
'$�

�

'$

�

��

I N F O R M A T I K

 	

� �

The Undecidability of the

First-Order Theories of One Step

Rewriting in Linear Canonical

Systems

Sergei Vorobyov

MPI{I{98{2{009 May 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany

Author's Address

Sergei Vorobyov: Max-Planck Institut f�ur Informatik, Im Stadt-

wald, D-66123, Saarbr�ucken, Germany, sv@mpi-sb.mpg.de,

http://www.mpi-sb.mpg.de/~sv.

Publication Notes

Submitted to a journal publication. Results of this paper appeared in numer-

ous drafts (1995{1998), and a preliminary version (with completely di�erent

reduction and proofs) was published in the Proceedings of the 8th Interna-

tional Conference on Rewriting Techniques and Applications (RTA'97), June

2{4, 1997, Sitges (Barcelona), Spain, Lecture Notes in Computer Science, vol.

1232, pp. 254-268.

(Publication date: May 28, 1998.)

Acknowledgements

Many thanks to Harald Ganzinger, Uwe Waldmann, anonymous RTA'96 and

RTA'97 referees for numerous useful suggestions, ideas, remarks, discussions,

and encouragement.

Abstract

By reduction from the halting problem for Minsky's two-register machines we

prove that there is no algorithm capable of deciding the 9888-theory of one

step rewriting of an arbitrary �nite linear conuent �nitely terminating term

rewriting system (weak undecidability). We also present a �xed such system

with undecidable 98

�

-theory of one step rewriting (strong undecidability).

This improves over all previously known results of the same kind.

Keywords

Term rewriting system, conuence, linearity, �nite termination, �rst-order

theory of one step rewriting, decidability, Minsky's two-register machines,

halting problem.

Contents

1 Introduction 3

2 Preliminaries 7

3 Theory of One Step Rewriting 7

4 Theories of One Step Rewriting with Restrictions on Quan-

ti�er Pre�xes 8

5 Weak vs. Strong Undecidability Results 9

6 Outline of the Paper 11

7 Minsky's Two-Register Machine 13

8 Reduction: Proof Idea 15

9 Sentence Expressing Halting 16

10 How to Translate Machine Commands? 17

11 Signature and Notational Conventions 18

12 Translating Commands into Rewrite Rules 20

12.1 Auxiliary (+) Rule . 20

12.2 Shortcut Rules (.

1;2

) . 20

12.3 Addition Commands . 22

12.3.1 Left Addition Command 22

12.3.2 Example of a Correct Register Operation 23

12.3.3 Example of an Incorrect Register Operation 23

12.3.4 Right Addition Command 24

12.4 Subtraction Commands . 24

12.4.1 Left Subtraction . 24

12.4.2 Right Subtraction . 24

12.5 Checking Correctness of Register Manipulation 26

13 Quasi-Correct Runs 27

14 Determining Quasi-Correct Runs 30

1

15 Rewrite Rules to Check Quasi-Correctness 31

15.1 Rules for Structural Constraints 31

15.2 Rules for Boundary Constraints 32

15.3 Rules for Control Flow Constraints 32

16 Excluding Degenerate Cases 34

16.1 Excluding a, b, d . 34

16.2 Excluding ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i 34

16.3 Excluding a One Element List 35

17 All Important Formulas 37

18 All Rewrite Rules 38

19 The Correctness Theorem 42

19.1 Proof of Linearity . 42

19.2 Proof of Finite Termination 42

19.3 Proof of Conuence . 43

19.4 Proof of (4a)) (4b) . 44

19.5 Proof of (4b)) (4a) . 47

20 Right-Ground Systems 49

21 Strong Undecidability: Fixed Systems with Undecidable 98

�

-

Theories 50

21.1 Changes to the Rewrite System 51

21.2 Saying that a Run Starts with hn; n; 1i 51

21.3 Excluding a, b, d . 54

21.4 Excluding ", s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i 54

22 Strong Undecidability of the 9888-Theories When Function

Symbols are Allowed 56

23 Conclusions 57

2

1 Introduction

A �nite term rewriting system R generates the binary one step reducibility

relation R on the set of ground terms. A theory of one step rewriting in R is

the �rst-order theory of this binary relation R formulated in the language of

the predicate calculus without equality containing the unique binary predicate

symbol R interpreted as R. The problem whether �rst-order theories of

one step rewriting in �nite systems are decidable was suggested by (Caron,

Coquid�e & Dauchet 1993, p. 331), and repeated in the Rewriting Techniques

and Applications (RTA) lists of open problems (Dershowitz, Jouannaud &

Klop 1993, p. 473), (Dershowitz, Jouannaud & Klop 1995, p. 461).

The motivation for the problem is quite natural. For example, the ground

reducibility of a term t(x) and the strong conuence of a system are ex-

pressible by the formulas 8x9yR(t(x); y) and 8x; y; z9w(R(x; y)^R(x; z))

R(y; w) ^ R(z; w)), respectively. Note that both properties are known to

be decidable. Similarly, the decidability of properties like encompassment,

known to be decidable due to (Caron et al. 1993, Dauchet, Caron & Co-

quid�e 1995), would follow from the general decidability of theories of one

step rewriting. Recall also that the �rst-order theories of one step rewriting

in �nite ground systems are decidable (Dauchet & Tison 1990). On the other

hand, the transitive closure of the one step reducibility relation seems to be

inexpressible in the theories of one step rewriting (the opposite would im-

mediately lead to their undecidability). All these facts motivated the quest

for the solution to the above problem and for the general decision procedure

applicable to all rewrite systems. This would have allowed to decide all prop-

erties of rewrite systems, like discussed above, expressible in the language of

one step rewriting uniformly.

Unfortunately, the problem was settled in the negative (undecidable).

(Treinen 1996) demonstrated, by reduction from the Post Correspondence

Problem, that there is no general algorithm capable of deciding the 9

�

8

�

-

theory of an arbitrary term rewriting system. This result, however, does not

imply the existence of any �xed rewrite systems with undecidable theories.

Moreover, each particular rewrite system has a decidable theory fragment

(Treinen 1996) used the proof; see Section 5 for details. On the other hand,

(Vorobyov 1995) presented a simple �xed rewrite rule system with undecid-

able theory of one-step rewriting, by using a reduction from the undecidable

theory of binary concatenation (free semigroup) (Quine 1946). We therefore

distinguish between the weak undecidability, i.e., non-existence of a general

algorithm applicable to all systems uniformly, and strong undecidability, i.e.,

undecidability of the theories of �xed systems.

It should be noted that both (Treinen 1996) and (Vorobyov 1995) con-

3

structed non-�nitely terminating and non-linear

1

rewrite rules

2

. Moreover,

(Treinen 1996) directly used the rules of the form t ! t, one hardly ever

encounters in practice. This somehow diminished the practical relevance of

the obtained results, and left a strong hope that the theories of one step

rewriting should be decidable for �nitely terminating systems.

In these circumstances H. Ganzinger at RTA'96 (New Brunswick, NJ)

suggested a problem as to whether �nite �nitely terminating systems have

(un)decidable theories of one step rewriting. Recall in this connection that the

conuence is undecidable, in general, but becomes decidable for �nite �nitely

terminating systems. The similar decidability problem was put forward for

the subclass of linear systems.

The decidability conjecture was �rst dispelled in (Vorobyov 1997), where

a �xed �nite, simultaneously �nitely terminating and linear system with un-

decidable theory of one step rewriting was constructed. The proof again was

given by reduction from the theory of binary concatenation (�nitely gener-

ated free semigroups), well known to be undecidable (Quine 1946). As a

practical drawback compensating for the ease of reduction, the quanti�er

alternation of the sentences forming the undecidable class was quite high.

Then (Marcinkowski 1997) showed that no algorithm is capable of deciding

the 9

�

8

�

-theory of one step rewriting of an arbitrary �nite �nitely terminat-

ing system (again without implying undecidability for any �xed systems; see

Section 5). (Marcinkowski 1997) also proved a similar result for terminating

right-ground but non-linear systems.

In this paper we further improve and sharpen the above undecidability

results by showing that no decision algorithm can decide the 9888-theory

of any given �nite, simultaneously 1) �nitely terminating, 2) linear, and 3)

conuent rewrite system. All the preceding proofs constructed non-conuent

systems. For comparison, (Marcinkowski 1997) proved an analogous result

for non-conuent terminating systems and 9988888-theories, and (Treinen

1996) for divergent non-conuent systems.

We also construct a �xed �nite linear canonical system with undecidable

98

�

-theory of one step rewriting (strong undecidability). Recall that the weak

undecidability results of (Treinen 1996, Marcinkowski 1997) do not imply ex-

istence of such systems (Section 5), whereas (Vorobyov 1995, Vorobyov 1997)

used much more complicated quanti�er pre�xes and non-conuent systems.

As a methodological advantage of the proof presented here let us mention

the use of reduction from the well-known undecidable halting problem for the

1

i.e., containing repeated variable occurrences on the left (or right) hand side

2

Later this was improved to linear shallow systems (Seynhaeve, Tommasi & Treinen

1997), but still non-terminating with rules t! t.

4

two-counter machines (Minsky 1961, Minsky 1967, Lewis 1979). Note that

(Marcinkowski 1997) used a rather complicated home-made undecidability

problem in his proof (the details has not yet been published).

The main results of the paper are summarized in the following

Main Theorem.

(Part A: Weak Undecidability). There is no general algorithm decid-

ing the 9888-theory of one step rewriting for every given �nite linear

canonical system.

(Part B: Strong Undecidability). There exists a �nite linear canonical

rewrite system (explicitly presented) with undecidable (r.e.-complete)

98

�

-theory of one step rewriting. 2

Note that Part A refers to a uniform algorithm that �rst reads a system R

as a parameter, and then tries to decide its theory Th

9888

(R).

We call Part A Weak Undecidability for three reasons:

1. it has logical form :9A8R, weaker compared with 9R8A: of strong

undecidability,

2. it does not imply strong undecidability (see Section 5),

3. for every �nite term rewriting system and for every �nite quanti�er pre-

�x like 9888,998, 9988888 (but not for 98

�

, which denotes an in�nite

set of quanti�er pre�xes) the corresponding theory of one step rewriting

with this �nite pre�x is always decidable (see Section 5). This, some-

how, diminishes the practical value of Treinen-Marcinkowski's results.

Indeed, one almost never deals with all rewrite systems altogether, but

rather with one �xed given system at a time. But for any �xed system

and any �nite quanti�er pre�x Q, the Q-theory of the system is always

decidable. Thus weak undecidability is practically immaterial.

Outline. The paper is organized as follows. After preliminaries in Sec-

tions 2 { 4, in Section 5 we discuss and relate weak and strong undecidability.

Section 7 introduces Minsky's two register machines, and Section 8 describes

the idea of reduction from the halting problem for these machines, which

we employ in the proof. Sections 9 { 16 implement the reduction. Sections

17 { 18 summarize all rewrite rules and formulas constructed. Section 19

is devoted to the correctness proof. Section 20 proves undecidability of the

5

9888-theories for �nite right-ground canonical systems, which improves (sim-

pler pre�x, conuent systems) over (Marcinkowski 1997). In Section 21 we

prove strong undecidability for 98

�

-theories of �xed linear canonical systems.

Finally, in Section 22 we show strong undecidability for 9888-theories, when

function symbols are allowed in formulas. We conclude in Section 23.

6

2 Preliminaries

We suppose familiar and use throughout the standard basic notions of term

rewriting; see, e.g., (Huet & Oppen 1980, Dershowitz & Jouannaud 1990).

Speci�cally, by r[t] we denote a term r containing a distinguished occurrence

of a subterm t. By r[s=t] we denote the result of replacing this distinguished

occurrence with term s. We freely speak about reducibility in the outermost

and inner positions, etc. We also expect some knowledge of �nite termination

and the Knuth-Bendix critical pairs algorithm; see, e.g., (Knuth & Bendix

1970, Huet & Oppen 1980, Dershowitz & Jouannaud 1990).

A rewrite system is canonical if it is simultaneously �nitely terminating

and conuent. A system is linear if each term in its left- and right-hand sides

is linear, i.e., contains at most one occurrence of every variable.

In writing predicate formulas we omit parentheses assuming the usual

priority precedence of boolean connectives: :, ^, _,).

3 Theory of One Step Rewriting

Given a functional signature � with constants and a �nite rewrite rule system

R, consider the rewrite model M = hT (�);Ri induced by R, where T (�) is

the Herbrand universe over � and the relation

R = fhs; ti j s; t 2 T (�) ^ s!

R

tg � T (�)� T (�)

is the one step rewrite relation on T (�) generated by the system R.

Let L be the �rst-order language without equality containing the only

binary predicate symbol R. The �rst-order theory of one step rewriting in

R is the set of sentences of L true in the rewrite model M , when the binary

predicate symbol R is interpreted as the binary relation R. This theory is

denoted Th(R).

Remark 3.1 It is important to note that the only non-logical symbol used

in formulas of the theory is R, and the functional symbols of signature � are

not allowed in formulas

3

. Sometimes instead of strict notation R(x; y) for

atomic formulas of the theory we use more familiar and intuitive notation

x! y (not to be confused with rewrite rules). 2

Remark 3.2 One can easily construct an in�nite system with the unde-

cidable existential theory of one step rewriting, with just a few existential

quanti�ers. It su�ces to represent the addition and multiplication tables by

3

We will relax this restriction in Section 22

7

rewrite rules and use Matiyasevich's result on undecidability of Diophantine

equations with a few variables. 2

4 Theories of One Step Rewriting with Re-

strictions on Quanti�er Pre�xes

It is well known that each �rst-order sentence is equivalent to a sentence in

the prenex form

Q

1

x

1

: : : Q

n

x

n

�;

where Q

i

2 f9; 8g are quanti�ers and � is a quanti�er-free formula.

A quanti�er pre�x type is a regular expression over the alphabet f9; 8g,

for example, 988, 9

�

8

�

, 98 [89. Given a quanti�er pre�x type Q, let L(Q)

be the language de�ned by the regular expression Q according to the usual

rules. This language may be �nite, as in the case of Q = 9888 (one element),

or in�nite, as in the case of Q = 9

�

8

�

.

For a given quanti�er pre�x type Q, the Q-theory of one step rewriting in

R is a subset of Th(R) consisting of prenex sentences with quanti�er pre�xes

in L(Q). This theory is denoted by Th

Q

(R).

In the �rst part of this paper we will prove weak undecidability of 9888-

theories of one step rewriting in linear canonical systems. For comparison,

(Marcinkowski 1997) proved weak undecidability of 9988888-theories for

linear terminating non-conuent systems, and (Treinen 1996) proved weak

undecidability of 998-theories of one step rewriting in non-terminating non-

linear systems. In the second part of the paper, in Section 21, we prove

strong undecidability of the 98

�

-theory of a particular system.

8

5 Weak vs. Strong Undecidability Results

The results of (Treinen 1996, Marcinkowski 1997, Vorobyov 1997) are often

misinterpreted or misunderstood, and some clari�cation is necessary.

Let us �rst recall the statement of the problem, as given in the RTA'93,

RTA'95 lists of open problems; see (Dershowitz et al. 1993, Dershowitz et al.

1995).

Problem 51 (RTA'93, RTA'95). For an arbitrary �nite term

rewriting system R, is the �rst-order theory of one-step rewriting

!

R

decidable? ... 2

This informal statement allows for at least two di�erent interpretations, de-

pending on the order of quanti�cation (note that :(2)) :(1)):

Problem 51 (Formalized). Prove or disprove that:

9 an algorithm A 8 system R (A decides Th(R)); (1)

8 system R 9 an algorithm A (A decides Th(R)): (2)

(Treinen 1996, Marcinkowski 1997) disproved (1) by showing

(Weak Undecidability) There is no general algorithm that given a �nite

term rewriting system R decides its theory Th(R) of one step rewriting.

Even stronger, here is no general algorithm that:

1. given a �nite (but otherwise unrestricted) rewrite system R decides

its 998-theory of one step rewriting Th

998

(R), (Treinen 1996);

2. given a �nite linear �nitely terminating system R decides its

9988888-theory of one step rewriting Th

9988888

(R), (Marcinkowski

1997). 2

This settles Problem 51 in the form (1) in the negative.

However, it might happen (see below) that simultaneously one has

(Non-Uniform Decidability) For each �nite rewrite rule system R

i

the

corresponding �rst-order theory Th(R

i

) of one step rewriting is decid-

able by some (non-uniform) algorithm A

i

.

And in this latter case one should admit that Problem 51 is settled in the

positive, because it corresponds more exactly (at least from the author's point

of view) to what is asked for in the statement of Problem 51.

9

Although the results of (Vorobyov 1995, Vorobyov 1997), exclude non-

uniform decidability by disproving (2), the results of (Treinen 1996) and

(Marcinkowski 1997) do not exclude it. This follows from the fact that both

authors use only �nite quanti�er pre�xes and from the next easy

Proposition 5.1 For every �nite rewrite rule system its

1. 998-theory of one step rewriting,

2. 9988888-theory of one step rewriting,

3. Q

1

: : : Q

n

-theory of one step rewriting, where Q

1

: : : Q

n

is an arbitrary

�nite sequence of quanti�ers,

4. Q-theory of one step rewriting, where the quanti�er pre�x type Q de-

scribes a �nite regular language L(Q),

are decidable.

Proof. Given a �nite quanti�er pre�x Q

1

: : : Q

n

, the language L of the

theory of one-step rewriting has (see Section 3):

1. only �nitely many di�erent atoms with variables in fx

1

; : : : ; x

n

g (since

there are no function symbols in L);

2. only �nitely many literals and non-equivalent quanti�er-free boolean

formulas with variables in fx

1

; : : : ; x

n

g;

3. consequently, only �nitely many non-equivalent sentences with quanti-

�er pre�x Q

1

: : : Q

n

.

Therefore, theQ

1

: : : Q

n

-theory contains only �nitely many equivalence classes

of sentences and consequently is decidable, because every �nite set is always

decidable. 2

Remark 5.2 Here we accept the usual classical extensional notions of algo-

rithm and decidability; see, e.g., (Rogers 1967). In proving decidability we

just need to prove the existence of an algorithm, and do not have to present

any. The set X de�ned by: X = f1g if Riemann's hypothesis is true and

X = f0g if it is false, is decidable. Although, currently no decision algo-

rithms are known (it is generally believed that if x = 1 then true else

false is a correct decision algorithm for the set X).

We expect that given a �nite rewrite rule system R

i

and a pre�x Q

1

: : : Q

n

the corresponding individual decision algorithm for the decidable Q

1

: : : Q

n

-

theory of this system should be quite sophisticated, but it always exists. Of

10

course, we cannot collect all such algorithms (parameterized by a system) in

just one generic algorithm, because this would contradict the (Weak Unde-

cidability) proved by (Treinen 1996, Marcinkowski 1997). 2

On the other hand, (Vorobyov 1995, Vorobyov 1997) showed

(Strong Undecidability) There exist �nite term rewriting systems with

undecidable theories of one step rewriting. 2

This settles Problem 51 in the form (2) in the negative.

Note that in view of Proposition 5.1 we have the following:

Corollary 5.3 Any undecidable theory of one step rewriting should have

an in�nite quanti�er pre�x type. Consequently, the results of (Treinen 1996,

Marcinkowski 1997) on weak undecidability (both use only �nite quanti�er

pre�xes) do not imply strong undecidability. 2

6 Outline of the Paper

In the �rst part of the paper (until Section 21) we improve the result of

(Marcinkowski 1997) on weak undecidability by proving

Theorem A (Weak Undecidability of 9888-Theories for Linear Ca-

nonical Systems). There is no general decision algorithm that given

a �nite linear canonical term rewriting system decides its 9888-theory

of one step rewriting. 2

For comparison, (Marcinkowski 1997) proved weak undecidability of the

9988888-theories, for linear terminating non-conuent systems. Hence our

result gives an improvement both in terms of a simpler pre�x and a more

restrictive class of rewrite rules.

Theorem A establishes the strongest currently known weak undecidability

result for the theories of one step rewriting in Noetherian systems.

In the second part of the paper (Section 21) we improve the results of

(Vorobyov 1995, Vorobyov 1997) on strong undecidability by proving

Theorem B (Strong Undecidability of 98

�

-Theories for Linear Ca-

nonical Systems). There exists (and can be explicitly presented) a �-

nite linear canonical term rewriting system with undecidable 98

�

-theory

of one step rewriting. 2

11

For comparison, (Treinen 1996) proved weak undecidability for 998-theories

in non-terminating, non-linear, non-conuent systems, and (Seynhaeve et al.

1997) proved weak undecidability for 998-theories in non-terminating (with

rules t! t) non-conuent but linear and shallow systems. Strong undecid-

ability proofs appeared only in (Vorobyov 1995, Vorobyov 1997)

12

7 Minsky's Two-Register Machine

Our undecidability proof is by reduction from the well-known halting problem

for the two-register machine (Minsky 1961, Minsky 1967, Lewis 1979). In the

de�nition below we make several simplifying technical assumptions discussed

later in Remark 7.3.

De�nition 7.1 (2RM) A two-register machine (2RM for short) is an au-

tomaton with a �nite program and two unbounded counters (called the left

and the right registers) capable of storing arbitrary natural numbers. A 2RM-

program P is a �nite list of consecutively labeled commands

1 : Command

1

; : : : ; p : Command

p

;

where p � 2 is the number of commands in P and each Command

i

is of one

of the following �ve kinds:

Halt. By executing this command the 2RM halts. We assume that the last

command in a program is always Halt , and this is the unique Halt

command in a program.

Add 1 to the Left Register. By executing the command i : AL the 2RM

increases the contents of the �rst (left) register by one, leaves the second

(right) register unchanged, and proceeds to the next command i+1. We

assume that the �rst command in a program is always 1 : AL.

Add 1 to the Right Register. By executing the command i : AR the 2RM

increases the contents of the second (right) register by one, leaves the

�rst (left) register unchanged, and proceeds to the next command i+1.

Subtract 1 from the Left Register. By executing the command i : SL; j

the 2RM does the following:

� if the contents of the �rst (left) register is positive, the 2RM de-

creases it by one, leaves the second (right) register unchanged, and

proceeds to the command labeled j, where 2 � j � p;

� otherwise, if the contents of the �rst (left) register is zero, the 2RM

leaves both registers unchanged and proceeds to the next command

i+ 1.

Subtract 1 from the Right Register. The execution of i : SR; j is anal-

ogous to those of i : SL; j, with the roles of the left and the right

registers interchanged. 2

13

The 2RM-halting problem is undecidable (Minsky 1961, Minsky 1967,

Lewis 1979). More precisely:

Theorem 7.2 (Inputless Version) It is undecidable, given a program P

for the 2RM, to say whether or not the machine halts when started with the

�rst instruction of P and both registers containing zeros. 2

We will also make use of a version of this theorem for the 2RM with input

(see Theorem 21.1) to prove strong decidability of the 98

�

-theories of one

step rewriting in Section 21.

We �nish this section by giving explanations concerning the technical

assumptions in De�nition 7.1.

Remark 7.3 1. We assume that the number p of commands in a 2RM

program is greater than one, since for the (unique) one-command pro-

gram 1 : Halt the halting problem is immediately decidable.

2. By always starting a program with 1 : AL; 2 : SL; 3 we may assume

that every program starts with 1 : AL and the control never returns

to command labeled 1. Indeed, given a program P we can write 1 :

AL; 2 : SL; 3 in front of it and then systematically change labels (by

adding 2 to each one) in P . The modi�ed program halts i� the initial

does. The role of these technical assumptions will become clear later,

in Sections 13, 19.5. 2

14

8 Reduction: Proof Idea

In the �rst part of the paper, until Section 21, we will:

1. present a �xed 9888-sentence (4), independent of a rewrite rule system,

and

2. show how, given a 2RM program P , to e�ectively construct a �nite

linear canonical system R

such that the sentence (4) below is true in the theory Th(R) of one step

rewriting in R if and only if the 2RM executing P halts after a �nite number

of steps.

Theorem 7.2 will immediately imply our

Main Theorem (Part A: Weak Undecidability). There is no general

algorithm deciding the 9888-theory of one step rewriting for every given �nite

linear canonical system. 2

Indeed, the opposite would have implied decidability of the halting prob-

lem from Theorem 7.2, thus yielding a contradiction.

Remark 8.1 Pay special attention to the order of quanti�ers in the state-

ment of the Main Theorem (Part A): there does not exist a universal algo-

rithm that given an arbitrary �nite linear canonical system would decide its

9888-theory of one step rewriting. Recall Proposition 5.1, which says that

for every �nite rewrite system its Q-theory of one step rewriting is decidable

whenever the regular language L(Q) generated by the quanti�er pre�x type

Q is �nite. 2

In Section 21 we will show how to obtain �xed explicit examples of �nite

linear canonical rewrite systems with undecidable 98

�

-theories of one step

rewriting. The 2RM will be modi�ed to accept inputs: in the initial state

both registers will contain a natural number n, the program P will be �xed,

but the 98

�

-sentences H

n

expressing halting of the 2RM with input n will

vary and form the undecidable theory. This will prove Part B of the Main

Theorem on strong undecidability.

15

9 Sentence Expressing Halting

A run of the 2RM executing a program P is a �nite sequence of instantaneous

descriptions (IDs) represented by triples of natural numbers

hx

0

; y

0

; z

0

i; : : : ; hx

m

; y

m

; z

m

i; (m � 1) (3)

where x

i

's are the left register contents, y

i

's are the right register contents,

z

i

's are command labels. The intuitive interpretation is that hx

i+1

; y

i+1

; z

i+1

i

is obtained from hx

i

; y

i

; z

i

i as a result of execution of the z

i

-th command of

P with the left- and right register contents equal x

i

and y

i

respectively, as

de�ned in Section 7. The initial ID hx

0

; y

0

; z

0

i is h0; 0; 1i and in the �nal

ID z

m

= p (recall that p is the number of commands in P). The formal

de�nition of a run is straightforward from De�nition 7.1 and we omit it here.

To prove Part A of the Main Theorem, we will write a �xed sentence,

independent of a program P , expressing that the 2RM executing P halts

starting in the initial ID h0; 0; 1i. This sentence will be written in the form

H �

df

9r

�

C

1

(r) ^ C

2

(r) ^ C

3

(r) ^ E(r)

�

; (4)

where C

1;2;3

(r) and E(r) are formally de�ned below in such a way that:

� 9r says `there exists a run r',

� C

1

(r) ^ C

2

(r) ^ C

3

(r) says that r is a structurally quasi-correct

4

(see

Sections 13, 14, 15) sequence of instantaneous descriptions (IDs) of

the 2RM executing a program P , and the control ow in r is correct

5

according to De�nition 7.1,

� E(r) says that the registers are operated correctly

6

along the run r,

according to De�nition 7.1, and r starts with the initial ID h0; 0; 1i.

Thus the whole sentence (4) says that there exists a �nite successful termi-

nating run r of the 2RM executing the program P .

4

For example, does not contain `senseless' things like hh: : : ; : : : ; : : :i; : : : ; : : :i.

5

For example, if P contains 9 : AL then a run does not contain adjacent triples like

hx; y; 9i; hu; v; 8i.

6

For example, if 7 : AL is in P and a run contains the adjacent pair of triples

hx; y; 7i; hu; v; 8i then u = x+ 1 and v = y.

16

10 How to Translate Machine Commands?

Our aim in this section is to describe the intuition for writing the most

sophisticated part E(r) of the sentence (4) and the corresponding part of the

rewrite rule system.

Suppose we have a `run candidate', i.e., a sequence r of the form (3) (in list

representation described below), in which the ow of control is correct. The

latter means, informally, that z

i

's in r follow correctly, e.g., if i : AL is in P

then h: : : ; ii; h: : : ; ji with j 6= i+ 1 does not appear in r. Such a correctness

will be guaranteed by the part C

1

(r) of (4) (described in Sections 13, 14,

15) occurring conjunctively with E(r) in (4). So, assuming this control ow

correctness, we need to check, by using linear canonical rules, whether the

contents of registers are modi�ed correctly along a run candidate r.

The main idea is to construct rewrite rules in a way to simultaneously

satisfy the following two properties:

1. every adjacent pair of triples hx

i

; y

i

; z

i

i; hx

i+1

; y

i+1

; z

i+1

i in a sequence

(3) representing a run candidate r could be reduced to form the fol-

lowing rewrite diagram (no matter whether the transition from the ID

hx

i

; y

i

; z

i

i to the ID hx

i+1

; y

i+1

; z

i+1

i is correct or not):

hx

i

; y

i

; z

i

i; hx

i+1

; y

i+1

; z

i+1

i ! w

2

#

w

0

 w

1

(5)

for some w

0

, w

1

, w

2

, and, moreover,

2. the diagram (5) can be completed by the . rewrite to the diagram

hx

i

; y

i

; z

i

i; hx

i+1

; y

i+1

; z

i+1

i ! w

2

.

w

0

 w

1

(6)

if and only if the register contents are operated correctly in the tran-

sition from hx

i

; y

i

; z

i

i to hx

i+1

; y

i+1

; z

i+1

i.

Therefore, the part E(r) of (4) can be expressed by the 888-formula

E(r) �

df

8w

0

; w

1

; w

2

�

R(r; w

0

) ^ R(r; w

2

) ^R(w

2

; w

1

)^

^R(w

1

; w

0

)) R(w

2

; w

0

)

�

:

(7)

This idea is implemented in Section 12.

17

The formula (7) looks more intuitive when written down in the form

8w

0

; w

1

; w

2

0

B

@

r ���! w

2

?

?

y

?

?

y

w

0

 ��� w

1

)

w

2

.

w

0

1

C

A

:

11 Signature and Notational Conventions

The signature � we will use in constructing rewrite systems and formulas is

as follows:

� a constant " to represent the empty list;

� a constant 0 to represent the natural number zero;

� binary function c(;) for the list constructor;

� unary s() for the successor on natural numbers;

� ternary h; ;i for the triple constructor;

� constants a, b, c, auxiliary;

� binary functions h, f , auxiliary. 2

Convention 11.1 In the sequel we will formally represent the run sequence

(3) as a term (list)

[hx

0

; y

0

; z

0

i; : : : ; hx

m

; y

m

; z

m

i]; (m � 1) (8)

where, as usual, [] = " and [e

0

; e

1

; : : : ; e

n

] = c(e

0

; [e

1

; : : : ; e

n

]), with the

constant " for the empty list and the binary list constructor c(;). Thus, (8)

is a right-attened list of triples of natural numbers built from the empty list

" by using the binary list constructor. Below we will freely switch between

the informal representation of a run (3) and its formal list representation (8),

keeping in mind that the relation between them is obvious. 2

Convention 11.2 Formally, a sequence of the form (3) is represented by a

right-attened list (8) of triples built using the list constructor c. Sometimes,

to simplify readability we present rewrite rules in the form [h:::i; h:::i : : :]! t

or h:::i; h:::i ! t, instead of the less readable c(h:::i; c(h:::i; u) ! t (where u

is a fresh variable). It will always be clear how to transform this shorthand

into a formal long form. 2

18

Convention 11.3 To improve readability we will often depict rewrite rules

l ! r in a slightly unconventional way, with arrows going in di�erent direc-

tions, as in the rules (+), (.), (9) below. 2

Convention 11.4 In rules and formulas we write below x, y, z, u, v, w are

variables, while i; j; k; l;m; n are natural numbers. For a natural number i,

i denotes the term s

i

(0). Sometimes, when it does not lead to confusion,

we use the usual decimal numbers instead of the formal numerals s

i

(0) in

unary notation. In writing terms with unary function symbols we usually

omit parentheses. 2

19

12 Translating Commands into Rewrite Rules

Assume that P is an arbitrary but �xed 2RM program with p � 2 commands,

starting with 1 : AL. We proceed to compiling P into a system of linear

canonical rewrite rules R. Thus the system R depends on a program P , i.e.,

R � R(P); see Section 8.

12.1 Auxiliary (+) Rule

The following rule will be used to commute rewrite diagrams created by other

rewrite rules, with intention to check properties of terms (as we described in

Section 10).

h(u; v)

#

f(u; v)

(+)

12.2 Shortcut Rules (.

1;2

)

The following two rules will also be used to commute rewrite diagrams (cf.,

(5), (6) above) created by other rewrite rules on terms satisfying certain

properties:

[h(h0; 0; s0i; h1; 0; vi); : : :]

.

[h0; 0; s0i; 0; h1; 0; vi; 0; : : :]

(.

1

)

[u; h(hx

0

; y

0

; sszi; hx; y; vi); : : :]

.

[u; hx

0

; y

0

; sszi; 0; hx; y; vi; 0; : : :]

(.

2

)

These rules are, of course, more readable versions of the following two rules

c(h(h0; 0; s0i; h1; 0; vi); w)

.

c(h0; 0; s0i; c(0; c(h1; 0; vi; c(0; w))))

c(u; c(h(hx

0

; y

0

; sszi; hx; y; vi); w))

.

c(u; c(hx

0

; y

0

; sszi; c(0; c(hx; y; vi; c(0; w)))))

respectively, according to our Conventions 11.1, 11.2 on lists.

20

Remark 12.1 The di�erence between (.

1

) and (.

2

) is crucial for our pur-

poses: pay attention to s0 in the rule (.

1

) and ssz in the rule (.

2

). Note

that we do not introduce just one generic rule

c(h(hx

0

; y

0

; szi; hx; y; vi); w)

.

c(hx

0

; y

0

; szi; c(0; c(hx; y; vi; c(0; w))))

instead of (.

1

) and (.

2

). The reason is that we wish to distinguish between

the cases for `one' (s0) and `greater than one' (ssz). Note that (.

1

) applies

in the head of a list, whereas (.

2

) applies in the tail (second element) of

a list. This complication is needed to assure that a run r witnessing the

validity of (4) starts with the initial ID h0; 0; 1i, i.e., has form c(h0; 0; 1i; : : :),

see below Section 19.5. Note also that the form of the rule (.

1

) assumes

that the �rst command in a program is always 1 : AL; see Remark 7.3. 2

Convention 12.2 In all the rules and diagrams below the e�ect of commu-

tation by (+), (.

1;2

) will be depicted as +,. respectively. In these contexts

+, . do not de�ne new rewrite rules, but denote rewrite steps made by (+),

(.

1;2

), and are added as comments to clarify intuition. 2

21

12.3 Addition Commands

12.3.1 Left Addition Command

The command i : AL is translated into three linear rewrite rules, !, #, and

 given below (recall that + is not a rule, but a rewrite step made by the

rule (+) given above):

c(hx; y; ii; c(hs(u); v; zi; w)) ! c(h(hu; v; ii; hs(x); y; zi); w)

+

c(hx; y; ii; c(0; c(hs(u); v; zi; c(0; w)))) c(f(hu; v; ii; hs(x); y; zi); w)

(9)

Note that the !+ combination in the diagram (9) makes two swaps of

variables: x; y; u; v 7! u; v; x; y 7! x; y; u; v. Along both # and !+ paths

in (9) nothing essential happens, except these two variable swaps. Auxiliary

h, f , (on the right) and intermediate 0's (in the left down corner) are added

for �nite termination, as discussed in Section 19.2.

It is crucial that the diagram (9) can be completed with the . rewrite

step by using one of the shortcut rules (.

1;2

) (which do not make any variable

swaps!) if and only if simultaneously:

1. x = u and y = v, i.e., i� registers are operated correctly in the transition

from the ID hx; y; ii to the ID hs(u); v; zi and

2. (a) either i in (9) equals s0 (in this case x = y = u = v = 0) and the

rule (.

1

) works,

(b) or i in (9) is greater than one (i.e., equals ssz for some z), but

the whole term t � c(hx; y; ii; c(hs(u); v; zi; w)) in the upper left

corner of (9) occurs in the tail of some embedding list, i.e., t occurs

in c(t

0

; t) for some t

0

, so that (.

2

) could apply.

Remark 12.3 This double trick is an example how the commutation of

rewrite diagrams is useful to check the needed properties of terms. The

�rst one shows how to check that registers are operated correctly, and the

second one assures that a list starts with the initial ID h0; 0; 1i (otherwise,

the commutation by (.

1;2

) in the head of the list is impossible). 2

Remark 12.4 Note that we add three rules of the form (9) for each com-

mand i : AL in the program P . 2

Remark 12.5 Note that the rules (9) do not attempt to check the right

succession of commands in the transitions: the third argument in the second

triple is a variable z. Another group of rules, described in Sections 13, 14,

15, will be responsible for this control ow check. 2

22

To give a better understanding of the above rules, consider two examples.

12.3.2 Example of a Correct Register Operation

If P contains the command 8 : AL then in the `transition' from the ID h6; 4; 8i to the ID h7; 4; 9i the registers are

operated correctly, and the following rewrite diagram takes place:

c(u; c(h6; 4; 8i; c(hs(6); 4; s(8)i; w))) ! c(u; c(h(h6; 4; 8i; hs(6); 4; s(8)i); w))

. +

c(u; c(h6; 4; 8i; c(0; c(hs(6); 4; s(8)i; c(0; w))))) c(u; c(f(h6; 4; 8i; hs(6); 4; s(8)i); w))

Here the + rewrite is possible by the auxiliary rule (+), and the . rewrite by the shortcut rule (.

2

). 2

12.3.3 Example of an Incorrect Register Operation

If P contains the command 11 : AL then in the `transition' from the ID h6; 4; 11i to h9; 4; 12i the left register is

operated incorrectly, and the following rewrite diagram

c(u; c(h6; 4; 11i; c(hs(8); 4; s(11)i; w))) ! c(u; c(h(h8; 4; 11i; hs(6); 4; s(11)i); w))

n. +

c(u; c(h6; 4; 11i; c(0; c(hs(8); 4; s(11)i; c(0; w))))) c(u; c(f(h8; 4; 11i; hs(6); 4; s(11)i); w))

cannot be commuted any more by the diagonal. rewrite using (.

2

), nor by any other rewrite rule. 2

2
3

12.3.4 Right Addition Command

The command i : AR is translated into the rules analogous to (9), with s()

shifted from the �rst to the second argument in the second h:::i of each rule

side, namely:

c(hx; y; ii; c(hu; s(v); zi; w)) ! c(h(hu; v; ii; hx; s(y); zi); w)

+

c(hx; y; ii; c(0; c(hu; s(v); zi; c(0; w)))) c(f(hu; v; ii; hx; s(y); zi); w)

(10)

The intuition behind these rules is clear from the de�nition of the 2RM, and

is similar to the rules for the left addition.

12.4 Subtraction Commands

12.4.1 Left Subtraction

Quite similarly, a command i : SL; j is translated into two groups of rules,

the �rst three corresponding to the nonzero left register:

c(hs(x); y; ii; c(hu; v; zi; w)) ! c(h(hs(u); v; ii; hx; y; zi); w)

+

c(hs(x); y; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hs(u); v; ii; hx; y; zi); w)

(11)

and the second three corresponding to the empty left register:

c(h0; y; ii; c(hu; v; zi; w)) ! c(h(hu; v; ii; h0; y; zi); w)

+

c(h0; y; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; v; ii; h0; y; zi); w)

(12)

12.4.2 Right Subtraction

An instruction i : SR; j is translated analogously into six rules:

c(hx; s(y); ii; c(hu; v; zi; w)) ! c(h(hu; s(v); ii; hx; y; zi); w)

+

c(hx; s(y); ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; s(v); ii; hx; y; zi); w)

(13)

c(hx; 0; ii; c(hu; v; zi; w)) ! c(h(hu; v; ii; hx; 0; zi); w)

+

c(hx; 0; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; v; ii; hx; 0; zi); w)

(14)

The intuition behind these rules is clear from the de�nition of the 2RM, as

for the addition commands.

24

Remark 12.6 Note that in the above rules (9) { (14) the third argument

in the second triple is a variable z (whereas the third argument in the �rst

triple is a numeral s

i

(0)). In other words, when checking the correctness of

register manipulation in a transition by a command, we do not (need to)

check whether the following command is selected correctly. This is assured

by the control ow correctness rules, see Section 15.3. 2

At this point the reader is invited to stop and get convinced that the rules

introduced work exactly in a way required by diagrams (5), (6) in Section 10.

25

12.5 Checking Correctness of Register Manipulation

The intention behind the rules we constructed so far is better clari�ed by the

following claim (we call it a claim, because it depends on an incompletely

de�ned rewrite rule system). It shows how rewrite diagrams created by the

rules (9), (10), (11), (12), (13), (14), and commuted by (+), (.), are used to

check whether 2RM's registers are operated correctly along a quasi-correct

run (formally explained in the next sections).

Adequateness Claim.

1. Let r be a correct run (8) of the 2RM on a program P . Then the

following formula is true (where the predicate R is interpreted as a one

step ground reducibility relation in the rewrite rule system R = R(P)

we are constructing):

E(r) �

df

8w

0

; w

1

; w

2

�

R(r; w

0

) ^R(r; w

2

) ^ R(w

2

; w

1

)^

^R(w

1

; w

0

)) R(w

2

; w

0

)

�

:

(7)

2. Let r be a sequence (8) in which x

i

's, y

i

's, z

i

's are natural numbers,

hx

0

; y

0

; z

0

i be h0; 0; 1i, z

m

be equal to p (the label of the last command

in P), the control ow in r be correct (see below Section 14), and E(r)

be true. Then r represents a correct run of the 2RM on P . 2

The validity of this claim, useful as a guideline for the further develop-

ment, will be guaranteed by the construction of the remaining part of the

rewrite system. We return back to the formal proof of this claim in Sec-

tion 19. The reader is invited to check that the �rst part of the claim is true

for the part of the system we constructed so far.

Note that the formula (7) is uniform, it does not depend on a program P .

26

13 Quasi-Correct Runs

We are looking for ground terms r witnessing the truth of the sentence (4)

among terms of a special structure, representing right-attened lists of triples

of natural numbers of the form (8). The construction of the formula E(r)

in (7) assumes that a term r is `quasi-correct'. Otherwise E(r) may be true

for `senseless' terms like c(c(a; b); c("; h(a; b; d))). This is because the rewrite

rules we de�ned so far do not apply to such terms, hence, the premise of (7)

is false. It is the role of the subformula C

1

(r)^C

2

(r)^C

3

(r) of (4) to detect

such `senseless' cases and become false, so as not to admit `false witnesses'

for (4) satisfying E(r).

The next de�nition partially captures the idea of correctness.

De�nition 13.1 Call a term r quasi-correct if and only if it satis�es the

following groups of constraints.

Structural Constraints. The term r does not contain subterms of the form:

1. h(u; v), f(u; v),

2. s(F (: : :)) with F 2 �nfs; 0g,

3. hF (: : :); u; vi, hu; F (: : :); vi, hu; v; F (: : :)i with F 2 �nf0; sg,

4. c(F (: : :); x) with F 2 �nfh; ;ig,

5. c(x; F (: : :)) with F 2 �nfc; "g.

(Reason: by de�nition, a run should be a right-attened list of triples

of natural numbers; thus all subterms enumerated above make no sense

in a valid run.)

Boundary Constraints. The term r does not contain subterms of the form:

1. c(hx; y; ji; ") for 1 � j < p

(Reason: a run should end with c(hx; y; pi; "), i.e., after executing

p : Halt, the last command in P);

2. c(hx; y; s

p

(z)i; c(hu; v; wi; w

0

))

(Reason: in a correct run command numbers do not exceed p, com-

mand labeled p may (and by the previous constraint should) occur

only in the end of the run, i.e., in a subterm c(hx; y; s

p

(0)i; "));

3. c(hx; y; zi; c(hu; v; 1i; w))

(Reason: in a correct run the control never returns back to the �rst

command; thus label 1 may occur at most once in the beginning;

recall Remark 7.3);

27

4. hx; y; 0i

(Reason: command numbers are positive).

Control Flow Constraints. The term r does not contain adjacent triples

7

:

1. hx; y; ii; hu; v; ji with j 6= i+1 when P contains a command i : AL

or i : AR.

(Reason: addition transfers control to the next command.)

2. hx; y; ii; h0; v; zi when P contains i : AL.

3. hx; y; ii; hu; 0; zi when P contains i : AR.

(Reason: addition cannot result with the empty register.)

4. hs(x); y; ii; hu; v; ji with j 6= i + 1 when P contains the command

i : SL; i+ 1.

5. hx; s(y); ii; hu; v; ji with j 6= i + 1 when P contains the command

i : SR; i+ 1.

(Reason: such subtractions, with nonzero registers, always transfer

control to the next command.)

6. hs(x); y; ii; hu; v; ji with j = i + 1 when P contains instruction

i : SL; l with l 6= i+ 1.

7. hx; s(y); ii; hu; v; ji with j = i + 1 when P contains instruction

i : SR; l with l 6= i + 1.

(Reason: when the left (right) register is positive, such subtrac-

tions transfer control to the speci�ed command l 6= i+ 1.)

8. h0; y; ii; hu; v; ji with j 6= i+1 when P contains instruction i : SL; l

with l 6= i+ 1.

9. hx; 0; ii; hu; v; ji with j 6= i + 1 when P contains instruction i :

SR; l with l 6= i+ 1.

(Reason: when the left (right) register is zero, such subtractions

transfer control to the succeeding command.) 2

Remark 13.2 The De�nition 13.1 of quasi-correctness does not exclude

some `degenerate' cases. Namely, a quasi-correct run r may have one of

the forms (and these are all possible cases) enumerated below:

1. a, b, d,

7

Say that in the list representation (8) of a run the triples hx; y; ii; hu; v; ji are adjacent

i� they occur in a subterm c(hx; y; ii; c(hu; v; ji; w)).

28

2. ",

3. 0,

4. r � s(r

0

) for some r

0

built of 0 and s,

5. r � hr

1

; r

2

; r

3

i for some r

1

; r

2

; r

3

built of 0 and s,

6. r may be a right-attened list of triples of natural numbers, with a

`correct' ow control (as de�ned by the Control Flow Constraints),

ending correctly, but probably with incorrect register manipulations.

2

Intermediate Goal. In the following sections we �rst show how to de-

termine whether a term is quasi-correct and then proceed to excluding all

(degenerate) cases, except the last one.

29

14 Determining Quasi-Correct Runs

We are going to introduce new rewrite rules that would allow us to reduce

every non-quasi-correct term r (see De�nition 13.1) in the following speci�c

way:

r

. &

w

0

! w

1

& .

w

2

; (15)

which will be impossible for a quasi-correct term.

Consequently, quasi-correct terms r will satisfy the following formula

C

1

(r) �

df

:9w

0

; w

1

; w

2

�

R(r; w

0

) ^R(r; w

1

) ^ R(w

0

; w

1

)^

^R(w

0

; w

2

) ^R(w

1

; w

2

)

�

:

(16)

Remark 14.1 It is important to note that C

1

(r) is equivalent to a universal

formula with the quanti�er pre�x 888, which is essential for keeping the

entire sentence H in (4) in the 9888-form. We keep the :999-form in (16)

as being more intuitive. 2

Remark 14.2 The terms a, b, d, ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i enumerated

as degenerate cases 1 { 5 in Remark 13.2 also satisfy both C

1

(r) in (16) and

E(r) in (7). We exclude these terms by formulas C

2;3

(r) in Section 16. 2

30

15 Rewrite Rules to Check Quasi-Correctness

The key idea is to de�ne, for each ground term t that cannot be a subterm

of a quasi-correct term, two rules: t! a, t! b, plus three (common) rules

a ! b;

a ! d;

b ! d:

(17)

Thus, every term r that is not quasi-correct will form the above diamond-

like rewrite diagram (15) and will satisfy the formula C

1

(r) de�ned by (16).

Additional e�ort is needed to assure that correct terms cannot form the above

diamond diagram and thus cannot satisfy C

1

(r). Thus the diamond diagram

property (16) and the corresponding formula C

1

(r) given by (16) will be used

as a quasi-correctness criterion.

15.1 Rules for Structural Constraints

By t! a; b we abbreviate two rules t! a and t! b. We enumerate the rules

for checking structural constraints, corresponding to cases of De�nition 13.1.

1. A quasi-correct run cannot contain functional symbols h, f , thus:

h(x; y) ! a; b (18)

f(x; y) ! a; b (19)

2. s(F (: : :))! a; b for all F 2 �nfs; 0g;

� (Reason: terms constructed with 0, s are natural numbers, and

cannot contain subterms starting with something except 0, s.)

3. (a) hF (: : :); u; vi ! a; b,

(b) hu; F (: : :); vi ! a; b,

(c) hu; v; F (: : :)i ! a; b for all F 2 �nf0; sg;

� (Reason: the only meaningful function symbols in the argument

positions to the triple constructor h; ;i are 0 and s.)

4. (a) c(F (: : :); x)! a; b for every F 2 �nfh; ;ig;

(b) c(x; F (: : :))! a; b for every F 2 �nfc; "g.

� (Reason: runs are right-attened lists (sequences) of triples.)

31

15.2 Rules for Boundary Constraints

1. (a) c(hx; y; ji; ")! a; b for all 1 � j < p;

(b) c(hx; y; s

p

(z)i; c(hu; v; wi; w

0

))! a; b.

� (Reason: the only command that may and should terminate a

correct run is p : Halt , thus label p cannot appear in the middle

of a run; labels of commands do not exceed p.)

(Note: these two rewrite rules force every right-attened list of

triples of natural numbers to terminate with c(hu; v; s

p

(0)i; "), i.e.,

with H alt, as needed.)

2. c(hx; y; zi; c(hu; v; 1i; w))! a; b

� (Reason: a command with label 1 is executed only in the beginning

of a run and the control never returns back to this command; the

shortcut with (.

1

) will guarantee that the initial ID of a run is

h0; 0; 1i; see Sections 12.3.1 and 19.)

3. hx; y; 0i ! a; b

� (Reason: command numbers are positive.)

15.3 Rules for Control Flow Constraints

Here we again use Convention 11.2 on mixing sequential and list notation:

1. (a) hx; y; ii; hu; v; ji ! a; b for all j satisfying 1 � j 6= i+1 � p, when

i : AL or i : AR is in P .

� (Reason: addition transfers control to the next command.)

(b) hx; y; ii; h0; v; zi ! a; b when i : AL occurs in P .

(c) hx; y; ii; hu; 0; zi ! a; b when i : AR occurs in P .

� (Reason: addition cannot result with the empty register.)

2. (a) If P contains i : SL; i+ 1 add the rules

hx; y; ii; hu; v; ki ! a; b

for all k 2 f1; : : : ; pgnfi+ 1g.

� (Reason: such subtractions always transfer control to the suc-

ceeding command.)

32

(b) If P contains i : SL; j for j 6= i + 1, add the rules

h0; x; ii; hy; z; ki ! a; b

hs(x); y; ii; hu; v; li ! a; b

for all k 2 f1; : : : ; pgnfi+ 1g, all l 2 f1; : : : ; pgnfjg.

� (Reason: such subtractions can only transfer control to the

next command, when the register is zero, or to j-th command,

when the register is positive.)

3. (a) If P contains i : SR; i+ 1 add the rules

hx; y; ii; hu; v; ki ! a; b

for all k 2 f1; : : : ; pgnfi+ 1g.

� (Reason: such subtractions always transfer control to the suc-

ceeding command.)

(b) If P contains i : SR; j for j 6= i+ 1, add the rules

hx; 0; ii; hy; z; ki ! a; b

hx; s(y); ii; hu; v; li ! a; b

for all k 2 f1; : : : ; pgnfi+ 1g, all l 2 f1; : : : ; pgnfjg.

� (Reason: such subtractions can only transfer control to the

next command, when the register is zero, or to j-th command,

when the register is positive.)

33

16 Excluding Degenerate Cases

We should exclude terms

a; b; d; "; 0; s

k

(0); hs

k

(0); s

l

(0); s

m

(0)i

enumerated as degenerate cases 1 { 5 in Remark 13.2; see also Remark 14.2.

Recall that these terms satisfy both formulas C

1

(r) in (16) and E(r) in

(7), but they do not witness correct successful terminating runs of the 2RM.

We proceed to excluding them by giving the 888-formula C

2

(r)^C

3

(r) false

for these terms but true for terms representing correct terminating runs of

the 2RM.

16.1 Excluding a, b, d

It is easy to exclude the terms a, b, d, because none of them satis�es the

following formula

C

2

(r) �

df

8w

0

:R(w

0

; r)
; (20)

whereas each correct terminating run of the 2RM, if any, does satisfy (20),

by construction of the rewrite system R. Indeed, a, b, d appear as right-hand

sides in the rules of the previous section. At the same time, all the rules we

constructed have right-hand sides that cannot occur in a correct run.

The di�culty with the remaining terms ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i

is as follows. Although they do not represent correct terminating runs, they

still satisfy the formula (20).

16.2 Excluding ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i

Let us introduce additional rewrite rules:

" ! d;

0 ! d;

s(x) ! d;

hx; y; zi ! d

(21)

and consider the following 888-formula

C

3

(r) �

df

8w

0

; w

1

; w

2

�

R(w

2

; w

1

) ^ R(w

1

; w

0

) ^ R(w

2

; w

0

))

) [R(r; w

0

)) R(r; w

2

) _R(r; w

1

)]

�

;

(22)

34

which may be better understood in the diagram notation

8w

0

; w

1

; w

2

0

@

r w

2

.

w

0

 w

1

)

r ! w

2

_

r

&

w

1

1

A

:

This formula is false for all terms ", 0, s

k

(0), and hs

k

(0); s

l

(0); s

m

(0)i. Indeed,

take d, b, a for w

0

, w

1

, w

2

respectively. By the rules (21), every r equal to one

of ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i reduces to w

0

� d. Thus all the premises in

(22) are true, but none of the terms ", 0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i reduces

to w

2

� a, nor to w

1

� b. Thus the conclusion of (22) is false and none of ",

0, s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i satis�es the formula (22). Consequently, C

3

(r)

excludes these terms, as needed.

At the same time, any correct run does satisfy the formula (22). In fact,

let r be a correct run and w

2

, w

1

, w

0

be such that

r w

2

.

w

0

 w

1

(23)

(i.e., all the premises of (22) are satis�ed).

Since r is correct, the only way to obtain w

0

as a result of one step

rewriting from r is to apply the rule # from one of the groups (9) { (14). In

fact, an alternative would be to apply the rule ! from one of the groups (9)

{ (14), but in this case it would be impossible to get such a w

0

as a result of

two rewrites (via w

1

) from any w

2

. The straightforward case analysis shows

that in the diagram (23):

1. either w

2

results from r by application of the rule ! from the same

group as used to get w

0

from r; in this case the atom R(r; w

2

) in the

conclusion of (22) is true;

2. or w

2

coincides with r; in this case the atom R(r; w

1

) in the conclusion

of (22) is true.

Thus in both cases the formula (22) is true for a correct run r.

16.3 Excluding a One Element List

There remains one more degenerate case to be excluded. Consider a one-

element list

r � c(hi; j; ki; ");

35

where i, j, k are natural numbers. Obviously, such a list does not represent

a correct terminating run of the 2RM. Let us see what happens with the

sentence H in this case.

If the number k corresponding to the command label is di�erent from p

(the number of commands in the program P), then one of the rules (31),

(32) applies and the formula C

1

(r) becomes false. Thus such a one-element

list is correctly excluded.

However, in the case of k = p neither the rules (31), (32) nor any other

rules apply to c(hi; j; pi; ") any more. Consequently, the formula C

1

(r) ^

C

2

(r) ^ C

3

(r) is true. Moreover, the formula E(r) is also true, because

r � c(hi; j; pi; ") is irreducible to satisfy the premises of E(r), hence the

premises of E(r) are false. Thus the validity of H is witnesses by a `senseless'

term c(hi; j; pi; ") that does not represent a correct terminating run of the

2RM.

To deal with this problem we make the list r � c(hi; j; pi; ") reducible

similarly to the case of any two adjacent triples of natural numbers. This is

achieved by introducing the following group of rules

c(hx; y; pi; ") ! c(h(hx; y; pi; h0; 0; 0i); ")

+

c(hx; y; pi; c(0; c(h0; 0; 0i; c(0; ")))) c(f(hx; y; pi; h0; 0; 0i); ")

(24)

similar to groups (9) { (14).

Now, the one-element list r � c(hi; j; pi; ") creates the rewrite diagram

: ! :

#

: :

satisfying the premises of E(r). But the conclusion of E(r) is not satis�ed

by r, because the shortcut rule (.

2

) does not apply to a one-element list.

Thus the degenerate case of one-element list is also excluded.

36

17 All Important Formulas

Here we repeat verbatim the de�nition of the sentence H (expressing halting

of the 2RM; see Section 9), and its subformulas E(r), C

1;2;3

(r). All of these

formulas are �xed and independent of a 2RM program P .

H �

df

9r

�

C

1

(r) ^ C

2

(r) ^ C

3

(r) ^ E(r)

�

: (4)

E(r) �

df

8w

0

; w

1

; w

2

�

R(r; w

0

) ^ R(r; w

2

) ^R(w

2

; w

1

)^

^R(w

1

; w

0

)) R(w

2

; w

0

)

�

:

(7)

C

1

(r) �

df

:9w

0

; w

1

; w

2

�

R(r; w

0

) ^R(r; w

1

) ^ R(w

0

; w

1

)^

^R(w

0

; w

2

) ^R(w

1

; w

2

)

�

:

(16)

C

2

(r) �

df

8w

0

:R(w

0

; r)
(20)

C

3

(r) �

df

8w

0

; w

1

; w

2

�

R(w

2

; w

1

) ^ R(w

1

; w

0

) ^ R(w

2

; w

0

))

) [R(r; w

0

)) R(r; w

2

) _R(r; w

1

)]

�

:

(22)

Here R is the binary predicate symbol of the language for the one step rewrit-

ing relation (see Section 3). Note that this is the only non-logical symbol in

the above formulas.

Remark 17.1 The sentence (4) is in the 9888-form, after transformation of

(16) into an equivalent 888-form and putting all universal quanti�ers (which

distribute over ^) in the pre�x. 2

37

18 All Rewrite Rules

Each program P determines its own rewrite rule system R, as contrasted with

the �xed sentence H (see the previous section). Here we summarize (repeat

verbatim from the previous sections) all the rewrite rules constructed from

a given program.

Let P be an arbitrary but �xed program for the 2RM with p � 2 instruc-

tion numbered consecutively from 1 to p, with the �rst command 1 : AL and

containing no commands i : SL; 1 or i : SR; 1 (see Remark 7.3). Note that

for a �xed 2RM-program P , for each i 2 f1; : : : ; pg the command labeled i is

completely determined. Thus for every i = 1; : : : ; p�1, we de�ne the rewrite

rules by case analysis depending on the command type, i.e., left addition,

right addition, left subtraction, right subtraction (the �rst command being

1 : AL and the last command p : Halt).

Some of the rules below, like (+), are �xed, and do not depend on P .

Others, like (10), are added to R i� i : AR occurs in P . The rewrite system

R will contain as many groups of rules (9), as the program P contains the left

addition commands (one group with �xed i per command i : AL with label

i). Two groups of rules (11), (12) are added for every i such that P contains

i : SL; j. (And analogously for right addition/subtraction commands).

Auxiliary Rule

h(u; v)

#

f(u; v)

(+)

Rules for the Left Addition i : AL

c(hx; y; ii; c(hs(u); v; zi; w)) ! c(h(hu; v; ii; hs(x); y; zi); w)

+

c(hx; y; ii; c(0; c(hs(u); v; zi; c(0; w)))) c(f(hu; v; ii; hs(x); y; zi); w)

(9)

Rules for the Right Addition i : AR

c(hx; y; ii; c(hu; s(v); zi; w)) ! c(h(hu; v; ii; hx; s(y); zi); w)

+

c(hx; y; ii; c(0; c(hu; s(v); zi; c(0; w)))) c(f(hu; v; ii; hx; s(y); zi); w)

(10)

Rules for the Left Subtraction i : SL; j (Nonempty Register)

c(hs(x); y; ii; c(hu; v; zi; w)) ! c(h(hs(u); v; ii; hx; y; zi); w)

+

c(hs(x); y; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hs(u); v; ii; hx; y; zi); w)

(11)

38

Rules for the Left Subtraction i : SL; j (Empty Register)

c(h0; y; ii; c(hu; v; zi; w)) ! c(h(hu; v; ii; h0; y; zi); w)

+

c(h0; y; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; v; ii; h0; y; zi); w)

(12)

Rules for the Right Subtraction i : SR; j (Nonempty Register)

c(hx; s(y); ii; c(hu; v; zi; w)) ! c(h(hu; s(v); ii; hx; y; zi); w)

+

c(hx; s(y); ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; s(v); ii; hx; y; zi); w)

(13)

Rules for the Right Subtraction i : SR; j (Empty Register)

c(hx; 0; ii; c(hu; v; zi; w)) ! c(h(hu; v; ii; hx; 0; zi); w)

+

c(hx; 0; ii; c(0; c(hu; v; zi; c(0; w)))) c(f(hu; v; ii; hx; 0; zi); w)

(14)

Short Cut Rules (to Check whether Registers Operated Correctly)

[h(h0; 0; s0i; h1; 0; vi); : : :]

.

[h0; 0; s0i; 0; h1; 0; vi; 0; : : :]

(.

1

)

[u; h(hx

0

; y

0

; sszi; hx; y; vi); : : :]

.

[u; hx

0

; y

0

; sszi; 0; hx; y; vi; 0; : : :]

(.

2

)

These rules are abbreviations (using list notation) of the following two rules:

c(h(h0; 0; s0i; h1; 0; vi); w)

.

c(h0; 0; s0i; c(0; c(h1; 0; vi; c(0; w))))

c(u; c(h(hx

0

; y

0

; sszi; hx; y; vi); w))

.

c(u; c(hx

0

; y

0

; sszi; c(0; c(hx; y; vi; c(0; w)))))

Auxiliary Quasi-Correctness Rules

a ! b;

a ! d;

b ! d:

(17)

h(x; y)! a; b (18)

f(x; y)! a; b (19)

39

Additional Rules to Exclude ", s

k

(0), hx; y; zi.

" ! d;

0 ! d;

s(x) ! d;

hx; y; zi ! d

(21)

Additional Rules to Exclude One Element Lists.

c(hx; y; pi; ") ! c(h(hx; y; pi; h0; 0; 0i); ")

+

c(hx; y; pi; c(0; c(h0; 0; 0i; c(0; ")))) c(f(hx; y; pi; h0; 0; 0i); ")

(24)

Rules to Check Structural Constraints

s(F (: : :))! a; b for all F 2 �nfs; 0g (25)

hF (: : :); u; vi ! a; b (26)

hu; F (: : :); vi ! a; b (27)

hu; v; F (: : :)i ! a; b for all F 2 �nf0; sg (28)

c(F (: : :); x)! a; b for every F 2 �nfh; ;ig (29)

c(x; F (: : :))! a; b for every F 2 �nfc; "g (30)

Rules to Check Boundary Constraints

c(hx; y; ji; ")! a; b for all 1 � j < p (31)

c(hx; y; s

p

(z)i; c(hu; v; wi; w

0

))! a; b (32)

c(hx; y; zi; c(hu; v; 1i; w))! a; b (33)

hx; y; 0i ! a; b (34)

Rules to Check Control Flow Constraints

1. (a) hx; y; ii; hu; v; ji ! a; b (35)

for all j satisfying 1 � j 6= i + 1 � p, provided that

i : AL or i : AR is in P .

(b) hx; y; ii; h0; v; zi ! a; b (36)

when i : AL occurs in P .

(c) hx; y; ii; hu; 0; zi ! a; b (37)

when i : AR occurs in P .

40

2. (a) If P contains i : SL; i+ 1 add the rules

hx; y; iihu; v; ki ! a; b (38)

for all k 2 f1; : : : ; pgnfi+ 1g.

(b) If P contains i : SL; j for j 6= i + 1, add the rules

h0; x; iihy; z; ki ! a; b (39)

hs(x); y; iihu; v; li ! a; b (40)

for all k 2 f1; : : : ; pgnfi+ 1g, all l 2 f1; : : : ; pgnfjg.

3. (a) If P contains i : SR; i+ 1 add the rules

hx; y; iihu; v; ki ! a; b (41)

for all k 2 f1; : : : ; pgnfi+ 1g.

(b) If P contains i : SR; j for j 6= i+ 1, add the rules

hx; 0; iihy; z; ki ! a; b (42)

hx; s(y); iihu; v; li ! a; b (43)

for all k 2 f1; : : : ; pgnfi+ 1g, all l 2 f1; : : : ; pgnfjg.

We conclude by a simple property of the constructed term rewriting sys-

tem R, proved by inspection.

Proposition 18.1 Let r be a term representing a correct terminating run of

the 2RM. Then only the rules ! and # from the groups (9) | (14) may be

applied to r. 2

41

19 The Correctness Theorem

Theorem 19.1 (Correctness) For every 2RM-program P and the associ-

ated rewrite rule system R � R(P) (as described in Section 18) the following

four claims are true.

1. The system R is (left- and right-) linear.

2. The system R is �nitely terminating.

3. The system R is conuent.

4. The following two statements are equivalent:

(a) the 2RM terminates, starting to execute P with the ID h0; 0; 1i;

(b) the sentence H given by (4) is true in the �rst-order theory of one

step rewriting generated by R.

Consequently, there is no general algorithm deciding the 9888-theory of one

step rewriting for every �nite linear canonical system. Henceforth, Part A of

the Main Theorem on Weak Undecidability holds. 2

The proof of Theorem 19.1 occupies the rest of Section 19.

19.1 Proof of Linearity

By immediate inspection of the rules presented in Section 18. 2

19.2 Proof of Finite Termination

For a term t of signature � denote by:

1. #(t; hihi) the number of di�erent subterm occurrences of t of the form

c(ht

1

; t

2

; t

3

i; c(ht

4

; t

5

; t

6

i; t

7

)) (two adjacent triples in a list) and of the

form c(ht

1

; t

2

; t

3

i; ") (a triple adjacent to ") for some terms t

1;2;3;4;5;6;7

;

2. #(t; F) the number of occurrences of the symbol F 2 fh; f; a; b; dg in

the term t;

3. #(t;�) the number of occurrences in t of the function symbols from

�nfa; b; dg.

42

For a term t of signature � denote by ktk the ordinal

ktk �

df

!

!

!

!

#(t;hihi)

+ !

!

!

#(t;h)

+ !

!

#(t;f)

+ !

#(t;�)

+

+3 �#(t; a) + 2 �#(t; b) + #(t; d):

By inspecting the rewrite rules from Section 18 it can be readily seen that

ktk > kt

0

k whenever a term t reduces to t

0

by R. Since ordinals are well-

ordered, the system R is �nitely terminating. Now the role of separating

zeros in the �rst argument positions to the c constructor in all the rules (9) {

(14) and (.

1;2

) becomes completely clear. They serve to separate adjacent

triples, and thus reduce the norms in reductions.

Clearly, we could have used a less strong ordering, but the given proof is

conceptually very simple, self-contained, and completely satisfactory for our

purposes. 2

19.3 Proof of Conuence

We assume the reader has basic knowledge about Knuth-Bendix critical

pairs algorithm (Knuth & Bendix 1970, Huet & Oppen 1980, Dershowitz &

Jouannaud 1990). For a �nite term rewriting system conuence is equivalent

to local conuence, and local conuence is always equivalent to joinability of

the so-called critical pairs, easily computable from the so-called superposi-

tions of its left-hand sides.

Here we give a simple proof of the conuence of the constructed rewrite

rule system R. Note that the system is quite large (its size varies and depends

on the input program P), so we need a kind of meta-argument proving that

the system is conuent for every input program P .

Happily, the rewrite rules we constructed possess (intentionally) the fol-

lowing remarkable property, easily checkable by inspection:

Every superposition t between rules in R always produces a critical

pair ht

1

; t

2

i such that both t

1

and t

2

both reduce to d.

Thus the conuence of R follows by the critical pairs test. 2

43

19.4 Proof of (4a)) (4b)

Let the 2RM terminate, starting to execute the program P in the initial ID

h0; 0; 1i. We must demonstrate that the sentence H given by (4) is true in the

�rst-order theory of one step rewriting induced by the corresponding system

R � R(P).

Since the 2RM terminates, there exists a correct run r of the form (3)

(represented as a right-attened list (8) using the c list constructor) starting

with h0; 0; 1i, ending with hm;n; pi (for some natural numbers m;n; p, and p

equal the number of commands in P), and such that every transition from

the ID hx

i

; y

i

; z

i

i to the ID hx

i+1

; y

i+1

; z

i+1

i in r is correct with respect to the

semantics of the 2RM executing P , as described by De�nition 7.1.

We will now show that this r satis�es the matrix C

1

(r)^C

2

(r)^C

3

(r)^

E(r) of (4), which will prove the claim.

Truth of C

1

(r). Suppose, towards a contradiction, that C

1

(r) is false.

Then, by de�nition (16) of C

1

(r), there exist w

0

, w

1

, w

2

such that R(r; w

0

)^

R(r; w

1

)^R(w

0

; w

1

)^R(w

0

; w

2

)^R(w

1

; w

2

) is true. Since r is a correct run,

only the rewrite rules!, # from groups (9) { (14), and no other rules, apply

to r (see Proposition 18.1). Moreover,

1. by construction of R, the only way to satisfy R(r; w

0

) ^ R(r; w

1

) ^

R(w

0

; w

1

) is that r � r[t], w

0

� r[t

0

=t], w

1

� r[t

1

=t] for some terms t,

t

0

, t

1

such that

t ! t

0

#

t

1

where the ! and # rewrites are applications of the ! and # rules of

one of the groups (9) { (14) in the outermost position of t, and the

rewrite w

0

! w

1

is done by one of the shortcut rules (.

1;2

) (either in a

topmost position of t

0

by (.

1

), or by application of (.

2

) to c(t

0

; t

0

)).

In fact, if r is (quasi-)correct and

r ! w

0

0

#

w

0

1

one step rewrite in di�erent occurrences of r then, by construction of

the rewrite system R, there is no way to shortcut

w

0

1

.

w

0

0

44

2. t

0

may be further reduced in one step to a, or to b (by (29)), or to

c(f(: : :); : : :) (by +)), or to c(h(: : :); : : :) by some rule applied in the

second argument position of h, or to c(a; : : :) by (18);

3. t

1

may only be reduced in one step to terms of the form c(h: : :i; : : :);

4. it follows that w

0

� r[t

0

=t] and w

1

� r[t

1

=t] cannot be rewritten in

one step into the same w

2

so as to satisfy R(w

0

; w

2

) ^ R(w

1

; w

2

), a

contradiction. 2

Truth of C

2

(r). The truth of C

2

(r) de�ned by (20) follows by construction

of the rewrite system R, because a correct run r cannot be obtained as a result

of one step rewrite of any term. 2

Truth of C

3

(r). Let us show the truth of C

3

(r) de�ned by (22). Here we

repeat the argument from the end of Section 16.2.

Let r be a correct run and w

2

, w

1

, w

0

be such that

r w

2

.

w

0

 w

1

(44)

(i.e., all the premises of (22) are satis�ed).

Since r is correct, the only way to obtain w

0

as a result of one step

rewriting from r is to apply the rule # from one of the groups (9) { (14).

In fact, an alternative (see Proposition 18.1) would be to apply the rule !

from one of the groups (9) { (14), but in this case it would be impossible

to get such a w

0

as a result of two rewrites (via w

1

) from any w

2

. The

straightforward case analysis shows that in the diagram (44):

1. either w

2

results from r by application of the rule ! from the same

group as used to get w

0

from r; in this case the atom R(r; w

2

) in the

conclusion of (22) is true;

2. or w

2

coincides with r; in this case the atom R(r; w

1

) in the conclusion

of (22) is true.

Thus, in both cases the formula (22) is true for a correct run r. 2

Truth of E(r). Assume, towards a contradiction, that for a correct run r

the formula E(r) de�ned by (7) is false. Then for some w

0;1;2

the formula

R(r; w

0

)^R(r; w

2

)^R(w

2

; w

1

)^R(w

1

; w

0

)^:R(w

2

; w

0

) is true. Since r is a

correct run, only the rewrite rules !, # from groups (9) { (14), or (24) (see

Proposition 18.1), and no other rules apply to r. Moreover,

45

1. by construction of the rewrite system R, the only way to satisfyR(r; w

0

)^

R(r; w

2

) ^R(w

2

; w

1

)^R(w

1

; w

0

) is that for some terms t, t

0

, t

1

, t

2

one

has r � r[t], w

0

� r[t

0

=t], w

1

� r[t

1

=t], w

2

� r[t

2

=t] and

t ! t

2

+

t

0

 t

1

where all the rewrites, except +, are done at the topmost position by

the rules of one of the groups (9) { (14) or (24);

2. since r is a correct run, w

2

rewrites to w

0

by one of the shortcut rules

(.

1;2

), i.e., R(w

2

; w

0

) is necessarily true, and we get a contradiction

with the assumption :R(w

2

; w

0

). 2

46

19.5 Proof of (4b)) (4a)

Let the sentence H de�ned by (4) be true in the �rst-order theory of one step

rewriting induced by the rewrite rule system R � R(P). We must show that

in this case the 2RM terminates, starting to execute P with the ID h0; 0; 1i,

i.e., that there exists a �nite correct run of the 2RM executing P .

Assume r is a term satisfying the matrix C

1

(r) ^C

2

(r)^C

3

(r) ^E(r) of

H. We claim that this r represents a correct terminating run of the 2RM

executing P starting from the initial ID h0; 0; 1i. In fact, the truth of C

1

(r)

guarantees that r does not contain subterms matching left-hand sides of

the rules (18) | (19), (25) | (43) (for structural, boundary, control ow

constraints).

1. Therefore, the term r (cf., Remark 13.2):

(a) either is one of a, b, d,

(b) or is the empty list ",

(c) or belongs to the set of natural numbers constructed from 0, s,

(d) or belongs to the set of triples of natural numbers,

(e) or belongs to the set of nonempty right-attened lists of triples of

natural numbers.

2. The validity of the formula C

2

(r) excludes the case (1a); see Sec-

tion 16.1.

3. The validity of the formula C

3

(r) excludes the cases (1b) { (1d); see

Section 16.2.

4. In the remaining case (1e) r should be a right-attened list of triples of

natural numbers ending with hi; j; pi and of length at least 2. In fact,

every list satisfying C

1

(r) should end with hi; j; pi (recall the rules (31),

(32)). By the rules (24), such a list creates the rewrite diagram

: ! :

#

: :

But this diagram can be commuted by the diagonal rewrite . (to

satisfy E(r)) using the rule (.

2

) only if the list has length � 2. This

was our intention with introducing the rules (24); see Section 16.3.

47

5. By construction of the system R, all subterms of r of the form

c(h: : :i; c(h: : :i; : : :)) (i.e., adjacent triples) reduce to form the diagram

: ! :

#

: :

which commutes by. since E(r) is true. This commutation guarantees

(as we explained in Sections 12.3, 12.5) that all ID transitions in the

quasi-correct run r are correct. Recall that the correctness of ow

control in r is guaranteed by the validity of C

1

(r).

6. It remains to show that r starts with the initial ID h0; 0; 1i. In fact,

in the head reduction for the �rst two triples in the list r we have the

rewrite diagram

: ! :

#

: :

Since it commutes by ., (in the head position), it should necessar-

ily start with the triple h0; 0; 1i, because only the list starting with

c(h0; 0; 1i; w) can be reduced that way; see the rules (.

1;2

) in Sec-

tion 12.2 and the related discussion.

7. Therefore, r is a correct �nite successfully terminating run of the 2RM

starting with the initial ID h0; 0; 1i. This �nishes the proof of Theo-

rem 19.1 and the proof of Part A of our Main Theorem (Weak Unde-

cidability). 2

48

20 Right-Ground Systems

In this section we trade linearity for right-groundedness by briey sketching

how the preceding proof applies (with minor modi�cations) to show unde-

cidability of the 98

3

-theory of one step rewriting in (non-linear) terminating

right-ground systems. This was �rst proved by (Marcinkowski 1997). Our

result is an improvement because of a simpler quanti�er pre�x (98

3

, as com-

pared with 9

2

8

5

) and more restricted class of rewrite systems (canonical).

The main idea is as before. We introduce rules corresponding to all

commands in the program. Consider a structurally correct run candidate,

as before. Assume that the 2RM program in question contains command

i : AL. To check, whether a transition between two adjacent IDs is correctly

done by i : AL, we have two rules (note that (45) is not linear any more):

c(hx; y; ii; c(hs(x); y; zi; w)) ! A; (45)

c(hx; y; ii; c(hu; v; zi; w)) ! B: (46)

Similar rules should be added for the right addition, left and right subtrac-

tion; A and B are two new constants not to be confused with the previous

ones. We also add the rule

B ! A: (47)

Consider what happens if a run candidate r contains a correct ID tran-

sition using i : AL, i.e., r � r[c(hx; y; ii; c(hs(x); y; zi; w))]. Then r reduces

both to r[A] and r[B] by (45), (46), and r[A] reduces to r[B] by (47).

Meanwhile, an incorrect transition in r � r[c(hx; y; ii; c(hx

0

; y

0

; zi; w))] can

be reduced only to r[B] by (46), and not to r[A] (note how non-linearity is

useful to check correctness).

Therefore, to check whether a quasi-correct run is correct, write the fol-

lowing formula:

E

rg

(r) � 8u; v

�

R(r; u) ^ R(u; v)) R(r; v)

�

: (48)

This should be understood as follows. Suppose, a transition by command

i is reducible in r by (46) (it is always reducible this way!) to satisfy R(r; u).

Then u is reducible by (47) to satisfy R(u; v). Clearly, if this may be done in

one step then the transition reduced in the �rst step was correct. We leave

the straightforward analysis of the other possibilities to the reader.

To achieve conuence (to eliminate critical pairs) we add extra rules like

c(hx; y; ui; A)! B and c(hx; y; ui; B)! B.

49

21 Strong Undecidability: Fixed Systems with

Undecidable 98

�

-Theories

We thus proved the weak undecidability result (cf., Section 5) for the 9888-

theories of one step rewriting. Our result improves over (Treinen 1996,

Marcinkowski 1997) since it holds already for �nitely terminating and con-

uent linear systems. The quanti�er pre�x we used is simpler than 9988888

used by (Marcinkowski 1997). (Treinen 1996) used the 998-pre�x, but for

divergent nonconuent nonlinear systems with the rule t! t.

Thus, no general algorithm is possible to decide the 9888-theory of an

arbitrary given �nitely terminating and conuent linear system. On the

other hand, whenever any �nite rewriting system is �xed, its 9888-theory,

9988888, etc. (for all quanti�er pre�xes expressed by regular expressions

de�ning �nite languages; see Proposition 5.1) are decidable.

In this section we present a construction of the �xed canonical linear

system with undecidable 98

�

-theory of one step rewriting (note again that by

Proposition 5.1, for undecidability of the theory, the language described by

the quanti�er pre�x regular expression should necessarily be in�nite). This

result improves over (Treinen 1996, Marcinkowski 1997) since neither one

proves (nor claims or implies) strong undecidability. Strong undecidability

was �rst shown by (Vorobyov 1995, Vorobyov 1997). The result of this section

also considerably improves over (Vorobyov 1995, Vorobyov 1997), since the

quanti�er pre�x 98

�

we use in the present paper is currently the simplest

quanti�er pre�x for which the strong undecidability of the theories of one

step rewriting is known.

The development of this section reuses the machinery developed in the

preceding sections and is therefore more schematic, with some trivial and

repeating parts left out.

As a technical tool we use a reduction from a slightly di�erent undecidable

problem due to (Minsky 1961, Minsky 1967, Lewis 1979), for the two-register

machines with input.

Theorem 21.1 (Version with Input, (Lewis 1979), p. 59.) There ex-

ist concrete examples of the `universal' program P such that given a natural

number n it is undecidable (more precisely, r.e.-complete) whether or not

the 2RM halts when started with the �rst instruction of P and both registers

containing the number n. 2

Remark 21.2 The problem remains undecidable when in the statement of

Theorem 21.1 the phrase `a natural number n' is replaced with `a natural

number n > N (where N is any a priori �xed natural number)'. 2

50

Technically, we need to say that a run candidate starts with an ID hn; n; 1i

(for any natural n > N , where N is some �xed bound), instead of saying

that it starts with h0; 0; 1i, as we did before. Thus, for every n > N we must

construct a formula S

n

(r) saying that r � c(hn; n; 1i; w) for some w.

The overall sentence expressing halting of the universal 2RM-program P

on the number n will have the following form:

H

n

�

df

9r

�

C

1

(r) ^ C

0

2

(r) ^ C

0

3

(r) ^ E(r) ^ S

n

(r)

�

; (49)

where S

n

(r) and slightly modi�ed formulas C

0

2

(r), C

0

3

(r) are described below.

Note again that unlike the previously �xed sentence (4), now the sen-

tences H

n

are not going to be �xed any more, and the set of all quanti�er

pre�xes of sentences H

n

is going to be in�nite (recall that this is necessary

by Proposition 5.1). Moreover, each such pre�x will belong to 98

�

.

21.1 Changes to the Rewrite System

Given a universal 2RM-program P (as guaranteed by Theorem 21.1; we

may still assume the P starts with 1 : AL; 2 : SL; 3) we construct the

corresponding rewrite system as before, with the following modi�cation.

Instead of the rule (.

1

) we introduce the modi�ed shortcut rule

[h(hx

0

; y

0

; s0i; hx; y; vi); : : :]

.

[hx

0

; y

0

; s0i; 0; hx; y; vi; 0; : : :]

(.

0

1

)

This is needed in order to check correctness of the registers manipulation on

the �rst step; recall that the computations now start with hn; n; 1i and not

with h0; 0; 1i as before.

21.2 Saying that a Run Starts with hn; n; 1i

Suppose that the existentially quanti�ed in (49) run candidate r is struc-

turally correct, with all correct transitions, correct ow control, and termi-

nating correctly, as before, but we do not insist that it starts with h0; 0; 1i.

The general idea to express that it starts with hn; n; 1i, i.e., has form

r � c(hn; n; 1i; w), is as follows. We introduce new rewrite rules allowing for

the rewrite chains of the form

r

n

! � � � ! r

0

! r (50)

with the property that r has form c(hn; n; 1i; w) if and only if r

n

! r

0

. Note

that in contrast with the previous development we now allow a correct run

51

to be obtained as a result of a sequence of rewrite steps. This causes a slight

change in the de�nition of the formulas C

2;3

below in this section.

First, we augment the rewrite system with the following rules:

s(c(hx; y; s(z)i; w)) ! s(c(hs(x); s(y); zi; w)); (51)

s(c(h0; 0; s(z)i; w)) ! s(c(hs(z); s(z); 0i; w)); (52)

s(c(hs(z); s(z); 0i; w)) ! c(hs(z); s(z); s(0)i; w); (53)

where (53) provides for the last step in the chain (50), (51) allows for the

�rst n steps, and (52) shortcuts r

n

! r

0

. We add the outermost s in the

above rules so as to localize possible application of the rules in the head of a

term.

Take it another way: the rule (51) stepwise pumps the third argument

into the �rst two treating them equally, while (52) does the same in just one

step, when started from zeros.

Now for every n > 0 and every term r � c(hs

n

(0); s

n

(0); s(0)i; w) we have

a unique chain (50), where:

r

i

� s(c(hs

n�i

(0); s

n�i

(0); s

i

(0)i; w)); (54)

and in this case, indeed, r

n

! r

0

in just one step by (52).

We use this property as a characteristic one to express `starting with

hn; n; 1i' by the following formula (where we use r

i

! r

k

instead of R(r

i

; r

k

)):

S

0

n

(r) �

df

8r

n

; : : : ; r

0

�

r

n

! � � � ! r

0

! r) r

n

! r

0

�

: (55)

We are almost home. However, this does not quite work, because when k < n

or j < n the term r = c(hs

k

(0); s

j

(0); s(0)i; w) also satis�es (55). This is due

to the fact that for n backward rewrite steps from r

0

in (50) one needs at

least k � n and j � n. Consequently, the premise of (55) is always false and

thus (55) is true for r = c(hs

k

(0); s

j

(0); s(0)i; w) whenever k < n or j < n.

Otherwise, the formula (55) is true for r = c(hs

n

(0); s

n

(0); s(0)i; w), be-

cause the only possible substitutions for the universally quanti�ed variables

to satisfy the premise are given by (54) and r

n

! r

0

by (52). Additionally,

(55) perfectly excludes all terms r = c(hs

k

(0); s

j

(0); s(0)i; w) with k; j > n.

This is because for every such term there is exactly one way to satisfy the

premise of (55), but in this case the conclusion of (55) fails.

To exclude the terms r = c(hs

k

(0); s

j

(0); s(0)i; w) for k < n or j < n, not

yet excluded by (55), we introduce the following extra rules. Our intention

is to get a fork whenever the backward applications of the rule (51) while

52

creating the chain (50) backwardly gets stuck (one or both arguments become

zero) before the n-step chain r

n

! � � � ! r

0

is created.

ss(c(h0; s(y); zi; w)) ! s(c(h0; s(y); zi; w)); (56)

sss(c(h0; s(y); zi; w)) ! s(c(h0; s(y); zi; w)); (57)

sss(c(h0; s(y); zi; w)) ! ss(c(h0; s(y); zi; w)); (58)

and, symmetrically,

ss(c(hs(x); 0; zi; w)) ! s(c(hs(x); 0; zi; w)); (59)

sss(c(hs(x); 0; zi; w)) ! s(c(hs(x); 0; zi; w)); (60)

sss(c(hs(x); 0; zi; w)) ! ss(c(hs(x); 0; zi; w)); (61)

and, to cover the case when both arguments are exhausted simultaneously,

ss(c(h0; 0; zi; w)) ! s(c(h0; 0; zi; w)); (62)

sss(c(h0; 0; zi; w)) ! s(c(h0; 0; zi; w)); (63)

sss(c(h0; 0; zi; w)) ! ss(c(h0; 0; zi; w)): (64)

Therefore, in the case when r = c(hs

k

(0); s

j

(0); s(0)i; w) with k < n or j < n,

either (56), (57), or (59), (60), or (62), (63) backwardly apply making a fork

at a distance < n from r

0

. This fork commutes by (58), or (61), or (63),

respectively, and the following formula is satis�ed for some l = min(k; j) < n:

Q

l

(r) �

df

:9r

00

l

; r

0

l

; r

l

; : : : ; r

0

0

B

B

B

B

@

r

00

l

&

r

l

%

r

0

l

! � � � ! r

0

! r

1

C

C

C

C

A

: (65)

Note that this formula is equivalent to a universal formula (important for

our purposes), but we leave it in a more intuitive form.

Now for every n > 1 consider the following formula (also equivalent to a

universal formula)

S

00

n

(r) �

df

n�1

^

l=1

Q

l

(r); (66)

which says that one can create a backward chain (50) of length n without

getting forks.

Finally, the needed formula S

n

(r) expressing the property that r starts

with hn; n; 1i may be written as follows

S

n

(r) �

df

S

0

n

(r) ^ S

00

n

(r);

which is also equivalent to a universal formula, with the number of 8 growing

with n.

53

21.3 Excluding a, b, d

We need to slightly correct the formula C

2

(r), see (20), saying that r di�ers

from a, b, d. This is necessary because now, after introduction of the rule (53),

a correct run may be obtained as a result of one step rewrite from another

term. This was not possible before, and we used C

2

(r) � 8w

0

:R(w

0

; r) to

exclude incorrect runs a, b, d; see Section 16.1. If we stay with this C

2

(r), it

will exclude also the correct runs, after introduction of the new rules in the

previous section.

Still, with the new rules the incorrect runs a, b, d are easily excluded,

because none of them satis�es the following formula

8

C

0

2

(r) �

df

8u; u

a

; u

b

; u

d

0

B

B

B

B

@

u

. &

u

a

! u

b

& .

u

d

) :

2

6

6

6

6

4

u

.

r ! u

b

&

u

d

3

7

7

7

7

5

^

^:

2

6

6

6

6

4

u

&

u

a

! u

b

.

r

3

7

7

7

7

5

^ :

2

6

6

6

6

4

u

a

! u

b

& .

r

3

7

7

7

7

5

1

C

C

C

C

A

: (67)

Intuitively this formula says: whenever u, u

a

, u

b

, u

d

form a diamond diagram

as in the premise, which automatically means that u is incorrect and u

a

= a,

u

b

= b, and u

d

= d, then r is neither a, nor b, nor c. This is exactly what we

need.

Note that C

0

2

(r) is one universal quanti�er more expensive than C

2

(r).

Now, as the number of universal quanti�ers in the sentences H

n

should nec-

essarily (by Proposition 5.1) grow unboundedly, we can a�ord being more

wasteful than before.

21.4 Excluding ", s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i

We need to change the formula C

3

(r), because the analysis from Section 16.2

(w

0

cannot be obtained from any w

2

by two rewrite steps) does not work

8

We use graphic diagrams here as more intuitive; they can be easily transformed into

a strict notation by replacing every diagram in [] with a conjunction of atoms R(x; y)

corresponding to x ! y.

54

any more. Fortunately we can be more wasteful now and use more universal

quanti�ers (namely, we need four instead of three).

C

0

3

(r) �

df

8u; u

a

; u

b

; u

d

0

B

B

B

B

@

u

. &

u

a

! u

b

& .

u

d

)

�

r ! u

d

) (r ! u

a

_ r ! u

b

)

�

1

C

C

C

C

C

A

: (68)

When the premise of this formula is satis�ed, then necessarily u

a

= a, u

b

= b,

u

d

= d. Clearly, each of ", s

k

(0), hs

k

(0); s

l

(0); s

m

(0)i reduces to d, but none

reduces neither to a, nor to b. Thus, these terms violate C

0

3

(r). On the

other hand, the straightforward analysis shows that all correct runs do satisfy

C

0

3

(r).

This �nishes the construction. One can easily check that all the rules

we introduced are linear and do not damage the canonicity of the rewrite

system. We thus proved Part B of the Main Theorem.

Strong Undecidability Theorem. There exist �xed �nite linear canoni-

cal rewrite systems with undecidable (r.e.-complete) 98

�

-theories of one step

rewriting. 2

This is the strongest currently known undecidability result for the theories

of one step rewriting in Noetherian systems, as per simplicity of the quanti�er

pre�x and restrictedness of the rewrite system.

55

22 Strong Undecidability of the 9888-Theories

When Function Symbols are Allowed

Recall that by de�nition of the theories of one step rewriting in Section 3

function symbols were forbidden in formulas. This added technical di�cul-

ties in expressing quite obvious things (very easy in presence of function

symbols) but has not prevented the theories of one step rewriting from being

undecidable. In fact, a more natural and liberal de�nition would have al-

lowed for using function symbols in formulas. In this case the complications

we had to deal with in the previous sections disappear, and we obtain the

following strong undecidability result for theories of �nite quanti�er pre�x

9888 (without function symbols this is impossible by Proposition 5.1).

Theorem 22.1 If signature function symbols are allowed in formulas, then

there exist �nite linear canonical systems with r.e.-complete sets of true

prenex sentences of the theory of one step rewriting of the form

9r8w

1

; w

2

; w

3

�(r; w

1

; w

2

; w

3

);

where �(r; w

1

; w

2

; w

3

) is quanti�er-free.

Remark 22.2 Since the theory of one step rewriting is complete (i.e., ev-

ery sentence is either true or false), the set of true prenex sentences of the

theory of one step rewriting of the form 8r9w

1

; w

2

; w

3

�(r; w

1

; w

2

; w

3

), where

�(r; w

1

; w

2

; w

3

) is quanti�er-free, is co-r.e.-complete. All the arithmetic hier-

archy may now be constructed in the usual manner. 2

Proof. The sentences H

n

de�ned in (49) may now be de�ned in the 9888-

form

H

n

�

df

9r

�

E(c(hs

n

(0); s

n

(0); s(0)i; r)) ^

C

1

(c(hs

n

(0); s

n

(0); s(0)i; r))

�

;

where E(r), C

1

(r) are 888-formulas as before. Note that the additional

formulas C

2

, C

3

excluding degenerate cases are not needed any more, due to

the ability to use functional symbols. 2

56

23 Conclusions

In this paper by using reductions from the halting problems for Minsky's

two-register machines (inputless and with input) we proved the following

undecidability results for the theories of one step rewriting.

(Weak Undecidability). There is no general algorithm capable of deciding

the 9888-theory of one step rewriting for every �nite linear canonical

system (despite the fact that for each such system this theory is decid-

able non-uniformly).

This improves over previously known results of the same kind due to

the use of the simpler quanti�er pre�x and simultaneously linear and

canonical systems.

(Strong Undecidability). There exist �xed �nite linear canonical systems

with undecidable (r.e.-complete) 98

�

-theories of one step rewriting. If

function symbols are allowed in the formulas of the theory, then even

the �nite pre�x class 9888 is undecidable.

This improves previous author's results and gives the strongest cur-

rently known undecidability result (as per simplicity of the quanti�er

pre�x and restrictedness of the class of rewrite systems).

It remains open whether positive quanti�ed theories of one step rewriting

are decidable. Note in this respect that ground reducibility expressed by

a positive 8

�

9-sentence is decidable for the usual rewrite systems (Plaisted

1985), but is undecidable for conditional systems, both in the weak sense

(Kaplan & Choquer 1986), and in the strong sense (Vorobyov 1998)

9

.

Another problem worth investigating is the non-uniform decidability of

theories of one step rewriting with �nite pre�xes. Given any �nite term

rewriting system R and a regular expression Q over f9; 8g describing a �nite

set of quanti�er pre�xes, the Q-theory of one step rewriting in R is always

decidable (Proposition 5.1). Develop decision algorithms and investigate

inherent complexity.

9

Kaplan-Choquer showed that there is no algorithm capable of deciding ground con-

uence in an arbitrary �nite decreasing conditional system. Our result is stronger: we

construct �xed examples of systems with undecidable ground reducibility. The existence

of such systems does not follow from Kaplan-Choquer's result.

57

References

Caron, A.-C., Coquid�e, J.-L. & Dauchet, M. (1993), Encompassment prop-

erties and automata with constraints, in C. Kirchner, ed., `Rewriting

Techniques and Applications'93', Vol. 690 of Lect. Notes Comput. Sci.,

Springer-Verlag, pp. 328{342.

Dauchet, M., Caron, A.-C. & Coquid�e, J.-L. (1995), `Automata for reduction

properties solving', J. Symb. Computation 20, 215{233.

Dauchet, M. & Tison, S. (1990), The theory of ground rewrite systems is

decidable, in `Proc 5th IEEE Symp Logic in Computer Science', pp. 242{

256.

Dershowitz, N., Jouannaud, J. & Klop, J. (1993), More problems in rewriting,

in `Rewriting Techniques and Applications'93', Vol. 690 of Lect. Notes

Comput. Sci., pp. 468{487.

Dershowitz, N., Jouannaud, J. & Klop, J. (1995), Problems in rewriting III,

in `Rewriting Techniques and Applications'95', Vol. 914 of Lect. Notes

Comput. Sci., pp. 457{471.

Dershowitz, N. & Jouannaud, J.-P. (1990), Rewrite systems, in J. van

Leeuwen, ed., `Handbook of Theoretical Computer Science', Vol. B: For-

mal models and Semantics, Elsevier, pp. 243{320.

Huet, G. & Oppen, D. C. (1980), Equations and rewrite rules: a survey, in

`Formal Language Theory: Perspectives and Open Problems', Academic

Press, New-York, pp. 349{406.

Kaplan, S. & Choquer, M. (1986), `On the decidability of ground reducibil-

ity', Bull. EATCS 28, 32{34.

Knuth, D. & Bendix, P. (1970), Simple word problems in universal alge-

bras, in J. Leech, ed., `Computational Problems in Abstract Algebra',

Pergamon Press, Oxford, pp. 263{297.

Lewis, H. R. (1979), Unsolvable Classes of Quanti�cational Formulas, Addi-

son Wesley.

Marcinkowski, J. (1997), Undecidability of the �rst-order theory of one step

right ground rewriting, in `Rewriting Techniques and Applications'97',

Lect. Notes Comput. Sci., Springer-Verlag. To appear.

58

Minsky, M. (1961), `Recursive unsolvability of Post's problem of `tag' and

other topics in the theory of Turing machines', Annals of Mathematics

74:3, 437{455.

Minsky, M. (1967), Computation: Finite and In�nite Machines, Prentice

Hall.

Plaisted, D. (1985), `Semantic conuence tests and completion methods',

Information and Control 65, 182{215.

Quine, W. V. (1946), `Concatenation as a basis for arithmetic', J. Symb.

Logic 11(4), 105{114.

Rogers, H. (1967), Theory of recursive functions and e�ective computability,

McGraw Hill.

Seynhaeve, F., Tommasi, M. & Treinen, R. (1997), Grid structure and unde-

cidable constraint theories, in `TAPSOFT'97', Vol. 1214 of Lect. Notes

Comput. Sci., Springer-Verlag, pp. 357{368.

Treinen, R. (1996), The �rst-order theory of one step rewriting is undecidable,

in `Rewriting Techniques and Applications'96', Lect. Notes Comput.

Sci., Springer-Verlag, pp. 276{285.

Vorobyov, S. (1995), The elementary theory of one-step rewriting is unde-

cidable (note). Unpublished draft, see http://www.mpi-sb.mpg/�sv/,

Section \On Trees and Rewriting".

Vorobyov, S. (1997), The �rst-order theory of one step rewriting in linear

noetherian systems is undecidable, in `Rewriting Techniques and Ap-

plications'97', Vol. 1232 of Lect. Notes Comput. Sci., Springer-Verlag,

pp. 254{268. Available from http://www.mpi-sb.mpg.de/�sv.

Vorobyov, S. (1998), A decreasing conditional rewrite system with �

0

1

-

complete ground reducibility. May, 1998, to appear.

59

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-008 S. Vorobyov AE{Equational theory of context uni�cation is

Co-RE-Hard

MPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Direct Lower

Bound Proof)

MPI-I-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-I-98-2-005 M. Veanes The Relation Between Second-Order Uni�cation

and Simultaneous Rigid E-Uni�cation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Functional+Record Subtype

Constraints is NP-Hard

MPI-I-98-2-003 R.A. Schmidt E-Uni�cation for Subsystems of S4

MPI-I-97-2-012 L. Bachmair, H. Ganzinger,

A. Voronkov

Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Bachmair, H. Ganzinger Strict Basic Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with

Complex Values

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set constraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

