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Abstract

The veri�cation of safety and liveness properties for in�nite-state systems

is an important research problem. Can the well-established concepts and

the existing technology for programming over constraints as �rst-class data

structures contribute to this research? The work reported in this paper is

a starting point for the experimental evaluation of constraint logic program-

ming as a conceptual basis and practical implementation platform for model

checking. We have implemented an automated veri�cation method in CLP

using real and boolean constraints. We have used the method on a num-

ber of in�nite-state systems that model concurrent programs using integers

or bu�ers. The basis of the correctness of our implementation is a formal

connection between CLP programs and the formalism used for specifying

concurrent systems.

Keywords

Concurrent systems, model checking, constraint logic programming.



1 Introduction

Automated veri�cation methods can today be applied to practical systems

[McM93]. One reason for this success is that even large sets of states can

be handled e�ciently by using BDD's [BCM

+

90], which implement Boolean

formulas. Boolean formulas are used as implicit representations of �nite sets

of states. The �niteness is an inherent restriction here. Many systems, how-

ever, operate on data values from an in�nite domain and are intrinsically

in�nite-state; i.e., one cannot produce a �nite-state model without abstract-

ing away crucial properties. One important kind of examples are concurrent

systems using counters or bu�ers. Although there is much recent e�ort in

�nding good data structures and algorithms for implicit representations of

in�nite sets of states, a breakthrough comparable with the event of BDD's

is not in sight.

It is obvious that the metaphor of constraints is useful (if not unavoid-

able) for the implicit representation of sets of states (states are tuples of

values for program variables). In this paper, we ask the question whether

and how the well-established concepts and the existing technology for pro-

gramming over constraints as �rst-class data structures can contribute to

the research on veri�cation of in�nite-state systems. The work reported in

this paper is a starting point for the experimental evaluation of constraint

logic programming (CLP) [JM94] as a conceptual basis and practical imple-

mentation platform for model checking.

We have implemented an automated veri�cation method based on model

checking in CLP, and we have used the method on a number of in�nite-state

systems that model concurrent systems using integers or bu�ers. In order to

properly represent complex examples our model is based on CLP programs

with constraints over reals and over boolean variables (i.e. data and control

variables).

The examples we consider here do not fall within classes of in�nite-state

systems for which decidability results are known, as in the case of well-

structured in�nite-state systems [FS98]. Thus, in general, to verify safety

and liveness properties we have to apply approximation techniques as sug-

gested by recent work in hybrid and real-time systems [HHWT97].

We have found that we should apply three criteria for the experimental

evaluation. The �rst evaluation criterion must be whether the implementa-

tion of the method is simple and natural. This is the quality that determines

the degree of con�dence in the correctness of the implementation|obviously

a central point. Another criterion is the adaptability and programmability of

the considered method: can optimizations such as new execution strategies,

the integration of di�erent type of constraints, and the use of conservative

approximations be incorporated directly, i.e., with relative ease and trans-

parently with regard to correctness. This is important since veri�cation is

a hard task (undecidable in the general, in�nite-state case) and often re-
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quires a �ne-tuning of the method. These �rst two criteria are somewhat

subjective, and the �nal conclusion must be left to the reader of our pre-

sentation. The third criterion is whether the implementation is competitive

w.r.t. e�ciency. An exhaustive comparison cannot be in the scope of this

work. We have, however, tried several veri�cation problems in the domain

of in�nite-state protocols (over integers or bu�ers) for which a case study

on a di�erent implementation platform already exists [BGP98, LS97].

Plan of the paper. In Section 2, we give a brief overview of related ap-

proaches. Then, after some preliminary notion of CLP (Section 3), we set

the formal grounds for using CLP as a platform for model checking (Sec-

tion 4). We exhibit a formal connection between CLP programs and concur-

rent systems (in the terminology of Shankar [Sha93]) which are a widely used

formalism for specifying concurrent algorithms. This connection allows us to

reduce the veri�cation problem to reasoning about ground derivations, i.e.,

the ground operational semantics of CLP programs. In particular, we give a

new characterization of safety and liveness properties of concurrent systems

in terms of transformations of CLP programs. This view allows us to de�ne

a on-the-
y model checking algorithm in a well-founded setting, employing

some well-known results on the non-ground semantics of logic programming

[GDL95, MR89, RSS92] to symbolically represent set of ground states (Sec-

tion 5). In Section 7 we discuss alternative strategies (forward/backward

analysis) based on related research in constraint database languages.

Discovering and isolating 
aws is one of the most important aims of

veri�cation tools. We brie
y discuss this issues in Section 8.

In Section 6 we present several case studies where we have used the

implementation (concurrent systems with unbounded variables, parametric

systems, and system with complex control parts). The implementation is

itself an interesting application of CLP-systems. Infact, it requires the use

of di�erent constraint solver (to handle real and boolean constraints), and

the use of database-oriented techniques to e�ciently store and retrieve in-

termediate results of the veri�cation process. All these features are available

in optimized form in SICStus Prolog. In the conclusion (Section 9) we sum-

marize our evaluation of CLP as a platform for model checking according to

the experience that we will present here and according to the three criteria

given above.

2 Related Work

The work closest to ours (and, in fact, in part its inspiration) is by Bultan,

Gerber and Pugh [BGP97, BGP98] who use Presburger arithmetic together

with the Omega library as their implementation platform. They study some

of the veri�cation problems considered here; we give detailed comparisons in
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Figure 23 in Section 9. It seems that their encoding of the model checker is

not as natural and direct as ours. Our view of the model checking procedure

in terms of the �xpoint semantics of logic programs allows us to apply some

optimization (as we shall describe in the paper) based on the previous works

such as [MR89, RSS92], which have not been applied in the approach in

[BGP97]. In [BGL98] they present a composite approach combining BDD's

and Integer Constraints which can be very useful to have a more e�cient

implementation of the boolean solver.

There exist other works relating logic programming and veri�cation of

concurrent and real-time systems. In [RRR

+

97], XSB a logic programming

language based on tabling is used to implement an e�cient local model

checker for a �nite-state CCS-like value-passing language. Thanks to the

power of SLG resolution, the resulting model checker, called XMC, is im-

plemented in a natural way in XSB. Though both approaches provide for a

simple implementation of the model checker, our implementation relies on

meta-programming techniques and extra logical built-in predicates which are

not necessary in the XSB-based implementation. However, XSB does not

provide constraints. Furthermore, in our case-study we consider programs

with potentially in�nite least model (and we use approximation to deal with

them). A possible integration of tabling with constraints and approximation

techniques may be an interesting argument of future research.

The connection between transition systems induced by pushdown pro-

cesses and traditional logic programs is observed in [CP98]. In the formal

setting of the present paper the formalism for specifying concurrent algo-

rithms is more high-level than transition systems; also, it lifts the charac-

terization of temporal properties to the general case of constraints.

Fribourg and Richardson [FR96] use gap-order integer constraints in

order to generate invariants for �nite state systems. A transitions system

is de�ned as a logic program with gap-order constraints [Rev93] and the

initial constraints are propagated using forward analysis in order to derive

invariants. Recently, Fribourg [Fri98] has extended this idea to gap-order

real constraints in order to model real-time automata. However, as already

remarked in Section 5, most of the examples that we considered here cannot

be represented with gap-order constraints.

Urbina [Urb96] uses CLP(R) programs to specify `hybrid systems'. He

does not give a formal connection between hybrid automata (the standard

model of hybrid systems) and CLP programs. He indicates several possible

techniques for testing various properties of the `hybrid system' programs,

without, however, going into details or evaluating the techniques.

Among other works relating constraint programming and veri�cation we

recall [Mel97]. Melzer [Mel97] gives a conservative approximation of the test

of liveness properties of Petri nets by solving linear constraints in 2lp. Here,

constraints (and not programs over constraints) are used to describe sets of

possibly in�nite executions.
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Among the most important �nite-state veri�cation tools we mention

SMV [McM93] whose e�ectiveness and scaleability has been demonstrated in

several real examples. SMV is based on a symbolic representation of states

through BDD's. SMV can handle bounded integer variables by representing

them as a collection of boolean variables (i.e. a representation of their binary

encoding). In [CABN97], Chan, Anderson, Beame and Notkin present an ef-

�cient representation of arithmetic constraints (linear and non-linear) using

BDD variables. Such method is based on an external constraint solver, used

to prune the states with unsatis�able constraints. Their approach is based

on data memoryless and data invariant constraints, i.e., they do not allow

constraints of the form X = Z + z. This type of constraints corresponds

to assignments and they play a central role for representing concurrent pro-

grams, as we have shown in our case-studies.

SPIN [Hol90] implements model checking of LTL properties (with partial

order reductions) for Promela processes. It supports integer variables with

bounded values. Hence, the examples presented in this paper cannot be

encoded directly in SPIN (i.e. it would be necessary to �x a range for all

the variables).

An exhaustive comparison in terms of e�ciency our method with all

the other veri�cation tools like HyTech [HHWT97], Concurrency Factory

[CGL

+

94] and VIS [Gro96] is beyond the scope of the paper.

3 Preliminaries: CLP

In this section we will brie
y recall the main de�nition of an instance

CLP(D) of the CLP-scheme following [JM94]. The language of constraints

consists of �rst order formulas built on a set of predicate symbols disjointed

from the set of predicate symbols. Given a D-valuation � : V ! D, and a

set C of constraints, D j= C� i� for every c 2 C, c� evaluates to true in D,

written D j= c�. A constraint c is solvable if there exists a valuation � such

that D j= c�. A constraint c entails a constraint d if for each valuation �

D j= c� ! d�.

A program is a set of clauses of the form a  c;

~

B where a is an atom

(the head) and c;

~

B (the body) is such that:

~

B = b

1

; : : : ; b

n

are atoms

and c is a conjunction of constraints. A fact is a clause a  c, where c

is a conjuction of constraints only. A goal is a conjunction of atoms and

constraints. Given a program P we will indicate by [P ]

D

the set of all

the instances of the clauses in P wrt D. Notice that if I is a set of facts

then [I]

D

= fa� j (a  c) 2 I; D j= c�g: The Herbrand base B is the set

fp(

~

d) j p 2 �;

~

d 2 D

k

g. A D-interpretation is any subset of B.

Ground semantics. Let P be a program and let I � B. The immediate

consequence operator is de�ned as follows.
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T

P

(I) = fp(

~

d) 2 B j p(

~

d) : �b

1

; : : : ; b

n

in [P ]

D

; b

i

2 I for i : 1; : : : ; n n � 0g:

T

P

is monotonic and continuos w.r.t. set inclusion, i.e., there exist the least

�xpoint and the greatest �xpoint of T

P

.

Nonground Semantics. Given two constrained atoms A = p(~x)   

and B = p(~y)  � let A � B i� [A]

D

= [B]

D

. The non-ground Herbrand

base B

N

is de�ned as the set of constrained facts p(~x)   (de�ned over

the considered language) modulo the relation �. Note that [B

N

]

D

= B (i.e.

the ground Herbrand base). In case D is solution compact there exist a

bijection between ground and non ground interpretations: given a collection

of ground facts I there exist a unique set of (class of equivalences w.r.t. �

of) non ground atoms J which \represents" I, s.t., for each A 2 I there

exists B 2 J s.t. [B]

D

= A.

Let I be the powerset of B

N

. The s-semantics �xpoint of CLP pro-

grams is de�ned over the lattice (I;�) of non-ground interpretations. The

non-ground immediate consequences operator is de�ned over a collection of

(equivalence classes of) facts I 2 I as follows.

S

P

(I) = fp(

~

X) c j p(~x) : �c

0

; b

1

; : : : ; b

n

is a variant of r 2 P;

(a

i

 c

i

) 2 I for i : 1; : : : ; n; n � 0

which share no variables;

D j= c$ c

0

^

V

n

i=1

(c

i

^ a

i

= b

i

)g:

The S

P

operator is monotonic and upward continuous over I. In [JM94], the

following properties are proved, under the assumption that the constraint

domain D is solution compact:

� T

P

([I]

D

) = [S

P

(I)]

D

;

� T

P

"

!

= lfp(T

P

) = [lfp(S

P

)]

D

= [S

P

"

!

]

D

;

� T

P

#

�

= gfp(T

P

), � � !;

� S

P

#

�

= gfp(S

P

), � � !.

Furthermore, the following property holds.

Proposition 3.1 Let D (the constraint domain) be solution compact. Given

a CLP program P , gfp(T

P

) = [gfp(S

P

)]

D

:

Proof 3.1 We �rst prove that gfp(T

P

) � [gfp(S

P

)]

D

:

By de�nition, gfp(T

P

) =

T

i��

T

i

P

(B). Since T

P

(B) = [S

P

(B

N

)]

D

, it holds

that T

i

P

(B) = [S

i

P

(B

N

)]

D

. Thus, if A 2

T

i��

T

i

P

(B), then for each i, A 2

T

i

P

(B) and there exists B

i

2 S

i

P

(B

N

), s.t. [B

i

]

D

= A. Hence, the B

i

's
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WAIT

Process P2Process P1

THINK

WAIT

A<B or B=0 B<A or A=0

USEUSE

THINK

A’=B+1

A’=0 B’=0

B’=A+1

Figure 1: A graphic representation of the bakery algorithm.

are in the same equivalence class w.r.t. �, i.e., [A]

�

2

T

i��

S

i

P

(B

N

), i.e.,

A 2 [gfp(S

P

)]

D

.

It remains to prove that [gfp(S

P

)]

D

� gfp(T

P

): Since gfp(S

P

) is a �x-

point for S

P

, [S

P

(gfp(S

P

))]

D

= [gfp(S

P

)]

D

. Furthermore, by the property

of T

P

and S

P

, [S

P

(gfp(S

P

))]

D

= T

P

([gfp(S

P

)]

D

) = [gfp(S

P

)]

D

. Thus,

[gfp(S

P

)]

D

is a �xpoint for T

P

, i.e., [gfp(S

P

)]

D

� gfp(T

P

).

4 Veri�cation of Concurrent Systems in CLP

Concurrent systems consist of several processes executing simultaneously

and interacting through some form of communication. In [Sha93], Shankar

proposed a speci�cation language based on events in which it is possible

to encode traditional concurrent algorithms. Each event has an enabling

condition, a predicate over a collection of systems variables, and an action,

which updates the variables. Each process is associated with a control vari-

able that indicates the atomic statement to be executed next by the process.

Data variables keep trace of the internal state of processes. Communication

is achieved by sharing data variables. The semantics of the speci�cation

language is given in terms of a non-deterministic transition system in which

one event at a time is atomically executed. As an example, consider the fol-

lowing solution for the mutual-exclusion problem called the bakery algorithm

[And91, MP95] (see Figure 1) written in a standard notation as follows:

begin turn

1

= turn

2

= 0;P

1

jj P

2

end

where, jj indicates parallel execution of the subprograms P

1

and P

2

. The

process P

1

is modeled as follows:
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repeat

think : turn

1

= turn

2

+ 1;

wait : when (turn

1

< turn

2

_ turn

2

= 0) do

use :

�

critical section;

turn

1

= 0

forever

The two processes enter in turn the critical section. The variables turn

1

; turn

2

guarantee the fairness of the system. The labels think, wait, use correspond

to control locations [MP95]. Note that the set of reachable states is in�nite

since the values of turn

1

and turn

2

are unbounded. Following [Sha93], this

program can be encoded in the concurrent system of Figure 2. The set of

Control variables: p

1

; p

2

: fthink; wait; useg

Data variables: turn

1

; turn

2

: nat.

Intial condition: p

1

= think ^ p

2

= think ^ turn

1

= turn

2

= 0

Events for i; j : 1; 2, i 6= j:

cond : p

i

= think action : p

0

i

= wait ^ turn

0

i

= turn

j

+ 1

cond : p

i

= wait ^ turn

i

< turn

j

action : p

0

i

= use

cond : p

i

= wait ^ turn

j

= 0 action : p

0

i

= use

cond : p

i

= use action : p

0

i

= think ^ turn

0

i

= 0

Figure 2: An event-based description of the bakery algorithm

events models the control 
ow of the two processes, where the two variables

p

1

and p

2

act as program-pointers.

The encoding of concurrent programs into the event-based model has

been stated in [Sha93]. For the sake of this paper, we will study the rela-

tionship between the event-based model and CLP programs. In the following

we will recall Shankar's formalism. Let V be a set of variables such that for

each x 2 V, x

0

(the primed version of x) is always contained in V. We denote

validity of a �rst-order formula  w.r.t. to a structure D and an assignment

� : V ; D by D; � j=  . Also, in the following �[~x 7!

~

d] will denote an

assignment in which the tuple of variables x

1

; : : : ; x

n

, written ~x, is mapped

into the tuple of values d

1

; : : : ; d

n

, written as

~

d.

De�nition 4.1 (Concurrent system [Sha93]) A concurrent system S

is a triple hV;�; Ei s.t.

� V = x

1

; : : : ; x

n

is a vector of variables in V,

� � is a formula over V which represents the initial state of the system,

� E is a set of events, i.e., of pairs h ; �i where  is a formula over V

(the enabling condition) and � (the action) is a formula of the form

(x

0

1

= e

1

^ : : : x

0

n

= e

n

) where e

i

is an expression over x

1

; : : : ; x

n

.
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The primed variable x

0

is used to represent the value of x after the execution

of an action.

1

In the examples we will use the notation cond :  action : �

to denote events. Given the tuple (x

1

; : : : ; x

n

) of system variables a state s

is a tuple (d

1

; : : : ; d

n

) of values in D.

De�nition 4.2 (Transition Systems [Sha93]) The transition system as-

sociated to a concurrent system hV;�; Ei is a triple hV;�; �i where the rela-

tion � is de�ned as

S

�2E

�

�

and each transition is de�ned as

�

h ;�i

= fh

~

d;

~

d

0

i j D; �[~x 7!

~

d;

~

x

0

7!

~

d

0

] j=  ^ �g:

A computation is a (possibly in�nite) sequence of states s

0

s

1

s

2

: : : s

i

: : : such

that D; s

0

j= � (i.e. s

0

is the initial state) and s

i+1

2 �(s

i

).

By consideringD as the structure of a constraint domain [JM94] it is pos-

sible to encode concurrent systems as CLP(D)-programs in a straightforward

way. Again, let (x

1

; : : : ; x

n

) be the vector of system variables. Given a set of

states C and a set of atoms A, C ' A if A = fp(d

1

; : : : ; d

n

) j (d

1

; : : : ; d

n

) 2

Cg where p is �xed predicate symbol with arity n. We extend ' to a subset

C of D �D as follows: C '

 

A if A = fp(

~

d) p(

~

d

0

) j h

~

d;

~

d

0

i 2 Cg.

De�nition 4.3 (CLP-encoding of Concurrent Systems) Given a con-

current system S = hV;�; Ei, the associated CLP-program P

S

is de�ned by

the following set of clauses:

P

S

= f p(x

1

; : : : ; x

n

)  ^ � ^ p(x

0

1

: : : ; x

0

n

) j h ; �i 2 E g

and by the clause: initial  � ^ p(x

1

; : : : ; x

n

):

In the following we will consider a composite model in which a constraint �

can be formed by a conjunction of constraints �

1

and �

2

(sharing no vari-

ables) de�ned over di�erent domains (speci�cally, real and boolean values).

The relation between Shankar's speci�cation programs and their encoding in

CLP is stated by the following proposition, where T

P

is the usual immediate

consequences operator associated to a CLP program [JM94].

Theorem 4.1 Let S = hV;�; Ei be a speci�cation program and hV;�; �i

its induced transition system. Furthermore, let P

S

be the encoding of S in

CLP. Then, the following results hold:

i) each ground (possibly in�nite) derivation of P

S

[f: initialg is a com-

putation (modulo ') in S and vice versa;

ii) let pred

S

(I) = fd j 9d

0

2 I:(d; d

0

) 2 �g, then pred

S

(I) ' T

P

S

(I).

1

In the examples we will omit assignments of the form x

0

= x.
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System variables: P

1

; P

2

2 fthink; wait; useg, Turn

1

; Turn

2

� 0.

Initial Condition:

initial Turn

1

= 0; Turn

2

= 0; p(think; think; Turn

1

; Turn

2

):

Transitions:

p(think; P

2

; Turn

1

; Turn

2

)  Turn

0

1

= Turn

2

+ 1; p(wait; P

2

; Turn

0

1

; Turn

2

):

p(wait; P

2

; Turn

1

; Turn

2

)  Turn

1

< Turn

2

; p(use; P

2

; Turn

1

; Turn

2

):

p(wait; P

2

; Turn

1

; Turn

2

)  Turn

2

= 0; p(use; P

2

; Turn

1

; Turn

2

):

p(use; P

2

; Turn

1

; Turn

2

)  Turn

0

1

= 0; p(think; P

2

; Turn

0

1

; Turn

2

):

p(P

1

; think; Turn

1

; Turn

2

)  Turn

0

2

= Turn

1

+ 1; p(P

1

; wait; Turn

1

; Turn

0

2

):

p(P

1

; wait; Turn

1

; Turn

2

)  Turn

2

< Turn

1

; p(P

1

; use; Turn

1

; Turn

2

):

p(P

1

; wait; Turn

1

; Turn

2

)  Turn

1

= 0; p(P

1

; use; Turn

1

; Turn

2

):

p(P

1

; use; Turn

1

; Turn

2

)  Turn

0

2

= 0; p(P

1

; think; Turn

1

; Turn

0

2

):

Figure 3: CLP-encoding of the program in Figure 2.

Proof 4.1 We �rst observe the following fact. Let � = h ; �i and let c

�

=

p(~x)  ^ � ^ p(~x

0

) be the corresponding clause in P

S

. Then, it holds that

[c]

D

= fp(

~

d)  p(

~

d

0

) j D; �[~x 7!

~

d; ~x

0

7!

~

d

0

] j=  ^ �g '

 

�

�

. According to

this, point i) easily follows by induction on the length of a computation (the

vice versa on the length of a derivation). Point ii) immediately follows by

de�nition of T

P

.

As an example, the system for the bakery algorithm of Fig. 2 is encoded

in the CLP-program of Fig. 4. In order to discuss a CLP-based analysis of

concurrent system, we need the following de�nitions.

De�nition 4.4 (Programs with oracles) Let F be a set of states and P

be a CLP-program encoding a concurrent system S. The (possibly in�nite)

programs with oracles P �F and P �F are de�ned as follows:

� P �F = P [ fp(

~

d) j

~

d 2 Fg

� P �F = fp(~x) c ^ p(~x

0

) ^ ~x =

~

d j p(~x) c ^ p(~x

0

) 2 P;

~

d 2 F g

Remark 4.1 Note that the following properties hold: T

P�F

= �I:F[T

P

(I)

and T

P�F

= �I:F \ T

P

(I).

The de�nition of program with oracles will be useful to relate the ground

semantics of logic program with CTL properties of concurrent systems. In

practice, we will consider oracles which can be represented by a �nite set

of constrainted atoms of the form p(~x)  c. Furthermore, for each such a

constraint c, we require that :c can be represented by a �nite disjunction

of constraints. In the sequel of the paper we will show that this class of

constrained atoms is powerful enough to express properties useful for the

veri�cation of safety and liveness condition.

9



4.1 Temporal Logic

For the sake of this paper, we restrict ourselves to consider the fragment

of CTL, the branching-time Computation Tree Logic [Eme90], consisting

of formulas built over ^;_;: and the temporal connectives: EF (exists

�nally), EG (exists globally), AF (always �nally), AG (always globally).

These connectives are useful to express safety and liveness properties of

transition systems. Given a CTL formula f and a state s

0

the semantics of

the temporal operators w.r.t. the (maximal) computations of a transition

system S is de�ned as follows (the semantics of other connectives is de�ned

as usual w.r.t. the considered state):

� s

0

j= EF (f) if for some path (s

0

s

1

s

2

: : : ), for some i, s

i

j= f ;

� s

0

j= EG(f) if for some path (s

0

s

1

s

2

: : : ), for all i, s

i

j= f ;

� s

0

j= AF (f) if for all paths (s

0

s

1

s

2

: : : ), for some i, s

i

j= f . Also, AF (f) �

: EG(:f);

� s

0

j= AG(f) if for all paths (s

0

s

1

s

2

: : : ), for all i, s

i

j= f . Also, AG(f) �

: EF (:f).

According to [Eme90], in the following we will identify a temporal prop-

erty F of the system S with the set of states satisfying it. In the following,

we will identify F with the set of facts F

0

such that F ' F

0

. Furthermore,

we will use [F ]

D

to denote the ground instances of a set of constrained facts

F and B the Herbrand base of a CLP program, i.e. the set of all the possible

states. The following results hold.

Theorem 4.2 (CTL and Fixed Points) Let S be a transition system, P

be its CLP-encoding, F a set of states, then

EF (F) ' lfp(T

P�F

) = [lfp(S

P�F

)]

D

EG(F) ' gfp(T

P�F

) = [gfp(S

P�F

)]

D

AF (F) ' B n gfp(T

P�(:F)

) = B n [gfp(S

P�(:F)

)]

D

AG(F) ' B n lfp(T

P�(:F)

) = B n [lfp(S

P�(:F)

)]

D

:

Proof 4.2 Following [Eme90], EF (F) = �I:F[pred

S

(I), EG(F) = �I:F\

pred

S

(I). By Theorem 4.1, EF (F) = �I:F [ T

P

S

(I) and EG(F) = �I:F \

T

P

S

(I). We recall the � and =nu correspond to the least and greatest �x-

point operators. Thus, by remark 4.1, EF (F) = lfp(T

P

S

�F

) and EG(F) =

lfp(T

P

S

� :F

). The relation with the ground and non-ground least �xpoint

semantics is given in [JM94, GDL95]. We give a proof of the fact gfp(T

P

) =

[gfp(S

P

)]

D

in Section 4. The other results can be derived using the laws of

the connectives EG and EF .

We focus now on two important classes of properties.

A safety property asserts that the program never enters a bad state, i.e.,

one in which some variables have undesirable values. Mutual exclusion is

10



an important example for the veri�cation of concurrent systems. A safety

property can be expressed as the temporal formula AG(:U) = :EF (U)

where U represents the set of the unsafe states. It is satis�ed if and only if

� \EF (U) = ; [Eme90]. Thus, the following result holds.

Corollary 4.3 (Safety properties) The safety property AG(:U) is sat-

is�ed by the concurrent system S if and only if

� \ lfp(T

P

S

�U

) = ;:

A liveness property asserts that the program eventually enters a good state,

i.e., one in which the variables all have desirable values, e.g. starvation-

freedom for concurrent systems. Starvation freedom can be expressed as

the temporal formula AG(W ! AF (C))) where W represents the states in

which a process waits to enter the critical section and C the states in which

the process is in the critical section. Such aproperty is satis�ed if and only

if � \EF (W ^:AF (C)) = ; [Eme90]. Thus, the following result holds.

Corollary 4.4 (Liveness properties) The liveness property AG(W !

AF (C))) is satis�ed by the concurrent system S if and only if

� \ lfp(T

P

0

) = ;;

where P

0

= P

S

� (W \ gfp(T

P

S

� :C

)):

In the following section we will discuss how to make e�ective the application

of the above illustrated characterizations.

5 Model Checking

As shown in [GDL95, JM94] the non-ground semantics of CLP programs

based on the operator S

P

can be used to simulate the corresponding ground

semantics based on the operator T

P

. Such operator is de�ned as follows.

De�nition 5.1 (S

P

operator [JM94, GDL95]) Let L be an collection

of constrained facts of the form p(~r)  .

2

Then,

S

P

(L) = f B j (p(

~

t) p(~s) ^ �) 2 P;

(p(~r)  ) 2 L; ~x = var(

~

t);

D j= 
 $ 9

�~x

(� ^  ^ ~s = ~r);

B = p(

~

t) 
 g

Since S

P

relies on uni�cation (or better simpli�cation of constraints) instead

of instantiation, it is possible to explore the search space of a program by

2

In case of composite domains: � = �

b

^ �

r

,  =  

b

^  

r

, 
 = 


b

^ 


r

, R j= 


r

$

9

�~x

(�

r

^  

r

^ ~s =

r

~r) and R j= 


b

$ 9

�~x

(�

b

^  

b

^ ~s =

b

~r), where t =

s

r isolates the

constraints of type s from t = r.

11



using a symbolic representation of its states: constrained facts are used to

symbolically represent the set of their instances (e.g. A = p(X;Y ) X > Y

is used to denote [A]

D

= fp(d; d

0

) j d > d

0

g). However, the computation of

the S

P

-based semantics can still be problematic. Consider the CLP(R)-

program fp(X)  Y = X � 1; p(Y )g and the fact p(X)  X > 0. Clearly,

the least model of T

P

consists of all p(d) such that d 2 R

+

and it can

be reached in one step (considering an in�nite set of initial facts). On the

other hand, the least �xpoint of the S

P

operator is reached after !-steps.

It consists of the constrained atoms fp(X)  X > 0; p(X)  X > 1; p(X)  

X > 2; : : : g. Thus, in general the S

P

operator introduces redundant elements

which may lead to in�nite chains. Adapting the ideas in [MR89, RSS92]

to our speci�c setting we will use the S

P

operator in conjunction with a

subsumption test. Unfortunately, in case of linear constraints over the reals

there exists no polynomial time algorithm for subsumption [Sri92]. However,

given a constrained fact A and a collection of facts I, a su�cient condition

for I subsumes A is the following: 9B 2 I s.t. B subsumes A. In the

examples discussed in the next section we have applied such a condition in

order to reduce the complexity of the algorithm. Infact, in many practical

cases the complete test is not necessarry to achieve termination. Now, let

us introduced the de�nition of the on-the-
y model checker used in our

prototype. We say that the constrained atom A subsumes B if [B]

D

� [A]

D

.

We extend this relation to set of constrained atoms in the natural way.

De�nition 5.2 (Irredundant interpretations) A set of constrained

atoms I is irredundant if there exists no A 2 I such that for a distinct

element B 2 I, A subsumes B.

Given an interpretation I let reduce(I) be the corresponding irredundant

interpretation. Such operation may require n

2

subsumption tests where

n is the cardinality of I.

3

Note that [I]

D

= [reduce(I)]

D

. Let P be a

binary program (without facts), and unsafe be a set of constrained facts.

The symbolic representation F of the least model of P is computed by the

procedure lfp in Fig. 4. Then, the following result holds.

Proposition 5.1 Let P be a binary program, if the procedure lfp termi-

nates, then the resulting collection of facts F is such that [F ]

D

= lfp(T

P

).

Proof 5.1 Let T

P

"

0

= [unsafe]

D

, T

P

"

i+1

= T

P

(T

P

"

i

), and T

P

"

!

=

S

i

T

P

"

i

. Note that P is a binary program without facts, thus, this de�-

nition of lfp(T

P

) is equivalent to the standard one. We prove that at the

i-th step of the algorithm [last]

D

= T

P

"

i

. The fact holds for i = 0. Let

us assume that it holds for j � i. All the steps of the algorithm preserve

the set of ground instances of the corresponding set of constrained facts.

3

In case of linear contraints over R, the cost of each subsumption tests (e.g. checking

entailment) is polynomial in the size of the constraints of the considered atoms.

12



procedure lfp

last = current = reduce(unsafe);

loop

last = reduce(S

P

(last));

if initial 2 last

then exit(the system is unsafe);

else if current subsumes last

then F = current;

exit(the system is safe);

else current = reduce(current [ last);

end

procedure gfp

current = fp(~x) trueg

loop

next = reduce(S

P

(current));

if next subsumes current

then G = current;

exit(greatest fixpoint);

else current = next;

end

Figure 4: Informal procedures for the least and greatest �xpoint

Furthermore, [S

P

(last

i

)]

D

= T

P

([last

i

]

D

). Thus, by inductive hypothesis,

[last

i+1

]

D

= T

P

(T

P

"

i

) = T

P

"

i+1

, as desired.

A similar idea can be applied to the computation of the greatest �xpoint

of T

P

(in case it is reachable in a �nite number of steps). The symbolic

representation G of the greatest �xpoint of T

P

is computed by the procedure

gfp in Fig. 4.

Proposition 5.2 Let P be a binary program and let gfp(T

P

) be computable

in a �nite number of steps. Then, the collection of facts G computed by the

procedure gfp is such that [G]

D

= gfp(T

P

).

Proof 5.2 We �rst note that p(~x)  true � B

N

, i.e., [p(~x)  true]

D

=

[B

N

]

D

. The proof is by induction on the number of steps of the algorithm,

by noting that [S

P

(current)]

D

= T

P

([current]

D

).

5.1 Computing Upper Bounds to Least and Greatest Fix-

points

CTL properties of concurrent systems are, in general, undecidable. However,

decidability results have been found for many examples of in�nite-state sys-

tems, the so called well-structured systems [FS98], (e.g. real-time automata

[ACD90]). Similarly, there exist classes of CLP programs for which the �x-

point semantics is guaranteed to terminate, e.g., Datalog

<

z

[Rev93] an ex-

tension of Datalog with gap-order constraints. Unfortunately, such results

cannot be applied to many intersesting examples of concurrent programs.

The reason seems to be the presence of assigments constraints of the form

X = Y + z which are not allowed in the above mentioned classes of system

(programs).

In order to analyze a generic concurrent system (in which the guards

and the actions contain linear constraints) it is possible to adopt techniques

developed in the �eld of abstract interpretation. In particular, Cousot and

13



procedure alfp

last = current = reduce(unsafe);

loop

last = reduce(S

P

(last));

if initial 2 last

then exit(don

0

t know);

else if current subsumes last

then F = current;

exit(the system is safe);

else last = reduce(upper(last;current));

current = reduce(last [ current);

end

Figure 5: Least �xpoint with approximation.

Halbwachs [CH78], Halbwachs, Proy and Romano� [HPR96], and Henzinger

and Ho [HH95] have studied approximation techniques based on a geometric

view of constraints (e.g. convex hull, extrapolation, widening and narrowing).

In our prototype we have used a sort of widening operator (see [CH78]), to

compute an upper bound F

#

of the least �xpoint of a program. Note

infact that, if F � F

#

and (� \ [F

#

]

D

= ;) then (� \ [F ]

D

= ;).

The modi�ed procedure is shown in Fig. 5. Here upper(I; J) is such that

[I]

D

� [upper(I; J)]

D

. The idea is to relax the constraints in I by using the

information computed in the previous steps (i.e. J). More precisely:

De�nition 5.3 (Approximation) A constrained atom A in upper(I; J)

is obtained by a constrained atom B = p(~x) c

1

^ : : :^ c

n

2 I, by removing

all constrained atoms c

i

such that for some C = p(~x) d

1

^ : : : ^ d

m

2 J :

� [B]

D

\ [C]

D

6= ;,

� for some d

j

, d

j

strictly entails c

i

, i.e., D j= d

j

! c

i

and D 6j= c

i

! d

j

.

For instance, let us consider the two facts B = p(X;Y ) X � 0; Y � 0; X < Y

and C = p(X;Y )  X � 0; Y � 0; X < Y + 1. As shown in Figure 6,

upper(fCg; fBg) = p(X;Y )  X � 0; Y � 0, i.e., the algorithm tries to

guess the direction of growth of the regions represented by the constrained

facts. The following property holds.

Proposition 5.3 Let P be a binary program, if the procedure alfp termi-

nates, then the collection of facts F

#

is such that lfp(T

P

) � [F

#

]

D

.

Proof 5.3 It follows from proposition 5.1 and from the fact

[last]

D

� [upper(last;current)]

D

, which holds since the procedure `upper' just relaxes the constraints in the

facts contained in last.
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x x x

yyy

X � 0; Y � 0; X < Y X � 0; Y � 0;X < Y + 1 upper(C;B)

Figure 6: The widening operator upper in action.

De�nition 5.3 is slightly di�erent from Cousot and Halbwachs's widening

operator [CH78], namely JrI. They relax the constraint of the elements

in J , removing all the contraints in J which do not hold in I. Though

their de�nition ensures termination, our operator may yield �ner grained

results. Consider the following rule p(X)  p(Y ); X < 5 and the single fact

A = p(X)  X > 6. After one step, the least �xpoint iteration de�ned

as I

0

= fAg, I

i+1

= I

i

rS

P

(I

i

) converges to the least �xpoint p(X)  true

(since X > 6 is not implied by p(X) X < 5_X > 6), whereas, our algorithm

converges in two steps to the exact least �xpoint fp(X)  X < 5; p(X)  

X > 6g.

For liveness properties, we can compute an upper bound G

#

of the great-

est �xpoint by stopping the iterations after a �xed number of steps. Since

T

P�I

� T

P�I

#

, whenever I � I

#

, if G � G

#

and (�\ lfp(T

P�(W\G

#

)

) = ;)

then it follows that (� \ lfp(T

P�(W\G)

) = ;). Furthermore, the outermost

�xpoint computation can be approximated using the above described tech-

nique. Hence we have:

((� \ lfp(T

P�(W\G

#

)

))

#

= ;) ) (� \ lfp(T

P�(W\G)

) = ;)

Based on these ideas we have implemented a �xpoint-machine to compute

exact (when possible) and approximate �xpoints and to verify the above

discussed properties.

5.2 Notes on the implementation

Our prototype has been developed in SICStus Prolog (around 340 lines of

code). Such a system provides: e�cient solving of linear constraints over

rationals and reals (Holzbaur's clp(Q;R) library [Hol95]) and of boolean

constraints; e�cient storage and retrieval of data (thanks to the e�cient

management of the run-time database of SICStus); interchangeability be-

tween uninterpreted and interpreted constraints terms. The combination of

meta- and database-oriented programming allows us to e�ciently manipu-

late programs and intermediate results of the analysis: the constrained facts

computed by the procedures discussed above are asserted in the program
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database (or in case of very large systems they can be stored in external �les)

and a backtracking-based programming style is used to compute each itera-

tion step. It is interesting to show how to implement the semantic operations

over constrained atoms by using the above mentioned meta-facilities of the

clp(Q;R) library. As an example, subsumption of constrained atoms can be

implemented as shown in Figure 7, where according to the SICStus syntax

a constrained atom p(

~

t) c

1

^ : : :^ c

n

is represented as (p(

~

t); fc

1

; : : : ; c

n

g).

The predicate subsumes chk is a SICStus built-in predicate to check sub-

constrained_fact_subsumption((Atom,Const),(Atom1,Const1)):-

subsumes_chk(Atom,Atom1),

unify_with_occurs_check(Atom,Atom1),

constraints_subsumption(Consts,Const1).

constraints_subsumption({},{}).

constraints_subsumption({C},{D}):-

call_residue(entails({C},(D)),_).

constraints_subsumption({C},{}):-

call_residue({C},_).

entails(C,D):-

C,entailed(D).

Figure 7: A fragment of code.

sumption of terms, whereas call residue and entailed are predicates of

the clp(Q;R)-library. The former allows us to locally check satis�ability of

constraints (and to retrieve the corresponding normal form): the store is

local to the invocation of call residue. The latter checks if the constraint

passed as parameters is entailed by the current store. The combination of

call residue (encapsulation) and entailed, as described by the third clause

in the example, provides us the desired local subsumption test. The ap-

proximation sketched in the previous section is implemented by using the

entailment predicated described above. When a newly added atom A must

be added, it is �rst compared with an existing atom B in the database.

The algorithm �rst uni�es a copy A

0

of A with B. Then, if a conjunct of

A

0

has to be removed, the corresponding conjunct in A is removed, as well.

The process successfully terminates if the constraints obtained after unify-

ing A

0

and B are satis�able. The entire program is very small (340 lines of

SICStus code) and it is independent from the considered concurrent system

and the property to verify. As an example, we include a simpli�ed version

of the program in the appendix: program A handles real constraints only

with approximation techniques. The code of the complete prototype is more
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bakery

System variables: p(P

1

; P

2

; A;B), A;B � 0.

Initial Condition: initial A = 0; B = 0; p(think; think;A;B):

Transitions:

p(think; P;A;B)  A � 0; A

1

= B + 1; p(wait; P;A

1

; B):

p(wait; P;A;B)  A < B; p(use; P;A;B):

p(wait; P;A;B)  B = 0; p(use; P;A;B):

p(use; P;A;B)  A � 0; A

1

= 0; p(think; P;A

1

; B):

p(P; think;A;B)  B � 0; B

1

= A+ 1; p(P;wait; A;B

1

):

p(P;wait; A;B)  B < A; p(P; use; P;A;B):

p(P;wait; A;B)  A = 0; p(P; use; P;A;B):

p(P; use;A;B)  B � 0; B

1

= 0; p(P; think;A;B

1

):

Figure 8: A graphic representation of the bakery algorithm.

elaborated and includes a treatment of boolean constraints.

We have easily incorporated other forms of analysis (e.g. forward reach-

ability analysis and mixed backward/forward) in our implementation, by

using trasformations of the original CLP programs such as the magic-set

template algorithm [RSS92]. We will discuss this point in the next section.

6 Examples

In this section we will discuss some examples of concurrent systems with an

in�nite state space, in which the data variables may have unbounded val-

ues. We also discuss example of veri�cation of parametric representations of

concurrent systems, i.e., we add extra variables (e.g. to represent the size of

a bu�er) which allow us to verify program-schemes. The following examples

are de�ned for integer and boolean data variable. The enabling conditions

over intger variables are de�ned as systems of constraints of the form Ax � b.

In our approach we will consider the real relaxation of the integer problem.

The conditions over boolean variables are de�ned as propositional formulas.

We will also use 
at terms to denote locations.

6.1 Bakery Algorithm

The program bakery in Figure 8 corresponds to the concurrent system

depicted in Figure 1. In such a CLP-program we add constraints of the

form A � 0 to the variables which do not occur in the body of the clauses.

This allows us to take into account the type information associated to the

data variables in Figure 2. The mutual exclusion property of the bakery

algorithm of Figure 2 can be formulated as the CTL-property: AG(:(p

1

=

use ^ p

2

= use)). Now, let P be the CLP-program Figure 8. The set of

unsafe states U is represented by the fact p(P

1

; P

2

; A;B) P

1

= use^P

2

=

use ^A � 0 ^B � 0. According to Corollary 4.3, the property holds i�
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p(think; think; 0; 0) 62 [lfp(S

P�U

)]

R

The �xpoint can be computed in a �nite number of steps (the result is

shown in Figure 9). The execution required by our prototype is 0.3s on a

p(wait; wait; x; 0) x >= 0:0

p(use; wait; x; 0) x >= 0:0

p(think; wait; x; 0) x >= 0:0

p(think; use; x; 0) x >= 0:0

p(use; think; 0; x) x >= 0:0

p(use; use; x; y) true

p(wait; use; x; 0) x >= 0:0

p(use; wait; x; y) x� y > 0:0; y >= 0:0

p(wait; use; x; y) x� y < 0:0; x >= 0:0

p(wait; think; 0; x) x >= 0:0

p(wait; use; 0; x) x >= 0:0

p(wait; wait; 0; x) x >= 0:0

p(use; wait; 0; x) x >= 0:0

Figure 9: Testing mutual exclusion for bakery.

Sun-Sparc Station 4, OS 5.5.1.

Now, let W be the set of states s.t. P

1

= wait and C be the set of states

s.t. P

1

= use. The starvation freedom property for the bakery algorithm

is represented by the CTL assertion AG(p

1

= wait ! AF (p

1

= use)).

According to Corollary 4.4, the considered system is safe i�

p(think; think; 0; 0) 62 [lfp(S

P

0

)]

R

where P

0

= P � (W \ [gfp(S

P�:C

)]

R

). The program P

0

is depicted in Fig.

10. The inner computation, i.e., gfp(S

P�:C

) converges after 9 steps. The

resulting �xed point is shown in Figure 11. The intersection with W can

be computed by simply selecting the facts consistent with the constraint

P

1

= wait.

p(think; P

2

; A;B)  A

1

= B + 1; A � 0; p(wait; P

2

; A

1

; B):

p(wait; P

2

; A;B)  A < B; p(use; P

2

; A;B):

p(wait; P

2

; A;B)  B = 0; p(use; P

2

; A;B):

p(wait; think;A;B)  B

1

= A+ 1; B � 0; p(wait; wait; A;B

1

):

p(wait; wait; A;B)  B < A; p(wait; use; P

2

; A;B):

p(wait; wait; A;B)  A = 0; p(wait; use; P

2

; A;B):

p(wait; use; A;B)  B � 0; B

1

= 0; p(wait; think;A;B

1

):

p(think; think;A;B)  B

1

= A+ 1; B � 0; p(think; wait; A;B

1

):

p(think; wait; A;B)  B < A; p(think; use; P

2

; A;B):

p(think; wait; A;B)  A = 0; p(think; use; P

2

; A;B):

p(think; use; A;B)  B � 0; B

1

= 0; p(think; think;A;B

1

):

Figure 10: bakery � :(P

1

= use).

The outer �xpoint computation converges in 1 step. The initial state

does not belong to the resulting collection of facts. This proves the property.

The entire computation is performed automatically by our prototype in 1.3s.
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p(wait; use; 0; x) x >= 0:0

p(think; think; 0; x) x >= 0:0

p(think; wait; 0; x) x >= 0:0

p(wait; wait; 0; x) x >= 0:0

p(wait; think; 0; x) x >= 0:0

p(think; use; 0; x) x >= 0:0

Figure 11: Testing starvation freedom for bakery.

WAIT

Process P2Process P1

THINK

WAIT

USEUSE

THINK

B=<S

S’=S+1

A=<S

T’=T+1 T’=T+1

S’=S+1

Figure 12: Automata for the ticket algorithm.

6.2 Ticket Algorithm

The ticket-algorithm shown in Figure 12 (see [And91]) is another solution

to the mutual-exclusion problem. Di�erently from the bakery algorithm,

priorities are handled using two global variables T and S. The variable T

is used to assign new priorities (tickets) to processes waiting for entering

their critical section. The variable S is used to keep the value of the ticket

of the next process to be served. The resulting translation in CLP, pro-

gram ticket, in given in Figure 13. Similarly to the analysis of the bakery

algorithm, the mutual exclusion property for the ticket algorithm can be

characterized as follows:

p(think; think; 0; 0; n; n) 62 [lfp(S

P�U

)]

R

; for n 2 Z :

where U , the set of unsafe states, is represented by p(P

1

; P

2

; A;B; T; S)  

P

1

= use ^ P

2

= use ^ A � 0 ^ B � 0 ^ T � 0 ^ S � 0. The computation of the

�xpoint diverges. Let F

#

be the limit of the approximated chain for S

P�U

as de�ned in Section 5. By Prop. 5.3, the mutual-exclusion property of the

ticket algorithm holds if

p(think; think; 0; 0; n; n) 62 [F

#

]

R

; for any n 2 Z :
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ticket

System variables: p(P

1

; P

2

; A;B; T; S).

Initial Condition: initial T = S; p(think; think; 0; 0; T; S):

Transitions:

p(think; P;A;B; T; S)  T >= 0; T

1

= T + 1; p(wait; P; T;B; T

1

; S):

p(P; think;A;B; T; S)  T >= 0; T

1

= T + 1; p(P;wait; A; T; T

1

; S):

p(wait; P;A;B; T; S)  A =< S; p(use; P;A;B; T; S):

p(P;wait; A;B; T; S)  B =< S; p(P; use;A;B; T; S):

p(use; P;A;B; T; S)  S >= 0; S

1

= S + 1; p(think; P;A;B; T; S

1

):

p(P; use;A;B; T; S)  S >= 0; S

1

= S + 1; p(P; think;A;B; T; S

1

):

Figure 13: The CLP-program for the ticket algorithm.

Figure 14 shows the resulting approximated �xpoint computed by the pro-

totype. Notice that the condition above holds since the only fact with p

1

=

p(wait; use; a; b; t; s) t� s =< 1:0; a >= 0:0; t >= 0:0; b >= 0:0

p(use; use; a; b; t; s) t� s =< 1:0; t >= 0:0; b >= 0:0; a >= 0:0

p(use; wait; a; b; t; s) b� s =< 0:0; a >= 0:0; b >= 0:0; t >= 0:0

p(wait; wait; a; b; t; s) b >= 0:0; t >= 0:0; a >= 0:0; s� t >= �1:0; s� a >= 0:0

p(wait; think; a; b; t; s) t� s =< 0:0; a >= 0:0; t >= 0:0; b >= 0:0

p(use; think; a; b; t; s) t� s =< 0:0; t >= 0:0; a >= 0:0; b >= 0:0

p(think; use; a; b; t; s) t� s =< 0:0; t >= 0:0; b >= 0:0; a >= 0:0

p(think; think; a; b; t; s) t� s =< �1:0; t >= 0:0; b >= 0:0; a >= 0:0

p(think; wait; a; b; t; s) t� s =< 0:0; b >= 0:0; t >= 0:0; a >= 0:0

p(wait; use; a; b; t; s) a� s =< 0:0; a >= 0:0; b >= 0:0; t >= 0:0

p(wait; wait; a; b; t; s) t >= 0:0; b >= 0:0; a >= 0:0; s� b >= 0:0; s� a >= 0:0

p(wait; wait; a; b; t; s) a >= 0:0; t >= 0:0; b >= 0:0; s� t >= �1:0; s� b >= 0:0

p(use; wait; a; b; t; s) t� s =< 1

Figure 14: Testing mutual exclusion for ticket.

p

2

= think is p(think; think;A;B; S; T )  T < S � 1; A � 0; B � 0; S � 0.

The initial state is not an instance of the instances of this fact. The execu-

tion required 2.8s.

Now, let W be the assertion p

1

= wait and C be the assertion p

1

= use.

Again, by the results Section 4.1, process p

1

is starvation free i� the following

condition is true:

p(think; think; 0; 0; n; n) 62 [lfp(S

P

0

)]

R

for any n 2 Z :

where P

0

= P � (W \ [gfp(S

P�:C

)]

R

). The program P

0

is depicted in

Figure 15. The exact inner greatest �xed point can be computed in 2.7s.

Using the least �xpoint computation with approximation, an upper-bound

of the outer �xpoint can be computed in 3.5s for a total execution time of

6.3s.
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p(think; P;A;B; T; S)  T >= 0; T

1

= T + 1; p(wait; P; T;B; T

1

; S):

p(think; think;A;B; T; S)  T >= 0; T

1

= T + 1; p(think; wait; A; T; T

1

; S):

p(wait; think;A;B; T; S)  T >= 0; T

1

= T + 1; p(wait; wait; A; T; T

1

; S):

p(wait; P;A;B; T; S)  A =< S; p(use; P;A;B; T; S):

p(think; wait; A;B; T; S)  B =< S; p(think; use; A;B; T; S):

p(wait; wait; A;B; T; S)  B =< S; p(wait; use; A;B; T; S):

p(think; use; A;B; T; S)  S >= 0; S

1

= S + 1; p(think; think;A;B; T; S

1

):

p(wait; use; A;B; T; S)  S >= 0; S

1

= S + 1; p(wait; think;A;B; T; S

1

):

Figure 15: ticket� :(P

1

= use).

2

3

S

Bounded

1
C1

C2

P1

P2

A>0, A’=A-1,P1’=P1+1  

A>0,A’=A-1,P2’=P2+1 A<S,A’=A+1,C2’=C2+1

  A<S,A’=A+1,C1’=C1+1

Buffer

Figure 16: A producer/consumer with bounded bu�er.

Producer-consumer algorithm are other interesting examples of concur-

rent programs. We will discuss next some examples considered in [BGP98].

6.3 Bounded Bu�er

Let us �rst consider a concurrent system of two producers and two consumers

connected by a bu�er of size s. A variable A will denote the number of empty

cells in the bu�er. The behaviour of one of the procesess is depicted in Fig.

16. The resulting CLP-program bbuffer given in Figure 17. The �rst

invariant that we want to prove is AG(p

1

+ p

2

� (c

1

+ c

2

) = s � a) which

holds i�

p(A;P

1

; P

2

; C

1

; C

2

; S) A = S; P

1

= 0; P

2

= 0; C

1

= 0; C

2

= 0 62 S

P�U

where

U is the set:

p(A;P

1

; P

2

; C

1

; C

2

; S) P

1

+ P

2

� (C

1

+ C

2

) +A < S:

p(A;P

1

; P

2

; C

1

; C

2

; S) P

1

+ P

2

� (C

1

+ C

2

) +A > S:

The property can be proved by our model checker in 0.2s. Another safety

condition is given by

AG(0 � p

1

+ p

2

� (c

1

+ c

2

) � s):

Using the previous invariant we can write the safety property as AG(0 � a �

s). Since we are interested in the integer-solutions of the problem, it is easy
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bbuffer

System variables: p(A;P

1

; P

2

; C

1

; C

2

; S).

Initial Condition:

initial  p(A;P

1

; P

2

; C

1

; C

2

; S); A = S; P

1

= P

2

= C

1

= C

2

= 0; S >= 1:

Transitions:

p(A;P

1

; P

2

; C

1

; C

2

; S)  A > 0; A

0

= A� 1; P

0

1

= P

1

+ 1; p(A

0

; P

0

1

; P

2

; C

1

; C

2

; S):

p(A;P

1

; P

2

; C

1

; C

2

; S)  A > 0; A

0

= A� 1; P

0

2

= P

2

+ 1; p(A

0

; P

1

; P

0

2

; C

1

; C

2

; S):

p(A;P

1

; P

2

; C

1

; C

2

; S)  A < S;A

0

= A+ 1; C

0

1

= C

1

+ 1; p(A

0

; P

1

; P

2

; C

0

1

; C

2

; S):

p(A;P

1

; P

2

; C

1

; C

2

; S)  A < S;A

0

= A+ 1; C

0

2

= C

2

+ 1; p(A

0

; P

1

; P

2

; C

1

; C

0

2

; S):

Figure 17: CLP program for producer/consumer with bounded bu�er.

Qi >0,Qi’=Qi-1 ,C’=C+1

buffer i):(Consume from (Consume from buffer i):

Qi >0,Qi’=Qi-1 ,C’=C+1

(Produce from buffer i):

P’=P+1,Qi’=Qi+1

Idle Send

Figure 18: A producer/consumer with unbounded bu�er.

to see that the above program is safe i� the simpli�ed program below is safe:

p(A;S)  � A � 1; A

0

= A� 1; p(A

0

; S):

p(A;S)  � A � (S � 1); A

0

= A+ 1; p(A

0

; S):

The unsafe states can be characterized as U = p(A;S) A � �1; p(A;S) 

A � (S + 1). This makes the �xpoint computation converge in one step to

U thus proving the safety condition.

6.4 Unbounded Bu�er

Let us consider now a system with one producer and one consumer con-

nected by two unbounded bu�ers 18. The system can be represented by an

automaton with two states: idle, in which only the consumer is active (to

weaken the producer), and send, in which both processes are active. The

index Q

i

keeps track of the number of nonempty cells in the bu�er i. The

corresponding CLP-program ubuffer is given in Figure 19. We can prove

the invariant P � C by proving that P = C +Q

1

+Q

2

; Q

1

� 0; Q

2

� 0. Thus,

we set the unsafe states U to be

p( ; P;Q

1

; Q

2

; C) P > C +Q

1

+Q

2

; Q

1

>= 0; Q

2

>= 0:

p( ; P;Q

1

; Q

2

; C) P < C +Q

1

+Q

2

; Q

1

>= 0; Q

2

>= 0:
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ubuffer

System variables: p(A;P

1

; P

2

; C

1

; C

2

; S).

Initial Condition: p( ; P;Q

1

; Q

2

; C)  P = C = Q

1

= Q

2

= 0:

Transitions:

p(idle; P;Q

1

; Q

2

; C)  p(send; P;Q

1

; Q

2

; C):

p(send; P;Q

1

; Q

2

; C)  p(idle; P;Q

1

; Q

2

; C):

p(send; P;Q

1

; Q

2

; C)  P

1

= P + 1; Q

1

1

= Q

1

+ 1; p(send; P

1

; Q

1

1

; Q

2

; C):

p(send; P;Q

1

; Q

2

; C)  P

1

= P + 1; Q

1

2

= Q

2

+ 1; p(send; P

1

; Q

1

; Q

1

2

; C):

p(S; P;Q

1

; Q

2

; C)  Q

1

> 0; Q

1

1

= Q

1

� 1; C

1

= C + 1; p(S; P;Q

1

1

; Q

2

; C

1

):

p(S; P;Q

1

; Q

2

; C)  Q

2

> 0; Q

1

2

= Q

2

� 1; C

1

= C + 1; p(S; P;Q

1

; Q

1

2

; C

1

):

Figure 19: CLP-program for producer/consumer with unbounded bu�er.

 normal and

Pump

On

Off

dangerous’

dangerous

 and normal’

Level Sensor

dangerous

level<bound

level>=bound

normal

Level

level-delta=<level’=<level+delta
level’=level+δ

Water Level

Figure 20: Components of a water level controler.

Applying the approximation used for the ticket algorithm the computation

converges in 3 steps. The initial state is not part of the resulting �xpoint.

6.5 Water Level Controler

In many real examples the control location and (part of the data variables)

can be expressed by boolean variables. Introducing an explicit type of con-

straints for this type of variables allows to have more concise representation

of the transition rules. Let us consider the following example. We want

to specify the behaviour of a water-level controler. The value of a Level

sensor is monitored from time to time. Whenever the Level is higher than

a �xed Bound a Pump is activated in order to restore a safe state. Such a

system can be represented as the concurrent system obtained by composing

the automata in Figure 20, in which a special program non-deterministically

modify the level of the water.

We can represent the control part of the system by using boolean vari-
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ables in combination with arithmetic constraints to monitor the sensors. Let

Level, Bound and Delta be real variables, where Delta is an upper bound

to the possible variation of the level (whose value depends on the speed of

the incoming water). Furthermore, let Normal, Dangerous and Pump be

boolean variables. Let us consider boolean expressions built over � (and),

+ (or), : (not), etc. Then we can specify the considered system as the pro-

gram water level controler given in Appendix B. Note that Bound

and Delta are free variables, i.e., the representation is parametric over the

dangerous level and over the maximum variation of the water.

By hypothesis, arithmethic and boolean constraints share no variables.

For such an example we can prove properties such as AG(Level > Bound!

Pump), i.e., involving both arithmethic and boolean constraints.

6.6 Mutual Exclusion

Another solution to the mutual exclusion problem is given (in the 2-process

case) by the algorithm mut-ast [LS97] shown in Appendix B.

State 1 is the initial state, while state 6 corresponds to the critical section.

Each process enters in the critical section when y = 0. The safety property

for the 2-case (p(6; 6; ; ; ) 62 [lfp(S

P

)]

D

) can be proved in 0.2s without

approximation.

More interesting, by applying the abstraction technique shown in [LS97]

it is possible to de�ne a transition system (program network in Appendix

B) for a parameterized network of mut-ast-processes. This technique at-

tempts to avoid the state-explosion problem which occurs in the composition

of several processes. The resulting system (CLP-program) has a state with

14 variables which represent the number of processes in a given state. Vari-

able n

1

keeps track of the number of process which are in their initial states

(initially n

1

is equal to the number of processes of the system). The variable

n

8

keeps track of the number of processes which are inside the critical sec-

tion. The safety property for the network is proved if n

8

� 1. Our prototype

proved the safety condition in 0.6s using the approximation.

7 Other Strategies

A number of techniques used in bottom-up query evaluation of deductive

database languages with constraints can be exploited to make the analysis

e�cient. In particular, it is interesting to analyze the result of the magic

templates algorithm [RSS92] for the CLP-programs we considered in our

setting. Let us restrict to the veri�cation of safety properties. The programs

have the simpli�ed form p(

�

t)  c; p(�s) where c is a constraint. The only

facts correspond to the set of unsafe states U added in the backward analysis.

The analysis is aimed at proving that the initial states are not instances of
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p(think; P;A;B; T; S) T

1

= T + 1; p

0

(think; P;A;B; T; S); p(wait; P; T;B; T

1

; S):

p(P; think;A;B; T; S) T

1

= T + 1; p

0

(P; think;A;B; T; S); p(P;wait; A; T; T

1

; S):

p(wait; P;A;B; T; S) A =< S; p

0

(wait; P;A;B; T; S); p(use; P;A;B; T; S):

p(P;wait; A;B; T; S) B =< S; p

0

(P;wait; A;B; T; S); p(P; use;A;B; T; S):

p(use; P;A;B; T; S) S

1

= S + 1; p

0

(use; P;A;B; T; S); p(think; P;A;B; T; S

1

):

p(P; use;A;B; T; S) S

1

= S + 1; p

0

(P; use;A;B; T; S); p(P; think;A;B; T; S

1

):

p(use; use; A;B; T; S) p

0

(use; use; A;B; T; S):

p

0

(wait; P; T;B; T

1

; S) T

1

= T + 1; p

0

(think; P;A;B; T; S):

p

0

(P;wait; A; T; T

1

; S) T

1

= T + 1; p

0

(P; think;A;B; T; S:

p

0

(use; P;A;B; T; S) A =< S; p

0

(wait; P;A;B; T; S):

p

0

(P; use;A;B; T; S) B =< S; p

0

(P;wait; A;B; T; S):

p

0

(think; P;A;B; T; S

1

) S

1

= S + 1; p

0

(use; P;A;B; T; S):

p

0

(P; think;A;B; T; S

1

) S

1

= S + 1; p

0

(P; use;A;B; T; S):

p

0

(think; think;A;B; T; S) A = B; T = S:

Figure 21: Program transformed by magic templates.

the resulting �xed point. The transformation based on magic templates for

this class of programs is de�ned as follows.

Proposition 7.1 (Magic set for concurrent systems) Let P be the en-

coding of the concurrent system S = hV;�; Ei s.t. p(~x) ! c

0

represents

the initial state �. The program P

0

is obtained as follows: for each rule

p(

~

t)  c; p(~s) in P , add the modi�ed rule p(

�

t)  c; p

0

(

~

t); p(~s), and add the

rule p

0

(~s) c; p

0

(

~

t). Finally, add p

0

(~x) c

0

.

Proposition 7.2 (Soundness [RSS92]) The programs P

0

is equivalent to

P w.r.t. the set of answers to the query ?-p(~x) ^ c

0

.

Corollary 7.1 (Magic sets and model checking) Let P and P

0

be the

programs de�ned above. Then,

lfp(T

P

) \� = lfp(T

P

0

) \� = [lfp(S

P

0

)]

D

\�:

The magic templates transformation is aimed at merging bottom-up and

top-down analysis by �ltering the immediate consequence computation of

the original clauses with the magic goals added to their bodies. In our

restricted setting, the bottom-up analysis of the transformed program cor-

responds to the bottom-up analysis of the original program �ltered by a pre-

liminary reachability analysis. To illustrate this, let us consider the magic

templates transformation of the CLP-program for the ticket algorithm shown

in Fig. 21. Note that the link connecting the primed and the non-primed

predicate de�nitions is given by the clause

p(use; use;A;B; T; S) p

0

(use; use;A;B; T; S):

Thus, non-primed facts are produced if and only if the unsafe state is in-

ferred by the forward analysis on the primed clauses. In the special case
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1� p(think; P;A;B)  A

1

= B + 1; B � 0; p(wait; P;A

1

; B):

2� p(wait; P;A;B)  A < B;A � 0; p(use; P;A;B):

3� p(wait; P;A;B)  B = 0; A � 0; p(use; P;A;B):

4� p(use; P;A;B)  B � 0; A

1

= 0; p(think; P;A

1

; B):

5� p(P; think;A;B)  B

1

= A+ 1; A � 0; p(P;wait; A;B):

6� p(P;wait; A;B)  B < A;B � 0; p(P; use; P;A;B):

7� p(P;wait; A;B)  A = 0; B � 0; p(P; use; P;A;B):

8� p(P; use;A;B)  A � 0; B

1

= 0; p(P; think;A;B

1

):

Figure 22: Introducing typos in the bakery algorithm.

of the ticket algorithm, the �xpoint computation on the program in Fig.

21 terminates without producing non-primed facts (i.e. the unsafe state is

not-reachable) in 0.6s. However, in general the forward analysis can be non-

terminating as well as the backward analysis. The previous transformed

scheme can be used to mix reachability and backward analysis for instance

by restricting the approximation to p

0

-predicates only so as to compute an

upper bound for the set of reachable states.

8 Error Tracing

When the veri�cation procedure cannot prove the safety of a system, it is

possible to further analyze the output of the �xpoint computation (i.e. the

least �xpoint of the program P � U where U represent the unsafe states)

trying to reconstruct the possible causes of the failure. Let us consider the

modi�ed version of the bakery algorithm in Fig. 8. We �rst insert some

auxiliary information (e.g. a pointer to the clause and the fact used to

produce a new fact) in the data stored during the �xpoint computation.

The model-checker terminates the analysis detecting an occurence of the

initial state p(think; think; 0; 0) in the resulting �xed point. However, we

can now trace all the paths from the initial state to an unsafe state which

occur in the �xed point. In this case, we obtain the following erroneous

paths (where A;

i

B denotes that the fact A has been produced by fact B

using clause i):

a. p(think; think;A; 0); A � 0 ;

1

p(wait; think;A; 0); A > 0

;

3

p(use; think;A;B); A > B;B � 0 ;

5

p(use; wait; A;B); A > B

;

6

p(use; use; A;B)

b. p(think; think; 0; 0) ;

5

p(think; wait; 0; 0) ;

7

p(think; use; A; 0); A � 0

;

1

p(wait; use; A; 0) ;

3

p(use; use; A;B)

c. p(think; think;A;B); A � 0; B � 0 ;

1

p(wait; think;A;B); A � B;B � 0

;

5

p(wait; wait; A;B); A > B;B � 0 ;

6

p(wait; use; A;B); A > 0;B �0

;

8

p(wait; think;A; 0); A > 0 ;

3

p(use; think;A;B); A > B;B �0

;

5

p(use; wait; A;B); A > B ;

6

p(use; use; A;B)
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The three paths share a common malicious behaviour. When the process

p

2

switch from thinking to waiting (clause 5) it does not update its priority.

In this way either process p

2

can enter the critical section when p

2

is already

inside it (trajectory a. and b.) or p

1

can enter the critical section when p

2

is

already inside it since the priority of p

2

remains set to zero (trajectory c.).

Using this information a closer look at the suspect clause 5 of the program in

Fig. 8 reveals that the variable B

1

does not occur in the call of the predicate

p in its body.

9 Conclusions

In the present paper we have shown how CLP can be useful interpreted as

a model for speci�cation and veri�cation of concurrent systems. First of

all logical variables are useful in constraint formulae describing in�nite sets

of states. Furthermore, the bottom-up evaluation of CLP programs with

large sets of facts has been extensively studied in the context of Constraint

Data Bases (e.g. the magic set transformation [RSS92]), also in terms of

implementation technology, although the intended applications have been

quite di�erent up to now.

Finally, we �nd that our implementation is most simple and natural.

This is due to the fact that the three languages for, respectively, implement-

ing the method, specifying the concurrent systems and expressing properties

of states, operate on the same level of abstraction (namely, the mathemati-

cal meaning of constraints). We believe that the high adaptability to speci�c

veri�cation problems has become apparent. This adaptability may be traced

back to the previous argument about the abstraction level as well as to the

general 
exibility of CLP programming. Also, note that we can prove all

of our optimizations correct. Regarding e�ciency, we give a table of the

execution times for the veri�cation problems in our case studies in Figure

23. We �nd the fact that the CLP implementation performs so well on these

examples impressive. We explain it by the homogeneity of the implementa-

tion (e.g., no conversions between di�erent constraint encodings are needed)

and the fact that constraint handling and data base functionality are, as

integral parts of the CLP paradigm, already present in an optimized form.
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A SICStus Prolog code

%% dynamic predicates

:- multifile s/3.

:- multifile r/3.

:- multifile rd/3.

:- multifile w/2.

:-dynamic s/3.

:-dynamic r/3.

:-dynamic rd/3.

:-dynamic w/2.

:-dynamic cf/1.

:-dynamic red/0.

:-use_module(library(terms)).

:-use_module(library(lists)).

:-use_module(library(clpr)).

% CLP- Utility Library

% entails(C,D): C entailes D

% - C,D are constraints of the form {c1,...,cn}

entails(C,D):-

C,entailed(D).

% factsubsumed(H,D,H1,D1): (H1,D1) subsumes (H,D)

% - H,H1 are atoms

% - D,D1 are constraints

factsubsumed(H,D,H1,D1):-

subsumes_chk(H1,H),

unify_with_occurs_check(H,H1),

subsumed(D,D1).

subsumed({},{}).

subsumed({C},{D}):-

call_residue(entails({C},(D)),_).

subsumed({C},{}):-

call_residue({C},_).

get_constraints([[_]-{C}|R],{C,N}):-
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get_constraints(R,{N}),!.

get_constraints([[_]-{C}|R],{C}):-

get_constraints(R,{}),!.

get_constraints([],{}):-!.

get_constraints1([],{}):-!.

get_constraints1([[_]-{C}],{C}):-!.

get_constraints1([[_]-{C}|R],{C,N}):-

get_constraints1(R,{N}),!.

% unify(C,D,R): R is equivalent to (C and D)

unify({},{},{}):-!.

unify({},C,R):-

call_residue(C,S),

get_constraints(S,R).

unify({D},{},R):-

call_residue({D},S),

get_constraints(S,R).

unify({D},{C},R):-

call_residue({C,D},S),

get_constraints(S,R).

% project(C,T,PC):

% PC is the projection of C over the variables of T

project({}, _, {}) :- !.

project(Cons, Term, PCons) :-

!,

retractall(projection_temporary(_)),

assert((projection_temporary(Term) :- Cons)),

call_residue(projection_temporary(Term), TmpPCons),

get_constraints(TmpPCons, PCons).

% satisfiable(C,D): C and D is satisfiable
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satisfiable({},{}).

satisfiable({},{D}):-

call_residue({D},_).

satisfiable({D},{}):-

call_residue({D},_).

satisfiable({D},{C}):-

call_residue({D},_),

call_residue({C},_).

% simplify(C,D).

simplify({},{}):-!.

simplify(C,D):-

call_residue(C,R),

get_constraints(R,D).

% approx(C,AC) AC is an upper bound for C

approx({C},{C1,_}):-

call_residue(entails({C1},C),_),

\+(call_residue(entails({C},C1),_)),!.

approx({C},{_,D}):-!,

approx({C},{D}).

approx({C},{C1}):-

call_residue(entails({C1},C),_),

\+(call_residue(entails({C},(C1)),_)).

% upper(C,D,OC,AOC): uses C to relax OC into AOC

upper({C,T},D,{Co,To},Ca):-

approx({C},D),!,

upper({T},D,{To},Ca).

upper({C,T},D,{Co,To},Ca):-!,

upper({T},D,{To},Ca1),

combine({Co},Ca1,Ca).

upper({C},D,{Co},{}):-
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approx({C},D),!.

upper({C},_,{Co},{Co}).

combine({C},{},{C}).

combine({C},{D},{C,D}).

% time(G,T,M,P,C) T is the execution time for G,

time(Goal,T,M,P,C):-

statistics(runtime,[T1,_]),

Goal,

statistics(runtime,[T2,_]),

statistics(memory,[M,_]),

statistics(program,[P,_]),

statistics(choice,[C,_]),

T is ((T2-T1)//100)/10.

% T is T2-T1.

% clear: to clear the DB

clear:- clearR,clearS,clearW.

clearS:-

retractall(s(_,_,_)).

clearR:-

retractall(r(_,_,_)).

clearW:-

retractall(w(_,_)).

% turn_zero(I): erases all the facts s(J,A,B) with J<I

% and turns the facts s(I,A,B) into s(0,A,B)

turn_zero(I):-

s(K,A,B),

K<I,

retract(s(K,A,B)),

fail.

turn_zero(I):-

retract(s(I,A,B)),
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assert(s(0,A,B)),

fail.

turn_zero(_).

% select_state(A): erase all the states s(K,B,C) s.t. A=\=B

select_states(A,D):-

retract(s(K,B,C)),

atom_cons_unify(B,A,B,D,C,E),

assert(s(K,B,E)),

fail.

select_states(_,_).

% count: counts the number of facts of the form s(A,B,C)

count:-

assert(cf(0)),

s(_,_,_),

retract(cf(I)),

J is I+1,

assert(cf(J)),

fail.

count:-

cf(I),

nl,

write('Number of facts:'),write(I),

retract(cf(I)).

% onR,offR: to activate/disactivate the

% elimination of redundant atoms

onR:-assert(red).

offR:-retract(red).

approximate(I,H,C,D):-

s(J,H1,D1),

J<I,

copy_term(t(H,C),t(Hc,Cc)),

unify_with_occurs_check(Hc,H1),

upper(Cc,D1,C,D),

satisfiable(Cc,D1).
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approximate(_,_,C,C).

atom_cons_unify(H,B,B1,C,C1,D2):-

unify_with_occurs_check(B1,B),

unify(C,C1,D),

project(D,H,D1),

simplify(D1,D2).

is_not_subsumed(H,D1):-

\+( (s(_,H1,D3),factsubsumed(H,D1,H1,D3)) ).

is_not_subsumed(J,H,D1):-

\+( (s(J,H1,D3),factsubsumed(H,D1,H1,D3)) ).

reduce(J,H,D1):-

s(J,H1,D3),

factsubsumed(H1,D3,H,D1),

retract(s(J,H1,D3)),

fail.

reduce(_,_,_).

%% MAIN ALGORITHMS

% Exact Tp (Upward)

ucollect(I,J):-

r(H,B,C),

s(I,B1,C1),

atom_cons_unify(H,B,B1,C,C1,D1),

is_not_subsumed(H,D1), % forall K<=J

(red -> reduce(_,H,D1);true),

assert(s(J,H,D1)).

% Approximated Tp (Upward)

acollect(I,J):-

r(H,B,C),

s(I,B1,C1),

atom_cons_unify(H,B,B1,C,C1,D1),

% newapproximate(I,H,D1,D2),

is_not_subsumed(H,D1),

approximate(I,H,D1,D2),

37



is_not_subsumed(H,D2), % forall K<=J

(red -> reduce(_,H,D2);true),

%is_not_subsumed(J,H,D1),

assert(s(J,H,D2)).

% Exact Tp (Downward)

dcollect(I,J):-

rd(H,B,C),

s(I,B1,C1),

atom_cons_unify(H,B,B1,C,C1,D1),

is_not_subsumed(J,H,D1), % only for J

% reduce(J,H,D1),

assert(s(J,H,D1)).

%% Downward Iterations

testj(J,A,C):-

s(J,B,D),

factsubsumed(A,C,B,D),!,

fail.

testj(_,_,_).

test(I,J,K):-

s(I,A,C),

testj(J,A,C),

gfixpoint(J,K).

test(_,J,J).

gfixpoint(I,K):-

J is I+1,

setof(_,dcollect(I,J),_),

!,

test(I,J,K).

gfixpoint(I,I).

%% Approximated Upward Iterations

afixpoint(I):-

J is I+1,

setof(_,acollect(I,J),_),
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!,

afixpoint(J).

afixpoint(_).

%% Exact Upward Iterations

fixpoint(I):-

J is I+1,

setof(_,ucollect(I,J),_),

!,

fixpoint(J).

fixpoint(_).

gfp(Program):-

clear,

[Program],

time(gfixpoint(0),T,M,P,C),

write('Fix Point Reached'),

listing(s/3),

nl,

write('Execution Time: '), write(T),

write('Memory: '), write(M),

write('Program Memory: '), write(P),

write('Choice Points: '), write(C),

count.

lfp(Program,Mode):- %Mode: a (approx.) / n (normal)

clear,

[Program],

(Mode=n -> time(fixpoint(0),T,M,P,C);

(Mode=a -> time(afixpoint(0),T,M,P,C);

time(wfixpoint(0),T,M,P,C)

)

),

write('Fix Point Reached'),

listing(s/3),

nl,

write('Execution Time: '), write(T),nl,

write('Memory: '), write(M),nl,

write('Program Memory: '), write(P),nl,

write('Choice Points: '), write(C),nl,

count.
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% Testing Starvation

st:-

gfixpoint(0,K),

listing(s/3),nl,

turn_zero(K),

w(A,C),

select_states(A,C),

afixpoint(0).

sf(Prog):-

clear,

[Prog],

time(st,T,M,P,C),

nl,

listing(s/3),nl,

write('Execution Time: '), write(T),

count.
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B List of examples

mut-ast

System variables: p(P1; P2; T1; T2; Y ).

Initial Condition: initial p(P1; P2; T1; T2; Y ); P1 = 1; P2 = 1; Y = 1:

Transitions:

p(1; P; T1; T2; Y ) T1 = �1; p(2; P; T1; T2; Y ):

p(2; P; T1; T2; Y ) T1 < 0; p(3; P; T1; T2; Y ):

p(2; P; T1; T2; Y ) T1 > 0; p(1; P; T1; T2; Y ):

p(3; P; T1; T2; Y ) Y > 0; p(4; P; T1; T2; Y ):

p(4; P; T1; T2; Y ) T11 = Y � 1; Y 1 = Y � 1; p(5; P; T11; T2; Y 1):

p(5; P; T1; T2; Y ) T1 = 0; p(6; P; T1; T2; Y ):

p(6; P; T1; T2; Y ) p(7; P; T1; T2; Y ):

p(5; P; T1; T2; Y ) T1 > 0; p(7; P; T1; T2; Y ):

p(5; P; T1; T2; Y ) T1 < 0; p(7; P; T1; T2; Y ):

p(7; P; T1; T2; Y ) Y 1 = Y + 1; p(7; P; T1; T2; Y 1):

p(P; 1; T1; T2; Y ) T2 = �1; p(P; 2; T1; T2; Y ):

p(P; 2; T1; T2; Y ) T2 < 0; p(P; 3; T1; T2; Y ):

p(P; 2; T1; T2; Y ) T2 > 0; p(P; 1; T1; T2; Y ):

p(P; 3; T1; T2; Y ) Y > 0; p(P; 4; T1; T2; Y ):

p(P; 4; T1; T2; Y ) T21 = Y � 1; Y 1 = Y � 1; p(P; 5; T1; T21; Y 1):

p(P; 5; T1; T2; Y ) T2 = 0; p(P; 6; T1; T2; Y ):

p(P; 6; T1; T2; Y ) p(P; 7; T1; T2; Y ):

p(P; 5; T1; T2; Y ) T2 > 0; p(P; 7; T1; T2; Y ):

p(P; 5; T1; T2; Y ) T2 < 0; p(P; 7; T1; T2; Y ):

p(P; 7; T1; T2; Y ) Y 1 = Y + 1; p(P; 7; T1; T2; Y 1):

41



water level controler

System variables:

LevelNormal;Bound;Delta : real,

Normal;Dangerous; Pump : boolean.

Initial Condition:

initial Level < Bound ^Normal ^ :Pump

p(Level;Normal;Dangerous; Pump;Bound;Delta):

Transitions:

p(Level;Normal;Dangerous; Pump;Bound;Delta) 

Level < Bound; Level1 > Bound; Level1 � Level+Delta;

Level1 � Level�Delta;

Normal � :Normal1 � :Dangerous �Dangerous1�

((Pump �Dangerous) + (:Pump �Normal))�

((Pump1 �Dangerous1) + (:Pump1 �Normal1));

p(Level1; Normal1; Dangerous1; Pump1; Bound;Delta):

p(Level;Normal;Dangerous; Pump;Bound;Delta) 

Level > Bound; Level1 � Bound; Level1 � Level+Delta;

Level1 � Level�Delta;

:Normal �Normal1 �Dangerous � :Dangerous1�

((Pump �Dangerous) + (:Pump �Normal))�

((Pump1 �Dangerous1) + (:Pump1 �Normal1));

p(Level1; Normal1; Dangerous1; Pump1; Bound;Delta):

p(Level;Normal;Dangerous; Pump;Bound;Delta) 

Level > Bound; Level1 > Bound; Level1 � Level+Delta;

Level1 � Level�Delta;

(Normal =:= Normal1) � (Dangerous =:= Dangerous1)�

((Pump �Dangerous) + (:Pump �Normal))�

((Pump1 �Dangerous1) + (:Pump1 �Normal1));

p(Level1; Normal1; Dangerous1; Pump1; Bound;Delta):

p(Level;Normal;Dangerous; Pump;Bound;Delta) 

Level � Bound; Level1 � Bound; Level1 � Level+Delta;

Level1 � Level�Delta;

(Normal =:= Normal1) � (Dangerous =:= Dangerous1)�

((Pump �Dangerous) + (:Pump �Normal))�

((Pump1 �Dangerous1) + (:Pump1 �Normal1));

p(Level1; Normal1; Dangerous1; Pump1; Bound;Delta):
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network System variables: N1; : : : ; N14 : int.

Initial Condition:

initial N1 =Max;N2 = : : : N14 = 0; Y = 1; p(N1; : : : ; N14; Y ):

Transitions:

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N1 >= 1; N1p = N1� 1;N21 = N2 + 1;

p(N1p;N21; N3;N4; N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N2 >= 1; Y > 0;N21 = N2� 1;N31 = N3 + 1;

p(N1;N21; N31; N4; N5; N6;N7; N8; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N3 >= 1; Y > 1;N31 = N3� 1;N41 = N4 + 1; Y = Y � 1;

p(N1;N2; N31; N41; N5; N6;N7; N8; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N3 >= 1; Y = 1;N31 = N3� 1;N51 = N5 + 1; Y = Y � 1;

p(N1;N2; N31; N4; N51; N6;N7; N8; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N3 >= 1; Y < 1;N31 = N3� 1;N61 = N6 + 1; Y = Y � 1;

p(N1;N2; N31; N4; N5;N61; N7; N8; N9; N10; N11; N12; N13; N14; Y )

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N4 >= 1; Y < 1;N41 = N4� 1;N121 = N12 + 1;

p(N1;N2; N3; N41; N5;N6; N7; N8; N9;N10; N11; N121; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N5 >= 1; N51 = N5� 1; N81 = N8 + 1;

p(N1;N2; N3; N4;N51; N61; N7; N81; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N6 >= 1; N61 = N6� 1; N71 = N7 + 1;

p(N1;N2; N3; N4;N5; N61; N71; N8; N9; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N7 >= 1; N71 = N7� 1; N1p = N1 + 1; Y 1 = Y + 1;

p(N1p;N2;N3; N4; N5; N6;N71; N8; N9; N10; N11; N12; N13; N14; Y 1):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N8 > 1; N81 = N8� 1; N91 = N9 + 1;

p(N1;N2; N3; N4;N5; N6; N7; N81; N91; N10; N11; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N9 >= 1; N91 = N9� 1; N101 = N10 + 1; Y 1 = Y + 1;

p(N1;N2; N3; N4;N5; N6; N7; N8;N91; N101; N11; N12; N13; N14; Y 1):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N10 >= 1;N101 = N101 � 1; N111 = N11� 1;

p(N1;N2; N3; N4;N5; N6; N7; N8;N9; N101; N111; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N11 >= 1;N111 = N11 � 1; N1p = N1 + 1;

p(N1p;N2;N3; N4; N5; N6;N7; N8; N9; N10; N111; N12; N13; N14; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N12 >= 1;N121 = N12 � 1; N131 = N13 + 1; Y 1 = Y + 1;

p(N1;N2; N3; N4;N5; N6; N7; N8;N9; N10; N11; N121; N131; N14; Y 1):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N13 >= 1;N131 = N13 � 1; N141 = N14 + 1;

p(N1;N2; N3; N4;N5; N6; N7; N8;N9; N10; N11; N12; N131; N141; Y ):

p(N1; N2; N3; N4;N5; N6; N7;N8; N9; N10; N11; N12; N13; N14; Y ) 

N14 >= 1;N141 = N14 � 1; N1p = N1 + 1;

p(N1p;N2;N3; N4; N5; N6;N7; N8; N9; N10; N11; N12; N13; N141; Y ):
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