
'$�

�

'$

�

��

I N F O R M A T I K


 	

� �

Strategies for Conformance
Testing

Solofo Ramangalahy

MPI–I–98–010 May 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
FÜR
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Abstract

A new test generation method and algorithm for conformance testing is pro-
posed. It is based on the interpretation of testing concepts from the ISO
standard “Formal methods in conformance testing” in a game theory set-
ting. A testing game is defined with a specification given as an Input/Output
State Machine and a test purpose for test selection. A winning strategy for
this game defines a tester for a class of implementations and a conformance
relation.
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1 Introduction

Correctness has become a more important issue for “software systems” as
they are now of increasing complexity and in wider use. As software sys-
tems are assigned critical tasks—where failure can be more expensive than
conception itself—the correctness problem has attracted much attention in
the computer science community. One way to achieve correctness is to use
formal methods. These enable a precise definition of the notion of correctness
and the development of techniques to check it. Two of these methods are
verification and formal conformance testing.

Verification is a method which uses a mathematical model of the system
and a set of required properties for this model. Both model and properties
are expressed in a formal language allowing to prove (in the mathematical
sense) the correctness of the model with respect to the properties.

Formal conformance testing checks the correctness directly on the actual
system by experimenting with it with tests (or test cases). During the ex-
ecution of the tests, observations are made and verdicts about conformance
can be produced. These verdicts are issued by a comparison of the actual
observations with the expected ones described by the formal specification of
the system—which is supposed to be correct.

Conformance testing and verification are complementary approaches to
check the correctness of software systems: verification can prove correctness,
but the proof is only valid if the model is appropriate for the real system. By
contrast, testing can be performed on the real system, but can give certainty
only about the non-correctness of the system with respect to its specifica-
tion. Verification takes place in the early stages of development, whereas
conformance testing comes at the end.

In this report, we will focus on formal conformance testing. Two impor-
tant characteristics of the systems we study should be noted:

1. The systems are open. This means that the evolution of the system
is dependent on choices, which are external to the system (resolved
by the environment in which the system is used). This contrasts with
verification in which the model of a system is usually closed1.

2. The system is viewed as a black-box exhibiting behaviors (sending mes-
sages) and interacting with an environment. The system is a real ob-
ject, hence, to reason formally about it, we assume that it can be
mathematically modeled. Note that only the existence of the model is
supposed, the actual model is unknown. This is referred to as the test

1See [33] for a survey of verification of open systems.
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hypothesis [2, 30, 16]. Using this hypothesis, we will not always distin-
guish the (actual) implementation from the implementation model.

Formal conformance testing is the problem of relating a formal specification
(as opposed to a natural language specification) and the unknown model of
the implementation via a relation called the implementation relation. This
problem is solved by a test generation algorithm producing a set of test cases
(the test suite) starting from the specification. The test suite must be sound,
i.e. experimenting the implementation with these tests should produce a
negative verdict only if the implementation is not in relation with the spec-
ification via the implementation relation. In this case, it is said that the
implementation does not conform to the specification w.r.t the implementa-
tion relation. Reciprocally, the test suite should have a high “probability”
to produce a negative verdict if the implementation does not conform to the
specification. Certainty is not possible here, because, contrary to verifica-
tion, one cannot reason about infinite computations of the implementation
(model) seen as a black-box. Testing is restricted to the observation of finite
computations of a system.

In this report, we construct testers (a compact representation of the test
suite) for implementation models and specifications described by automata
with inputs and outputs2. The testers are also automata, their unfoldings to
trees give the test cases of the test suite. These testers will check conformance
as defined by the international ISO/ITU-T standard “Formal Methods in
Conformance Testing” (FMCT) [16], with test selection (the choice of a tester
among a set of possible ones) performed using test purposes and explicit use
of test hypotheses as advocated in [2, 24] for helping test generation.

As testing is a broad subject, we will only briefly survey some steps rele-
vant to the formal approach to conformance testing. In recent years, progress
has been made toward automation of test case generation in the area of con-
formance testing via the use of formal description techniques (FDTs). The
first steps were the standardization of formal specification languages: SDL
[4], LOTOS [14], and Estelle [13]. Then the ISO 9646 standard [15] gave
a “methodology and framework for conformance testing”. This framework
is not related to any particular specification language, but is rather a ratio-
nalization of the test experts knowledge. Recently the ISO/ITU-T standard
“Framework: Formal Methods in Conformance Testing” (FMCT) reinter-
preted concepts appearing in ISO 9646 from a formal point of view, taking
advantage of FDTs, and making a synthesis of recent advances in research.3.

2Similar to the classical Moore or Mealy machines [12].
3See [3] for a presentation of this work, and references for research background.
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The FMCT standard, although providing interpretation of terminology
in the standardized FDTs and guidelines on test generation methods, does
not prescribe any formal notation nor a test generation method: finding
algorithms for conformance testing is still an active field of research.

Here, the test generation method proposed is based on game theory.
Some examples of the use of game theory relevant to the correctness problem
are the synthesis of a correct program starting from a specification [34, 20]
or model checking for the µ-calculus [26, 27, 22]. Use of games for testing
has not been much investigated.

Interpreting Nerode-Yakhnis-Yakhnis view of the synthesis problem [21]4

in a test setting, we can view test execution as a game played between the
tester and the implementation. The implementation wins if it can keep its
bugs hidden from the tester. Conversely, the tester wins if it has been capa-
ble of revealing these subtly hidden mistakes in the implementation. We will
take the point of view that a game represents the test execution process. Two
players — Black player: the environment and Red player: the implementa-
tion — are playing again each other, each of them taking alternatively the
control of the test execution process. When the environment has the control,
it chooses which message to send to the implementation to change the state
of the system (external control). Conversely when the implementation has
the control it chooses how to change its internal state and sends a message
back to the environment (internal control). We want the environment to
drive the system in a certain state to emit a verdict mainly “fail” which will
give a global verdict of non-conformance. A “pass” verdict does not allow
coming to a firm conclusion about conformance but plays a role in increasing
confidence in conformance.

To reach these states and emit a verdict, we construct a strategy, that is a
function which chooses which message to send to the implementation so that
the system goes to the desired states. This strategy is a winning strategy for
the environment and defines the tester.

This is the key idea of this report. With hindsight, one can say that, given
the connection between games and verification, and verification and testing,
there exists a connection between games and testing by transitivity. The
connection is dual to the one of the synthesis problem: the winning strategy
for the implementation in the synthesis problem is such that whatever the
environment does, the implementation will not fail. Dually in testing, if an
implementation can fail, the winning strategy for the environment (i.e. the
tester) will finally make it fail.

The work which is the closest related to ours is [7]. In this work, a veri-

4Roots of this view can already be found in [5].
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fication technique (on-the-fly technique) is used to solve the test generation
problem. Differences with [7], besides the use of game theory, are the sup-
pression of the inconclusive verdict, the suppression of the possibility to emit
different verdicts for the same test case and the verification of a stronger
implementation relation.

The rest of this paper is as follows: first we will recall some testing con-
cepts from the FMCT standard relevant to this paper. We will instantiate
the framework by choosing the class of specifications and implementation
models, and the conformance relations as required by the standard. We will
briefly present game concepts to introduce the setting of testing from a game
point of view. The main part of this paper is the construction of winning
strategies for the defined games. We will then examine some complexity as-
pects of the construction of the tester and its use for conformance testing. In
the last part we will establish some properties related to the soundness and
exhaustiveness of the generated tester with respect to the implementation
relation defining the meaning of conformance.

2 Testing and Games

2.1 Test concepts

Conformance testing is defined by a relation R between two sets of models:
the implementation models MODS and the specifications SPECS. The test

hypothesis [2, 30, 16] is the assumption that the real implementation IUT

(Implementation Under Test) can be modeled by an element mIUT of MODS.
Given a specification S ∈ SPECS and a conformance relation R, the

conformance testing problem is to check that the model mIUT belongs to the
set of implementation models that are conform to S ({m ∈ MODS|(m, S) ∈
R}). This is done by generating a set of test cases out of the set TESTS. Test
execution is modeled by the parallel product of a test case t and mIUT . The
traces of the parallel product are the observations that can be made from
the test execution. From these observations, a verdict can be emitted about
conformance.

We do not construct the set of conforming models, nor do we know mIUT .
By testing experiments we are just able to observe some traces of mIUT ; that
is sufficient in order to check non-conformance (fail verdict, (mIUT , S) /∈ R).
Conformance (pass verdict) relies on the hypothesis that we observed enough
traces of mIUT to be confident in conformance. Although it would be possible
in theory to observe all the traces (it would amount to run an infinite number
of test cases), it is not possible in practice.

4



In order to use the FMCT framework, one has to choose a model for
R, MODS, SPECS, and TESTS. Motivated by application to an Estelle-like
language, we choose:

• Input/Output state machines on a same alphabet as a model for spec-
ifications, implementations models, and testers, as in [24] (but we will
add special restrictions on MODS and TESTS, MODS ( SPECS and
TESTS ( SPECS).

• R5 as implementation relation ([24], see also [16], Annex A). This rela-
tion deals with the equality between the outputs allowed by the imple-
mentation models and the specification after a trace belonging to both
models.

Definition 1 (Input/Output State Machine, IOSM) An IOSM is a quadru-
ple 〈S, L, T, s0〉, where:

• S is a finite non-empty set of states;

• L is a finite non-empty alphabet of interactions. The symbols ?, !, τ are
additional symbols not belonging to this set;

• T ⊆
(

S ×
(

({?, !} · L) ∪ {τ}
)

× S
)

is the transition relation. Each

element of T is a transition, from an origin state to a destination state.
This transition is associated either to an observable action (input ?a or
output !a), or to the internal action τ .

• s0 is the initial state of the IOSM.

Example 1 In the example of Figure 1, we have: S = {1, 2, 3, 4, 5} and
L = {a, b, c, d, e, f, g, h}. It may help to see this IOSM of Figure 1 as a
specification of a phone. When the user introduces its card (?a) the machine
can respond that the card is not valid – there being not enough credit on it,
it being damaged card . . . – or it can accept it (!b resp. !c). Then the user
can dial a number (?f). If he waits too long, the phone will give the card
back (!e). If he can reach his correspondent, he can talk (!h), otherwise he
has to enter another number or have another try (!g). The user can hang up
(?d), and the phone can stop the communication when his credit runs out or
another problem occurs (second !b).

The IOSM model can be used to express the semantics of Estelle speci-
fications. As a model for implementations we choose a special kind of
IOSM, where all input actions are enabled in each state (∀a ∈ L, ∀s1 ∈
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Figure 1 an Input Output State Machine

?a

?f

?d !e

!b

!c

!g

!h

?d

4

5

3

2

1

!b

S, ∃s2(s1, ?a, s2) ∈ E), meaning that an implementation should always accept
an input even if it does not react (s1 = s2). This is called the input-enabling

condition. This is similar to the IOTS model of [31] or Input/Output Au-
tomata [18]. From the testing point of view, one can assume that the IOSMs
are without τ and deterministic in the usual sense of automata theory [12]
because the power of testing is limited to the observation of traces ([24] chap-
ter 2). In Figure 2 we see examples of three kinds of nondeterminism, for
us nondeterminism (except explicitly stated) will mean nondeterminism in
the testing sense, that is several outputs (possibly different) are emitted in
response to an input.

Figure 2 three kinds of nondeterminism

automata process algebra testing

!b !c

?aτ?a

?a

?a?a
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We also suppose that the deadlocks are observable outputs of the im-
plementation model: in theory this amounts to adding transitions to the
automata and in practice to using timers. Finally, we suppose that spec-
ifications viewed as graphs are strongly connected to avoid the hypothesis
of the existence of a reset. With these hypotheses, test execution can only
deadlocks because of the choice of the tester.

Definition 2 (implementation relation) Let I and S be two IOSMs (the
implementation model and the specification, Tr(S) denote the set of traces
of S, and O(σ, S) be the set of allowed outputs by S after the trace σ. Define

R5(I, S) iff ∀σ ∈ Tr(S) : σ ∈ Tr(I) ⇒ O(σ, I) = O(σ, S).

An important problem in test generation is test selection. It deals with the
reduction of the size of the test suites to lower the test effort. One way
to achieve this selection is to use test purposes. The use of test purpose
originates in test practice: human test experts write the “meaning” of a test
case as a comment in the test suites written in the test notation language
TTCN.5. The test purpose here is used to limit the search in the state space
by focusing on a certain part of the system. The formal definition of a test
purpose associated with a test in FMCT is the set of all implementation
models which pass the test. However it is not prescribed which of the test
purpose or the test follows from the other. Here the test purpose will serve to
select test cases. There are different formalisms for test purposes (Message
Sequence Charts for example in [10]), we use one comparable to the one of
[7].

Definition 3 (test purpose) A test purpose TP associated with a specifi-
cation S = 〈SS, L, T S, s0〉 is a finite subtree of S with out-degree 1 for edges
labeled with input actions. This is an acyclic IOSM TP = 〈STP , L, TTP , tp0〉
such that:

• ∀(sTP
1 , a, sTP

2 ) ∈ TTP , ∃sS
1 , sS

2 ∈ SS : (sS
1 , a, sS

2 ) ∈ T S (this condition is
the compatibility with the specification S);

• (sTP
1 , ?a, sTP

2 ), (sTP
1 , ?a, sTP

3 ) ∈ TTP ⇒ sTP
2 = sTP

3 .

The condition on the out-degree is just a convention not to add further
nondeterminism in the testing process. The compatibility between the test
purpose and the specification is referred to as consistency in [7], with a further

5“[a test purpose is a] prose description of a well defined objective of testing, focusing on
a single conformance requirement or a set of related conformance requirements as specified
in the appropriate notation” [16]

7



reachability condition (taken into account in our case via the connectivity
hypothesis).

Example 2 Figure 3 shows a test purpose. If we follow the informal meaning
given to the specification of Figure 1, the meaning of this test purpose is a
scenario for a successful phone call. The scenario is as follows: the user
introduces his phone card (?a), the phone accepts it (!c), the user dials a
number (?f), and reaches his correspondant (!h).

Figure 3 a test purpose for the IOSM of figure 1

?a

?f

!c

!h

4

5

3

2

1

A tester is also an IOSM. Test execution will be modelled by a parallel
execution of a tester and the implementation model mIUT . Observation of the
traces of this parallel product will allow us to emit verdicts on conformance.
This will be further defined in the rest of the paper.

2.2 Games

For the purposes of this paper, we can restrict ourselves to view games as
board games, like chess.

Two players play alternatively on the board by moving pieces, having
full knowledge of the previous moves6. The position of the pieces on the

6This is referred in the litterature as “games of perfect information”
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board defines a configuration. Moving a piece according to the rules leads to
another configuration chosen from several possible ones. We can then view
the game as a finite bipartite graph with vertices representing the different
configurations of the game, and whith edges representing possible moves. The
vertices have two colors, Black and Red, and it is up to the player associated
with the color of the vertex to choose the next move (as the graph is bipartite,
the players play in turn). A player wins when certain configurations are
reached. A play is an infinite sequence of moves. For technical reasons, it is
easier to consider infinite plays, but we keep in mind that we are interested
in finite plays and that finite plays are a special case of infinite plays.

As explained in the introduction, we view the testing process as a game
between two opponents: the implementation (Red player) and the environ-
ment (Black player). The system is represented by a bipartite graph with
black and red vertices. A token is moved along the edges of the graph by
the player whose turn is defined by the color the token is currently on. A
play is an infinite sequence of the vertices passed by the token. A play is
winning if it belongs to a predefined set of plays, and a strategy for a player
is a function giving the choice for the next move of the token depending on
the previous moves.

Definition 4 (Game) A game is a bipartite, finite, directed graph G =
(V, VB, VR, E) where:

• V is the set of vertices partitioned into black vertices (VB) and red
vertices (VR),

• E is the set of directed edges.

A play of a game is an infinite word of V ∞, w = s1s2 . . . such that ∀i, (si, si+1) ∈
E.
Fix a set of plays: the winning plays. A play is winning for Black if it belongs
to the set of winning plays (otherwise it is winning for Red).
A strategy for Black is a function f : V ∗VB → V . A strategy for Black is
winning if Black wins when following this strategy.

Definition 5 (Game associated with a specification and a test purpose)
Let S = 〈S, L, T, s0〉 be a specification and TP a test purpose. The game
G = (V, VB, VR, E) associated with S and TP is defined as follows:

• V = S ∪⊥, VR = {s ∈ S|∀(s, t, s′) ∈ T, ∃a ∈ L.t =!a}, VB = S\VR;

• ∀s ∈ VR : (s,⊥) ∈ E;

9



• the winning plays are the plays in s0V
∗⊥V ω and s0V

∗wV ∗s0V
ω, where

w is a branch of TP .

The choice of red nodes reflect the convention that the tester has the control
in an input vs. output action in the parallel execution of the tester and the
implementation model. Without loss of generality, we may suppose that the
graph is bipartite (the graph can be transformed into a bipartite graph by
possibly adding linearly many states).

Example 3 Here is the game associated with the IOSM of example 1. The
node ⊥ will represent a state where non-conformance is detected. Black
nodes are depicted by circles, red ones by squared circles. Note the additional
nodes 6, 7, 8 and 9 used to transform the graph into a bipartite one, and
10 connected to ⊥ to ensure that there are always outgoing edges. The test
purpose is the one of Figure 3, so the winning plays are those of 1V ∗⊥V ω

and 1V ∗12345V ∗1V ω

Figure 4 game associated with the IOSM of figure 1

4

⊥

10

9

8

7

6

3

5

1 2

This setting allows us from now on to reason only on games.
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3 Constructing winning strategies

3.1 Reachability game

We first solve the problem of constructing a winning strategy for a simpler
kind of game, called the “reachability game for t”7, where the winning plays
are the plays in s0V

∗tV ω, t ∈ V . The goal for Black is to reach the node t.
For this, we construct an increasing sequence of set of states.

W0
0 = t,

Wj
i+1= Wj

i ∪ {p ∈ VB | ∃q ∈ Wj
i : (p, q) ∈ E}

∪ {p ∈ VR | ∀q ∈ VB : (p, q) ∈ E ⇒ q ∈ Wj
i},

Wj+1
0 = Wj

min{i|Wj
i+1

=Wj
i}

∪{p ∈ VR\Wmin{i | Wj
i+1 = Wj

i}
j
| ∃q, r ∈ VB : (p, q), (p, r) ∈ E ∧ q ∈ limi W

j
i

∧ r /∈ limi W
j
i}.

These sets form a sequence W0
0, . . . ,W0

k0
,W1

0 , . . . ,W1
k1

, . . . ,W l
0, . . . ,W l

kl
where

kj = min{i | Wj
i+1 = Wj

i}. They are used to define an order on the states
via their rank. The rank of a state p is:

rank(p) =
(

min{i|p ∈ Wj
i}, min{j | p ∈ Wj

i}
)

.

The strategy for Black is defined by choosing one red node which is infe-
rior with respect to the first component of the rank. This strategy is called
“decreasing the rank”. This lemma states that this strategy is defined ev-
erywhere8 and uniquely.

Lemma 1 The rank is defined on all the nodes of the games, and each node

belong to one set of a partition of the nodes:

• limi,j W
j
i = S\⊥

• The sets {Wj
i+1\W

j
i | i ∈ [0, kj], j ∈ [0, l]} and {Wi

ki
| i ∈ [0, l]} form

partitions of S\{⊥}.

Proof • Let sn be an element of S\{⊥}. S\{⊥} being a strongly con-
nected component of G, there exists a path ω = snsn−1 . . . s1s0 from
s to s0. By recurrence, each of the si belongs to one of the Wk

l : sn

7This is an extension of the guarantee game presented in [29].
8We don’t need to define a strategy on ⊥
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belongs to W0
0 and if si ∈ Wk

l and si+1 is black then it belongs to Wk
l

or si+1 is red and all its ongoing edges go into Wk
l ; otherwise it belongs

to Wk+1
l .

• disjointness comes from construction.

In spite of the fact that the implementation must be seen as a black-box,
there are several kinds of hypotheses that can be made to help in gener-
ating test cases. The notion of test hypotheses originates from [2] in the
context of algebraic specifications, and has been extensively studied in [24]
for conformance testing. Their effect is to reduce the set of conforming im-
plementation models. Their choice is made from assumptions on the actual
implementations. In the original context of games, the problem is to find
the winning sets for each player (i.e., the set of states from which the player
is assured to win if he follows a good strategy) and the associated winning
strategies. Here we are interested in having Black always winning, possibly
by adding constraints on Red moves. We allow Red to play only “fair” plays
(fairness in the sense used for example in fair transition systems). The in-
tuitive meaning of fairness is that if an implementation can exhibit several
behaviors nondeterministically it will eventually show all of them. Formally:

Definition 6 (fair plays) Let π = s1 . . . sn . . . be a play, Inf (π) = {s |
s appears infinitely many times in π}. Let {(ri, Bi = {bi1 , . . . , bij}) | (ri, bik) ∈
E} ⊂ VR × P(VB) be the sets of black nodes bik adjacent to a red node ri.
The play π is fair if ∀i : ri ∈ Inf (π) ⇒ Bi ⊂ Inf (π).

This notion of fairness corresponds to the notion of fairness (also defined as
strong fairness or compassion) or Street acceptance condition for automata
on infinite words (see [28] or [19]). It states that if the implementation has
infinitely many times the choice between some actions it will execute infinitely
many times each of the actions. This is a weak hypothesis in the context of
testing, the strongest version being the bounded fairness hypothesis where
all the actions will be executed in a finite number of times known in advance.
A fair strategy is a strategy that cannot lead to unfair plays.

Proposition 1 The strategy “decrease the rank” is a winning strategy for

Black against Red playing a fair strategy for the simple reachability game.

Proof By contradiction. Let π a winning play for Red. Let r1, . . . , rn be the
minimal elements of Inf (π) ∩ VR with respect to their rank. These elements
belong to a set Wi

0. By definition of fairness, as each of the ri are connected
to at least one b of Wi−1

ki−1
, there will be at least one b ∈ Inf (π)∩Wi−1

ki−1
. There
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exists one red node r chosen by the strategy of Black such that r ∈ Inf (π).
This contradicts the minimality of the ri.

3.2 Testing game

We now examine the general case. Recall that the winning plays are the
elements of s0V

∗⊥V ω, and s0V
∗wV ∗s0V

ω (for w a branch of the test pur-
pose). The strategy is constructed by combining simpler strategies like the
one defined in the previous section. As we will use two of them, we will
add an argument to the sets Wj

i (the goal to reach). We split the game in
three parts corresponding to the test preamble, the test body and the test
postamble of a test case execution.

1. test preamble: starting from the initial state of the game, the goal is
to reach the initial state tp0 of the test purpose.

2. test body: once tp0 has been reached, the strategy of Black is to stay
in the test purpose or if Red chooses to leave the test purpose, the
strategy will be to return to tp0.

3. test postamble: once one leaf of the test purpose has been reached,
the strategy for Black is to come back to the initial state s0.

More precisely, the strategy is defined by a directed graph G = (Q, E),
where:

• Q = V × {preamble, test body, postamble, end}.

• E is defined by the following edges.

– For black nodes q ∈ VB, q′ ∈ V and (q, q′) ∈ E:

∗ (q, preamble) → (q′, preamble) if q ∈ Wj
i (tp0), q′ ∈ Wj

i−1(tp0),
and q′ 6= tp0

(q, preamble) → (tp0, test body) if (q, tp0) ∈ E

∗ (q, test body) → (q′, test body) if (q, q′) is an edge of the test
purpose TP

(q, test body) → (q′, postamble) if q′ is a leaf of TP

∗ (q, postamble) → (q′, postamble) if q ∈ Wj
i (s0), q′ ∈ Wj

i−1(s0)

(q, postamble) →

{

(s0, preamble)

(s0, end)
if (q, s0) ∈ E

– For red nodes q ∈ VR and (q, q′) ∈ E:

13



∗ (q, preamble) → (q′, preamble)
(q, preamble) → (tp0, test body) if (q, tp0) ∈ E

∗ (q, test body) → (q′, test body)
(q, test body) → (q′, postamble) if q′ is a leaf of the test pur-
pose.
(q, test body) → (q′, preamble) if ∃q′′.(q, q′′) ∈ TP

∗ (q, postamble) → (q′, postamble)

(q, postamble) →

{

(s0, preamble)

(s0, end)
if (q, s0) ∈ E

∗
(q, preamble)
(q, test body)
(q, postamble)







→ (⊥, end)

This strategy defines the tester for the associated test purpose. We complete
it into an IOSM by adding labels to the edges corresponding to the ones of
the specification (edges leading to ⊥ correspond to all the outputs, which are
not yet used at one vertice). In section 5, we will study correctness notions
w.r.t. implementation relations for this tester.

Example 4 Figure 5 shows a tester for the specification of Example 1, the
test purpose ?a!c?f !h (this sequence of actions defines the branch of the test
purpose) and the implementation relation R5. Note the nondeterminism (in
the automata sense this time) in states 2, 4, and 5. This is for convenience:
in order to emit a verdict and because of the nondeterminism, we will have
to carry out the same test several9 times. After having executed a sufficient
number of times this test, we can stop the experiment and emit a verdict. So,
the nondeterministic choice in state 5 is resolved by first returning to node 1
several times and then stopping on the second node 1. The nondeterministic
choice in 2 (resp. 4) is resolved by first going back to 1 (resp. 3 ) and then
to stop on ⊥ with a fail verdict. This nondeterminism can be suppressed
by unfolding the graph for example (the other solution would be to add
counters).

4 Complexity issues

In this section, we will examine some complexity aspects in terms of the
size of the strategy and in terms of the running time of the test execution
(duration of a play) with the number of states as the parameter.

9“Several” will be discussed in section 5.
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Figure 5 a tester
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Proposition 2 The size of the tester, defined by the winning strategy G =
(Q, E) for the testing game, is linear in the size of the game and it takes a

linear time to construct it.

Proof By construction:

1. The strategy is made of reachability strategies defined in Section 3.1.
Each reachability strategy being a subgraph of the initial game graph,
the size of the final strategy is also linear.

2. Each reachability strategy is made in at most n steps: as the con-
structed sets of Section 3.1 form a partition of the set of states, there
are less steps than states. The time for constructing the strategy is
also linear.

This matches the complexity of [7]. Note that this must not be seen as a good
complexity for practical applications as the “state space explosion” problem
has been abstracted (we claim however, that this method is compatible with
orthogonal methods to reduce the state space explosion).

Proposition 3 Let f : N → N be a function from naturals to naturals.

There exist a reachability game and a fair strategy for Red such that the

length of a play is more than
∏n

i=1 f(i) where n is the size of the game.
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Proof The game is a reachability game defined by: VB = b0, . . . bn+1, VR =
r1, . . . , rn, E = {bi, ri | i ∈ [0, n]} ∪ {(ri, bi+1) | i ∈ [0, n]} ∪ {(ri, b0) | i ∈
[0, n]}. (see Figure 6) The winning plays are in b0V

∗bn+1V
ω (the length is

taken until the token arrived in bn+1. The strategy for Red in ri is to play
successively f(i) times b0 then bi+1.

Figure 6 game of the proof
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b1

bn

bn+1

r0

r1
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This example shows that the length of the test execution although being
finite can be arbitrary long. The duration comes from the number l as de-
fined in the sets defining the strategy for the reachability game in Section
3.1. The number is a measure of the degree of nondeterminism of the speci-
fication with respect to a given test purpose. For l = 1 the running time is
linear. This complexity coming from the nondeterminism of a specification
is often implicit in other test generation methods like [7] where testers are
trees instead of automata: one has to apply several time the same test in
order to get a non-inconclusive verdict. We showed here that this can be an
arbitrary big number of times without any further hypotheses on the imple-
mentation. In the next section, we will study some hypotheses, which reduce
the duration of a play.
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5 Properties of generated testers

Having reasoned only in terms of games in the previous sections, we now
switch back to testing for studying properties of the generated testers. For
this, we recall some material from the FMCT concerning the execution of
test.

Here, test execution consists of running the tester in combination with
the implementation. During this run observations can be made and verdicts

can be emitted. Test execution is modelled by parallel execution of the tester
and the implementation. The observations that can be made are the traces
of this product. Observations of interest are:

• the state ⊥ of the tester has been reached. We can immediatly conclude
with a fail verdict expressing non-conformance;

• starting from s0, we went through the test purpose and went back to
s0. We are tempted to emit a pass verdict meaning that the imple-
mentation passes the test purpose. Nevertheless, as we are dealing
with nondeterminism, this execution could also have led to emit a fail
verdict. So we delay the emission of a pass verdict until we are suffi-
ciently confident that no fail verdict could have been emitted (this is
the bounded fairness hypothesis);

• being in the test purpose, we observe a trace, which is allowed by the
specification, but which is not part of the test purpose. Often, at that
stage, an inconclusive verdict is emitted. Here we continue the test
execution trying to reach again the point to observe the desired action.

For the proofs, we will use notation from process algebra. To each IOSM,
we associate a term of a process algebra written in lowercase letters (we
refer the reader to [32] for full notation). ‖ denotes parallel execution:
a ∈ {?, !} × L, t1

a
−→ t′1, t2

a
−→ t′2 ⊢ t1‖t2

a
−→ t′1‖t

′
2.

Because of the hypotheses of input-enableness (an implementation always
accept inputs from environment, a tester always accepts outputs from imple-
mentation), and deadlock observation (deadlocks of the implementation are
supposed to be observable as a normal output), the parallel execution of the
tester and the implementation model deadlocks only on ⊥ or s0.

5.1 Soundness

Soundness, as defined in FMCT, means that if an implementation is rejected
by means of testing then it is not conform to the specification. An imple-
mentation is reject by the tester, if it reaches the state ⊥.
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Proposition 4 (soundness) Let S, I,TP , TTP be respectively a specifica-

tion, an implementation model, a test purpose and the tester associated with

the specification S and the test purpose TP; then TTP is sound, ie if the

parallel product of TTP and I deadlocks on ⊥, then I is not conform to S:

∃σ ∈ V + : (tTP‖i
σ
−→⊥‖i′) ⇒ (I, S) /∈ R5.

Proof Suppose tTP‖i
σ
−→⊥‖i′. Let σ′ be the minimal (with respect to prefix

ordering) word such that tTP‖i
σ
−→⊥‖i′, and a ∈ V be such that σ′ = σ′′.!a.

By construction of the game and the minimality of σ′, σ′′ belongs to Tr(S),
and by definition of ‖ it belongs also to Tr(I) (σ′′.!a, as well). By definition
of ⊥ in the game, σ′′.!a does not belong to Tr(S). We have proved that
O(σ′′, I) 6⊆ O(σ′′, S).

5.2 Fairness hypotheses

A problem due to the black-box nature of testing and nondeterminism of im-
plementations is to know whether or not we observed all the possible outputs
of an implementation after a given set of actions.

Take the example of Figure 7. The tester wants to observe the trace

Figure 7 Fairness hypotheses
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specificationimplementation 3

implementation 2

implementation 1

⊥
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!b ?a !c !d
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!b ?a

!b !c?a

?a!c. If it observes (?a!b)∗ when running in parallel with one of the imple-
mentations, it could be the case that it is the first implementation or the
second one which only delayed the emission of !c. Having observed the trace
(?a(!b|!c))∗, it is possible that the implementation 3 delayed the emission of
!d or that it is the implementation 2. Two notions of fairness hypotheses for
the implementations will be used in the proof of the next section:

• fairness: as in the fair plays we used for games, it states that if the
second implementation is running in parallel with the tester then !c will
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eventually be observed. Fairness discriminates between implementation
1 and 2.

• bounded fairness: there exists an a priori known n depending on the
length of the trace to be observed such that having observed (?a(!b|!c))n,
we will not observe !d afterwards. Bounded fairness discriminates be-
tween implementation 2 and 3.

The definition follows from these examples (� is the sub-word relation):

Definition 7 (fairness hypotheses) The following hypotheses can be made
about the implementation models:

• Fairness: we make a fairness hypothesis on an implementation model
I, if we suppose that being repetitively able to send an output to the
environment, it will eventually send it.

∀σ ∈ Tr(I) ∩ Tr(S) : ∀a ∈ O(σ, I) : ∃n ∈ N

(∃t : ∃ω = ω1, . . . , ωn : t‖i
ω
−→ t′‖i′ ∧ ω = ω1 . . . ωn ∧

∧

i

σ � ωi) ⇒ ∃i : σ!a� ωj.

• Bounded fairness: We make a bounded fairness hypothesis on I if we
suppose that all the outputs it can send at one state can be observed
in a fixed time (or equivalently that it can be detected that I cannot
send an output).

∀σ ∈ Tr(I) ∩ Tr(S) : ∃n ∈ N : ∀a ∈ O(σ, S) :
(

∃t : ∃ω = ω1, . . . , ωn : (t‖i
ω
−→ t′‖i′ ∧

∧

i

(σ � ωi ∧ σ!a ⋪ ωi)
)

⇒ σ!a /∈ Tr(I).

5.3 Exhaustivity

Exhaustivity, as defined in FMCT, means that if an implementation passes a
test suite, it is conform to the specification. This is never achieved in practice
because this would generally mean executing an infinite number of test cases
(a non-bounded number of times as seen before). The property we prove here
is less general. We prove that it is always possible to detect a non-conforming
implementation provided one properly chooses the test purpose. In practice,
this gives the limit of the automation of test generation: an algorithm based
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on the selection of testers by test purposes relies on the correct choice of
these test purposes. The choice of the test purposes depends on a human
test expert.

Proposition 5 (exhaustivity) Let S and I be respectively a specification

and an implementation model. If I satisfies a bounded fairness hypothesis,

then

(I, S) /∈ R5 ⇒ ∃TP∃σ ∈ V + : tTP‖i
σ
−→⊥‖i′.

Proof Suppose (I, S) /∈ R5. Two cases are possible.

1. O(σ, I) 6⊆ O(σ, S). In this case, there exists an a in L such that, for
some σ, σ.!a belongs to the traces of I but not the traces of of S. Let
T be the tester associated with S and the test purpose σ.
Let r be such that t

σ
−→ r by construction of the tester. There ex-

ists σ0 such that t‖i
σ0−−→ r‖i0 and σ1 such that t‖i

σ0σ1−−−→ t‖i1. By ap-
plying the same construction again we construct a sequence which
passes through r as often as needed. By fairness hypothesis, as the
implementation can make the transition !a, there exists n such that

t‖i
σ0...σ2n−−−−−→ r‖i2n

!a
−→⊥‖i2n+1.

2. O(σ, S) 6⊆ O(σ, I). In this case, there exists an a in L such that σ!a
belongs to the trace of S but not to the traces of of I. Let T the tester
associated with S and the test purpose σ!a. Furthermore, we use the
n of the bounded fairness hypothesis for the tester. At each choice
point, where the implementation can choose to leave the test purpose,
we allow only n tries, then we go to ⊥. If after n tries, the parallel
product did not deadlock on ⊥, we stop on the next step through s0

with a pass verdict.
As the parallel product deadlocks only on ⊥ or s0, and will eventually
always deadlock, it will deadlock on ⊥.

6 Related work and conclusions

We have presented a new test generation algorithm for conformance testing.
The test generating algorithm, which is the closest to ours is the one of [7, 8].
Although they come from different domains (the algorithm of [7] comes from
the verification domain and on-the-fly algorithms, and ours comes from game
theory), both are basically graph algorithms. Our test generation algorithm
can be seen as an extension of the algorithm from [7] with respect to the
correction of several aspects:
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• Suppression of the inconclusive verdict: in [7], it is implicit that a test
should be reexecuted when it leads to an inconclusive verdict. In our
approach, reexecution of the test is explicitly coded into the tester.
This, however, could lead to a tester which is not executable10, so a
(reasonable) fairness hypothesis on the implementation models ensures
termination of the test execution (stronger hypotheses can shorten in
practice the length of test execution). Reexecution of test cases also
implicitly needs the existence of a well implemented reset. We took
a less restrictive hypothesis, namely connectivity of the specification.
This leads to shorter tests as going back to the initial state is not
always the shortest path to reach again a given state. This is especially
important when dealing with nondeterminism (in the testing sense) as
the path we take is the one with the less nondeterministic choice points
for the implementation, and, as we have seen, this nondeterminism can
arbitrarily lengthen the duration of test execution.

• Emission of verdicts: in [7] two applications of the same tester may
produce different verdicts. Under the fairness hypotheses, our testers
cannot emit a pass and fail verdict for the same tester. This is also to
be related with the definition of pass in [32]: a pass verdict is emitted if
all the possible executions of a test lead to a pass verdict. This cannot
be checked in practice. The explicit use of fairness hypotheses reduces
these executions to a finite number.

• Stronger conformance relation: the conformance relation in [7] is based
on inclusion, whereas ours is based on equality of allowed outputs. This
is again due to the fairness hypotheses. It has been proved in [23]11 that
it is the strongest implementation that can be checked by testing (in-
tuitively, one can only observe traces of the black-box implementation,
so the best we can do is to check trace equivalence).

These extensions rely on fairness hypotheses. One can argue whether these
are “reasonable” hypotheses, but making them explicit offers the advantage
of knowing under which assumptions an implementation viewed as a black-
box can be declared practically “conform” to a specification. Any correctness
method relies on hypotheses, even verification, which rely on the appropri-
ateness between formal model and actual implementation. This hypothesis
is often implicit and has led to misunderstandings [11]12. In using explicitly

10Because the tester has infinite branches, it would be possible that it does not emit a
verdict in finite time

11also [24] p.34 and p.42
12“Myth 1 - Formal Methods can guarantee that software is perfect.”
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test hypotheses, we follow the views of [2, 24].
Another aspect of our method is the use of game theory for testing, which

to our knowledge has not been presented before for conformance testing
(though [1] used game theory to study the complexity of the test related
problem of producing distinguishing sequences for Mealy machines). The
basic idea is to reformulate the game view of the synthesis problem of [21]
for conformance testing. At a first glance, it could be objected that com-
plexity of strategies construction make any approach based on game theory
unrealistic for practical application. Nevertheless, as the obtained games
are situated low in the Borel hierarchy [29] this leads to strategies which
can be efficiently constructed. Furthermore the careful complexity analysis
performed in [17, 20] reveals that particular cases can have reasonable com-
plexity for practical application. This is the case here, because we do not
need winning plays situated higher in the hierarchy..

It is our opinion that this game-theoretic view could be useful, because
it establishes a link between verification and testing. It has already been
advocated several times, from testing and verification community, that veri-
fication and testing should be brought closer. We tried to demonstrate here
that game theory is a unifying theory for both domains by using it for con-
formance testing (see [27, 25] for the verification side). This could lead to
a better understanding of testing problems as well as techniques for solving
them.

References
[1] Rajeev Alur, Costas Courcoubetis, and Mi-

halis Yannakakis. Distinguishing tests for non-
deterministic and probabilistic machines. In
Proceedings of the 27th ACM Symposium on
Theory of Computing, pages 363–372, 1995.

[2] Gilles Bernot. Testing against formal spec-
ifications: a theoritical view. In TAP-
SOFT’91 Proceedings of the International
Conference on Theory and Practice of Soft-
ware Development. Advances in Distributed
Computing (ADC) and Colloquium on Com-
puting Paradigms for Software Development
(CCPSD), volume 494 of Lecture Notes in
Computer Science, pages 99–119, Brighton,
UK, April 1991. Springer.

[3] Ana R. Cavalli, Jean-Philippe Favreau, and
Marc Phalippou. Standardization of formal
methods in conformance testing of commu-
nication protocols. Computer Network and
ISDN Systems, 29:3–14, 1996.

[4] CCITT. Specification and description lan-
guage (SDL). Recommandation Z.100, 1988.

[5] R. Devillers. Game interpretation of the dead-
lock avoidance problem. Communications of
the ACM, 20(10):741–745, 1977.

[6] Jean-Claude Fernandez, Jard Claude, Thierry
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