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Abstract

We give a direct proof by generic reduction that a decidable rudimentary the-

ory 
 of �nite typed sets (Henkin 1963, Meyer 1974, Statman 1979, Mairson

1992) requires space exceeding in�nitely often (lower bound)

exp

1

(exp(cn)) = 2

2

�

�

�

2

)

height 2

cn

for some constant c > 0.

This gives the highest currently known lower bound for a decidable logi-

cal theory and a�rmatively answers to (Compton & Henson 1990, Prob-

lem 10.13, p. 75):

Is there a `natural' decidable theory with a lower bound of the

form exp

1

(f(n)), where f is not linearly bounded?

The highest previously known lower (and upper) bounds for `natural' decid-

able theories, like WS1S, S2S, have form exp

1

(dn), with just linearly growing

stacks of twos.

Originally, the same lower bound for 
 was settled by (Vorobyov 1997)

using the powerful uniform lower bounds method due to (Compton & Henson

1990), and probably would never be discovered otherwise. Although very

concise, the original proof left a possibility that the method was pushed out

of the limits it was originally designed and intended for, and some hidden

assumptions were violated. The independent direct proof presented here aims

to dispel all doubts.
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1 Introduction

Some nonelementary theories

1

are more nonelementary than others. Indeed,

a theory with lower and upper time bounds of the form

2

2

2

�

�

�

2

n

9

=

;

log(log(log(log(log(log n)))))

is, of course, nonelementary, but this is immaterial, because for all inputs one

can ever encounter or even imagine in practice the function above is linear.

Other theories, like the well-known weak monadic second-order theory

of one successor WS1S

3

or S2S have lower and upper bounds of the form

exp

1

(dn), with linearly growing stacks of twos

4

; see (Stockmeyer 1974, Fer-

rante & Racko� 1979, Stockmeyer 1987, Compton & Henson 1990) for surveys

of known results.

The theory we consider in this paper is far more nonelementary.

Type theory 
 is a very rudimentary fragment of the theory of proposi-

tional types due to (Henkin 1963), as de�ned by (Statman 1979).

Theory 
. The language of type theory 
 is a language of set theory,

where every variable has a natural number type (written as a binary super-

script) and there are two constants 0, 1 of type 0. The atomic formulas of


 are strati�ed, i.e., have form 0 2 x

1

, or 1 2 x

1

, or x

n

2 y

n+1

. All other

formulas are built as always, by using :, ^, and 8. The interpretation of


 is as follows: 0 denotes 0, 1 denotes 1, and x

n

ranges over D

n

, where

D

0

= f0; 1g and D

n+1

= P(D

n

), the powerset of D

n

. 2

In this paper we directly prove by generic reduction the following

Main Theorem. Any Turing machine deciding 
 requires space, hence,

nondeterministic time exceeding

exp

1

(exp(d � jSj)) = 2

2

�

�

�

2

)

height exp(d�jSj)=2

d�jSj

(1)

1

A theory (problem) is called elementary in the sense of Kalmar i� it can be decided

within time (or space) bounded above by a �xed k-story exponential function exp

k

(n),

where n is the length of input. The functions exp

m

(n) are de�ned by exp

0

(n) = n

and exp

m+1

(n) = 2

exp

m

(n)

. The usual exponential function exp(n) = 2

n

coincides with

exp

1

(n), and the iterated exponential exp

1

(n) = exp

n

(1).

2

According to common practice, log(n) is a shorthand for maxf1; dlog

2

(n)eg.

3

The �rst one proved nonelementary by (Meyer 1975) in May 1972.

4

(Meyer 1975) proved a weaker lower bound, with a logarithmically growing stack.
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for some constant d > 0 and in�nitely many sentences S of 
. 2

(Theorems 18.1, 20.1 below re�ne the Main Theorem for two di�erent ver-

sions of 
 and for �xed quanti�er pre�xes.)

The lower bound (1) remains the same (with a di�erent constant), no

matter which reasonable computational model is used

5

.

One can wonder what is so interesting about the theory 
 and why it

could be considered `natural'. The author of this paper is not the �rst one

who addressed the complexity of 
. For example, (Meyer 1974, Theorem pp.

478{479, no. 7) claimed the

2

2

�

�

�

2

n

9

=

;

"�log(n) height

lower bound. (Statman 1979) claimed that 
 is nonelementary (without any

explicit lower bounds) and used this fact to prove that �-equality in the

simply typed lambda calculus is not elementary recursive. Later (Mairson

1992) sketched the proof that 
 is nonelementary, also without any explicit

lower bounds (note that Mairson's proof does not imply the lower bound (1)).

The high complexity of 
 came unnoticed until (Vorobyov 1997) settled, by

using the method of (Compton & Henson 1990), the lower bound (1) and

used it together with Statman's reduction to prove the tight exp

1

(cn) lower

bound for �-equality in the simply typed lambda calculus. This lower bound

now precisely matches (with a di�erent constant) the known upper bound of

the form exp

1

(dn) due to Tait.

As another important application, (Vorobyov 1997) showed that a long-

standing, currently still open higher-order matching problem in the sim-

ply typed lambda calculus due to Huet has a lower bound of the form

exp

1

(cn= log(n)). This provides an example asked for by (Compton &

Henson 1990, Problem 10.11):

Give nontrivial lower bounds for mathematically interesting prob-

lems whose decidability is still open.

Recently (Vorobyov & Voronkov 1998) used the lower bound (1) to show

that determining whether a given nonrecursive logic program over sets suc-

ceeds has the same exponentially growing stack of twos exp

1

(exp(dn)) as a

lower bound.

(Kuper & Vardi 1993) and also (Hull & Su 1991) considered similar for-

malisms of logical queries over sets with the powerset constructor. They

5

All `reasonable' computational formalisms can be modeled by a Turing machine with

only a polynomial slow-down.
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proved tight lower and upper bounds of the form exp

1

(cn), with linearly

growing stacks of twos. The main reason of higher complexity of 
 is that

its language is exponentially more succinct : it uses binary notation for types

interpreted it terms of iterated powersets, whereas (Kuper & Vardi 1993)

use unary notation for iterated powersets. Consequently, in 
 we need just

O(log(256)) bits to say `x is an element of powerset(: : : (powerset

| {z }

256 times

(f0; 1g) : : : )',

which requires O(256) bits in the formalism of (Kuper & Vardi 1993). This

exponential succinctness translates into the exponential speed-up in the growth

of stacks of twos. The other (main) reason is that in proving the lower

bound for 
 we (almost) do not need inductive de�nitions, whereas (Kuper

& Vardi 1993) do need them to de�ne large sets. In the remainder of this

section and in Remarks 15.1, 19.2, 21.1 we discuss why inductive de�nitions

lead to poorer lower bounds.

Originally, the lower bound (1) in the Main Theorem was discovered by

using the powerful uniform lower bounds method due to (Compton & Henson

1990) in October 1996, and, probably, would never be discovered otherwise

(recall that it came unnoticed in (Meyer 1974, Statman 1979, Mairson 1992)).

Since the lower bound (1) was �rst reported in (Vorobyov 1997), we felt it

necessary to provide an independent alternative proof in order to increase

con�dence in the validity of the claim, as well as of all applications we men-

tioned before, and dispel all suspicions as to applicability of the method

in the area it was not developed and intended for. This paper gives such

an alternative proof by direct generic reduction, and also unveils a hidden

assumption of Compton-Henson's method violated in (Vorobyov 1997).

Roughly, this `hidden' assumption is as follows. In �rst-order theories

one can write formulas with linearly many quanti�ers, but using only a �xed

number of di�erent variables (by reusing variable names). This allows for

keeping the length of formulas linear in de�ning large ordered sets { the cru-

cial property in proving strong lower bounds. This is not necessarily true for

higher-order theories with variables keeping their type annotations. Indeed,

while one can reuse variable names, the number of variable occurrences re-

mains linear. If, additionally, variable types linearly depend on input, then

one gets a quadratic blow-up in the length of formulas. This observation,

applied uniformly to the method of (Compton & Henson 1990), suggests

that the lower bound for 
 proved in (Vorobyov 1997) should be degraded

to a more modest exp

1

(exp(

p

cn)) (note: still a superlinear stack of twos).

However, as an additional advantage, the proof presented in this paper shows

that 
 is capable of de�ning large ordered sets without inductive de�nitions

that require linear number of variable occurrences leading to a quadratic ex-

5



plosion. This repairs a `slightly' incorrect application of Compton-Henson's

method in (Vorobyov 1997).

Another advantage of the direct proof presented here is that it yields, as

a by-product, an interesting result about a �xed quanti�er pre�x complexity.

Usually one has to allow an arbitrary quanti�er alternation depth in formulas

to settle the lower bounds. In 
 this can be done with a �xed quanti�er pre�x,

with slightly weaker lower bounds. This came unnoticed in (Vorobyov 1997).

Outline. The paper is organized as follows. Sections 2 and 3 describe

preliminaries and lower bounds basics. Section 4 presents the proof plan,

and the sections that follow implement it. Section 18 makes an intermediate

pause by presenting simple lower bounds for a �xed quanti�er pre�x, and the

succeeding sections push up the lower bounds to the strongest possible.

2 Preliminaries

As usual, P(X) and card(X) denote the set of all subsets of a set X and its

cardinality respectively. We assume the basic knowledge concerning words,

languages, complexity, reductions, big-Oh notation, and use all standard

notation for words, length, etc. By ! we denote the set of natural numbers.

The function exp

1

: ! ! ! is recursively de�ned by exp

1

(0) = 1 and

exp

1

(k + 1) = 2

exp

1

(k)

. The m-story exponential functions exp

m

(n) are

de�ned by exp

0

(n) = n and exp

m+1

(n) = 2

exp

m

(n)

.

Remark 2.1 Note that exp

1

(n) = exp

n

(1). Throughout the paper we use

exp

1

(f(n)) as a shorthand for exp

1

(bf(n)c). 2

Type theory 
 is a very rudimentary fragment of the theory of propo-

sitional types due to (Henkin 1963), as de�ned by (Statman 1979, Mairson

1992).

De�nition 2.2 (Theory 
) . The language of type theory 
 is a language

of set theory, where every variable has a natural number type (written as a

binary superscript) and there are two constants 0, 1 of type 0. The atomic

formulas of 
 are strati�ed, i.e., have form 0 2 x

1

, or 1 2 x

1

, or x

n

2 y

n+1

.

All other formulas are built as always, by using :, ^, and 8.

The interpretation of 
 is as follows: 0 denotes 0, 1 denotes 1, and x

n

ranges over D

n

, where D

0

= f0; 1g and D

n+1

= P(D

n

). 2

Remark 2.3 Note that card(D

i

) = exp

1

(i+ 1). 2
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Remark 2.4 Decidability of 
 is immediate, because each quanti�er runs

over a �nite domain. See Remark 21.3 for the upper complexity bound. 2

Convention. For complexity considerations below we �x an arbitrary rea-

sonable encoding of formulas of 
 as binary strings and agree that a variable

of 
 is represented by its type and its identi�cation number within a type,

both written in binary. 2

Annotating all variable occurrences in formulas of 
 with their types

introduces a big deal of redundancy. For example, x

k

2 z

k+1

^ y

k

2 z

k+1

can be unambiguously abbreviated to x 2 z

k+1

^ y 2 z, because all the

missing type annotations in the last formula may be easily and uniquely

reconstructed. Respectively, we de�ne two versions of 
.

De�nition 2.5 We will distinguish between two versions of the theory 
:

Fully typed, or verbose, in which full type annotations are supplied for

all variable occurrences.

Minimally (Partially) typed, or succinct, in which formulas are sup-

plied with only a minimal type information allowing for an unambigu-

ous reconstruction of the full type information about variables. 2

This distinction becomes important as soon as linear bounded reducibilities

are concerned. Consider a conjunction

p

^

i=0

x

k

i

2 Z

k+1

;

where the number of conjuncts p is O(log(n)), and the notational length of

type k is O(n). Then the length of the conjunction above is O(n log(n)).

The same conjunction written in succinct form

x

0

2 Z

k+1

^

p

^

i=1

x

i

2 Z

has length O(n). As a consequence, the succinct version of 
 has `slightly'

higher (in fact, nonelementarily higher) lower bounds, as discussed below.
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3 Lower Bounds Basics

The main technical tool we need in this section are Lemma 3.3 and Corol-

lary 3.5, which describe the idea of a generic reduction. If every problem in

a class C is reducible to a problem T , then T is approximately as complex as

any problem in C, modulo the order of reduction. Experts may skip the rest

of this section.

The model of computation we use is the ordinary language recognizing

deterministic Turing machine M with a semi-in�nite (to the right) tape used

both for input, work, and output. We may assume without loss of generality

that the tape alphabet � of M consists of two symbols, � = f0; 1g. We

apply all standard assumptions: that M always starts in its unique initial

state observing the leftmost tape cell, that the input is always written on

the left end of the tape, that M accepts by entering its unique accepting

state q

a

observing the leftmost cell after erasing all the tape space used in

computation, etc.; see, e.g., (Stockmeyer 1974, Ferrante & Racko� 1979).

The lower bounds we obtain routinely translate to other realistic models of

computation, with only di�erent constants.

Space Hierarchy Theorem. We found it most convenient to work with

space complexity classes. However, all the arguments below may be ap-

propriately modi�ed and carried out for (non)deterministic time complexity

classes. In fact, there is only a slight di�erence in claiming that a problem

requires space or (non)deterministic time exceeding exp

1

(exp(dn)) for some

d > 0 in�nitely often. Note that the space claim is the strongest.

We need some basic de�nitions. A function S(n) > log

2

(n) is called space

constructible i� there exists an S(n)-space bounded TM M such that for each

n there exists an input of length n on which M actually uses S(n) tape cells.

If for all n, M uses exactly S(n) cells on any input of length n, then S(n)

is said fully space constructible. Any space constructible S(n) is fully space

constructible, (Hopcroft, & Ullman 1979, p. 297). It is a routine exercise to

show that functions like exp

1

(exp(n))�k (with k 2 !) and exp

1

(exp(n=2))

are (fully) space constructible.

As usual, DSPACE(S(n)) denotes the class of languages recognized by

the S(n)-space bounded deterministic Turing machines. To settle the space

lower bounds, we will need the following well-known separation result; see,

e.g., (Hopcroft et al. 1979, Theorem 12.8, p. 297):

8



Theorem 3.1 If S

2

(n) is a fully space constructible function,

lim

n!1

S

2

(n)

S

1

(n)

= 0;

and S

1

(n), S

2

(n) are each at least log

2

(n), then there is a language in

DSPACE(S

2

(n)) n DSPACE(S

1

(n)):

We will use both linearly bounded and non-linearly bounded deterministic

time polynomial reducibilities in conjunction with Theorem 3.1 to settle the

space lower bounds by generic reduction; cf., (Stockmeyer & Meyer 1973,

Stockmeyer 1974, Stockmeyer 1977, Ferrante & Racko� 1979, Lewis 1980,

Stockmeyer 1987):

De�nition 3.2 (Reducibility `Via Length Order') Say that a problem

A is polynomial time reducible to a problem B via length order g(n) i� there

exists a deterministic polynomial time computable function f and a constant

c > 0 such that for all x in the language of A one has:

x 2 A , f(x) 2 B; (2)

jf(x)j � c � g(jxj) (except, maybe, �nitely many x). (3)

Polynomial time reducibility via length order n is called polynomial time

linearly bounded reducibility. 2

In the sequel we will freely speak about `linearly bounded' formulas meaning

that their sizes are linearly bounded by the length of input and they can be

constructed in deterministic time polynomial in the length of input.

The following lemma explains the method of proving the lower bounds

by generic reduction. If a class of problems is reducible to a problem, then

the problem is as di�cult as an `average' problem is the class (modulo the

order of reducibility).

Lemma 3.3 (Lower Bounds by Generic Reduction) Let:

1. g and h be functions such that for every constant c

1

> 0 there exists a

constant c

2

> 0 such that for all n 2 ! (except, maybe, �nitely many)

one has

h(c

1

� g(n)) � c

2

� n; (4)

9



2. S(n) � exp(n) be fully space constructible, such that for every con-

stants c; d > 0 the function S(dh(cg(n))) is monotone and grows faster

than any polynomial,

3. T be a problem such that every problem A 2 DSPACE(S(n) � 2) is

reducible to T via length order g(n).

Then for some d > 0 one has

T 62 DSPACE(S(dh(n))): (5)

Equivalently, T requires deterministic space exceeding S(h(dn)) in�nitely

often.

Proof. By Theorem 3.1, there is a problem

A 2 DSPACE(S(n)� 2) n DSPACE(S(n=2)):

Since A is reducible to T via length order g(n), for every constant d > 0 we

have the following chain:

T 2 DSPACE(S(dh(n))) ) A 2 DSPACE(S(dh(cg(n))) + p(n))

) A 2 DSPACE(S(dh(c

1

g(n))))

) A 2 DSPACE(S(dc

2

n))

where p(n) is a polynomial (time necessary to compute a reduction from A to

T ), and c

1

is a constant slightly larger than c (by assumption, S(dh(cg(n)))

grows faster than p(n)), and we use the assumption (4).

The contrapositive of the above implication chain is

A 62 DSPACE(S(dc

2

n)) ) T 62 DSPACE(S(dh(n))):

Since A 62 DSPACE(S(n=2)), it su�ces to select d = c

2

=2 to obtain (5). 2

Remark 3.4 The `length order condition' (3) is really important. Deter-

ministic polynomial time computability of reduction is unnecessarily strong,

and we use it only following the common practice. In fact, any reduction

computable in space o(S(dh(cg(n)))) would be appropriate. 2

Corollary 3.5 Lemma 3.3 applies for the function S(n) = exp

1

(exp(n))

and the following reducibilities.

Order n (linear) reducibility: g(n) = n; in this case h(n) = n and

T 62 DSPACE(exp

1

(exp(dn))): (6)

10



Order n log(n) reducibility: g(n) = n log(n); in this case h(n) = n= log(n)

and

T 62 DSPACE(exp

1

(exp(d

n

log(n)

))): (7)

Order n

2

reducibility: g(n) = n

2

; in this case h(n) =

p

n and

T 62 DSPACE(exp

1

(exp(d

p

n))): (8)

Thus, `more economic' reducibilities yield stronger lower bounds.

4 Proof Plan

According to Lemma 3.3 and Corollary 3.5, our aim in the remainder of the

paper will be to show that every problem A 2 DSPACE(exp

1

(exp(n))� 2)

is reducible to 
, i.e., there exist a reduction f and a constant c satisfying

(2), (3) for an appropriate order g(n) depending on the version of 
.

Let A be an arbitrary problem in DSPACE(exp

1

(exp(n)) � 2), and let

M be a corresponding (exp

1

(exp(n)) � 2)-space bounded TM deciding A.

We will give a reduction f by constructing, for each x of length n in the

language of A, the sentence �

M;x

true in 
 i� M accepts x.

Remark 4.1 Pay special attention to the order of quanti�ers in Lemma 3.3:

for every problem A there exist a function f and a constant c. Thus all pa-

rameters of A, represented by a TM M , are �xed before we start constructing

f (these include the number of tape symbols, states, commands, etc.) and

thus may only inuence the value of constant c. This is important as soon

as linear boundedness is concerned. Otherwise, if we should have considered

a description of M as a part of input, the number of pairs of tape symbols

would have been quadratic. 2

We start constructing the sentence �

M;x

in Section 6, after extending the

language of 
 by allowing explicit de�nitions.

5 Using Explicit De�nitions

Let us extend the language of 
 by allowing explicit de�nitions. This ex-

tension will lead to simpler and more understandable formulas, but will not

really increase the expressive power and complexity of the theory. This is

11



because all explicit de�nitions can be eventually eliminated from any formula

giving only a linear blow-up. Thus using explicit de�nitions will not harm

the linear boundedness of reductions we construct. Experts may skip this

section.

Set-Theoretic Notions. We will need the usual set-theoretic explicit def-

initions like

x

m

� y

m

�

df

8z

m�1

(z

m�1

2 x

m

) z

m�1

2 y

m

)

for every m 2 !, and similarly for strict subset (, and set (in)equality.

Terms. The language of 
 does not have terms, except variables. Terms,

like fxg, fx; yg, ffxg; fx; ygg, are useful representations for singletons, pairs,

ordered pairs, which we will frequently need. Instead, we can de�ne predi-

cates for `to be a singleton, pair, ordered pair' by:

fx

n

g = y

n+1

�

df

x

n

2 y

n+1

^ 8z

n+1

(x

n

2 z

n+1

) y

n+1

� z

n+1

);

fx

n

; y

n

g = z

n+1

�

df

x

n

2 z

n+1

^ y

n

2 z

n+1

^

8w

n+1

(x

n

2 w

n+1

^ y

n

2 w

n+1

) z

n+1

� w

n+1

);

hx

n

; y

n

i = z

n+2

�

df

9u

n+1

v

n+1

h

fx

n

g = u

n+1

^ fx

n

; y

n

g = v

n+1

^

fu

n+1

; v

n+1

g = z

n+2

i

:

Remark 5.1 1) For notational simplicity we continue to use the term-like

notation like fx

n

g = y

n+1

instead of a less natural predicate notation

Is-Singleton(y

n+1

; x

n

). 2) Note how variables are typed in the explicit def-

initions above. Recall that by de�nition of 
 one cannot form a pair of

elements of two di�erent types. 3) The explicit de�nitions above are not

fully expanded (according to the usual mathematical practice). The full ex-

pansion can always be routinely done, giving only a linear increase in the

length of formulas. 2

Elimination of Terms from Formulas. We need to make the last expla-

nation concerning the use of terms in formulas. Consider, for example, the

formula (we omit types for simplicity),

ha; bi 2 fc; dg;

12



which, of course, should be translated into

8x; y(x = ha; bi ^ y = fc; dg ) x 2 y);

and two atoms in the premise should also be replaced by their explicit de�-

nitions.

Such a transformation consists in introducing new variables correspond-

ing to subterms, and putting their de�nitions of in the premise. Such a

transformation can always be routinely done, giving only a linear increase in

the length of formulas, provided the depth of terms is bounded in advance.

Therefore, we can freely use all the above explicit de�nitions and terms

in the constructions below, without running a risk to get more than a linear

blow-up in the size of formulas.

6 Formula for an Accepting Computation

Given an arbitrary but �xed (exp

1

(exp(n))� 2)-space bounded TM M (cf.,

Remark 4.1) with tape alphabet � = f0; 1g, set of states Q (�\Q = ;), and

an input x 2 �

+

of length n > 0, we will construct the sentence

�

M;x

�

df

9R

t+5

h

A ^ I(R) ^ C(R) ^ F (R)^

8R

0

�

I(R

0

) ^ C(R

0

) ) R � R

0

� i

;

(9)

in the language of 
, where:

1. the variable R

t+5

stands for a `run' of M ;

2. the type of R is t+ 5, where t, called the principal type (to be de�ned

later in Section 11) linearly depends on the input length n;

3. here and below we agree to omit types of some variable occurrences in

formulas, they will always be uniquely determined and easy to guess;

4. in fact, the existentially quanti�ed occurrence R

t+5

in (9) is the only

variable occurrence needed to be annotated by a type | all other vari-

ables of (9) can be uniquely and unambiguously typed;

5. A is an auxiliary formula to be discussed below in Section 14;

6. I(R) says that R contains an initial instantaneous description (ID) of

M on input x, de�ned in Sections 15, 19;
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7. C(R) says that R is closed with respect to transitions of M , de�ned in

Section 17;

8. the universally quanti�ed subformula in (9) expresses that R is a min-

imal set containing the initial ID and closed with respect to machine's

transitions;

9. F (R) says that R contains an accepting ID of M , de�ned in Section 16;

10. intuitively, the whole formula (9) says that there exists a path from the

initial to the �nal con�guration by using transitions of M , or, equiva-

lently, that M accepts x.

7 Acceptance

By de�nition, an (exp

1

(exp(n))�2)-space bounded TM M accepts an input

x i� there exists a sequence of IDs, starting with an initial ID, with each

succeeding ID obtained from the preceding one by applying one of the rules

of M , and ending with an accepting ID. Since M is an (exp

1

(exp(n)) � 2)-

space bounded, we make a standardizing assumption that all its IDs have

equal length exp

1

(exp(n)) + 1 and are of the form

$d

1

: : : d

exp

1

(exp(n))�1

$; (10)

where:

� $ 62 � [ Q are tape end markers, over which M never tries to come

across,

� exactly one of d

i

's is a head state symbol (we assume that in this case

M is in state designated by this state symbol observing the i + 1-st

tape cell), and

� the remaining exp

1

(exp(n)) � 2 symbols are symbols of the M 's tape

alphabet and/or blanks (we assume that the tape unused by M is

padded by blanks, and a blank is not in � [ Q).

Thus the total (maximal) tape space described by (10) is exp

1

(exp(n))� 2.
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8 Representing a Run

We will represent a run R of a TM M as a set of pairs of IDs of M satisfying

two properties:

1. for all hx; yi 2 R the ID y is obtained from the ID x in one step of M ;

(Elements of R are correct ID transitions of M .)

2. if hx; yi 2 R and y is not �nal, then for some z one has hy; zi 2 R.

(R is closed with respect to M transitions.)

Note that (9) stipulates that R is a minimal set satisfying these properties.

9 Representing an ID

An ID of an (exp

1

(exp(n)) � 2)-space bounded TM M will be represented

as a set of pairs:

ID � L� L;

where:

1. L is a linearly ordered set of cardinality exp

1

(exp(n))+1 de�ned below

in Section 10, needed to index the symbols of an ID in (10),

2. fx j 9yhx; yi 2 IDg = L | to represent (10) we need a total function

with domain of cardinality exp

1

(exp(n)) + 1,

3. card(fyj9xhx; yi 2 IDg) = card(Q [ �) + 2 | we need to represent

states from Q, tape symbols �, a blank, and the end marker $ by

elements of L.

Thus, an ID (10) is represented an L-indexed sequence of tape symbols (in-

cluding head state) represented as elements of L, padded by blanks to the

length exp

1

(exp(n))� 2, and embraced by $.

Note that in 
 we can only construct sets of elements of the same type;

see the de�nitions of pairs in Section 5. This explains why we have to use

subsets of the Cartesian square of L to represent IDs.
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10 Large Linearly Ordered Set

De�ne the predicate `to be linearly ordered' by (with type t to be de�ned

below in Section 11)

LO(X

t

) �

df

8x; y(x 2 X ^ y 2 X ) (x � y _ y � x))

and also `to be a maximal chain' by

MC (L

t

) �

df

LO(L) ^ 8L

0

�

LO(L

0

) ) L

0

� L

�

: (11)

Remark 10.1 It is important to notice that we succeeded to de�ne a linear

order without any inductive de�nitions. This is one of the reasons 
 is so

hard to decide; cf., Remark 21.1. 2

We need the following simple yet useful

Lemma 10.2 Any maximal chain S

t

2 D

t

= P(D

t�1

) contains exactly

card(D

t�1

) + 1 = exp

1

(t) + 1 elements.

Proof. We may always suppose that the �rst and the last elements of any

maximal chain S

t

2 D

t

are ; and D

t�1

. Otherwise, S can be extended by

adding these elements (and thus is non-maximal). Write the chain S as a

sequence

X

0

� � � � � X

i

� X

i+1

� � � � � X

m

:

We claim m = card(D

t�1

). Otherwise, one should have card(X

i+1

nX

i

) > 1

for some i. Let u 2 X

i+1

nX

i

. Then the chain may be extended by adding

X

i

[ fug, i.e., X

i

� X

i

[ fug � X

i+1

, and we get a contradiction. It is easy

to see that S cannot have more than card(D

t�1

) + 1 elements, because any

pair X

i

� X

i+1

of adjacent elements in S should have cardinalities di�ering

at least by 1. 2

Convention 10.3 Let everywhere below L

t

denote a maximal chain, satis-

fying MC (L

t

) de�ned by (11). 2

11 The Principal Type

By de�nition, the principal type of the formula (9) is t. Recall that the

existentially quanti�ed variable R of (9) has type t + 5, and that t is the

type of the variable L

t

denoting a maximal chain (see the previous section).
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Section 9 explains why L

t

should have cardinality exp

1

(exp(n)) + 1, and

from Lemma 10.2 we know that L

t

has cardinality exp

1

(t) + 1. Thus, the

principal type t should be chosen as

t = 1 0 : : : 0

| {z }

n times

;

which speci�es L

t

as a variable of type 2

n

| recall that type annotations

of variables in 
 are written in binary. This type annotation t for L

t

de-

�nes uniquely the types of all other variables involved in �

M;x

, which will

di�er from t only by constants, with t + 5 being the largest. This property

will be provided by the construction of �

M;x

. Therefore, all variable type

annotations in �

M;x

will be linearly bounded in the length of input.

Conversely, the largest type t + 5 of the existentially quanti�ed variable

R of (9) uniquely de�nes the principal type t of L

t

, as well as (smaller) types

of all other variable occurrences in �

M;x

.

12 Successors and Adjacent Triples in a Chain

De�ne the `successor' and the `three adjacent elements' predicates by:

succ(x; y; L

t

) �

df

x 2 L ^ y 2 L ^ x 6= y^

8z(x � z � y ) (z � x _ y � z));

adj3 (x; y; u; L

t

) �

df

succ(x; y; L) ^ succ(y; u; L):

(12)

13 Tape, State, and Auxiliary Symbols

We wish to use certain elements of the maximal chain L

t

to represent tape,

state, and auxiliary symbols, as explained in Section 9. It su�ces to choose

enough di�erent fresh variables v

1

; : : : ; v

m

of type t� 1: one variable Q

i

per

state symbol q

i

2 Q, plus four variables BLANK , END , ZERO , ONE , for

the blank, end marker, tape symbols 0; 1 2 �

6

, and to add conjunctively to

the overall formula we construct

m

^

i=1

v

i

2 L

t

^

^

1�i 6=j�m

v

i

6= v

j

:

(We may assume without loss of generality that L is large enough to possess

at least m elements.)

6

Recall that the number of symbols m is �xed a priori, when a TM for a problem is

�xed; see Remark 4.1.
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The formula above is almost a �xed formula depending only on the num-

ber of state symbols in the description of M (which is considered a constant;

see, Remark 4.1). However, this formula contains a constant number of vari-

able occurrences, each assigned a type linearly depending on the input length.

Thus the above formula is of linear length.

This situation will repeat several times in the sequel.

De�nition 13.1 Call a formula of 
 quasi-�xed i�, after erasing all types

of variables, it becomes a �xed formula, independent of input. 2

Remark 13.2 We will construct, whenever possible, quasi-�xed formulas

with variables annotated by types linearly depending on input; see Section 11.

Thus, the sizes of such quasi-�xed formulas will be linear in the length of

input. If a formula of 
 is not quasi-�xed (e.g., contains a linear number

of variable occurrences of non-�xed types), its size may grow non-linearly

(e.g., quadratically) in the length of input. Therefore, since we need linear

bounded reductions, we pay special care in constructing quasi-�xed formulas

whenever possible. 2

14 Auxiliary Formula

Suppose the initial ID of M is q

0

s

1

: : : s

n

. We select fresh di�erent variables

X

fst

, X

lst

, X

0

, X

1

, and, as described above, fresh di�erent variables ZERO,

ONE (for the tape alphabet), BLANK (for the blank), END (for the end

marker $), and Q

i

for all states q

i

2 Q. All these variables are of type t� 1.

The set V of all these variables is a �nite set. Its size is a �xed constant

determined by the problem.

The auxiliary formula A in (9) is de�ned as a conjunction

A �

df

MC (L

t

) ^min(X

fst

; L) ^ max(X

lst

; L) ^

adj3 (X

fst

; X

0

; X

1

; L) ^

^

V 2V

V 2 L ^ (13)

^

for di�erent V;V

0

2V

V 6= V

0

;

where min(x; L) is explicitly de�ned by x 2 L ^ 8z(z 2 L ) x � z), and

similarly for max.

The formula (13) simply says that X

fst

, X

lst

are the �rst and the last

elements in the chain L, X

0

is a successor to X

fst

, X

1

is a successor to X

0

,

and all variables V

i

2 V are interpreted as di�erent elements of L.
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15 Initial ID, Subformula I(R)

Suppose that the TM M starts in the initial state q

0

observing the �rst

symbols of the input sequence s

1

: : : s

n

2 f0; 1g

+

.

As a �rst approximation to represent the initial ID $q

0

s

1

: : : s

n

b : : : b$ of

M , let us select fresh di�erent variables X

2

, : : : , X

n

, in addition to selected

earlier, and write the following formula (with S

i

equal ZERO when s

i

is 0

and S

i

equal ONE when s

i

is 1):

IC (C

t+2

) �

df

hX

fst

;ENDi 2 C ^ hX

0

; Q

0

i 2 C ^ hX

lst

;ENDi 2 C ^

n�1

^

i=1

succ(X

i

; X

i+1

; L) ^

n

^

i=1

hX

i

; S

i

i 2 C ^

8u(X

n

( u ( X

lst

) hu;BLANK i 2 C) ^ (14)

8u; v; w(hu; vi 2 C ^ hu; wi 2 C ) v = w):

The last two universal subformulas in (14) say that the input is padded with

blanks and that C is a `function', i.e., every tape symbol is uniquely de�ned.

We now can write the subformula I(R) of (9):

I(R

t+5

) �

df

9X

t+2

; Y

t+2

�

IC (X ) ^ hX; Y i 2 R

�

: (15)

Note that the type of hX; Y i in (15) is t + 4 (see Section 5), hence the type

of R is t + 5. Recall that types in the atomic formulas of 
 should di�er by

one: x

k

2 y

k+1

.

Remark 15.1 The only drawback of the formula (14) (consequently, of (15))

is that it is superlinear in the length of input n. The reason is that we

introduced O(n) variables X

1

, : : : , X

n

to index the sequence of input bits.

Even if we are using the economic binary notation for variable indices, it

gives length increase of order n log(n).

Even worse, since in the verbose fully typed version of 
 we must annotate

all variable occurrences with their types, and the type t�1 in (14) is of length

linear in the size of input (even written in binary), the formula (14) with all

variables types written explicitly is of length O(n

2

).

Thus the best lower bound for the verbose fully typed 
 we can get with

the initial formula (14) is (see (8) in Corollary 3.5)

exp

1

(exp(

p

cn))

(still, this is a faster than linearly growing stack of twos).
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For the succinct minimally typed 
 we can get with the initial formula

(14) a stronger lower bound of the form (see (7) of Corollary 3.5)

exp

1

(exp(

cn

log(n)

)):

Below in Section 19 we describe a more economic way to represent an input.

Nevertheless, the solution with the initial formula (14) we suggested here is

very simple and intuitive. Also, most importantly, it gives the lower bounds

for sentences of 
 of �xed quanti�er pre�x complexity ; see Section 18.

16 Final ID, Subformula F (R)

Analogously, the accepting ID $q

a

b : : : b$ is speci�ed by:

FC (C

t+2

) �

df

hX

fst

;ENDi 2 C ^ hX

lst

;ENDi 2 C ^ hX

0

; Q

a

i 2 C ^

8u(X

1

� u ( X

lst

) hu;BLANK i 2 C) ^

8u; v; w(hu; vi 2 C ^ hu; wi 2 C ) v = w):

We now can write the subformula F (R) of (9):

F (R

t+5

) �

df

9X

t+2

; Y

�

FC (X ) ^ hY;Xi 2 R

�

: (16)

Note that both formulas FC , F are quasi-�xed.

17 Correct Transitions, Subformula C(R)

The following lemma, now belonging to folklore, due to (Stockmeyer 1974,

Lemma 2.14, p. 38), is a basic tool for arithmetization of Turing machines.

It allows one to check, for a given TM M and two IDs d

1

and d

2

, whether

d

2

results from d

1

by one step of M (symbolically d

2

2 Next

M

(d

1

)) only by

making local checks. Such a local check consists in comparing the (j � 1)-th,

j-th, and j + 1-th symbols of d

1

and d

2

, for all j. One has d

2

2 Next

M

(d

1

)

if and only if all such local checks succeed. Formally,

Lemma 17.1 (L. Stockmeyer) Let M be any TM with tape alphabet �

and set of states Q. Suppose $ 62 �[Q is the tape end marker, b 62 �[Q is

a blank, and � = � [Q[ f$; bg. There exists a function N

M

: �

3

! P(�

3

)

satisfying the following properties:
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� for any two IDs d

1

, d

2

of M such that

$d

1

$ = d

10

d

11

: : : d

1j�1

d

1j

d

1j+1

: : : d

1k

d

1k+1

$d

2

$ = d

20

d

21

: : : d

2j�1

d

2j

d

2j+1

: : : d

2k

d

2k+1

one has d

2

2 Next

M

(d

1

) if and only if

d

2j�1

d

2j

d

2j+1

2 N

M

(d

1j�1

d

1j

d

1j+1

)

for all j 2 f1; : : : ; kg. 2

Note that the graph of any function N

M

in Lemma 17.1 is of size poly-

nomial in card(�)

7

, by Remark 4.1 does not depend on input, and thus

is considered constant (recall that we �x M before starting to construct a

reduction to 
).

This graph may be de�ned by the following boolean formula

	

M

(x; y; z; x

0

; y

0

; z

0

) �

df

^

s

1

s

2

s

3

2�

3

�

x = s

1

^ y = s

2

^ z = s

3

)

)

_

s

0

1

s

0

2

s

0

3

2N

M

(s

1

s

2

s

3

)

(x

0

= s

0

1

^ y

0

= s

0

2

^ z

0

= s

0

3

)

�

:

Remark 17.2 The size of this formula is polynomial in card(�) (which is

a constant once the description of M is �xed). However, the �xed number

of variable occurrences in 	

M

are annotated with types linearly depending

on the length of input. Hence, 	

M

is quasi-�xed, and its size is linear in the

size of input. 2

We are now ready to write the formula C(R) of (9):

C(R) �

df

8X; Y

�

hX; Y i 2 R

t+5

)

8x; y; z; a; b; c; a

0

; b

0

; c

0

h

adj3 (x; y; z; L) ^

hx; ai 2 X ^ hy; bi 2 X ^ hz; ci 2 X ^

hx; a

0

i 2 Y ^ hy; b

0

i 2 Y ^ hz; c

0

i 2 Y (17)

) 	

M

(a; b; c; a

0

; b

0

; c

0

)

i

^

h

:9x(hx;Q

a

i 2 Y ) 9ZhY; Zi 2 R

i�

:

7

This is because the largest subset of �

3

is of polynomial size and the graph speci�es

one such subset for each triple in �

3

.
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(recall that Q

a

is a variable of type t�1 corresponding to the accepting state

q

a

2 Q.)

This �nishes the de�nition of the sentence (9) expressing the fact that a

given exp

1

(exp(n))� 2-space bounded TM M accepts an input x.

18 Lower Bounds for 
 with Fixed Quanti�er

Pre�x

The subformulas A, C, F of �

M;x

(de�ned respectively by (13), (17), (16),

(9)) are quasi-�xed, hence, linearly bounded in the length of input n. The

initial subformula I of �

M;x

de�ned by (15), (14) is of size:

� O(n

2

) for the verbose fully typed 
,

� O(n log(n)) for the succinct partially typed 
,

and the number of quanti�ers in I does not depend on n. Therefore, we may

precisely state the �rst lower bounds for 
 we just obtained:

Theorem 18.1 (Fixed Quanti�er Pre�x Lower Bounds) There exists

a �nite �xed quanti�er pre�x QP such that any decision algorithm for 


requires space exceeding, respectively,

(For fully typed 
:)

exp

1

(exp(

p

cj�j)) (18)

for some constant c > 0 and in�nitely many prenex sentences � of

verbose 
 with quanti�er pre�x QP .

(For partially typed 
:)

exp

1

(exp(cj�j= log(j�j))): (19)

for some constant c > 0 and in�nitely many prenex sentences � of

succinct 
 with quanti�er pre�x QP . 2

Note that already (18), (19) provide a superlinear rate of stack of 2's growth

in the lower bounds for both versions of 
.

In the remainder of the paper we describe a more economic method to

represent an input. The solution with formula (14) (the only non-quasi-�xed)

we suggested here is very simple and intuitive. Also, most importantly, it

gives the lower bounds for sentences of 
 of �xed quanti�er pre�x complexity.

This is not the case for an alternative solution we suggest below. However,

we will push (18) up to exp

1

(exp(cj�j= log(j�j))) and (19) to exp

1

(exp(cn)).
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19 More Succinct Initial Formula

The non-quasi-�xed initial formula (15) { (14) in Section 15 was constructed

by using O(n) variables, where n is the length of input. This non-economic

representation led to non-optimal lower bounds of Theorem 18.1. In this

section we describe a cleverer way to represent an input by using only log-

arithmically many variables. We split the job into two subtasks. First, in

Section 19.1, we describe a method to represent an input by a formula linear

in the length of input. Second, in Sections 19.2 { 19.4, we describe how to

`copy' the input represented that way onto the initial ID of a TM.

19.1 Input Formula

Given a sequence of binary bits b

j

; : : : ; b

1

, let br(b

j

: : : b

1

) denote the natural

number represented in binary by b

j

: : : b

1

.

Let an input s

1

: : : s

n

2 f0; 1g

+

of length n be given, and let m = dlog(n)e.

We will show how to construct the formula (with variables d

i

of type 0 and

x of type 1)

INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x);

of size linearly bounded in n with the following property:

When d

m

; d

m�1

; : : : ; d

2

; d

1

are assigned binary values 0, 1, the

formula INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) is true if and only if x =

s

k

, where k = br(d

m

d

m�1

: : : d

2

d

1

) + 1.

If necessary, we padd an input with blanks to the length 2

m

; this explains

why x is of type 1 | type 0 has only two elements, insu�cient to represent

the third value `blank'.

Thus, the formula of size O(n)

8d

m

; d

m�1

; : : : ; d

2

; d

1

; x(INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x)

will say that the input is s

1

: : : s

n

(padded with blanks to the length 2

m

,

whenever necessary).

To clarify the intuition and to simplify length counting, let us write ex-

plicitly the formula INPUT

4

(d

4

; d

3

; d

2

; d

1

; x), as an example.

First observe that we cannot straightforwardly write:

16 lines

8

>

>

>

<

>

>

>

:

(d

4

= 0 ^ d

3

= 0 ^ d

2

= 0 ^ d

1

= 0 ) x = s

1

) ^

: : :

(d

4

= 1 ^ d

3

= 1 ^ d

2

= 1 ^ d

1

= 1 ) x = s

16

);
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because in this case each variable appears n times and there are O(log(n))

di�erent variables. Thus the formula grows at least as O(n log(log(n))), faster

than we can a�ord.

Here is the correct way to go, if we need a formula of size O(n):

INPUT

4

(d

4

; d

3

; d

2

; d

1

; x) �

df

( d

4

= 0 ) ( d

3

= 0 ) ( d

2

= 0 ) ( d

1

= 0 ) x = s

1

) ^

( d

1

= 1 ) x = s

2

)) ^

( d

2

= 1 ) ( d

1

= 0 ) x = s

3

) ^

( d

1

= 1 ) x = s

4

))) ^

( d

3

= 1 ) ( d

2

= 0 ) ( d

1

= 0 ) x = s

5

) ^

( d

1

= 1 ) x = s

6

)) ^

( d

2

= 1 ) ( d

1

= 0 ) x = s

7

) ^

( d

1

= 1 ) x = s

8

)))) ^

( d

4

= 1 ) ( d

3

= 0 ) ( d

2

= 0 ) ( d

1

= 0 ) x = s

9

) ^

( d

1

= 1 ) x = s

10

)) ^

( d

2

= 1 ) ( d

1

= 0 ) x = s

11

) ^

( d

1

= 1 ) x = s

12

))) ^

( d

3

= 1 ) ( d

2

= 0 ) ( d

1

= 0 ) x = s

13

) ^

( d

1

= 1 ) x = s

14

)) ^

( d

2

= 1 ) ( d

1

= 0 ) x = s

15

) ^

( d

1

= 1 ) x = s

16

)))):

Here the variable x occurs 2

4

times, d

1

occurs 2

4

times, d

2

occurs 2

3

times,

d

3

occurs 2

2

times, d

4

occurs 2

1

times. This count will be useful in the sequel

and will show that INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) is linearly bounded in

n = 2

m

.

It is clear how to spell out the analogous (to m = 4) `case analysis' for-

mula INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) for every m = dlog(n)e and sequence

of input bits s

1

: : : s

n

. De�ne by induction on i = 0; : : : ; m the formulas

input

i;j

(d

i

; : : : ; d

1

), where j = 0; : : : ; 2

m�i

� 1, by:

input

0;j

(x) �

df

x = s

j+1

(for 0 � j < 2

m

),

input

i+1;j

(d

i+1

; d

i

; : : : ; d

1

; x) �

df

(for 0 � j < 2

m�i�1

)

(d

i+1

= 0 ) input

i;2j

(d

i

; : : : ; d

1

; x))^

(d

i+1

= 1 ) input

i;2j+1

(d

i

; : : : ; d

1

; x)):

It remains to de�ne

INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) �

df

input

m;0

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x):
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Even if we write the indices of variables in unary, the total space occupied

by indices of variables d

i

's in INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) will be equal

to (see the discussion after the example above)

m

X

k=1

k � 2

m�k+1

;

which may be easily shown, by induction (or by using Maple), equal to

4 � 2

m

� 2m� 2 < 4 � 2

m

= O(n):

The formula INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) additionally contains the lin-

ear number of occurrences of x (indexed with index 0, which occupies no

extra space written in unary), 0, 1, parentheses and logical signs, each one

of constant size. Note also that all variables in INPUT

m

have �xed types

independent of input length. Therefore, the total size of INPUT

m

is lin-

early bounded by the length of input n, as needed, both in succinct and fully

typed versions of 
. Clearly, the formula INPUT

m

can be constructed in

polynomial time.

19.2 Counting Long Distances in a Chain

Thus, by using the formula INPUT

m

(d

m

; d

m�1

; : : : ; d

2

; d

1

; x) of size O(n) we

can express any input sequence of bits s

1

: : : s

n

of length n.

Recall that to write the initial formula (14), (15) we have to say, for any

input sequence of bits s

1

: : : s

n

, that the 3rd, : : : , (n+ 2)-nd symbols of the

initial ID of the TM M equal ZERO or ONE , corresponding to s

i

= 0 or

s

i

= 1. Therefore, it remains to `copy' the input s

1

: : : s

n

, represented by

the formula INPUT

m

on the initial tape. In Section 15, Remark 15.1, we

discussed already that the straightforward method fails, because it needs n

new variables of type t � 1 (of size O(n)). Only writing the the indices (in

binary) of these n variables requires space O(n log(n)), and thus cannot lead

to a linearly bounded reduction. Even worse, since in the verbose version of


 we have to annotate each occurrence of a variable with its type, this leads

to at least quadratic reduction with growth rate O(n

2

).

To be able to address n successors in a chain L more economically, we

will de�ne the formulas

SUCC

m

(X

1

; d

m

; : : : ; d

1

| {z }

m

; Y; e

m

; : : : ; e

1

| {z }

m

)

for m = dlog(n)e, such that d

i

's, e

i

's take binary bits 0, 1 as values and
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when the sequences d

m

: : : d

1

and e

m

: : : e

1

are considered as bi-

nary representations for the natural numbers n

1

, n

2

respectively,

then Y is the (n

2

� n

1

)-th successor of X

1

in the chain L

t

(with

respect to the succ(U; V; L) relation (12)), provided n

2

� n

1

.

This gives a succinct way to count distances up to 2

m

� 1 between elements

in the chain L

t

and thus to address remote successors (up to 2

m

� 1-th) of

X

1

without the O(n

2

) blow-up.

With formulas INPUT

m

and SUCC

m

we can succinctly de�ne that the

initial tape C contains a subset of L � L, where 2

m

(with m = dlog(n)e)

succeeding elements in L

t

starting with X

1

index values s

1

; : : : ; s

2

m

as follows:

D(X

1

) �

df

8d

m

; : : : ; d

1

; v; Y; V

�

INPUT

m

(d

m

; : : : ; d

1

; v) ^

SUCC

m

(X

1

; 0; : : : ; 0

| {z }

m

; Y; d

m

; : : : ; d

1

) )

) ((v = f1g , V = ONE ) ^ (v = f0g , V = ZERO) ^

(v = f0; 1g , V = BLANK ) ^ hY; V i 2 C

�

;

where Y , V are of type t � 1, v of type 1, and all other variables of type 0.

We use the variable v of type 1 to represent three possibilities in the input:

f1g for 1, f0g for 0, and f0; 1g for the blank (recall that we padd inputs to

length 2

dlog(n)e

with blanks).

Henceforth, the subformula IC of the initial formula (15) may be de�ned

more economically (as compared with (14)) as follows:

IC (C

t+2

) �

df

hX

fst

;ENDi 2 C ^ hX

0

; Q

0

i 2 C ^

hX

lst

;ENDi 2 C ^D(X

1

) ^

8Y Z(SUCC

m

(X

1

; 0; : : : ; 0; Y; 1; : : : ; 1) ^ (20)

Y ( Z ( X

lst

) hZ;BLANK i 2 C) ^

8u; v; w(hu; vi 2 C ^ hu; wi 2 C ) v = w):

Before we start de�ning SUCC , let us explicitly de�ne the auxiliary relations

< and � on elements of type 0 as follows:

x

0

< y

0

�

df

x 2 f0g ^ y 2 f1g;

x

0

� y

0

�

df

:y < x:

The formula SUCC

m

is de�ned by induction on i = 0; : : : ; m, similarly to

the inductive de�nition of INPUT

m

. As the base case de�ne:
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SUCC

0

(X

t�1

; d

1

; Y

t�1

; e

1

) �

df

(:e

1

< d

1

) ^

(d

1

= e

1

) X = Y ) ^

(d

1

< e

1

) succ(X; Y; L

t

)):

(21)

For i � 0 de�ne, inductively:

SUCC

i+1

(X

t�1

; d

i+1

; d

i

; : : : ; d

1

; Y

t�1

; e

i+1

; e

i

; : : : ; e

1

) �

df

(:e

i+1

< d

i+1

) ^

(d

i+1

= e

i+1

) SUCC

i

(X; d

i

; : : : ; d

1

; Y; e

i

; : : : ; e

1

)) ^

�

d

i+1

< e

i+1

) 9Z

t�1

1

; Z

2

h

SUCC

i

(X; d

i

; : : : ; d

1

; Z

1

; 1; : : : ; 1

| {z }

i

) ^

SUCC

i

(Z

2

; 0; : : : ; 0

| {z }

i

; Y; e

i

; : : : ; e

1

) ^

succ(Z

1

; Z

2

; L

t

)

i�

:

(22)

It is easy to see (by induction) that SUCC

m

de�ned by (21), (22) allows us

to count distances up to 2

m

between elements of the chain L

t

.

The drawback of the de�nition (22) is that

SUCC

m

(X

t�1

; d

m

; : : : ; d

1

; Y

t�1

; e

m

; : : : ; e

1

);

fully expanded by using (21) and (22) to a formula containing no occurrences

of SUCC , will contain O(2

m

) = O(n) occurrences of variables X, Y . This is

easy to see: if SUCC

i

(X; : : : ) contains k occurrences of X after full expan-

sion, then SUCC

i+1

(X; : : : ) will contain 2k such occurrences. Thus, we do

not gain anything with de�nition (22), as compared with the straightforward

method with n new variables described in Section 15. However, we can do

much better, as shown in the next section.

19.3 Abbreviation Trick

The right-hand side of (22) de�nes SUCC

i+1

by using 2 occurrences of

SUCC

i

. This may be written in an equivalent more economic way with just

one occurrence of SUCC

i

, by applying a well-known abbreviation trick due
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to Fischer-Meyer-Rabin-Stockmeyer; cf., (Ferrante & Racko� 1979, Comp-

ton & Henson 1990). Here we simplify this trick for our needs and adapt

it for the case when all multiple subformula occurrences are positive. As an

advantage we do not need the equivalence connective ,. This section allows

us to keep the paper self-contained and helps in counting formula sizes in the

sequel.

Lemma 19.1 Given a quanti�er-free formula � containing m positive oc-

currences

P (

�

t

i

); for i = 1; : : : ; m

of the same predicate P with di�erent parameters

�

t

i

, and no negative occur-

rences of P , one can construct in polynomial time an equivalent formula � of

size linearly bounded by the size of �, containing just one positive occurrence

of P and no negative occurrences of P . More precisely, the formula � is:

9x

1

y

1

: : : x

m

y

m

�

�

0

^ 8uv�z

h

W

m

i=1

(u = x

i

^ v = y

i

^ �z =

�

t

i

) )

) (u = v ) P (�z))

i�

;

(23)

where x

1

; y

1

; : : : ; x

m

; y

m

, u, v, �z = z

1

; : : : ; z

arity(P )

are fresh variables, and

�

0

� �

h

x

i

= y

i

=P (

�

t

i

)

i

m

i=1

:

Proof. Take fresh variables x

1

; y

1

; : : : ; x

m

; y

m

and consider the formula

�

0

� �

h

x

i

= y

i

=P (

�

t

i

)

i

m

i=1

;

obtained from � by replacing the i-th occurrence of P (

�

t

i

) with equality

x

i

= y

i

. . Note that m = O(n= log(n)), where n is the length of �. Thus

introducing 2m new variables does not lead to more than a linear length

increase, because each variable may be represented using O(log(n)) bits.

Let us show that � is equivalent to

	 � 9x

1

y

1

: : : x

m

y

m

�

�

0

^

m

^

i=1

(x

i

= y

i

) P (

�

t

i

))

�

:

We must prove that for every interpretation � of the free variables of � (or,

equivalently, of 	), �(�) is true i� �(	) is true.
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Let �(�) be true. We may choose equal values for x

i

, y

i

if P (

�

t

i

) is true,

and di�erent values for x

i

, y

i

otherwise. Then �(	) is true.

Suppose �(	) is true for some interpretation � of its free variables. Then

for this interpretation and some values of x

1

; y

1

; : : : ; x

m

; y

m

the following

subformulas of 	 are true:

�

0

� �

h

x

i

= y

i

=P (

�

t

i

)

i

m

i=1

;

m

^

i=1

(x

i

= y

i

) P (

�

t

i

)): (24)

Recall that � is positive in P (

�

t

i

), hence, by construction, �

0

is positive in

x

i

= y

i

. Therefore, �

0

is monotone in x

i

= y

i

. This and (24) imply that

�

0

h

P (

�

t

i

)=x

i

= y

i

i

m

i=1

is true. But this formula coincides with �.

The formula 	 still contains m occurrences of P . Take fresh variables u,

v, and �z (vector of length equal to the arity of P ). The subformula

 �

m

^

i=1

(x

i

= y

i

) P (

�

t

i

))

of 	 containing m occurrences of P is equivalent to

� � 8uv�z

�

m

_

i=1

(u = x

i

^ v = y

i

^ �z =

�

t

i

) ) (u = v ) P (�z))

�

;

which contains just one occurrence of P . The proof of the equivalence of  

and � is routine.

Finally, let � be 	 with the occurrence of  replaced by �. Clearly, �

is equivalent to � and contains just one positive occurrences of P and no

negative occurrences of P , as needed.

It is clear that � may be constructed from � in polynomial time and the

size of � is linearly bounded by the size of �. 2

19.4 Complexity of SUCC

Applying Lemma 19.1, and putting all quanti�ers in front of the formula,

we can rewrite the de�nition (22) of SUCC

i+1

equivalently by using just one

occurrence of SUCC

i

as follows:

SUCC

i+1

(X

t�1

; d

i+1

; d

i

; : : : ; d

1

; Y

t�1

; e

i+1

; e

i

; : : : ; e

1

) �

df
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9Z

1

; Z

2

; x

1

; y

1

; x

2

; y

2

; x

3

; y

3

8u; v; Z; z

1

; : : : ; z

i

; Z

0

; z

0

1

; : : : ; z

0

i

n

(:e

i+1

< d

i+1

) ^

(d

i+1

= e

i+1

) x

1

= y

1

) ^

(d

i+1

< e

i+1

) x

2

= y

2

^ x

3

= y

3

^ succ(Z

1

; Z

2

; L

t

))^

(25)

^

h

(u = x

1

^ v = y

1

^ Z = X ^ Z

0

= Y ^

V

i

j=1

(z

j

= d

j

^ z

0

j

= e

j

))_

(u = x

2

^ v = y

2

^ Z = X ^ Z

0

= Z

1

^

V

i

j=1

(z

j

= d

j

^ z

0

j

= 1))_

(u = x

3

^ v = y

3

^ Z = Z

2

^ Z

0

= Y ^

V

i

j=1

(z

j

= 0 ^ z

0

j

= e

j

)) )

)

�

v = u ) SUCC

i

(Z; z

i

; : : : ; z

1

; Z

0

; z

0

i

; : : : ; z

0

1

)

�io

:

Therefore, each iteration expanding SUCC

i+1

via SUCC

i

using the de�nition

(25) introduces the following new quanti�ed variables:

1. four variables of type t� 1, namely Z

1

, Z

2

, Z, Z

0

,

2. eight variables of type 0, namely, x

1

; y

1

; x

2

; y

2

; x

3

; y

3

; u; v,

3. 2i variables of type 0, namely, z

1

; : : : ; z

i

; z

0

1

; : : : ; z

0

i

.

Consequently, m iterations reducing SUCC

m

to a formula without occur-

rences of SUCC will introduce:

1. O(m) new quanti�ed variables of type t� 1,

2. m occurrences of the variable L,

3. O(m) new quanti�ed variables of type 0, which is superseded by

4. O(m

2

) variables of type 0.

(We could do even better by reusing variable names. Thus the total number

of di�erent quanti�ed variables would be �xed. However this is not needed

for our purposes, and does not lead to any further improvement.)

By de�nition (25) of SUCC , the full expansion of SUCC

m

, into a formula

without occurrences of SUCC , will contain:

1. 2m� 1 = O(m) = O(log(n)) quanti�er alternations,
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2. O(m) occurrences of variables of type t� 1; in fact, each such variable

occurs only a �xed number of times (see (25), where each of X, Y

appears twice Z

1

, Z

2

appears three times (quanti�ed, in succ, in equal-

ities), and Z, Z

0

will appear six times each (quanti�ed, three times in

equalities shown, and, by induction, twice in SUCC

i

)),

3. similarly, a �xed number of occurrences of each of the O(m

2

) variables

of type 0,

4. similarly, O(m

2

) occurrences of boolean connectives and parentheses.

Recall that m = dlog(n)e, thus, if we ignore the types of variables, the

length of SUCC

m

, after full expansion, will be O(m

2

log(m

2

)) = O(log

2

(n) �

log(log

2

(n)) (since we need log(k) bits for indices to represent k di�erent

variables). This is smaller than O(n), and thus leads to a linearly bounded

initial formula (20) in the case of succinct, partially typed 
. However, for

the fully typed 
, each of the O(m) = O(log(n)) occurrences of variables of

type t � 1 should be annotated with type t � 1, of length O(n). Therefore,

the formulas SUCC

m

and (20) are of superlinear length O(n log(n)) in the

case of verbose fully typed 
.

Note that the more numerous O(m

2

) variables of type 0 do not contribute

to this superlinear length increase, because their full type annotations take

only O(m

2

) = O(log

2

(n)) bits.

Remark 19.2 Note that this superlinear explosion does not occur in the

�rst-order theories, which do not require variable type annotations. Com-

pare:

1. For the �rst-order theories, introducing logarithmically many new vari-

ables or having logarithmically many variable occurrences is of no dan-

ger, and does not lead to a superlinear formula growth (the same is

true for `logarithmically' replaced with `polylogarithmically').

2. For theories with typed variables, as verbose 
 introducing more than

a constant number of new variables, or having more than a constant

number of variable occurrences may lead to superlinear explosion, when

types of variables linearly depend on the size of input. 2

Remark 19.3 The above O(n log(n)) superlinear explosion takes place only

for the verbose version of 
, which requires all variable occurrences to be

annotated with types.

For the succinct version of 
, which requires only a minimal information

about variable types allowing for an unambiguous full type annotation, the
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order of growth for the formula SUCC

m

is O(m

2

log(m

2

)) = O(log

2

(n) �

log(log

2

(n)), i.e., is sublinear, and the reduction taking an input of length n

into the formula SUCC

m

, with m = dlog(n)e is linearly bounded. 2

20 Stronger Lower Bounds

The initial formula I(R) of (9) de�ned by (14), (15) was the only non-quasi-

�xed and non-linearly bounded formula in the construction preceding Sec-

tion 18. In Section 19 we constructed a more succinct initial formula I(R)

of size

� O(n log(n)) in the case of fully typed 
,

� O(n) in the case of partially typed 
.

Therefore, Lemma 3.3 and Corollary 3.5 apply, and we get the following

Theorem 20.1 (Lower Bounds for 
) Every decision algorithm for 
 re-

quires space exceeding, respectively,

(For Verbose, Fully typed 
:) exp

1

(exp(

c � j�j

log(j�j)

)) for some constant c >

0 and in�nitely many sentences � of verbose 
.

(For Succinct, Minimally typed 
:) exp

1

(exp(c�j�j)) for some constant

c > 0 and in�nitely many sentences � of succinct 
. 2

This �nishes the proof of the Main Theorem.

21 Concluding Remarks

Remark 21.1 (On Inductive De�nitions). We succeeded to construct

the generic reduction without using inductive de�nitions to de�ne large lin-

early ordered sets in 
. Such de�nitions are usually necessary in lower bounds

proofs. Inductive de�nitions are only used in Section 19 to write a more suc-

cinct initial formula representing an input. This is a big advantage, because

otherwise:

� The best lower bound we could obtain for fully typed 
 would be only

exp

1

(exp(

p

cn)) instead of exp

1

(exp(cn= log(n))). Indeed, expanding

inductive de�nitions and using the well-known abbreviation trick due
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to Fischer-Meyer-Rabin-Stockmeyer (so as to avoid exponential blow-

ups), one gets formulas with linearly many variable occurrences. Since

in fully typed 
 variable occurrences are annotated with types, which

may linearly depend on the length of input, using inductive de�nitions

would necessarily lead to non-linear (quadratic) reductions, and thus

to poorer lower bounds.

� We would fail to have the �xed quanti�er pre�x complexity results of

Theorem 18.1. The formula �

M;x

in (9) we construct before Section 18

to provide a reduction from A 2 DSPACE(exp

1

(exp(n))) to 
 has a

�xed number of quanti�ers and quanti�er alternations, independent of

A, which yields a �xed quanti�er pre�x lower bound complexity. This

(quite unusual) result should be contrasted to the results of (Kuper &

Vardi 1993), which needs more and more quanti�er alternations to get

increase in complexity. 2

Remark 21.2 (On Finite Axiomatizability). The theory 
 was de�ned

semantically and is not �nitely axiomatizable. Solomon Feferman asked

(LICS'97) whether this non-�nite axiomatizability is really essential. Al-

though the proof presented here does not give a direct answer, returning to

the original proof presented in (Vorobyov 1997) based on the uniform lower

bound method due to (Compton & Henson 1990), we may now respond by:

Any �nitely axiomatizable subtheory of 
 (in the same language)

has the same space lower bound exp

1

(exp(dn)) for some constant

d > 0.

This is because (Compton & Henson 1990) spend extra e�ort on proving

stronger inseparability results, which imply lower bounds that hold not only

to theories, but to all their subtheories. 2

Remark 21.3 (Upper Bound for 
). Since we have not used the full

power of inductive de�nitions in settling the lower bounds for 
, it might seem

challenging to push these bounds even higher. However, this is impossible.

In fact, the maximal size of a variable type in a formula of 
 of length n is

O(n). Therefore, all quanti�ed variables in a sentence of 
 run over �nite

domains D

2

O(n)

of size at most exp

1

(exp(O(n))). Obviously, this space is

enough for a decision procedure. 2

Remark 21.4 (Any `More Nonelementary' Theories?) The follow-

ing challenging problem in (Compton & Henson 1990, Problem 10.12) is

open/closed (modulo what is considered `natural'):
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Is there a `natural' decidable theory, which is not primitive recur-

sive?

In (Vorobyov 1997) we constructed several (pathological) variants of 
 of

arbitrary complexity. After all, expressiveness of 
 is based on ability to

write types of variables in binary. Therefore, it su�ces to use any other, more

expressive, non-primitive recursive notation for types, instead of binary.

Other candidates may be looked among logical counterparts of the higher-

order polymorphic lambda calculi in the same way as 
 corresponds to the

simply typed lambda calculus. Of course, it is questionable whether these

theories may be considered `natural' (and whether they may be kept decid-

able). 2

Remark 21.5 (Higher Lower Bound for Fully typed 
) It remains

open whether the lower bound for the fully typed 
 can be improved from

exp

1

(exp(cn= log(n))) to exp

1

(exp(cn)). Recall that the only O(n(log(n))

non-linearly bounded formula we used was SUCC in Section 19.4 for `copying'

a sequence of input bits onto the initial ID. Is there any mean to do it by an

O(n) fully typed formula?
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