proof. Let ' =

W

i2I

'

i

where all the '

i

's are onstant-disjoint guarded Horn

formulas. Let � be a orroborator for '. We must prove that � orroborates

'

i

for some i 2 I.

We an assume (without loss of generality) that there exist positive inte-

gers m and n suh that eah '

i

has the following form:

'

i

=

^

1�k�m

(E

k

i

) s

k

i

� t

k

i

)

| {z }

 

i

^

^

1�k�n

(D

k

i

) u

k

i

� v

k

i

);

where  

i

is a guard of '

i

, i.e., eah E

k

i

and s

k

i

is ground and FV ('

i

) =

FV ( 

i

), for all i 2 I. Let C

i

= Con('

i

) for i 2 I. We have that

C

i

\ C

j

= ; (8i; j 2 I; i 6= j): (1)

Let � = �('). For i 2 I let K

i

denote the lass of all �-strutures that

satisfy '

i

�, i.e,

K

i

= f�-struture A j A j= '

i

� g:

From the validity of '� follows that eah �-struture belongs to some K

i

.

Let now J be any subset of I suh that

j=  

i

� (8i 2 J): (2)

So

Con('

i

�) = C

i

(8i 2 J): (3)

To see that, suppose (by ontradition) that Con('

i

�) ontains some  =2 C

i

.

Clearly,  belongs to some x� where x ours in the guard  

i

. By the seond

part of Lemma 3, every onstant in x� belongs to C

i

. This gives the desired

ontradition.

11



If I = J then the theorem follows by (1), (3) and Lemma 2. Assume that

I 6= J . Below we prove the following statement:

If 6j= '

i

� for all i 2 J then j=  

i

� for some i 2 I n J . (4)

Let now J be the maximal subset of I suh that (2) holds. In other words,

for all i 2 I n J , 6j=  

i

�. By the ontrapositive of (4) we onlude that for

some i 2 J , j= '

i

� and the theorem follows.

Proof of (4) Assume 6j= '

i

� for all i 2 J . Form an equation set D as follows.

� If J = ; let D = ;.

� If J 6= ; then there is for eah i 2 J a lause in '

i

� that is not valid

and by (2) this lause is not in  

i

�. In other words, there is a mapping

f : J ! f1; 2; : : : ; ng suh that

6j= (D

f(i)

i

) u

f(i)

i

� v

f(i)

i

)� (8i 2 J): (5)

Let f be �xed and let D =

S

i2J

D

f(i)

i

�.

For eah mapping g : I nJ ! f1; 2; : : : ; mg let E

g

denote the following set of

equations:

E

g

=

[

i2InJ

E

g(i)

i

;

and let A
g

be the anonial model of D [ E

g

, i.e.,

A
g

= T

=E

g

[D

:

We will now prove the following statement.

(6) Fix g : I n J ! f1; 2; : : : ; mg. There exists i 2 I n J suh that

A
g

2 K

i

.

Proof. Suppose, by ontradition, that (6) does not hold. (Assume

also that J 6= ; or else (6) holds trivially.) Then A
g

2 K

j

for some

j 2 J . Fix suh an appropriate j.

So A
g

satis�es eah lause in '

j

� and in partiular

A
g

j= (D

f(j)

j

) u

f(j)

j

� v

f(j)

j

)�:

Let D

0

= D

f(j)

j

�, u

0

= u

f(j)

j

� and v

0

= v

f(j)

j

�. By (3) follows that

Con(D

0

; u

0

; v

0

) � C

j

12



and

Con(E

g

; D nD

0

) = Con(E

g

) [ Con(D nD

0

)

= Con(E

g

) [

[

i2J;i 6=j

Con(D

f(i)

i

�)

�

[

i2InJ

C

i

[

[

i2J;i 6=j

C

i

=

[

i2I;i 6=j

C

i

:

So, by (1),

Con(D

0

; u

0

; v

0

) \ Con(E

g

; D nD

0

) = ;:

It follows, by Lemma 4, that

j= (D

f(j)

j

) u

f(j)

j

� v

f(j)

j

)�:

But this ontradits (5). ⊠

By using (6) we an now prove (4). Suppose, by ontradition, that there is

no i 2 I n J suh that j=  

i

�. Then there is for eah i 2 I n J a lause in  

i

�

that is not valid, i.e., there is a mapping g : I n J ! f1; 2; : : : ; mg suh that

6j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�) (8i 2 I n J):

(Note that only the t

i

's an be nonground.) Fix suh an appropriate g.

By using (6) we know that A
g

2 K

i

for some i 2 I n J . Choose suh an

i. So A
g

satis�es eah lause in '

i

� and in partiular

A
g

j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�):

But, by (3) and (1),

Con(E

g(i)

i

; s

g(i)

i

) \ Con(E

g

n E

g(i)

i

; D) = ;:

Hene, by Lemma 4,

j= E

g(i)

i

) s

g(i)

i

� (t

g(i)

i

�);

whih ontradits our hoie of g. ⊠

Remark Theorem 6, as well as its proof, remain orret if the disjuntion

is in�nite. We will not use this generalization.
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The following example illustrates why the onditions of being onstant-

disjoint and guarded are important and annot in general be disarded. In

eah ase there is a ounterexample to the theorem.

Example 7 Let us �rst onsider an example where the disjunts are guarded

but not onstant-disjoint. Let '(x) be the following guarded Horn formula:

( � 0 ) x � 1) ^ ( � 1 ) x � 0)

where , 0 and 1 are onstants, and let '

1

= '(x

1

), '

0

= '(x

0

) and  =

'

1

_ '

0

where x

1

and x

0

are distint variables. Consider now any ground

substitution � suh that �(x

1

) = 1 and �(x

0

) = 0. It is easy to show by ase

analysis that � orroborates  , i.e., that

j= (( � 0 ) 1 � 1) ^ ( � 1 ) 1 � 0)) _

(( � 0 ) 0 � 1) ^ ( � 1 ) 0 � 0)):

However, � orroborates neither '

1

nor '

0

.

Let us now onsider the ase when onstant-disjointness is not violated

but the disjunts are not guarded. Let '

1

(y; x

1

; y

1

) be the formula

((y � 0 ) x

1

� y

1

) ^ (y � y

1

) x

1

� 0))

and let '

0

(x

0

; y

0

) be the formula

(( � y

0

) x

0

� 1) ^ ( � 1 ) x

0

� y

0

))

where , 0 and 1 are onstants and x

1

; x

0

; y

1

; y

0

; y distint variables. Let

 = '

1

_ '

0

. Let � be a ground substitution suh that �(x

1

) = 1, �(x

0

) = 0,

�(y) = , �(y

1

) = 1 and �(y

0

) = 0. Then j=  � but 6j= '

1

� and 6j= '

0

� (the

situation is exatly the same as in the previous ase). 2

4 From orroboration to m-orroboration

As Degtyarev & Voronkov [1995℄ have shown, the orroboration problem

is undeidable. Shortly after, Voda & Komara [1995℄ have shown that m-

orroboration is undeidable for all multipliities m. We show that the latter

result follows easily from the former result by using the Partisan Corrobora-

tion Theorem.

Theorem 8 (Degtyarev{Voronkov) Corroboration of guarded Horn for-

mulas is undeidable.
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For tehnial reasons it will be onvenient to assume in the following that

we have a �xed signature � with f

1

; 

2

; : : :g as the set of distint onstants

in it. � may also have other funtion symbols of arity � 1. Let us also be

preise about the variables that we allow in �-expressions, by assuming that

all variables ome from the olletion fx

1

; x

2

; : : :g.

For eah natural number n, onstant  and variable x, let 

(n)

denote a

new onstant and let x

(n)

denote a new variable. We de�ne by indution on

any �-expression X the orresponding expression X

(n)

as the one obtained

from X by replaing in it eah variable x with x

(n)

and eah onstant  with



(n)

. For any substitution � of �-variables with �-terms we let �

(n)

denote

a substitution that takes the variable x

(n)

to the term (x�)

(n)

. So, for any

�-expression X and natural number n,

(X�)

(n)

= X

(n)

�

(n)

:

The following property is immediate. For any �-sentene ' and natural

number n,

j= ' , j= '

(n)

:

Theorem 9 Let ' be a guarded Horn formula and n a positive integer. Then

' has a orroborator if and only if

V

n

i=1

'

(i)

has an n-orroborator.

Proof. The `)' diretion is immediate. We prove the `(' diretion as

follows. Let I = f1; 2; : : : ; ng and let  be the formula

V

i2I

'

(i)

. Assume

that  has an n-orroborator f �

i

j i 2 I g. So

j=

_

i2I

('

(1)

�

i

^ � � � ^ '

(i)

�

i

^ � � � ^ '

(n)

�

i

):

By using the distributive laws we an ostrut an equivalent formula in

onjuntive normal form, inluding as one of the onjunts the formula

W

i2I

'

(i)

�

i

. Hene

j=

_

i2I

'

(i)

�

i

:

Let X

i

= FV ('

(i)

) for i 2 I. Sine all the X

i

's are pairwise disjoint we an

let �

0

be a substitution suh that �

0↾X
i

= �

i

↾X
i

for i 2 I, and it follows that

j=

_

i2I

'

(i)

�

0

:

From the Partisan Corroboration Theorem 6 follows now that j= '

(i)

�

0

for

some i 2 I. Fix suh an appropriate i. But then, by Lemma 3, the range of

�

0↾X
i

is T

�('

(i)

)

, and thus there is a substitution � with range T

�

suh that

�

(i)↾X
i

= �

0↾X
i

. Hene j= '

(i)

�

(i)

and so j= '�. ⊠

15



Theorem 10 (Voda{Komara) For all n � 1, n-orroboration is undeid-

able.

Proof. The redution in Theorem 9 is trivially e�etive. So, if we had a

deision proedure (for some n) for �nding n-orroborators, we ould use it

to �nd orroborators, but this would ontradit Theorem 8. ⊠

Assume that we are using an automated theorem proving method that is

based on the Herbrand theorem. Roughly, this involves a searh for terms,

for a given multipliity m. Voda{Komara theorem tells us that there is no m

for whih we ould e�etively deide when to stop our searh for suh terms

in ase they do not exist.

By using the fat that SREU is undeidable with ground left-hand sides

[Plaisted 1995℄, (i.e., variables our only in positive literals in the orre-

sponding Horn formulas), and already in the guarded ase with two variables

[Veanes 1996℄, we an sharpen the Voda-Komara theorem as follows.

Corollary 11 For all n � 1, n-orroboration is undeidable for guarded

Horn formulas with 2n variables and ground negative literals.

By a monadi signature or language we mean a signature or language

where all funtion symbols have arity at most one. By monadi SREU or or-

roboration we understand the restrition of that deision problem to monadi

languages. The deidability of monadi SREU is urrently one of the diÆult

open problems related to SREU [Gurevih & Voronkov 1997℄. An e�etively

equivalent problem is the deidability of the prenex fragment of intuitionis-

ti logi with equality in monadi languages [Degtyarev & Voronkov 1996a℄.

Some evidene speaks in favor of that the problem is deidable although with

very high omputational omplexity (e.g., many subases are deidable, see

Setion 8). From Theorem 9 follows that:

Corollary 12 If monadi orroboration is undeidable, then so is monadi

n-orroboration for any n > 1, or equivalently, if monadi n-orroboration is

deidable for some n > 1 then so is monadi orroboration.

5 Shifted pairing with �nite tree automata

Shifted pairing is a general tehnique for proving undeidability results. The

term shifted pairing was introdued by Plaisted [1995℄. A variant of shifted

pairing was used already by Hoproft & Ullman [1979℄ in establishing the

undeidability of the problem of testing nonemptiness of the intersetion of

two ontext free languages. Goldfarb's [1981℄ proof of the undeidability of
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� � � v

k

)

M M M M

shift

Figure 1: Shifted pairing.

seond-order uni�ation uses also similar ideas. Finite tree automata provide

a suitable abstration level for our purposes, for formalizing this tehnique as

a deision problem of �nite tree automata. The shifted pairing tehnique is

illustrated in Figure 1. The main result of this setion is the Shifted Pairing

theorem. In this setion we use a binary funtion symbol `�', and we write

it for better readability using in�x notation and assume that it assoiates to

the right. For example, if t

1

, t

2

and t

3

are terms, then the term �(t
1

; �(t
2

; t

3

))

is written unambiguously as t

1

� t
2

� t
3

.

Theorem 13 (Shifted Pairing Theorem) One an e�etively onstrut

two onstant-disjoint tree automata

A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g); A

id

= (Q

id

;�

id

;R

id

; fq

id

g);

and two ground and anonial rewrite systems

�

1

� T

�

mv

� T

�

id

; �

2

� T

�

mv

� T

�

id

;

suh that, it is undeidable whether, given t

0

2 T

�

id

, there exists s 2 F(A

mv

)

and t 2 F(A

id

) suh that s

�

�!

�

1

t and t

0

� s
�

�!

�

2

t, where � 2 �

mv

.

The rest of this setion is devoted to the proof of the Shifted Pairing Theorem.

We onsider a �xed deterministi Turing mahine M with initial state q

0

,

�nal state q

f

, a blank symbol  . By �(M) we denote the union of the states

and tape symbols of M inluding the blank symbol. All haraters in �(M)

are onsidered to be onstants. Moreover, M is only allowed to write a blank

when it erases the last nonblank symbol on the tape. This means that IDs

do not inlude blanks. However, overwriting the last nonblank symbol on

the tape by a blank, means erasing of the last input symbol on the tape. For

suh a TM M we an assume, without loss of generality, that when M enters

the �nal state then its tape is empty. Given an ID v, we let v

+

denote the

following string:

v

+

=

�

suessor of v; if v is non�nal;

�; otherwise:
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Note that the �nal ID of M is the unique one harater string q

f

and q

+

f

= �.

5.1 Words and trains

Here we use ertain nonmonadi terms to represent strings, we all suh

terms words. Similarly, we use ertain terms, that we all trains, to represent

sequenes of strings. Let 

w

and 

t

be two distint onstants not in �(M).

� A term s is alled a 

w

-word if either s is the onstant 

w

, or s is the

term  � s0 for some onstant  and 

w

-word s

0

. The empty 

w

-word is

simply the onstant 

w

.

� A term t is alled a 

t

-train of 

w

-words if either t is the onstant 

t

,

or t is the term s � t0 for some 

w

-word s and 

t

-train t

0

. The empty



t

-train is simply the onstant 

t

.

We use the following onvenient notation for words and trains. A 

w

-word



1

� 
2

� � � � � 
n

� 
w

is written simply as



1



2

� � � 

n

� 
w

and is said to represent the string 

1



2

: : : 

n

. When we say that a 

w

-word is

in a set V of strings, we mean that the string represented by that 

w

-word

is in V .

Similarly, a 

t

-train

(v

1

� 
w

) � (v

2

� 
w

) � � � � � (v

n

� 
w

) � 
t

is said to represent the string sequene

(v

1

; v

2

; : : : ; v

n

):

In this way one an of ourse easily represent arbitrary regular sets of strings

by orresponding regular forests of words. We use this fat in the Train

Lemma, that is our key tool in onstruting the two tree automata A

mv

and

A

id

.

Lemma 14 (Train Lemma) Let V be a regular set of strings over a sig-

nature � of onstants. Let 

t

and 

w

be distint onstants not in �. Then

the set of all 

t

-trains of 

w

-words in V is reognized by a DTA with one �nal

state.

18



Proof. To begin with, let A

1

= (Q

1

;� [ f�; 
w

g;R

1

;Q

f

1

) be a DTA that

reognizes the set of all 

w

-words in V . Next, let p be a new state and let

A = (Q

1

[ fpg;� [ f�; 
w

; 

t

g;R; fpg)

where

R = R

1

[ f

t

! pg [ f q � p! p j q 2 Q

f

1

g:

We prove that A is a DTA satisfying the laim. Clearly, it is a DTA. The

rest follows from the equivalene of the following statements for all terms t.

(7) t 2 F(A)

(8) t is a term over � [ f�; 
w

; 

t

g and t

�

�!

R

p

(9) t is a term over � [ f�; 
w

; 

t

g and there exist states q

1

; q

2

; : : : ; q

n

2

Q

f

1

, n � 0, suh that

t

�

�!

R

1

q

1

� q
2

� � � � � q
n

� 
t

�!

f

t

!pg

q

1

� q
2

� � � � � q
n

� p
�

�!

f q�p!pjq2Q

f

1

g

p

(10) there exist terms s

1

; s

2

: : : ; s

n

2 F(A

1

), n � 0, suh that t =

s

1

� s
2

� � � � � s
n

� 
t

(11) t is a 

t

-train of 

w

-words in V .

We show only the impliation (8))(9). All the other ases are immediate

onsequenes of the involved de�nitions. Assume (8). The only rules in R

that involve p are the ones q � p! p for q 2 Q

f

1

and the rule 

t

! p.

Hene, any redution of t in R to p is either, by indution on the number

of rewrite steps in redutions,

1. the rewrite step t �!



t

!p

p, and thus t = 

t

and obviously (9) holds,

2. or else a redution t

�

�!

R

q �p �!
q�p!p

p, for some q 2 Q

f

1

. In this ase

t must be a term s � t0 where s

�

�!

R

q and t

0

�

�!

R

p. But if s

�

�!

R

q

then obviously s

�

�!

R

1

q. Hene t

�

�!

R

1

q � t0 and (9) follows from the

indution hypothesis.

⊠

The set of all IDs of M is obviously a regular set of strings.

� A train of IDs is a 

t

-train of 

w

-words representing IDs of M .

The following statement is an immediate onsequene of Lemma 14.

(12) There is a DTA A

id

= (Q

id

;�

id

;R

id

; fq

id

g) that reognizes the set of all

trains of IDs, where �

id

= �(M) [ f�; 
w

; 

t

g.
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5.2 Trains of moves

We now want to represent moves of M in suh a way that we an obtain a

statement orresponding to (12), but for moves. First of all, for tehnial

reasons that are relevant for onstant-disjointness of the �nite tree automata

in Theorem 13, we use a new onstant 

0

w

for the empty word and a new

onstant 

0

t

for the empty train. A naive representation of a move (v; v

+

) as

the term (v � 0
w

) � (v

+ � 0
w

) does of ourse not work for several reasons, to

mention one: suh terms are not reognizable.

Instead, we use the fat that, in a move (v; v

+

), the number of symbols

in v is either equal to the length of v

+

, or it is one less than the length

of v

+

(sine M an write a new symbol at the end), or one more than the

length of v

+

(sine M an erase the last tape symbol). Moreover, only a

�nite substring of an ID is altered by a move. We enode moves by strings

of new haraters where the i'th harater enodes the i'th haraters in the

omponents of the move. We now proeed with the formal onstrution.

Two new onstants, denoted by ha; bi and ha; bi

0

, respetively, are intro-

dued for every pair of onstants a and b in �(M). All these new onstants

are assumed to be pairwise distint. Let v be any ID of M and v

+

its su-

essor, say

v = a

1

a

2

� � �a

m

;

v

+

= b

1

b

2

� � � b

n

:

Note that m � 1 and m�1 � n � m+ 1. The only ase when n = 0 is when

v is the �nal ID q

f

. We de�ne hv; v

+

i as the following string.

hv; v

+

i =

8

<

:

ha

1

; b

1

iha

2

; b

2

i � � � ha

n�1

; b

n�1

ih ; b

n

i

0

; if m = n� 1;

ha

1

; b

1

iha

2

; b

2

i � � � ha

m�1

; b

m�1

iha

m

;  i

0

; if m = n + 1;

ha

1

; b

1

iha

2

; b

2

i � � � ha

m�1

; b

m�1

iha

m

; b

m

i

0

; if m = n:

we all suh a string a move also. Intuitively, a blank is added at the end of

the shorter of the two strings of a move (in ase they di�er in length) and

the pair of the resulting strings is enoded harater by harater.

� A train of moves is a 

0

t

-train of 

0

w

-words that represent moves.

(13) There is a DTA A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g) that reognizes the set

of all trains of moves, where

�

mv

= f ha; bi; ha; bi

0

j a; b 2 �(M) g [ f�; 0
w

; 

0

t

g:
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Proof. The set of moves is easily seen to be a regular set. For example,

the set of all moves orresponding to omputation steps that do not

hange the last tape symbol an be desribed by the following regular

set of strings:

V

�

V

Æ

V

�

V

0

where V

Æ

is is a ertain �nite set of three-harater or two-harater

strings onstruted from the transition funtion of M , e.g., if M upon

reading the symbol a in state q writes the symbol a

0

, moves right,

and enters state q

0

, then hq; a

0

iha; q

0

i is in V

Æ

. The set V onsists all

onstants ha; ai suh that a is an input symbol of M , and V

0

is the set

of all onstants ha; ai

0

suh that a is an input symbol of M . The other

ases are similar. The laim follows now from the Train Lemma 14. ⊠

At this point let A

id

and A

mv

be �xed onstant-disjoint DTAs given by (12)

and (13).

5.3 Main onstrution

Given a nonempty train t of moves, say

t = (hv

1

; v

+

1

i � 0
w

) � (hv

2

; v

+

2

i � 0
w

) � � � � � (hv

k�1

; v

+

k�1

i � 0
w

) � (hv

k

; v

+

k

i � 0
w

) � 0
t

de�ne the �rst projetion of t as the following train of IDs

�

1

(t) = (v

1

� 
w

) � (v

2

� 
w

) � � � � � (v

k�1

� 
w

) � (v

k

� 
w

) � 
t

and the seond projetion of t as the following train

�

2

(t) =

�

(v

+

1

� 
w

) � (v

+

2

� 
w

) � � � � � (v

+

k�1

� 
w

) � 
t

; if v

k

= q

f

;

(v

+

1

� 
w

) � (v

+

2

� 
w

) � � � � � (v

+

k�1

� 
w

) � (v

+

k

� 
w

) � 
t

; otherwise.

Note that the purpose of taking the seond-projetion is twofold:

1. to hek that the �rst omponent of the last move is the �nal ID, and

2. to return the train onsisting of the seond omponents of all the moves.

We say that t is the shifted pairing of its �rst projetion if

�

1

(t) = (v

1

� 
w

) � �
2

(t)

and we refer to v

1

as the �rst ID of t. Reall that q

0

is the initial state of M .
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Lemma 15 Let v

0

be an input string for M . Then M aepts v

0

if and only

if there exists a train t of moves with �rst ID q

0

v

0

, suh that t is the shifted

pairing of its �rst projetion.

Proof. Let v

0

be given and t a train of moves as above, with v

1

= q

0

v

0

. The

�rst projetion of t represents the ID sequene

(v

1

; v

2

; : : : ; v

k�1

; v

k

);

and, if v

k

= q

f

then the seond projetion of t represents

(v

+

1

; v

+

2

; : : : ; v

+

k�1

):

To say that t is a shifted pairing of it �rst projetion means that v

k

= q

f

and

( v

1

; v

2

; v

3

; : : : ; v

k�1

; v

k

) =

( q

0

v

0

; v

+

1

; v

+

2

; : : : ; v

+

k�2

; v

+

k�1

);

whih is tantamount to saying that the �rst projetion of t represents a valid

omputation of M with input v

0

, i.e., M aepts v

0

. The proof of the onverse

diretion is similar. ⊠

5.3.1 The rewrite systems �

1

and �

2

The system �

1

ontains all the following rules:

(14) For all a; b 2 �(M), the rule ha; bi ! a.

(15) For all a; b 2 �(M) suh that a 6=  , the rule ha; bi

0 � 0
w

! a � 
w

.

(16) For all b 2 �(M), the rule h ; bi

0 � 0
w

! 

w

.

(17) The rule 

0

t

! 

t

.

We onlude the following, by �rst observing from (14){(17) that �

1

is re-

dued.

(18) The rewrite system �

1

is anonial and �

1

� T

�

mv

� T

�

id

We therefore have the following relationship between �

1

and the notion of

�rst projetion of a train of moves.

Lemma 16 For all trains s of moves and all trains t of IDs, s

�

�!

�

1

t if

and only if t = �

1

(s).
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Proof. Let s and t be given. By (18) t is irreduible in �

1

beause �

mv

and

�

id

do not have any onstants in ommon, and thus s

�

�!

�

1

t if and only if

s#

�

1

= t. It remains to hek that s#

�

1

= �

1

(s), whih is straightforward. ⊠

The system �

2

ontains all the following rules:

(19) For all a; b 2 �(M), the rule ha; bi ! b.

(20) For all a; b 2 �(M) suh that b 6=  , the rule ha; bi

0 � 0
w

! b � 
w

.

(21) For all a 2 �(M) suh that a 6= q

f

, the rule ha;  i

0 � 0
w

! 

w

.

(22) The rule (hq

f

;  i

0 � 0
w

) � 0
t

! 

t

.

Again, we onlude the following, by �rst observing from (19){(22) that �

2

is redued.

(23) The rewrite system �

2

is anonial and �

2

� T

�

mv

� T

�

id

We have also a similar relationship between �

2

and the seond projetion of

a train of moves, that implies the following.

Lemma 17 For all trains s of moves and all IDs v, (v � 
w

) � s
�

�!

�

2

�

1

(s)

if and only if �

1

(s) = (v � 
w

) � �
2

(s).

Proof. Let s and v be given, say

s = (hv

1

; v

+

1

i � 0
w

) � (hv

2

; v

+

2

i � 0
w

) � � � � � (hv

k�1

; v

+

k�1

i � 0
w

) � (hv

k

; v

+

k

i � 0
w

) � 0
t

:

So

�

1

(s) = (v

1

� 
w

) � (v

2

� 
w

) � � � � � (v

k�1

� 
w

) � (v

k

� 
w

) � 
t

:

) Assume that (v � 
w

) � s
�

�!

�

2

�

1

(s). This is possible only if, by (23),

v

1

= v; (hv

i

; v

+

i

i � 0
w

)#

�

2

= v

i+1

� 
w

for 1 � i < k; (24)

and

((hv

k

; v

+

k

i � 0
w

) � 0
t

)#

�

2

= 

t

: (25)

(25) is possible only if v

k

= q

f

by using the rule in (22). In (24) only

the rules in (19){(21) an be used and these imply that v

+

i

= v

i+1

for

1 � i < k. The rest is obvious.

( Assume that �

1

(s) = (v � 
w

) � �
2

(s). Then v = v

1

, v

+

i

= v

i+1

for

1 � i < k, and v

k

= q

f

. (24) and (25) follow easily. The rest is obvious.

⊠
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5.3.2 Proof of the Shifted Pairing Theorem

Proof. Let M in the above onstrution be a universal TM. Then the laim

in Theorem 13 is a onsequene of the equivalene of the following statements.

The additional onditions on the rewrite systems �

1

and �

2

follow from (18)

and (23).

(26) M aepts v

0

.

(27) There exists s 2 F(A

mv

) suh that �

1

(s) = (q

0

v

0

� 
w

) � �
2

(s).

(28) There exists s 2 F(A

mv

) suh that (q

0

v

0

� 
w

) � s
�

�!

�

2

�

1

(s).

(29) There exist s 2 F(A

mv

) and t 2 F(A

id

), suh that s

�

�!

�

1

t and

(q

0

v

0

� 
w

) � s
�

�!

�

2

t.

(26),(27) By Lemma 15 and (13).

(27),(28) By Lemma 17.

(28),(29) By Lemma 16 and (12).

⊠

6 Appliations of Partisan Corroboration and

Shifted Pairing Theorems

The Shifted Pairing Theorem is used here to give a very elementary undeid-

ability proof of SREU. The latter result is then used, in ombination with the

Partisan Corroboration Theorem to improve upon the undeidability result

of n-orroboration for arbitrary n.

6.1 Undeidability of SREU: minimal ase

Consider �xed onstant-disjoint DTAs A

mv

= (Q

mv

;�

mv

;R

mv

; fq

mv

g) and

A

id

= (Q

id

;�

id

;R

id

; fq

id

g), a binary funtion symbol f , and ground anonial

rewrite systems �

1

and �

2

given by the Shifted Pairing Theorem 13. Let q

be a new state and A the tree automaton (Q;�;R;Q

f

), where

Q = Q

mv

[Q

id

[ fqg;

� = �

mv

[ �

id

;

R = R

mv

[R

id

[ ff(q

mv

; q

id

) ! qg;

Q

f

= fqg:
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Obviously, A is still a deterministi tree automaton, beause A

mv

and A

id

are onstant-disjoint and deterministi. We have the following property as a

diret onsequene of the onstant-disjointness of A

id

and A

mv

.

(30) For all ground terms s and t, f(s; t)

�

�!

R

q if and only if s

�

�!

R

mv

q

mv

and t

�

�!

R

id

q

id

.

We an now prove the following result.

Theorem 18 There is an integer n, suh that SREU is undeidable under

the following restritions:

(i) the left-hand sides are ground and have less than n symbols, and

(ii) there are at most two variables eah ourring at most three times, and

(iii) there are at most three rigid equations.

Proof. Let S

t

0

(x; y) be the following system of rigid equations where the

rewrite systems R, �

1

and �

2

are onsidered as sets of equations and t

0

is a

given ground term over �

id

.

S

t

0

(x; y) =

8

<

:

R `

r

f(x; y) � q

�

1

`

r

x � y

�

2

`

r

f(t

0

; x) � y

First, we prove that the following statements are equivalent for all substitu-

tions �:

(31) � solves S

t

0

(x; y)

(32) i) R j= f(x�; y�) � q, and

ii) �

1

j= x� � y� and �

2

j= f(t

0

; x�) � y�

(33) i) f(x�; y�)

�

�!

R

q, and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2

(34) i) x�

�

�!

R

mv

q

mv

and y�

�

�!

R

id

q

id

, and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2

(35) i) x� 2 F(A

mv

) and y� 2 F(A

id

), and

ii) x�#

�

1

= y�#

�

1

and f(t

0

; x�)#

�

2

= y�#

�

2
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(36) i) x� 2 F(A

mv

) and y� 2 F(A

id

), and

ii) x�

�

�!

�

1

y� and f(t

0

; x�)

�

�!

�

2

y�

(31),(32) By de�nition.

(32),(33) The rewrite systems are anonial and q is irreduible in R.

(33),(34) By (30).

(34),(35) Assume (34). (34)(i) implies that x� 2 T

�

mv

[Q

mv

and y� 2

T

�

id

[Q

id

. But x� annot inlude onstants from Q

mv

and y� annot

inlude onstants fromQ

id

, or else x�#

�

1

6= y�#

�

1

beause the signature

of �

1

is inluded in �

id

[ �

mv

. Hene x� 2 T

�

mv

and y� 2 T

�

id

, and

thus (35)(i) holds by (34)(i).

(35),(36) The terms in F(A

id

) are irreduible with respet to �

1

and

�

2

, and y� 2 F(A

id

).

We onlude that S

t

0

(x; y) is solvable if and only if there exists a term s 2

F(A

mv

) and a term t 2 F(A

id

) suh that s

�

�!

�

1

t and f(t

0

; s)

�

�!

�

2

t.

Hene, solvability of S

t

0

(x; y) is undeidable by Theorem 13. Consequently

SREU is undeidable, and the restritions (i){(iii) follow as properties of

S

t

0

(x; y), where n is any integer greater than the number of symbols in R,

�

1

and �

2

.

the left-hand sides of the rigid equations in S

t

0

(x; y). ⊠

6.1.1 Undeidability proofs of SREU

Degtyarev & Voronkov's [1995℄ original proof of the undeidability of SREU

was by redution of Baaz's [1993℄ monadi semi-uni�ation problem. This

proof was followed by other proofs by Degtyarev & Voronkov, �rst by redu-

ing seond-order uni�ation to SREU [1996℄, and then by reduing Hilbert's

tenth problem to SREU [1996b℄. The undeidability of seond-order uni�-

ation was proved by Goldfarb [1981℄. Plaisted [1995℄ redued Post's Cor-

respondene Problem to SREU. From his proof follows that SREU is unde-

idable already with ground left-hand sides. Veanes [1996℄ improved that

onstrution by using the halting problem for Turing mahines and showed

that two variables and one binary funtion symbol is enough to obtain unde-

idability. Here we have shown that, in addition, already three rigid equations

suÆe for the undeidability.
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6.2 Undeidability of m-orroboration: minimal ase

Consider the above system S

t

0

(x; y) of rigid equations and let '

t

0

denote the

orresponding guarded Horn formula:

(R ) f(x; y) � q) ^

(�

1

) x � y) ^

(�

2

) f(t

o

; x) � y):

We have the following result.

Theorem 19 For all m � 1, m-orroboration is undeidable already for

guarded Horn formulas with ground negative literals, at most 2m variables,

and at most 3m lauses.

Proof. Let m and t

0

be given and onstrut the formula  =

V

1�i�m

'

(i)

t

0

.

By Theorem 9,  has an m-orroborator if and only if '

t

0

has a orroborator.

But orroboration of '

t

0

, given a term t

0

, is undeidable by Theorem 18. ⊠

7 Relations to intuitionisti logi

The deision problems in intuitionisti logi have not been as thoroughly

studied as the orresponding problems in lassial logi [B�orger, Gr�adel &

Gurevih 1997℄. In partiular, new results about the prenex fragment of in-

tuitionisti logi (i.e., losed prenex formulas that are intuitionistially prov-

able), have been obtained reently by Degtyarev & Voronkov in [1996b, 1996,

1996a℄ and Voronkov [1996℄. Some of these results are:

1. Deidability, and in partiular PSPACE-ompleteness, of the prenex

fragment of intuitionisti logi without equality [Degtyarev & Voronkov

1996a℄.

2. Prenex fragment of intuitionisti logi with equality but without fun-

tion symbols is PSPACE-omplete [Degtyarev & Voronkov 1996a℄. De-

idability of this fragment was proved by Orevkov [1976℄.

3. Prenex fragment of intuitionisti logi with equality in the language

with one unary funtion symbol is deidable [Degtyarev & Voronkov

1996a℄.

4. 9

�

-fragment of intuitionisti logi with equality is undeidable [Degtyarev

& Voronkov 1996b, Degtyarev & Voronkov 1996℄.
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In some of the above results, the orresponding result has �rst been obtained

for a fragment of SREU with similar restritions. The undeidability of the

9

�

-fragment is improved by Veanes [1996℄ by showing that already the

5. 99-fragment of intuitionisti logi with equality is undeidable.

We an further improve the latter undeidability result.

Corollary 20 There is an integer n suh that the 99-fragment of intuitionis-

ti logi with equality is undeidable already under the following restritions:

1. The only onnetives are ^ and at most three )'s.

2. The anteedents of all impliations are ground and have less than n

symbols.

Proof. Given a system S(~x) = fE

i

`

r

s

i

� t

i

j 1 � i � k g of rigid

equations, let '(~x) be the following onjuntion of impliations:

^

1�i�k

((

^

e2E

i

e) ) s

i

� t

i

):

It an be shown that 9~x'(~x) is provable in intuitionisti logi with equality if

and only if S(~x) is solvable [Degtyarev & Voronkov 1996℄. Thus, the laim

follows from Theorem 18. ⊠

In ontrast, Degtyarev, Gurevih, Narendran, Veanes & Voronkov [1998b℄

have shown that the

6. 8

�

98

�

-fragment of intuitionisti logi with equality is deidable.

7.1 A remark about proof searh in LJ

�

Proof searh in intuitionisti logi with equality is losely onneted with

SREU, and, unlike in the lassial ase, the handling of SREU is in fat

unavoidable in that ontext [Voronkov 1996℄. Voronkov [1996℄ onsiders a

partiular sequent alulus based proof system LJ

�

. In that ontext a skele-

ton is the struture of a derivation in LJ

�

, and skeleton instantiation is the

problem of the existene of a derivation of a given formula with a given skele-

ton. SREU is in fat polynomial time equivalent to skeleton instantiation in

LJ

�

[Voronkov 1996℄. We get the following result. (We refer the reader to

[Voronkov 1996℄ for preise de�nitions.) Corollary 20 and Theorem 18 an be

used to exhibit a �xed skeleton for whih the skeleton instantiation problem

in LJ

�

is undeidable. This improves the undeidability of the skeleton in-

stantiation problem in general [Voronkov 1996℄. Suh a skeleton is illustrated

in Figure 2
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Figure 2: Any derivation in LJ

�

of the formula onstruted from the system

S

t

0

(x; y) of rigid equations in Theorem 18, has this skeleton for any t

0

. The

values of n

0

, n

1

, and n

2

are �xed integers orresponding to the number of

equations in R, �

1

, and �

2

, respetively.

7.2 Other fragments

Deidability problems for other fragments of intuitionisti logi have been

studied by Orevkov in [1965, 1976℄, Mints [1967℄, Statman [1979℄, and Lifs-

hitz [1967℄. Orevkov [1965℄ proves that the ::89-fragment of intuitionisti

logi with funtion symbols is undeidable. Lifshitz [1967℄ proves that in-

tuitionisti logi with equality and without funtion symbols is undeidable,

i.e., that the pure onstrutive theory of equality is undeidable. Orevkov

[1976℄ shows deidability of some fragments (that are lose to the prenex

fragment) of intuitionisti logi with equality. Statman [1979℄ proves that

the intuitionisti propositional logi is PSPACE-omplete.

8 Current status of SREU and open prob-

lems

Here we briey summarize the urrent status of SREU and mention some

open problems. Many related results are already mentioned above. The

�rst deidability proof of rigid E-uni�ation is given by Gallier, Narendran,

Plaisted & Snyder [1988℄. De Kogel [1995℄ has presented a simpler proof,

without omputational omplexity onsiderations. We start with the solved

ases:

� Rigid E-uni�ation with ground left-hand side is NP-omplete [Kozen

1981℄. Rigid E-uni�ation in general is NP-omplete and there exist

�nite omplete sets of uni�ers [Gallier, Narendran, Plaisted & Snyder

1990, Gallier et al. 1988℄.
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� Rigid E-uni�ation with one variable, or, more generally, SREU with

one variable and a �xed number of rigid equations is P-omplete [Degtyarev

et al. 1998b℄.

� If all funtion symbols have arity � 1 (the monadi ase) then it fol-

lows that SREU is PSPACE-hard [Goubault 1994℄. If only one unary

funtion symbol is allowed then the problem is deidable [Degtyarev,

Matiyasevih & Voronkov 1996℄. If only onstants are allowed then the

problem is NP-omplete [Degtyarev, Matiyasevih & Voronkov 1996℄

assuming that there are at least two onstants.

� About the monadi ase it is known that if there are more than 1

unary funtion symbols then SREU is deidable if and only if it is

deidable with just 2 unary funtion symbols [Degtyarev, Matiyasevih

& Voronkov 1996℄.

� If the left-hand sides are ground then the monadi ase is deidable

[Gurevih & Voronkov 1997℄. A more general problem is shown to be

deidable in [Ganzinger et al. 1998℄. Monadi SREU with one variable

is PSPACE-omplete [Gurevih & Voronkov 1997℄.

� The word equation solving [Makanin 1977℄, whih is an extremely hard

problem, an be redued to monadi SREU [Degtyarev, Matiyasevih

& Voronkov 1996℄.

� Monadi SREU is equivalent to a non-trivial extension of word equa-

tions [Gurevih & Voronkov 1997℄.

� Monadi SREU is equivalent to the deidability problem of the prenex

fragment of intuitionisti logi with equality with funtion symbols of

arity � 1 [Degtyarev & Voronkov 1996a℄.

� In general SREU is undeidable [Degtyarev & Voronkov 1995℄. More-

over, SREU is undeidable under the following restritions:

{ The left-hand sides of the rigid equations are ground [Plaisted

1995℄.

{ Furthermore, there are only two variables [Veanes 1996℄ and three

rigid equations with �xed ground left-hand sides.

� SREU with one variable is deidable, in fat EXPTIME-omplete [Degtyarev

et al. 1998b℄. Moreover, SREU restrited to rigid equations that either

ontain one variable, or have a ground left-hand side and a right-hand
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side that is an equality between two variables, is deidable [Degtyarev,

Gurevih, Narendran, Veanes & Voronkov 1998a℄.

� SREU is polynomial time equivalent with seond-order uni�ation [Levy

1998, Veanes 1998℄.

The unsolved ases are:

� Deidability of monadi SREU.

� Deidability of SREU with two rigid equations.

Both problems are highly non-trivial. An intriguing problem is also the

orroboration problem with a given strategy. In partiular, the following

open problem is posed by Voronkov [1997℄:

� Does there exist a omputable strategy f with whih the orroboration

problem is deidable?

Further problems related to SREU and the Herbrand theorem are disussed

in [Voronkov 1998b, Voronkov 1998a℄.
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