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Abstract

Context uni�cation is a particular case of second-order uni�cation, where all

second-order variables are unary and only linear functions are sought for as

solutions. Its decidability is an open problem. We present the simplest (cur-

rently known) undecidable quanti�ed fragment of the theory of context uni-

�cation by showing that for every signature containing a �2-ary symbol one

can construct a context equation E [p; r; F ; w] with parameter p, �rst-order

variables r, w, and context variables F such that the set of true sentences of

the form

8r 9 F 9 w E [p; r; F ; w]

is �

0

1

-hard (i.e., every co-r.e. set is many-one reducible to it), as p ranges

over �nite words of a binary alphabet.

Moreover, the existential pre�x above contains just 5 context and 3 �rst-

order variables (this can be further improved).

It follows, in particular, that the 89

8

-equational theory (without ^, _, :)

of context uni�cation is undecidable.

Keywords

Context uni�cation, theory of free semigroup, undecidability, co-r.e. com-

plete sets.
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1 Introduction

The Context Uni�cation Problem (CUP for short) is:

� A generalization of the celebrated Markov-L�ob's problem of solvability

of equations in a free semigroup proved decidable by (Makanin 1977);

CUP coincides with the latter problem for monadic signatures.

� A specialization of the Second-Order Uni�cation (SOU), known to be

undecidable (Goldfarb 1981, Farmer 1991). CUP is almost SOU, with

only unary function variables allowed and solutions required to be lin-

ear, i.e., of the form �x:t(x), where t(x) contains exactly one occurrence

of x.

Context uni�cation is useful in di�erent areas of Computer Science: term

rewriting, automated theorem proving, equational uni�cation, constraint

solving, computational linguistics, software engineering (Schmidt-Schau� 1994,

Niehren, Pinkal & Ruhrberg 1997, Schmidt-Schau� & Schulz 1997).

CUP is stated as follows:

Given a pair of terms t, t

0

built as usual from symbols of a sig-

nature �, �rst-order variables w, and unary function variables

F , does there exist an assignment � of terms to w and linear

second-order functions to F such that �(t) = �(t

0

)?

Thus, CUP is a decidability problem for the existentially quanti�ed equa-

tions (9

�

-equational theory) of the form

9 F 9 w t = t

0

; (1)

where the quanti�ed context variables F range over linear functions.

Currently the decidability of CUP is an open problem (Schmidt-Schau�

1994, Niehren et al. 1997, Schmidt-Schau� & Schulz 1997). Most researchers

conjecture and hope that CUP is decidable. All the above papers provide

some approximations: either prove decidability of particular cases, or settle

undecidability of some generalizations, or provide technical results towards

decidability of CUP.

Presumably, CUP is very hard to settle, both in decidable and unde-

cidable sense. This is because CUP lies between a technically di�cult de-

cidable case of equations in free semigroups (Markov-L�ob's problem proved

decidable by (Makanin 1977)), and the undecidable case of SOU settled by

(Goldfarb 1981, Farmer 1991). Farmer's result is also technically quite di�-

cult.
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SOU is undecidable for second-order languages containing at least one

� 2-ary function constant and �nitely many unary and ternary function

variables (Goldfarb 1981). Later (Farmer 1991) improved it by showing that

SOU remains undecidable in presence of unary function variables only (but,

unlike CUP, substitutions looked for are not required to be linear ; in fact,

they are not linear in Farmer's proof). It follows from (Makanin 1977) that

SOU is decidable when all variable and constant function symbols are unary.

(Farmer 1988) improved it by showing that decidability is preserved if n-ary

function variables are allowed in addition to constant function symbols of

arity at most one.

Thus, CUP represents the only unknown remaining di�cult intermediate

case between decidable word equations and undecidable SOU (unary vari-

ables, n-ary constants, linear solutions). This explains why the progress

on CUP has been quite slow. Indeed, decidability of CUP would consider-

ably improve Makanin's result, whereas undecidability would considerably

improve Goldfarb-Farmer's undecidability of SOU.

In this paper we show that adding just one outermost universal quanti�er

to a context equation (1) leads to the �

0

1

-hard class of formulas, where �

0

1

is

the class of all co-recursively enumerable sets.

For comparison, the following undecidability results are known about

quanti�ed fragments of context uni�cation:

1. (Quine 1946) showed that the full �rst-order theory of free semigroups

1

is undecidable.

2. (Durnev 1973) improved it to undecidability of 989

3

-positive (without

negation, but with ^ and _) theory of free semigroups.

3. (Marchenkov 1982) improved it to undecidability of 89

4

-positive theory

of free semigroups.

4. (Durnev 1997) improved it to undecidability of 89

3

-positive theory of

free semigroups.

5. (Niehren et al. 1997) claimed undecidability of the 9

�

8

�

9

�

-theory of

context uni�cation.

It should be noticed that all known methods to transform a positive

formula of the theory of free semigroups into just one equation require a

considerable number of auxiliary existentially quanti�ed variables, (B�uchi

& Senger 1986), depending on the number of disjunctions involved. Thus

1

This corresponds to context uni�cation in unary signatures
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the above undecidability results for 89

4

- and 89

3

-positive theories of free

semigroups yield only undecidability of the 89

n

-equational theories of free

semigroups with a very large number n of existentially quanti�ed variables.

In this paper we show that the situation with context equations is quite

di�erent, and just two extra existentially quanti�ed context variables su�ce

to eliminate all disjunctions. This, together with a direct reduction from the

halting problem for Turing machines, gives the undecidability of the 89

8

-

equational theory of context uni�cation, with a reasonably simple quanti�er

pre�x.

The main result of this paper may now be stated as follows.

Main Theorem. For every signature containing a �2-ary symbol one can

construct a context equation E [p; r; C; F; F

0

; G;H; x; y; z] with parameter p,

�rst-order variables r; x; y; z, and context variables C; F; F

0

; G;H such that

the set of true sentences of the form

8r 9 C; F; F

0

; G;H 9 x; y; z E [p; r; C; F; F

0

; G;H; x; y; z] (2)

is �

0

1

-hard (i.e., every co-r.e. set is many-one reducible to it), as p ranges

over �nite words of a binary alphabet. 2

It follows, in particular, that the 89

8

-equational theory (without ^, _, :)

of context uni�cation is undecidable.

Warning. We would like to stress that in this paper we do not intend to

improve the undecidability results of (Marchenkov 1982, Durnev 1997) for

89

4

- and 89

3

-positive theories of free semigroups as to minimizing the num-

ber of existential quanti�ers for positive theories. However, we do get an

improvement over (Marchenkov 1982, Durnev 1997) (of course in a di�erent

framework of context uni�cation) as to simplicity of the existential pre�x in

the undecidable 89

�

-equational theory of context uni�cation. As we men-

tioned above, all known methods of eliminating disjunctions from positive

formulas in free semigroups use a considerable number of auxiliary existen-

tially quanti�ed variables, proportional to the number of disjunctions to be

eliminated. We show that in context uni�cation just two extra variables are

enough.

We would also like to stress that by no means the quanti�er pre�x we

obtain is minimal. We rather try to keep proofs intuitive and transparent. We

believe that applying the methods of disjunction elimination with a constant

number of extra variables (described in Section 5) directly to the reductions

of (Marchenkov 1982, Durnev 1997) will yield the undecidability of the 89

5

-

equational theory of context uni�cation.
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Outline. The remainder of this paper is organized as follows. In Section 2

we give necessary de�nitions concerning CUP, Turing machines, �

0

1

-sets. In

Section 3 we describe the main construction of an 89

�

-sentence from a de-

terministic TM with a complete �

0

1

domain, and in Section 4 implement it.

Section 5 is devoted to eliminating disjunctions.
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2 Preliminaries

2.1 Context Uni�cation.

Let � be a �xed �nite signature with each symbol assigned a �xed arity,

containing at least one constant. Let X be a set of variables and F =

fF;G; : : :g be an in�nite set of function variables of arity one, also called

context variables.

De�nition 2.1 (Terms) The set T (�; X) of terms of signature � with vari-

ables from X is de�ned as usual: variables from X are terms and for f 2 �

of arity n � 0 an expression f(t

1

; : : : ; t

n

) is a term whenever t

i

's are terms.

2

Writing terms with unary function symbols we usually drop parentheses

to improve readability.

We assume all the standard de�nitions and conventions concerning �-

notation, like �-reduction, normalization, etc.

De�nition 2.2 (Contexts) A context is an expression of the form �x:t(x),

where t(x) 2 T (�; fxg) contains exactly one occurrence of the variable x.

A context with �-normal form �x:x is called empty. All other contexts are

non-empty. 2

Remark. Note that the \exactly one" requirement, absent from the de�ni-

tion of SOU, is a specialty of CUP. 2

De�nition 2.3 (Context Terms) Context terms are de�ned inductively:

if � 2 � [ F is of arity n � 0 and t

1

; : : : ; t

n

are context terms, then

�(t

1

; : : : ; t

n

) is a context term. 2

Writing context terms with unary function symbols and function variables

we usually drop parentheses to improve readability.

De�nition 2.4 (CUP, Context Equations) An instance of CUP, also

called a context equation (CE for short), is an expression �

1

?

= �

2

, where �

1;2

are context terms. A solution to a CE �

1

?

= �

2

is a substitution � of contexts

for context variables of �

1;2

such that �(�

1

) �

�

�(�

2

) (equality modulo the

usual �-reduction). 2

Remark. Note that the requirement of replacement of functional (context)

variables with contexts, as opposed to arbitrary second-order �-terms, di�ers

CUP from SOU. When this requirement is dropped, the problem becomes

undecidable (Farmer 1991). 2

6



2.2 Turing Machine with Complete R.E. Domain

A �

0

1

-set is a recursively enumerable set. A �

0

1

-set is a complement of a

�

0

1

-set. An �

0

1

-set (resp., �

0

1

-set) A is called complete i� every �

0

1

-set (resp.,

�

0

1

-set) B is many-one reducible to A, i.e., there exists a total recursive

function f such that x 2 B , f(x) 2 A.

It is well known that there exists a DTM M whose domain is a complete

�

0

1

-set, and, therefore, the set of elements it does not accept is a complete

�

0

1

-set. We may assume, without loss of generality, that the tape alphabet B

of M consists of two symbols, 0 and 1, the tape of M is in�nite to the right,

M never tries to move left from its leftmost tape cell, M may only extend

its tape by writing new symbols on the right end, that the states of M are

Q = fq

0

; : : : ; q

f

g, q

0

is the unique initial state, q

f

is the unique �nal state of

M , M always starts by observing its leftmost tape cell, and M immediately

stops entering state q

f

. Further we assume that M is a �xed such DTM.

The DTM M applies to a nonempty word b

1

: : : b

m

2 B

+

i� there exists

a �nite sequence of IDs (instantaneous descriptions) of M

id

0

; : : : ; id

F

(3)

such that id

0

� q

0

b

1

: : : b

m

, id

F

� q

f

� for some ; � 2 B

�

, and such that

for every pair of IDs id

i

, id

i+1

in the sequence id

i+1

is obtained from id

i

by application of some command of M . The corresponding de�nitions are

well-known and we omit them here.

We will represent IDs of M by terms constructed from unary function

symbols, starting from the constant " for the empty word. We have a unary

function symbol for every symbol in B[Q, and represent a word q

0

10101010

as a term q

0

(1(0(1(0(1(0(1(0("))))))))), which for simplicity will always be

written as q

0

10101010 (i.e., with ( ) and " omitted), if it does not lead to

ambiguity.

We will represent a sequence (3) as a right-attened term (list)

f(id

0

; f(id

1

; f : : : ; f(id

F�1

; f(id

F

; ")) : : :)); (4)

where id

i

's are term representations of words in (3) using unary functional

symbols as described above. Thus the DTM M applies to an input if and

only if such a term (4) exists, and does not apply, if and only if it does not

exist.

Formally, we will use the following signature �:

1. " - constant, for the empty word and list,

2. 0, 1 - unary for tape alphabet B,

7



3. q

0

; : : : ; q

f

- unary for M 's states in Q,

4. f - binary list constructor,

5. a - unary, auxiliary.

Notational Conventions. If not stated otherwise, below

1. s denotes a symbol from B [Q,

2. b denotes a symbol from B,

3. q denotes a symbol from Q.

8



3 Sentence Expressing Inapplicability

To prove the main claim of this paper we will write a sentence of the following

form (with context variables C, F , F

0

, G, H, and ordinary variables r, x, y,

z):

8r 9C; F; F

0

9x; y; z 9G;H �[f(q

0

b

i

1

: : : b

i

p

; r); t

1

; : : : ; t

m

]; (5)

which expresses the fact that the DTM M does not apply to the input string

�s � b

i

1

: : : b

i

p

, because for every r, the term t � f(q

0

b

i

1

: : : b

i

p

; r) is not a

correct run (4) of M , i.e., �s � b

i

1

: : : b

i

p

is in the complement of the r.e.

complete domain of M . This implies the main claim of the paper.

Technically, expressing that a term t � f(q

0

b

i

1

: : : b

i

p

; r) is not a correct

run amounts to saying that `something goes wrong' in t. For example, t

contains `senseless' subterms like f(f(: : : ; : : :); : : :), or a(: : :), etc. It turns

out that this can be expressed by saying `contains one of the �nitely many

wrong patterns' t

1

; : : : ; t

n

, which can be done by saying

t = Ct

1

_ : : : _ t = Ct

m

;

where C is a context variable used to say `there exists a subterm of t. All

the patterns t

1

; : : : ; t

n

are expressed by using 2 context variables F , F

0

and

3 �rst-order variables x, y, z. We then show how to get rid of disjunction

by using just two extra existentially quanti�ed context variables (G and H

in (5)), independently of the number m of patterns. Thus just one context

equation with 5 context and 3 �rst-order existentially quanti�ed variables as

in (2), (5) su�ces for undecidability.

In the next section we enumerate all forbidden patterns preventing a term

to be a correct run. In Section 5 we show how to get rid of disjunctions.

9



4 Forbidden Patterns

4.1 Forbidden Structural Patterns

A term cannot represent a correct run ofM if it contains one of the following

subterms (for some context F and some terms x, y, z):

1. f(F (a(x))).

Reason: a is an auxiliary symbol and cannot occur in a run

2

.

2. f(f(x; y); z).

Reason: a run is a right-attened list of IDs, f cannot occur in the

�rst argument position to itself.

3. f(x; g(y))

for every function symbol g 2 B [Q.

Reason: a run is a right-attened list of IDs.

4. q(F (q

0

(x)))

for q; q

0

2 Q.

Reason: an ID may contain at most one state symbol.

5. g(f(x; y))

for g 2 B [Q.

Reason: IDs cannot contain f .

6. f(F (q

f

(x)); f(y; z))

Reason: entering q

f

DTM stops.

7. q(s(x))

for all q 2 Qnfq

f

g and s 2 B such that M has no commands (q; s !

: : :).

8. q(")

for all q 2 Qnfq

f

g such that there are no commands to extend the tape

on the right end in state q.

2

For technical reasons we use this pattern instead of a more simple a(x), see, Section 5.5.
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4.2 Patterns for Incorrect ID Transitions

In this section we enumerate patterns that cannot occur in a correct run of

the DTM M for the reason a term matching one of the patterns contains

something `senseless'. This can be expressed by existence of solutions to a

�nite number of `local' context equations. As an easy and representative

example, note that an ID � cannot be transformed into an ID �, if for

some context F , state q 2 Q, tape symbols s

1;2;3;4;5

2 B, and x; y one has

simultaneously � � Fs

1

qs

2

x and � � Fs

3

s

4

s

4

y. This is because each TM's

transition moves head either left or right, so in a correct transition either

s

3

or s

5

should belong to Q (be a state). This illustrates the main idea.

By routinely enumerating all possibilities we can assure that a transition is

correct i� it does not match any of the patterns enlisted. Equivalently, a

transition is incorrect i� it matches one of the patterns.

The reader is invited to check that all these patterns use only three �rst-

order variables x; y; z, and two context variables F , F

0

. Recall that we use

these patterns P

i

disjunctively in

t = CP

1

_ : : : _ t = CP

m

to say that t contains a subterm matching one of the patterns P

1

; : : : ; P

m

(where the context variable C is used to say \there exists a subterm").

Since 9 distributes over _, the variables may be reused and we need just

three context C, F , F

0

, and three �rst-order x, y, z variables. The two extra

context variables G, H will be needed to transform a disjunction into an

equation, see Section 5.

List of the patterns for incorrect transitions.

f(Fs; f(Fs

0

y; z))

for s; s

0

2 B, s 6= s

0

.

Reason: in two succeeding IDs the leftmost position in which they

di�er should necessarily contain a state from Q.

For example, for a right shift command (q; s! q

0

; s

0

; R) we have, in a

correct ID transition:

ID

i

= s

1

: : : s

n

q s s

n+1

: : : s

n+m

ID

i+1

= s

1

: : : s

n

s

0

q

0

s

n+1

: : : s

n+m

(the �rst disagreement is q { s

0

.)

11



For a left shift command (q; s ! q

0

; s

0

; L) we have, in a correct ID

transition:

ID

i

= s

1

: : : s

n�1

s

n

q s s

n+1

: : : s

n+m

ID

i+1

= s

1

: : : s

n�1

q

0

s

n

s

0

s

n+1

: : : s

n+m

(the �rst disagreement is s

n

{ q

0

.)

For an `extension on the right' command (q; " ! q

0

; s

0

) we have, in a

correct ID transition:

ID

i

= s

1

: : : s

n

q

ID

i+1

= s

1

: : : s

n

q

0

s

0

(the �rst disagreement is q { q

0

.)

f(Fsx; f(F ("); z))

for all s 2 B [Q.

Reason: the ID

i+1

cannot be shorter than ID

i

.

f(qs

1

x; f(s

2

s

3

y; z))

for all s

3

2 B.

Reason: if the �rst symbol of the ID

i

is a state, then the second

symbol in the ID

i+1

should be a state.

f(Fs

1

qs

2

x; f(Fs

3

s

4

s

5

y; z))

for all s

3

; s

5

2 B.

Reason: if the k-th symbol in ID

i

is a state then either k + 1-th or

k � 1-th in ID

i+1

should be a state.

f(Fqsx; f(Fs

1

s

2

y; z))

for every command (q; s! q

0

; s

0

; R) and every pair of symbols s

1

; s

2

2

B [Q such that either s

1

6= s

0

or s

2

6= q

0

.

Reason: an ID Fqsx should yield Fs

0

q

0

x, thus each pair of consecutive

IDs Fqsx, Fs

1

s

2

y is incorrect.

f(Fqsx; f(Fs

1

("); z))

for every s

1

2 B [Q.

Reason: ID

i+1

abruptly ends. Similar patterns must be written for

the case of left shift commands below.

12



f(Fbqsx; f(Fs

1

s

2

s

3

y; z))

for every command (q; s ! q

0

; s

0

; L), every b 2 B, and every triple of

symbols s

1

; s

2

; s

3

2 B[Q such that either s

1

6= q

0

, or s

2

6= b, or s

3

6= s

0

.

Reason: an ID Fbqsx should yield Fq

0

bs

0

x, thus each pair of consec-

utive IDs Fbqsx, Fs

1

s

2

s

3

y is incorrect.

... Similar patterns should be spelled out for the commands extending the

tape on the right. We leave it as a straightforward exercise.

f(FqsF

0

s

1

x; f(Fs

0

q

0

F

0

s

2

y; z))

for every command (q; s! q

0

; s

0

; R) and every pair of di�erent symbols

s

1

; s

2

2 B.

Reason: an ID transformation is `almost' correct, but some symbol to

the right of the head is copied erroneously.

... Similar pattern for an `almost correct' left shift command We leave as a

straightforward exercise.

Let us add a brief explanation of how the above patterns work. In a correct

run no ID can contain two states (recall that we have a pattern q(F (q

0

(x))).

But can a correct run contain and ID with no state symbols at all? Let us

show that this is impossible. For, if such a situation would be possible, there

should existed a pair of neighboring IDs with the least index i such that id

i

contains a state symbol and id

i+1

does not. Then it is easy to see that one

of the patterns responsible for the transition correctness should match, thus

guaranteeing that a run candidate is incorrect.

We thus constructed a �nite number of patterns t

1

; : : : ; t

m

such that the

DTM M does not apply to the word �s = b

i

1

: : : b

i

p

if and only if

8r 9C; F; F

0

9x; y; z

�

f(q

0

b

i

1

: : : b

i

p

; r) = Ct

1

_ : : :_f(q

0

b

i

1

: : : b

i

p

; r) = Ct

m

�

:

This already proves that the positive 89

6

-theory of context uni�cation is �

0

1

-

hard (by the choice of M with the complete r.e. or �

0

1

- set). In the next

section we proceed to eliminating disjunctions from the latter sentence.

5 Trading Disjunctions for Equations

To �nish the proof of the main claim of the paper, in this section we show

how to represent a disjunction of context equations of the form

t = t

1

_ : : : _ t = t

m

by just one context equation.

13



5.1 Expressing Conjunction of Context Equations by

One Equation

In presence of function symbols of arity � 2, a conjunction of context equa-

tions can be easily expressed by just one equation, since s = s

0

^ t = t

0

if and

only if f(s; t) = f(s

0

; t

0

). One can similarly deal with many equations and

symbols of arity greater than 2.

3

5.2 Expressing t = t

1

_ t = t

2

by one equation

Given a disjunction of context equations

t = t

1

_ t = t

2

; (6)

we would like to transform it to just one equivalent context equation

s = s

0

; (7)

containing extra variables W , such that

(t = t

1

_ t = t

2

) , 9Ws = s

0

(8)

(implicitly universally quanti�ed) is true.

We will write (7) as conjunction (see Section 5.1) of equations

F (a(H(a(")))) = f(a(f(a("); ")); a(f("; a(")))); (9)

S(t) = f(t

1

; t

2

); (10)

S(") = H(z) (11)

with new context variables F , H, S, and �rst-order variable z. Thus the

variable list W in (8) is F;H; S; z.

Let us show that (8) holds.

Our intention with (10) is to restrict solutions to S to either:

S  �v:f(v; t

2

) (meaning that t = t

1

), or (12)

S  �v:f(t

1

; v) (meaning that t = t

2

); (13)

but exclude solutions like

S  �v:f(t

1

; f(v)); (14)

3

When all function symbols are of arity 1, there exists a well-known trick to represent

s = s

0

^ t = t

0

as satsbt = s

0

at

0

s

0

bt

0

, where a, b are di�erent function symbols of arity 1.

14



(where, for the purposes of the example we suppose that the outermost sym-

bol of t

2

is f). Solution (14) and many likewise should be excluded, since

they do not imply that t = t

1

_ t = t

2

.

Notice that (9) has exactly two following solutions (because there are only

two ways to match two occurrences of a on the left of (9) with two pairs of

a's on the right):

1. F  �x:f(x; a(f("; a(")))), H  �u:f(u; "), or

2. F  �x:f(a(f(a("); ")); x), H  �u:f("; u).

(We also exploit the fact that all possible functions substituted for context

variables should use their arguments exactly once).

Therefore, (11) ensures that S is either (12) or (13), and thus, by (10),

t = t

1

_ t = t

2

, as needed.

5.3 Expressing t = t

1

_ : : : _ t = t

m

by one equation

The trick from the previous section easily generalizes as follows. Saying

t = t

1

_ : : : _ t = t

m

is equivalent to saying

9x

2

; x

3

; : : : ; x

m�1

(t = t

1

_ t = x

2

) ^ (x

2

= t

2

_ x

2

= x

3

) ^ : : :

: : : ^ (x

m�1

= t

m�1

_ x

m�1

= t

m

):

Now every 2-disjunction from the last formula can be encoded by one equa-

tion, as described in Section 5.2 (each time using fresh F

i

, H

i

, S

i

, z

i

), and

the resulting conjunction results in one equation, as described in Section 5.1.

5.4 Optimized translation with O(logm) new variables

The translation we described in the previous section adds O(m) existentially

quanti�ed variables to eliminate m disjunctions. This is unreasonably much

for long disjunctions, and we can do better with only O(logm) as follows.

Starting with (15), apply the trick of Section 5.2 simultaneously to each

pair t = t

2i�1

_ t = t

2i

. This will yield (since 9 distributes over _)

9F;H; S; z(s

1

= s

0

1

_ : : : _ s

p

= s

0

p

); (15)

where p is dm=2e.
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The idea is to repeat this transformation O(logm) times. There is only a

small obstacle to overcome: we know how to eliminate disjunction from t =

t

1

_ t = t

2

(with the same t in both equalities), but not from s

1

= t

1

_s

2

= t

2

.

However, the latter is equivalent to f(s

1

; t

1

) = f(t

1

; t

1

)_f(s

1

; t

1

) = f(s

1

; t

2

).

Thus the term on the left becomes the same in both equalities, and we already

know how to deal with this case.

Such an optimized translation introduces only approximately 4 log(m)

new existentially quanti�ed variables to get rid of m disjunctions.

5.5 Optimized translation with a �xed number of new

variables

In this section we go even further and show that just two extra existentially

quanti�ed context variables su�ce to eliminate all disjunctions, indepen-

dently of their (�nite) number. For that purpose we prove the following

lemma. Let [ ] be the empty list " and [t

0

; t

1

; : : : ; t

n

] = f(t

0

; [t

1

; : : : ; t

n

]).

Lemma 5.1 Let � be the substitution

n

Ct

i

=x

i

o

m

i=1

, where t

i

's are the for-

bidden patterns enumerated in Section 4. Consider the system of two equa-

tions:

G(a(H(a))) =

h

a

�

(�x

1

:[x

1

; : : : ; x

m

])a

�

;

: : :

a

�

(�x

i

:[x

1

; : : : ; x

m

])a

�

; (16)

: : :

a

�

(�x

m

:[x

1

; : : : ; x

m

])a

�i

�;

Hf(q

0

�s; r) = [x

1

; : : : ; x

m

] �: (17)

For every ground term r the following are equivalent:

1. the system (16), (17) has a solution,

2. f(q

0

�s; r) is an incorrect run.

16



Brief. Explanation. The term on the right of (16) is:

h

a [ a; Ct

2

; : : : Ct

i

; : : : Ct

m

];

a [ Ct

1

; a; : : : ; Ct

i

; : : : ; Ct

m

];

: : :

a [ Ct

1

; Ct

2

: : : ; a; : : : ; Ct

m

];

: : :

a [ Ct

1

; Ct

2

; : : : ; Ct

i

; : : : ; a ]

i

(18)

(with a, or, to be more precise, a(") on the diagonal.)

Proof. The direction 1. ( 2. is straightforward. Suppose for a ground r

the term f(q

0

�s; r) is an incorrect run for the reason it contains one of the

forbidden patterns t

i

. Let

G

i

= �u:

h

a

�

(�x

1

:[x

1

; : : : ; x

m

])a

�

;

: : :

a

�

(�x

i�1

:[x

1

; : : : ; x

m

])a

�

;

u; (19)

a

�

(�x

i+1

:[x

1

; : : : ; x

m

])a

�

;

: : :

a

�

(�x

m

:[x

1

; : : : ; x

m

])a

�i

�;

H

i

=

�

�x

i

:[x

1

; : : : ; x

i

; : : : ; x

m

]

�

�: (20)

Clearly, substituting such G

i

, H

i

in (16) yields the identity. Moreover, by

substituting H

i

in (17) we obtain

[Ct

1

; : : : ; Ct

i�1

; f(q

0

�s; r); Ct

i+1

; : : : ; Ct

m

] =

[Ct

1

; : : : ; Ct

i�1

; Ct

i

; Ct

i+1

; : : : ; Ct

m

];

which, obviously, has a solution for C, since f(q

0

�s; r) contains a forbidden

pattern t

i

by assumption. Thus the system (16), (17) has a solution. 2

For the opposite direction 1. ) 2. in Lemma 5.1 we prove the following

(contrapositive) claim:

Lemma 5.2 Let f(q

0

�s; r) be a correct run. Then the system (16), (17) has

no solutions.

17



Proof. (16), (17) cannot have solutions of the form (19), (20), because the

latter would mean that f(q

0

�s; r) is incorrect (see the proof of the previous

lemma).

The other `possible' solutions correspond to the following cases.

1. Either the outermost a on the left of (16) matches one of the outermost

a's on the right, but the innermost a on the left does not match the

corresponding a on the right. In other words, either

H

0

= �z:[: : : a; : : : ; Ct

j

�

0

[z=a(")]; : : :]; or

H

00

= �z:[: : : ; Ct

j

�

0

[z=a(")]; : : : ; a; : : :];

for some substitution �

0

and with a in the i-th (i 6= j) place in the list.

It is easily seen that none of such solutions can satisfy (17), because

Ct

i

�

0

cannot be equal (for any C, �

0

) to a � a("), because all the

forbidden patterns t

i

enumerated in Section 4 contain function symbols

di�erent from a

4

.

2. Or the whole aHa on the left of (16) matches some subterm of Ct

k

�

0

,

1 � k � m, for some substitution �

0

(i.e., neither of a's in aHa on the

left matches a visible a on the right of (16), cf., also (18)).

Since q

0

�s cannot match any of Ct

j

, by construction

5

, in order to satisfy

(17), H should be substituted with

�x:[q

1

; : : : ; q

l

(x); : : : ; q

m

];

i.e., Ct

k

�

0

contains a[q

1

; : : : ; q

l

(a); : : : ; q

m

]. Let us show that this can-

not yield a solution.

(a) Suppose, k 6= l. Then Ct

k

�

0

properly contains q

k

, and therefore

(17) cannot be satis�ed, because it requires q

k

= Ct

k

�

0

.

(b) Suppose, k = l. We have Ct

k

�

0

contains a[q

1

; : : : ; q

k

(a); : : : ; q

m

].

Thus Ct

k

�

0

contains p + 2 occurrences of a. On the other hand,

to satisfy (17) we should have

q

k

(f(q

0

�s; r)) = Ct

k

�

0

:

Note that q

k

(f(q

0

�s; r)) contains at most p occurrences of a (com-

pared with p + 2 on the right). Hence the above equality cannot

hold.

4

Recall that we decided to use a complicated pattern f(F (a(x))) instead of the more

intuitive a(x) in the beginning of Section 4.1; now the hidden intention becomes clear.

5

Because the ID q

0

�s is correct and does not contain any forbidden patterns.

18



Thus, the system (16), (17) has no solutions. This �nishes the proof of

Lemmas 5.1, 5.2, and the proof of the main claim of his paper. 2

Remark. We described an ad hoc method to eliminate disjunctions from

the positive formulas (of some particular structure) of context uni�cation,

which is completely su�cient for the purposes of this paper. It is clear that

the method can be generalized so as to apply to arbitrary positive formulas.

This, however, lies out of the scope of this paper.
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