
'$�

�

'$

�

��

I N F O R M A T I K

 	

� �

The Relation Between

Second-Order Uni�cation and

Simultaneous Rigid E-Uni�cation

Margus Veanes

MPI{I{98{2-005 February 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany

Author's Address

Max-Planck-Institut f�ur Informatik

Im Stadtwald

66123 Saarbr�ucken

Germany

veanes@mpi-sb.mpg.de

http://www.mpi-sb.mpg.de/~veanes

Acknowledgements

I thank Andrei Voronkov for many valuable discussions and for suggesting

me to study the connections between second-order uni�cation and simulta-

neous rigid E-uni�cation, that ultimately led to this report. I thank Harald

Ganzinger and Sergei Vorobyov for many valuable discussions and comments

on earlier versions of this report.

Abstract

Simultaneous rigid E-uni�cation, or SREU for short, is a fundamental prob-

lem that arises in global methods of automated theorem proving in classical

logic with equality. In order to do proof search in intuitionistic logic with

equality one has to handle SREU. Furthermore, restricted forms of SREU are

strongly related to word equations and �nite tree automata. Higher-order

uni�cation has applications in proof theory, computational linguistics, pro-

gram transformation, and also in theorem proving. It was recently shown that

second-order uni�cation has a very natural reduction to simultaneous rigidE-

uni�cation, which constituted probably the most transparent undecidability

proof of SREU. Here we show that there is also a natural encoding of SREU

in second-order uni�cation. It follows that the problems are logspace equiv-

alent. We exploit this connection and use �nite tree automata techniques to

prove that second-order uni�cation is undecidable in more restricted cases

than known before. We present a more elementary undecidability proof of

second-order uni�cation than the previously known proofs exposing that al-

ready a very small fragment of second-order uni�cation has the universal

computational power.

Keywords

Second-order uni�cation, simultaneous rigid E-uni�cation, �nite tree au-

tomata.

1 Introduction

Simultaneous Rigid E-Uni�cation, or SREU for short, is originally introduced

in 1987 by Gallier, Raatz, and Snyder [15] as a fundamental problem that

arises in global or rigid-variable methods of automated theorem proving in

classical logic with equality. For example, in free variable tableau methods,

SREU corresponds to the problem of deciding if some substitution closes a

given set of branches. In intuitionistic logic with equality, proof search leads

to SREU. It is shown in Voronkov [33] that SREU is actually polynomial-

time equivalent to skeleton instantiation (the problem of deciding if there is

a proof with a given proof skeleton) in certain proof systems in intuitionistic

logic with equality. There is a list of several fundamental decision problems

in both classical and intuitionistic logic with equality that are very closely

related to SREU [5].

The undecidability of SREU is shown in 1995 by Degtyarev and Voron-

kov [8]. Probably the most transparent undecidability proof of SREU [7, 10]

is by reduction from second-order uni�cation, proved undecidable in Gold-

farb [17]. This reduction shows that any semidecision algorithm for SREU

can be adapted to second-order uni�cation. It was observed by the au-

thor and Voronkov that this connection should be studied further, in par-

ticular that the techniques used to prove some undecidability results of

SREU [26, 29], could probably be adapted in the context of second-order

uni�cation. By using a recent construction from Levy [22], we present two

lemmas in Section 3 that enable us to transfer techniques from the context

of SREU to the context of SOU. The �rst application of these lemmas is the

following result in Section 4, by using a restricted form of SREU [18].

SREU and second-order uni�cation are logspace equivalent.

The general content of this result is that second-order uni�cation plays the

same fundamental role as SREU in logic with equality. For example, it

implies that it is necessary to handle second-order uni�cation in order to

do proof search in intuitionistic logic with equality. From the viewpoint

of automated theorem proving or proof search this connection is important

because currently there are no known reasonable semidecision algorithms

for SREU, except for ones based of straightforward enumeration [25]. The

reduction to higher-order uni�cation may provide new insights into how to

deal with this.

By using a recent undecidability of a very restricted case of SREU [18],

we obtain the following statement, that strengthens the result in Levy [22]

with the last two conditions:

1

Second-order uni�cation is undecidable with the following restric-

tions on equation systems S:

1. each second-order variable occurs at most twice in S,

2. there are at most 3 second-order variables in S,

3. there are at most 2 �rst-order variables in S.

There are many known relationships between SREU and intuitionistic

logic [9, 31, 32], �nite tree automata [16] and SREU [3, 4, 30], word equa-

tions [23] and monadic SREU [6, 19], word equations and monadic second-

order uni�cation [12], and there are connections between other restricted

forms of second-order uni�cation [21] and context-uni�cation [27]. In Sec-

tion 5 we exploit some of these connections and the lemmas in Section 3 to

give a new elementary undecidability proof of second-order uni�cation. In

particular, we apply �nite tree automata techniques in combination with en-

coding techniques involving valid Turing machine computations underlying

the proofs in [18, 31]. To be precise, we construct (e�ectively) a universal

second-order equation S

u

(x; F;G) of the form

g(F (

~

t

1

); G(

~

t

2

)) � g(f(x; F (

~

t

3

)); g(F (

~

t

4

); G(

~

t

5

)))

where all the

~

t

i

's are sequences of ground terms of depth � 1 over a signature

�

u

, and F and G are second-order variables with matching arities, such that

the following decision problem is undecidable:

Given a ground term s, is S

u

(s; F;G) solvable?

The construction of the universal second-order equation is relatively short

and involves two steps that are intuitively clear. We can conclude the fol-

lowing.

Second-order uni�cation is undecidable with the following restric-

tions on equation systems S:

1. there are no �rst-order variables in S,

2. at most two variables in S,

3. at most �ve occurrences of variables in S,

4. all occurrences of variables in S have ground arguments, and

5. all arguments of variables have depth � k for some �xed

k � 1.

2

By applying certain encoding techniques in Farmer [13], we prove in Section 6

that a signature consisting of one constant and one binary function symbol

is already enough to obtain undecidability, without violating the above re-

strictions. Hence, our result implies the following complement to Farmer's

undecidability theorem:

There is an integer n such that for all nonmonadic second-order

languages with at least two second-order variables with arities � n

the uni�cation problem is undecidable already if there are at most

�ve variable occurrences all having ground arguments of depth

� n.

The value of n is any integer greater than the maximum of the arities of F

and G (in the universal second-order equation) and the value of k. Moreover,

it seems that the use of two second-order variables is necessary to obtain

undecidability, e.g., the problem is decidable if there is just one second-order

variable and it occurs at most twice [22].

Our result also con�rms the statement in Schubert [28] that the undecid-

ability of second-order uni�cation holds for systems of equations where all

variables have ground arguments, and improves it with the conditions (1{3)

and (5). Allowing variables to occur in arguments of second-order variables

is essential in Goldfarb's proof [17]. We note that the proof by Schubert

involves a very complicated reduction from Minsky machines and appears to

have some gaps. The undecidability of second-order uni�cation for equations

where all variables have ground arguments is used in Schubert [28] to derive

the undecidability of a certain type inference problem.

1

2 Preliminaries

We assume that the reader is familiar with the notions of (�rst-order) terms,

equations, substitutions, and standard notions related to �rst-order logic.

We de�ne the corresponding second-order notions without using an explicit

variable binding operator like �, following Farmer [13] or Goldfarb [17].

A signature � is a collection of function symbols with �xed arities � 0

and, unless otherwise stated, � is assumed to contain at least one constant

or function symbol with arity 0. We use (a; b; c; d; a

1

; : : :) for constants and

(f; g; f

1

; : : :) for function symbols in general. A designated constant in � is

denoted by c

�

.

1

Schubert shows the undecidability of the following decision problem for the Church-

style system F [1]: Given a term t, does there exist a base � and a type � such that

� ` t : � is correct in the system F?

3

A term language or simply language is a triple L = (�

L

;X

L

;F

L

) of pair-

wise disjoint sets of symbols, where

� �

L

is a signature,

� X

L

(x; y; x

1

; y

1

; : : :) is a collection of �rst-order variables, and

� F

L

(F;G;F

1

; F

0

; : : :) is a collection of symbols with �xed arities � 1,

called second-order variables.

Let L be a language. L is �rst-order, if F

L

is empty; L is second-order,

otherwise. If L is �rst-order then we write it as the pair (�

L

;X

L

). L is

monadic if all function symbols in �

L

have arity � 1. We use (�; �

1

; : : :) to

denote arbitrary variables in L, i.e., symbols in X

L

[F

L

. A language L

1

is

an expansion of a language L, in symbols L

1

� L or L � L

1

, if �

L

� �

L

1

,

X

L

� X

L

1

, and F

L

� F

L

1

.

The set of all terms in a language L, or L-terms, is denoted by T

L

and

is de�ned as the set of all terms in the �rst-order language (�

L

[F

L

;X

L

).

We use (s; t; l; r; s

1

; : : :) for terms. We usually omit mentioning L when it is

clear from the context. The depth of a term is de�ned as usual, by letting the

depth of a constant or �rst-order variable be 0 and the depth of a compound

term be 1 plus the maximum of the depths of its immediate subterms. A

ground term is one that contains no variables. The set of all ground terms

in a language L is denoted by T

�

L

. Given a term F (

~

t), where F is a second-

order variable with arity m and

~

t is a sequence of m terms, the elements

of

~

t are called the arguments of F . A (second-order) term is called simple

if there are no nested occurrences of variables in it, i.e., all occurrences of

second-order variables have ground arguments.

An equation in L is an unordered pair of L-terms, denoted by s � t.

Equations are denoted by (e; e

1

; : : :). A rule in L is an ordered pair of L-

terms, denoted by s ! t.

2

An equation or a rule is ground (simple) if the

terms in it are ground (simple). The depth of an equation s � t is the

maximum of the depths of s and t. A system of rules or equations is a �nite

set of rules or equations. Let R be a system of ground rules, and s and t

two ground terms. Then s rewrites (in R) to t, denoted by s �!

R

t, if t is

obtained from s by replacing an occurrence of a term l in s by a term r for

some rule l ! r in R. The term s reduces (in R) to t, denoted by s

�

�!

R

t,

if either s = t or s rewrites to a term that reduces to t. We assume that the

the reader is familiar with the basic concepts in ground rewriting [11].

2

By rules we understand thus directed equations. Only ground instantiations of rules

are considered as rewrite rules.

4

2.1 Second-Order Uni�cation

Given a language L, we need expressions representing functions that produce

instances of terms in L. For that purpose we introduce an expansion L

�

of L.

We follow Goldfarb [17] and Farmer [13]. Let fz

i

g

i�1

be an in�nite collection

of new symbols not in L. The language L

�

di�ers from L by having fz

i

g

i�1

as

additional �rst-order variables, called bound variables. The rank of a term t

in L

�

, is either 0 if t contains no bound variables (i.e., t 2 T

L

), or the largest

n such that z

n

occurs in t. Given terms t and t

1

; t

2

; : : : ; t

n

in L

�

, we write

t[t

1

; t

2

; : : : ; t

n

] for the term that results from t by simultaneously replacing

z

i

in it by t

i

for 1 � i � n. An L

�

-term is called closed if it contains no

variables other than bound variables. Note that closed L

�

-terms of rank 0

are ground L-terms.

A substitution in L is a function � with �nite domain dom(�) � X

L

[F

L

that maps �rst-order variables to L-terms, and n-ary second-order variables

to L

�

-terms of rank � n. A substitution � with domain f �

i

j 1 � i � n g

such that �(�

i

) = t

i

for 1 � i � n, is also denoted by f �

i

7! t

i

j 1 � i � n g.

The result of applying a substitution � to an L-term s, denoted by s�, is

de�ned by induction on s:

1. If s = x and x 2 dom(�) then s� = �(x).

2. If s = x and x =2 dom(�) then s� = x.

3. If s = F (t

1

; : : : ; t

n

) and F 2 dom(�) then s� = �(F)[t

1

�; : : : ; t

n

�].

4. If s = F (t

1

; : : : ; t

n

) and F =2 dom(�) then s� = F (t

1

�; : : : ; t

n

�).

5. If s = f(t

1

; : : : ; t

n

) then s� = f(t

1

�; : : : ; t

n

�).

We write also F� for �(F), where F is a second-order variable. A substitution

is called closed, if its range is a set of closed terms. Given a term t, a

substitution � is said to be grounding for t if t� is ground, similarly for other

L-expressions. Given a sequence

~

t = t

1

; : : : ; t

n

of terms, we write

~

t� for

t

1

�; : : : ; t

n

�.

Let E be a system of equations in L. A uni�er of E is a substitution �

(in L) such that s� = t� for all equations s � t in E. E is uni�able if there

exists a uni�er of E. Note that if E is uni�able then it has a closed uni�er

that is grounding for E, since T

�

L

is nonempty. The uni�cation problem

for L is the problem of deciding whether a given equation system in L is

uni�able. In general, the second-order uni�cation problem or SOU is the

uni�cation problem for arbitrary second-order languages. Monadic SOU is

SOU for monadic second-order languages.

5

2.2 Simultaneous Rigid E-Uni�cation

In the following let L be a �rst-order language. Given a system of equations

E in L and an equation e in L, the expression E `

8

e is called a rigid equation

in L, where E is called the left-hand side of E `

8

e. A rigid equation E `

8

e

is solvable if there exists a substitution � that is grounding for E and e such

that e� is a logical consequence of E�, such a substitution is said to solve

the rigid equation. Rigid E-uni�cation is the problem of deciding if a given

rigid equation is solvable.

A system or �nite set of rigid equations is solvable, if there exists a sub-

stitution that solves each rigid equation in that system. Simultaneous rigid

E-uni�cation for L or SREU for L is the problem of deciding if a given sys-

tem of rigid equations in L is solvable. In general, by SREU we mean SREU

for arbitrary �rst-order languages. Monadic SREU is SREU for monadic

�rst-order languages.

3 Relations between rewriting and second-

order uni�cation

In this section we present two lemmas that show a close relationship between

certain forms of rewriting and second-order uni�cation. These lemmas are

used as basic tools in the following sections. The main statement is Lemma 1,

that is inspired by the proof of the main lemma in Levy [22] and is used to

derive a strengthened version of the latter (Lemma 2) with analogous proof.

The basic techniques that are involved in these constructions appear already

in Farmer [13] and Goldfarb [17].

We frequently need to refer to certain conditions on a sequence of pa-

rameters. In order to avoid lengthy repetitions of such conditions we use the

following de�nition. We say that a parameter sequence

(L; c; f; F;m;L

1

; s; t;

~

l; ~r)

is appropriate if the following conditions hold:

� L is a language;

� c is a constant, f is a binary function symbol, and f; c =2 �

L

;

� F is a second-order variable with arity m+ 1, m � 0, F =2 F

L

;

� L

1

� (�

L

[ff; cg;X

L

;F

L

[fFg);

6

� s; t 2 T

L

,

~

l = l

1

; : : : ; l

m

2 T

L

, and ~r = r

1

; : : : ; r

m

2 T

L

.

Given appropriate (L; c; f; F;m;L

1

; s; t;

~

l; ~r), we use the following construc-

tion from Levy [22]. Let SOE (c; f; F; s; t;

~

l; ~r) denote the following second-

order equation in L

1

:

SOE (c; f; F; s; t;

~

l; ~r) = F (

~

l; f(s; c)) � f(t; F (~r; c)):

Note that the sequences

~

l and ~r are empty when m = 0.

Lemma 1 Let (L; c; f; F;m;L

1

; s; t;

~

l; ~r) be appropriate. The following state-

ments are equivalent for all � in L

1

such that

~

l�; s� 2 T

�

L

.

(i) � solves SOE (c; f; F; s; t;

~

l; ~r), i.e., F�[

~

l�; f(s�; c)] = f(t�; F�[~r�; c]).

(ii) Either t� = s� and F� = z

m+1

, or there exists k � 1 and closed L

�

-

terms s

i

of rank � m for 1 � i � k, such that

F� = f(s

1

; f(s

2

; : : : ; f(s

k

; z

m+1

) � � �)) (1)

and

t� = s

1

[

~

l�]; (2)

s

i

[~r�] = s

i+1

[

~

l�]; for 1 � i < k; (3)

s

k

[~r�] = s�: (4)

Proof.

(i)((ii) Straightforward.

(i))(ii) Let � satisfying (i) be given. Say that an L

�

1

-term t

0

is a list if

either t

0

= z

m+1

, or t

0

= f(t

1

; t

2

) for some t

1

and t

2

, where t

2

is a list. We

use the following statement to show that F� is a list:

(*) For all L

�

1

-terms t

1

and t

2

, if

t

2

[

~

l�; f(s�; c)] = f(t

1

; t

2

[~r�; c]) (5)

then t

2

is a list.

7

Proof. By induction on the number of symbols in t

2

.

Assume that t

2

is either a constant, a variable in X

L

1

, or a bound

variable. If (5) holds then the head symbol of the left-hand side of (5)

must be f . The only possibility is t

2

= z

m+1

because

~

l� 2 T

�

L

and

f =2 �

L

.

Assume now that t

2

is a compound term and (5) holds. Then the head

symbol of t

2

must be f . So t

2

= f(t

21

; t

22

) for some L

�

1

terms t

21

and

t

22

. Hence, by (5),

f(t

21

; t

22

)[

~

l�; f(s�; c)] = f(t

1

; f(t

21

; t

22

)[~r�; c]);

and thus

t

22

[

~

l�; f(s�; c)] = f(t

21

[~r�; c]; t

22

[~r�; c]):

By the induction hypothesis t

22

is a list and hence so is t

2

. �

We know that F� is an L

�

1

-term of rank m + 1. It follows from (*) and (i)

that F� is a list. If F� = z

m+1

then (i) implies that s� = t�, and thus (ii)

holds. Assume that F� 6= z

m+1

, i.e., there exists k � 1 and L

�

1

-terms s

i

(of

rank � m+ 1) for 1 � i � k, such that

F� = f(s

1

; f(s

2

; : : : ; f(s

k

; z

m+1

) � � �)):

We show that each s

i

is a closed L

�

-term of rank � m, such that (2{4) hold.

It follows from (i) that

f(s

1

[

~

l�; s

0

]; : : : f(s

i+1

[

~

l�; s

0

]; : : : f(s�; c) � � �) � � �) =

f(t�; : : : f(s

i

[~r�; c]; : : : f(s

k

[~r�; c]; c) � � �) � � �);

(6)

where s

0

= f(s�; c). Hence, s

1

[

~

l�; s

0

] = t�, s

i+1

[

~

l�; s

0

] = s

i

[~r�; c] for 1 � i < k,

and s� = s

k

[~r�; c]. So, s

k

is a closed L

�

-term of rank � m since s� is a ground

L-term and c is not in L (recall that ~r is a sequence of m terms), and thus (4)

holds. We prove by induction on k�i that each s

i

is a closed L

�

-term of rank

� m. The base case is i = k. Assume the statement is true for i + 1 � k,

we prove it for i. Then s

i+1

[

~

l�; s

0

] = s

i+1

[

~

l�] is a ground L-term since

~

l� are

ground L-terms, and by above, so is s

i

[~r�; c]. Hence, s

i

is a closed L

�

-term

of rank � m, since c is not in L. The conditions (2) and (3) follow. �

Lemma 2 Let (L; c; f; F;m;L

1

; s; t;

~

l; ~r) be appropriate. The following state-

ments are equivalent for all � in L

1

such that F =2 dom(�) and s�;

~

l�; ~r� 2

T

�

L

.

(i) � [fF 7! t

0

g solves SOE (c; f; F; s; t;

~

l; ~r) for some t

0

.

(ii) (t� 2 T

�

L

and) t�

�

�!

f l

i

�!r

i

�j1�i�m g

s�.

Proof.

8

((i))(ii)) Let �

0

= � [fF 7! t

0

g satisfying (i) be given. There are two

cases by Lemma 1((i))(ii)). First case is t

0

= z

m+1

and t�

0

= s�

0

, and thus

t� = s� (since s; t 2 T

L

and F =2 F

L

), and hence (ii) holds trivially. The

second case is that there exists k � 1 and closed L

�

-terms s

i

of rank � m for

1 � i � k, such that

t

0

= f(s

1

; f(s

2

; : : : ; f(s

k

; z

m+1

) � � �))

and t� = s

1

[

~

l�], s

i

[~r�] = s

i+1

[

~

l�], for 1 � i < k, s

k

[~r�] = s�, where we have

correctly inserted � for �

0

since s; t;

~

l; ~r 2 T

L

and F =2 F

L

. Let R be the

following system of ground rules in L:

R = f l

i

� ! r

i

� j 1 � i � m g:

Clearly, s

i

[

~

l�]

�

�!

R

s

i

[~r�] for 1 � i � k, and thus s

i

[

~

l�]

�

�!

R

s

i+1

[

~

l�], for

1 � i < k, by above. It follows that

t� = s

1

[

~

l�]

�

�!

R

s

k

[

~

l�]

�

�!

R

s

k

[~r�] = s�;

as needed.

((ii))(i)) Let � satisfying (ii) be given and R = f l

i

� ! r

i

� j 1 � i � m g.

We have a reduction:

t� = t

0

�!

R

t

1

�!

R

� � � �!

R

t

k�1

�!

R

t

k

= s�:

If k = 0 then let t

0

= z

m+1

and (i) follows from Lemma 1((ii))(i)). Assume

that k � 1 and consider a �xed i, 1 � i � k. The rewrite step t

i�1

�!

R

t

i

uses a rule l

j

� ! r

j

� for some j, 1 � j � m, and replaces a certain subterm

occurrence of l

j

� in t

i�1

by r

j

�. Construct s

i

from t

i�1

by replacing that

occurrence by z

j

. Thus s

i

[

~

l�] = t

i�1

and s

i

[~r�] = t

i

. Given such s

i

for

1 � i � k, obviously (2{4) are true. Let t

0

be the term above. Statement (i)

follows from Lemma 1((ii))(i)). �

4 Reduction of SREU to SOU

In this section we show that there is a logspace reduction of SREU to SOU.

The converse reduction, from SOU to SREU, is given in Degtyarev and

Voronkov [7, 10] and is also logspace. We use a restricted form of SREU

that is logspace equivalent with SREU and allows us to apply Lemma 2 in a

direct manner.

9

Let L be a �rst-order language and R a system of rigid equations in L and

let L

1

be an arbitrary expansion of L. The following property for systems

of rigid equations guarantees that any substitution � in L

1

that solves R,

maps variables occurring in R to ground terms in L. Let x be a variable

that occurs in R. A guard for x in R, if one exists, is any rigid equation

E `

8

s � t in R such that

� E is a set of ground equations,

� s is a ground term, and

� x occurs in t.

The system R is called guarded if there is a guard in R for each variable

that occurs in R. Guarded SREU is SREU restricted to guarded systems of

rigid equations. The notion of guardedness is introduced in Gurevich and

Veanes [18].

Lemma 3 SREU is logspace equivalent to guarded SREU.

Proof. Let R be a system of rigid equations and � the set of function

symbols in R expanded with an additional constant if there is no constant

in R. Let X be the set of variables in R and let L = (�;X). For each

variable x in X , for which there is no guard in R, construct the following

rigid equation:

3

Gr(�; x) = f f(c

�

; : : : ; c

�

) � c

�

j f 2 � n fc

�

g g `

8

c

�

� x:

Let R

0

be the extension of R with such rigid equations. Obviously is R

0

guarded. It is straightforward to prove that for all substitutions �, � solves

Gr(�; x) if and only if x� 2 T

�

[10, Lemma 3]. Hence, for all substitutions �

in L, � solves R if and only if � solves R

0

. �

The following result is implied by the reduction in Degtyarev and Voron-

kov [10].

4

Theorem 1 (Degtyarev-Voronkov [10]) There is a logspace reduction of

SOU to SREU.

3

Note that f(c

�

; : : : ; c

�

) stands for f when f has arity 0, it stands for f(c

�

) when f

has arity 1, and so on.

4

Personal communication with Voronkov.

10

We use the following de�nitions. Let L be a �rst-order language and R a

system of rigid equations in L. For an equation system E in L we write R

E

for the following set of rules in L:

R

E

= f s! t; t! s j s � t 2 E g:

Let F

R

denote the following set of distinct second-order variables:

F

R

= fF

E`

8

e

of arity jR

E

j+ 1 j E `

8

e 2 Rg:

Let f

R

be a binary function symbol and c

R

a constant that are not in L. We

write L

R

for the following expansion of L.

L

R

= (�

L

[ff

R

; c

R

g;X

L

;F

R

):

For each rigid equation E `

8

s � t in R, consider a �xed enumeration

f l

i

! r

i

j 1 � i � jR

E

j g = R

E

and let

~

l = l

1

; l

2

; : : : ; l

jR

E

j

and ~r = r

1

; r

2

; : : : ; r

jR

E

j

. It is easy to check that

(L; c

R

; f

R

; F

E`

8

s�t

; jR

E

j; L

R

; s; t;

~

l; ~r) is appropriate. De�ne

SOE (R; E `

8

s � t) = SOE (c

R

; f

R

; F

E`

8

s�t

; s; t;

~

l; ~r);

and

SOE (R) = fSOE (R; E `

8

s � t) j E `

8

s � t 2 Rg:

The construction corresponding to SOE (R) is applied in Levy [22] to a

variant of SREU called simultaneous ground rigid O-uni�cation that disal-

lows equations of the form t � x, where x is a variable, to appear in the

left-hand side of rigid equations. The following example shows that the no-

tion of guardedness is important also in this restricted case.

Example 1 Consider the system R = f; `

8

x = yg where x and y are

variables. Then SOE (R) has the form fF (f(x; c)) � f(y; F (c))g. Let � =

fF 7! f(z

1

; z

1

); x 7! c; y 7! f(c; c)g. It is easy to check that � solves SOE (R)

but it doesn't solve R.

Theorem 2 Let L be a �rst-order language and R a guarded system of rigid

equations in L. The following statements are equivalent for all � in L

R

such

that dom(�) \ F

R

= ;.

(i) Some extension of � with F

R

solves SOE (R).

(ii) � solves R.

Proof. Let L, R and � be given. Let R = fE

i

`

8

s

i

� t

i

j 1 � i � n g and

let us write F

i

for F

E

i

`

8

s

i

�t

i

and R

i

for R

E

i

. The following holds by Birkho�'s

completeness theorem for all i, 1 � i � n, assuming � is grounding for R:

� solves E

i

`

8

s

i

� t

i

, t

i

�

�

�!

R

i

�

s

i

�: (7)

11

((i))(ii)) Assume that �

0

= � [fF

i

7! t

0

i

j 1 � i � n g solves SOE (R).

First we show that, for 1 � i � n, R

i

� is a set of ground rules in L and

s

i

� is a ground term in L. Consider a �xed i. Let x be a variable in R

i

or s

i

. Let E

j

`

8

s

j

� t

j

be a guard for x in R. So R

j

and s

j

are ground

and � [fF

j

7! t

0

j

g solves SOE (R; E

j

`

8

s

j

� t

j

). Hence, it follows from

Lemma 2((i))(ii)) that t

j

� 2 T

�

L

. But x occurs in t

j

, and thus x� 2 T

�

L

.

Second, since � [fF

i

7! t

0

i

g solves SOE (R; E

i

`

8

s

i

� t

i

) and all the

terms in R

i

� and s

i

� are in T

�

L

, it follows again from Lemma 2((i))(ii))

that t

i

�

�

�!

R

i

�

s

i

�. Thus, it follows from (7) that � solves E

i

`

8

s

i

� t

i

.

Consequently � solves R.

((i)((ii)) Assume that � solves R. From (7) and Lemma 2((i)((ii)) fol-

lows that, for each i, 1 � i � n, there is a term t

0

i

such that � [fF

i

7! t

0

i

g

solves SOE (R; E

i

`

8

s

i

� t

i

). The rest is obvious, since F

i

6= F

j

for i 6= j. �

Note that an analogous way to prove Theorem 2 when starting from an

arbitrary system of of rigid equations R over a signature �, is to add the

second-order equation corresponding to Gr(�; x) (in Lemma 3), for each

variable x in R (that has no guard in R), to the resulting system of second-

order equations.

Clearly, the system SOE (R) is just another representation ofR. It follows

from Theorem 2 that any semidecision algorithm for SOU that also produces

a solution if one exists, can directly be used as a semidecision procedure for

guarded SREU that also produces a solution if one exists.

Theorem 3 SREU is logspace equivalent to SOU.

Proof. By Lemma 3, Theorem 1, and Theorem 2. �

There is an important di�erence between the reduction from SREU to

SOU on one hand and the reduction from SOU to SREU on the other hand.

In the former reduction one needs a binary function symbol, whereas the

latter reduction [7, 10] shows that monadic SOU reduces to monadic SREU.

The use of the binary function symbol in the former reduction seems to

be unavoidable because of the following reason. Decidability of monadic

second-order uni�cation can be proved by reduction to word equations [12],

whereas monadic SREU is only known to reduce to a nontrivial extension

of word equations [19]. The decidability of monadic SREU is currently an

open problem, only some special cases are known to be decidable [19, 6]. The

decidability of monadic SREU is equivalent to the decidability of the prenex

fragment of intuitionistic logic with equality restricted to function symbols

of arity � 1. A recent report by Voronkov discusses in detail the connections

between SREU and other related problems [35].

12

Undecidability of a restricted case of SOU

The following theorem is a central result in Levy [22]. It is proved by reducing

simultaneous ground rigid O-uni�cation to SOU, by using a construction

corresponding to SOE (R) and noting that the reduction in Degtyarev and

Voronkov [10] can be adapted to simultaneous ground rigid O-uni�cation.

Theorem 4 (Levy [22]) SOU is undecidable when restricted to systems of

equations such that each second-order variable occurs at most twice in the

system.

By using the following lemma (an immediate corollary of [18, Theorem 18])

and Theorem 2, we can conclude that Theorem 4 holds already with very

strong restrictions on the number of variables.

Lemma 4 (Gurevich-Veanes [18]) Solvability of guarded systems of rigid

equations with at most three rigid equations and at most two variables is

undecidable.

Theorem 5 SOU is undecidable when restricted to systems S such that

1. each second-order variable occurs at most twice in S,

2. there are at most 3 second-order variables in S, and

3. there are at most 2 �rst-order variables in S.

Proof. Let R be a guarded system of three rigid equations with two vari-

ables. Then SOE (R) is a system of second-order equations that satis�es the

restrictions (1{3). By Theorem 2, R is solvable if and only if SOE (R) is

solvable. The undecidability follows from Lemma 4. �

We can note that the second-order equations that we obtain in Theorem 5

are not simple (even if we consider the most restricted case in [18]). In

order to prove the undecidability of the other cases of SOU that are listed

in the introduction we have to apply the techniques that underlie the proof

of Lemma 4 directly in the context of second-order uni�cation. We do this

in Section 5. We note, however, that the main result in Section 5 is an

independent result that does not imply Theorem 5, because the number

of variable occurrences is violated. For example, the decidability of SOU

restricted to 2 second-order variables, each occurring at most twice, remains

an open problem. This case is strongly related to the decidability of SREU

with 2 rigid-equations, which is also an open problem.

13

5 A new elementary undecidability proof of

SOU

In this section we present a new elementary undecidability proof of SOU,

that does not rely on the deep theory underlying the undecidability proof

of Hilbert's tenth problem due to Matiyasevich [24], that is used in Gold-

farb [17]. As a corollary we can show the undecidability of SOU in more

restricted cases than known previously. We adopt techniques from Gure-

vich and Veanes [18] and Veanes [30, 31], that originate from techniques in

Plaisted [26], Goldfarb [17] and Hopcroft and Ullman [20, Lemma 8.6].

The undecidability proof is by reduction from the halting problem for

Turing machines. We consider a �xed deterministic Turing machineM with

initial state q

0

, �nal state q

f

, a blank character �b, and an input alphabet that

does not include the blank. By �

M

we denote the set of all the symbols in

M , i.e., the states, the input characters and the blank. All elements of �

M

are assigned arity 0, i.e., are treated as constants. M is allowed to write

blanks, however, M is only allowed to write a blank when it erases the last

nonblank symbol on the tape and the tape head must move left after that.

We assume, without loss of generality, that when M enters the �nal state

then its tape is empty.

An ID ofM is any string vqw where vw is a string over the input alphabet

of M and q is a state of M . In particular, the initial ID of M for input string

v has the form q

0

v, and the �nal ID is simply the one character string q

f

.

A move of M is any pair of strings (v; v

+

) where v is an ID and v

+

is the

successor of v according to the transition function of M , if v is non�nal; v

+

is the empty string (�), otherwise (i.e., q

+

f

= �).

5.1 Main idea

We construct two second-order equations from M : S

M

mv

(F;G) and S

M

sp

(x; F),

that have roughly the following properties: (for any substitution � such that

G =2 dom(�) and input string v

0

for M)

1. � [fG 7! tg solves S

M

mv

(F;G) (for some t) if and only if F� represents

a sequence of moves of M :

((v

1

; v

+

1

); (v

2

; v

+

2

); : : : ; (v

k

; v

+

k

)):

2. � solves S

M

sp

(q

0

v

0

; F) if and only if F� represents the shifted pairing of

a sequence of IDs (v

1

; v

2

; : : : ; v

k

) where v

1

= q

0

v

0

. (See Figure 1.)

Consequently, � solves both second-order equations (for some G�) if and only

if F� represents a valid computation of M with input v

0

.

14

v

1

v

2

v

3

v

k�1

v

k

v

1

v

2

v

k�2

v

k�1

v

k

(v

1

; v

2

) (v

2

; v

3

)
(v

k�2

; v

k�1

) (v

k�1

; v

k

)
(v

k

; �)

Figure 1: ((v

1

; v

2

); (v

2

; v

3

); : : : ; (v

k

; �)) is a shifted pairing of (v

1

; v

2

; : : : ; v

k

).

5.2 Encoding sequences of moves

We introduce a family of new constants fc

ab

g

a;b2�

M

and use them to encode

moves of M in the following manner. Let v = a

1

a

2

� � � a

m

be any ID of M

and let v

+

= b

1

b

2

� � � b

n

. (Note that m � 1 � n � m + 1.) We let hv; v

+

i

denote the following string:

hv; v

+

i =

8

<

:

c

a

1

b

1

c

a

2

b

2

� � � c

a

m

b

m

c

�bb

n

; if n = m+ 1;

c

a

1

b

1

c

a

2

b

2

� � � c

a

n

b

n

c

a

m

�b

; if n = m� 1;

c

a

1

b

1

c

a

2

b

2

� � � c

a

m

b

n

; if n = m:

we call such a string a move also. (Note that hq

f

; �i = c

q

f

�b

.) Intuitively,

a blank is added at the end of the shorter of the two strings (in case they

di�er in length) and the pair of the resulting strings is encoded character by

character.

We �x two new constants c

w

and c

t

and two new binary function symbols

f

w

and f

t

, and let �

id

and �

mv

be the following signatures:

�

id

= �

M

[fc

w

; f

w

g;

�

mv

= f c

ab

j (a; b) 2 �

M

� �

M

g [fc

w

; f

w

; c

t

; f

t

g:

A term s is a called a word if either s = c

w

(the empty word), or s =

f

w

(c; s

0

) for some constant c that is distinct from c

w

and word s

0

. Whenever

convenient, we write a word as the corresponding string surrounded by double

quotes:

f

w

(a

1

; f

w

(a

2

; : : : ; f

w

(a

n

; c

w

) � � �)) = \a

1

a

2

� � � a

n

";

and say that the word represents the string. A term t is called a train, if

either t = c

t

(the empty train), or t = f

t

(s; t

0

) for some word s and train

t

0

. So trains are simply representations of string sequences. Conceptually we

identify words with strings and trains with sequences of strings.

A train that represents a sequence of moves is called a move-train. The

following lemma is used together with Lemma 2 to construct the second-order

equation S

M

mv

(F;G) with the desired properties.

Lemma 5 There is a system R

mv

of ground rules of depth � 1 over a signa-

ture �

0

mv

, where �

mv

� �

0

mv

and �

0

mv

n �

mv

is a set of constants, such that,

for all terms t 2 T

�

mv

, t is a move-train if and only if t

�

�!

R

mv

c

t

.

15

Proof. One can construct a deterministic �nite bottom-up tree automaton

(or DTA) that recognizes the set of all move-trains [18, 30, Train Theo-

rem]. In particular, such a DTA can be constructed with one �nal state.

When viewing DTAs as certain ground rewrite systems (see for example

Dauchet [2]) then the rule set R

mv

is simply the rule set of that DTA. �

5.3 The main reduction

Throughout the rest of this section we use the following shorthand notation.

Let R

mv

and �

0

mv

be given by Lemma 5, such that (�

0

mv

n �

mv

) \ �

id

= ;.

� m = j�

M

j

2

and (a

1

; b

1

); (a

2

; b

2

); : : : ; (a

m

; b

m

) is a �xed sequence of all

the pairs in �

M

� �

M

.

� ~c = c

a

1

b

1

; c

a

2

b

2

; : : : ; c

a

m

b

m

, note that ~c 2 T

�

mv

.

� ~a = a

1

; a

2

; : : : ; a

m

and

~

l

sp

= ~a; \�b"; c

w

; \�b", note that

~

l

sp

2 T

�

id

.

�

~

b = b

1

; b

2

; : : : ; b

m

and ~r

sp

=

~

b; c

w

; \�b"; \�b", note that ~r

sp

2 T

�

id

.

� m

1

= m+ 3 and F is a new second-order variable with arity m

1

+ 1.

� Consider a �xed sequence of all the rules in R

mv

. Let

~

l

mv

be the corre-

sponding sequence of all the left-hand sides, and ~r

mv

the corresponding

sequence of all the right-hand sides. Note that

~

l

mv

; ~r

mv

2 T

�

0

mv

.

� m

2

= jR

mv

j and G is a new second-order variable with arity m

2

+ 1.

� L

id

= (�

id

; ;; ;).

� L

0

mv

= (�

0

mv

; ;; fFg).

� d is a new constant and g is a new binary function symbol.

� L is (any expansion of) (�

id

[�

0

mv

[fd; gg; ;; fF;Gg).

We use the following facts without further notice:

� (L

id

; c

t

; f

t

; F;m

1

; L; \�b"; t;

~

l

sp

; ~r

sp

) (for t 2 T

�

id

) is appropriate.

� (L

0

mv

; d; g;G;m

2

; L; c

t

; F (~c; c

w

; c

w

; c

w

; c

t

);

~

l

mv

; ~r

mv

) is appropriate.

16

For t 2 T

�

, we de�ne the second-order equations S

M

sp

(t; F) and S

M

mv

(F;G)

and the system S

M

(t; F;G) in L as follows:

S

M

sp

(t; F) = SOE (c

t

; f

t

; F; \�b"; t;

~

l

sp

; ~r

sp

);

S

M

mv

(F;G) = SOE (d; g;G; c

t

; F (~c; c

w

; c

w

; c

w

; c

t

);

~

l

mv

; ~r

mv

);

S

M

(t; F;G) = fS

M

sp

(t; F); S

M

mv

(F;G)g:

Let us brie
y recall the intuition behind this construction. Assume that

� solves the system. To start with consider S

M

mv

(F�;G�). It follows from

Lemma 5 (with a little help from Lemma 6 below) that F�[~c; c

w

; c

w

; c

w

; c

t

] is

a term in T

�

mv

representing a sequence of moves:

(hv

1

; v

+

1

i; hv

2

; v

+

2

i; : : : ; hv

k

; v

+

k

i):

Next consider S

M

sp

(t; F�) and Lemma 1, which tells us �rstly that the function

symbols in F� are in �

id

[ff

t

g. So F� cannot contain any symbols from ~c,

because the only constant that �

id

and �

mv

have in common is the empty

word. Consequently, F� has the bound variable z

i

for every occurrence of

c

a

i

b

i

in F�[~c; c

w

; c

w

; c

w

; c

t

]. Therefore F�[

~

l

sp

; f

t

(\�b"; c

t

)] represents (roughly)

the sequence:

(v

1

; v

2

; : : : ; v

k

;�b);

and F�[~r

sp

; c

t

] represents (roughly) the sequence:

(v

+

1

; v

+

2

; : : : ; v

+

k

);

and the conditions (2{4) in Lemma 1 imply that (v

1

; v

2

; : : : ; v

k

) is a valid

computation.

Lemma 6 Let t 2 T

�

id

. If � solves S

M

(t; F;G), then F�[~c; c

w

; c

w

; c

w

; c

t

] 2

T

�

mv

.

Proof. Given t 2 T

�

id

and � in L, assume that � solves S

M

(t; F;G). Then �

solves S

M

sp

(t; F). It follows from Lemma 1 that F� is a closed (�

id

[ff

t

g; ;)

�

-

term of rank � m

1

+1. Since � solves also S

M

mv

(F;G), Lemma 2 implies that

F�[~c; c

w

; c

w

; c

w

; c

t

] 2 T

�

0

mv

. The rest is obvious from the fact that (�

0

mv

n

�

mv

) \ �

id

= ;. �

Given an input string v for M , we let S

M

v

(F;G) = S

M

(\q

0

v"; F;G): (Recall

that q

0

v is the initial ID of M with input v.) We can now prove the main

theorem.

Theorem 6 For any input string v

0

for M , S

M

v

0

(F;G) is solvable if and only

if M accepts v

0

.

Proof. Let v

0

be an input string for M .

17

()) Assume that S

M

v

0

(F;G) is solvable. Let � be a substitution in L that

solves S

M

v

0

(F;G). Since � solves S

M

mv

(F;G), it follows from Lemma 2 that

F�[~c; c

w

; c

w

; c

w

; c

t

]

�

�!

R

mv

c

t

:

Hence, by Lemma 6 and Lemma 5, F�[~c; c

w

; c

w

; c

w

; c

t

] is a move-train:

F�[~c; c

w

; c

w

; c

w

; c

t

] =

f

t

(\hv

1

; v

+

1

i"; f

t

(\hv

2

; v

+

2

i"; : : : ; f

t

(\hv

k

; v

+

k

i"; c

t

) � � �)); (8)

where each v

i

is an ID of M and k � 0. But � solves also S

M

sp

(\q

0

v

0

"; F).

Hence, it follows from Lemma 1 that

F� = f

t

(s

1

; f

t

(s

2

; : : : ; f

t

(s

k

; z

m

1

+1

) � � �)); (9)

where each s

i

is a closed L

�

id

-term of rank � m

1

and k � 1. (The case

F� = z

m

1

+1

, i.e., k = 0, is not possible because \q

0

v

0

" 6= \�b".) Moreover,

\q

0

v

0

" = s

1

[

~

l

sp

]; (10)

s

i

[~r

sp

] = s

i+1

[

~

l

sp

]; for 1 � i < k; (11)

s

k

[~r

sp

] = \�b": (12)

It follows from (8), (9), and each s

i

having rank � m

1

, that

s

i

[~c; c

w

; c

w

; c

w

] = \hv

i

; v

+

i

i"; for 1 � i � k: (13)

Note that s

i

[~c; c

w

; c

w

; c

w

] 2 T

�

mv

and s

i

[

~

l

sp

]; s

i

[~r

sp

] 2 T

�

id

for 1 � i � k. The

only constant that can occur in any s

i

is therefore c

w

.

In order to show that M accepts v

0

we show that v

1

= q

0

v

0

, v

+

i

= v

i+1

for 1 � i < k, and v

k

= q

f

. Consider a �xed i, 1 � i � k. Recall that the

j'th constant in the sequence ~c is c

a

j

b

j

and it occurs only at position j in ~c

(since there are no two identical constants in ~c). Thus, given that

\hv

i

; v

+

i

i" = f

w

(c

a

j

1

b

j

1

; f

w

(c

a

j

2

b

j

2

; : : : ; f

w

(c

a

j

n

b

j

n

; c

w

) � � �));

it follows from (13) that

s

i

= f

w

(z

j

1

; f

w

(z

j

2

; : : : ; f

w

(z

j

n

; s

0

i

) � � �));

where s

0

i

2 fc

w

; z

m

1

�2

; z

m

1

�1

; z

m

1

g, and 1 � j

n

0

� m for 1 � n

0

� n. Recall

that, for j � m, the j'th constant in

~

l

sp

is a

j

and the j'th constant in ~r

sp

is

b

j

. Hence, for 1 � i � k,

s

i

[

~

l

sp

] 2 f\v

i

"; \v

i

�b"; \v

i

�b�b"g;

s

i

[~r

sp

] 2 f\v

+

i

"; \v

+

i

�b"; \v

+

i

�b�b"g:

Now, (10) implies that v

1

= q

0

v

0

, (11) implies that v

+

i

= v

i+1

for 1 � i < k,

and (12) implies that \v

+

k

�b" = \�b", i.e., v

+

k

= � and hence v

k

= q

f

. Thus M

accepts v

0

.

18

(() Assume that M accepts v

0

. We construct a substitution � that solves

S

M

v

0

(F;G). Consider a valid computation of M with input v

0

:

(v

1

; v

2

); (v

2

; v

3

); : : : ; (v

k�1

; v

k

); (v

k

; v

k+1

);

for some k � 1, i.e., v

1

= q

0

v

0

, v

+

i

= v

i+1

for 1 � i � k, and v

k+1

= �

(v

k

= q

f

). We construct F� like above, where the s

i

's are the following

terms. Let i, 1 � i � k, be �xed and assume that

hv

i

; v

+

i

i = c

a

j

1

b

j

1

c

a

j

2

b

j

2

� � � c

a

j

n

b

j

n

;

where 1 � j

n

0

� m for 1 � n

0

� n. Let

s

i

= f

w

(z

j

1

; f

w

(z

j

2

; : : : ; f

w

(z

j

n

; s

0

i

) � � �));

where s

0

i

is one of c

w

, z

m

1

�2

, z

m

1

�1

or z

m

1

(speci�ed below). Given such s

i

for 1 � i � k, obviously

s

i

[~c; c

w

; c

w

; c

w

] = \hv

i

; v

i+1

i"; (1 � i � k):

Hence, F�[~c; c

w

; c

w

; c

w

; c

t

] is a move-train. It follows from Lemma 5 that

F�[~c; c

w

; c

w

; c

w

; c

t

]

�

�!

R

mv

c

t

;

and then from Lemma 2((ii))(i)) that (for some termG�) � solves S

M

mv

(F;G).

Next, we choose the s

0

i

's, for 1 � i � k, in fc

w

; z

m

1

�2

; z

m

1

�1

; z

m

1

g, so that

the conditions (10{12) hold. Consider hv

i

; v

i+1

i above, let us call a

j

1

a

j

2

� � � a

j

n

its �rst projection, denoted by �

1

(hv

i

; v

i+1

i), and b

j

1

b

j

2

� � � b

j

n

its second pro-

jection, denoted by �

2

(hv

i

; v

i+1

i). It is easy to check that for a given choice

of s

0

i

, the terms s

i

[

~

l

sp

] and s

i

[~r

sp

] are as follows:

s

0

i

= s

i

[

~

l

sp

] = s

i

[~r

sp

] =

c

w

\�

1

(hv

i

; v

i+1

i)" \�

2

(hv

i

; v

i+1

i)"

z

m

1

�2

\�

1

(hv

i

; v

i+1

i)�b" \�

2

(hv

i

; v

i+1

i)"

z

m

1

�1

\�

1

(hv

i

; v

i+1

i)" \�

2

(hv

i

; v

i+1

i)�b"

z

m

1

\�

1

(hv

i

; v

i+1

i)�b" \�

2

(hv

i

; v

i+1

i)�b"

Now, the key point to observe is that, for 1 < i � k, if �

2

(hv

i�1

; v

i

i) and

�

1

(hv

i

; v

i+1

i) are distinct, the one of them is v

i

and the other one is v

i

�b.

Hence, the table shows that it is possible to de�ne the s

0

i

's so that s

i

[~r

sp

] =

s

i+1

[

~

l

sp

] for 1 � i < k and s

k

[~r

sp

] = \�b". It is also necessary to assume that

�

1

(hv

1

; v

2

i) = v

1

, and to de�ne s

0

1

so that s

1

[

~

l

sp

] = \q

0

v

0

". The conditions

(10{12) follow. Hence, � solves S

M

sp

(\q

0

v

0

"; F) by Lemma 1((ii))(i)). �

19

Let us consider a �xed universal Turing machine M

u

with input alphabet

�

u

and initial state q

0

. Any pair (M;v), where M is a TM and v an input

string for M is encoded e�ectively as a string over �

u

, denoted by hM;vi.

The details of such an encoding are not relevant here and can be found for

example in Hopcroft and Ullman [20]. The universal TM accepts hM;vi if

and only if M accepts v. The following corollary is an easy consequence

of Theorem 6. Recall that a simple second-order equation is one where all

occurrences of second-order variables have ground arguments.

Corollary 1 There is a simple second-order equation S

u

(x; F;G) of depth 4

and of the form

g(F (

~

t

1

); G(

~

t

2

)) � g(f(x; F (

~

t

3

)); g(F (

~

t

4

); G(

~

t

5

)));

such that the problem of determining whether S

u

(t; F;G) is solvable for a

given ground term t, is undecidable.

Proof. Consider the system

S

M

u

(x; F;G) = fF (

~

t

1

) � f(x; F (

~

t

3

)); G(

~

t

2

) � g(F (

~

t

4

); G(

~

t

5

))g;

for some sequences

~

t

i

, 1 � i � 5, of ground terms. Pair the two equations

together to form S

u

(x; F;G). The depth of S

u

(x; F;G) is 4 since the elements

of each

~

t

i

have depth � 1. Evidently, for any given term t, S

u

(t; F;G) is

solvable if and only if S

M

u

(t; F;G) is solvable. In particular, given a TM M

and input v for M , S

u

(\q

0

hM;vi"; F;G) is solvable if and only if S

M

u

hM;vi

(F;G)

is solvable if and only if (by Theorem 6) M

u

accepts hM;vi if and only if M

accepts v. �

Let us call the second-order equation S

u

in Corollary 1 a universal second-

order equation and let us denote the language of S

u

by L

u

.

Corollary 2 Second-order uni�cation is undecidable under the following re-

strictions:

1. there are no �rst-order variables,

2. at most two variables,

3. at most �ve occurrences of variables,

4. the equations are simple (Schubert [28]), and

5. the arguments of all variables have constantly bounded depth.

20

In the following section we get further improvements of this result by applying

certain encoding techniques in Farmer [13].

It is interesting to note that, by applying the reduction in Degtyarev and

Voronkov [10] to a system of simple second-order equations, one obtains a

system of rigid equations with ground left-hand sides.

5

(The converse does

not hold, i.e., the reduction from a system of rigid equations with ground left-

hand sides, by using Theorem 2, does in general not yield a system of simple

second-order equations.) Thus, by using Schubert's result that is con�rmed

by Corollary 2, one obtains an elegant proof of the following statement.

Corollary 3 (Plaisted [26]) SREU is undecidable with ground left-hand

sides.

6 A complement to Farmer's theorem

Let us recall the following result.

Theorem 7 (Farmer [13]) There is an integer n such that the second-

order uni�cation problem is undecidable for all nonmonadic languages, that

contain at least n second-order variables.

One important point of this result is that all the second-order variables may

be unary. So undecidability of second-order uni�cation arises for all non-

monadic languages with su�ciently many second-order variables, even if all

of them are unary and there are no �rst-order variables and only one con-

stant in the language. However, as is noted in Farmer [13, page 30], there is a

possibility, that there is some second-order, nonmonadic language containing

a small number of second-order variables for which second-order uni�cation

is decidable.

The main result of this section is Theorem 8, showing that this is not

possible if the arities of the second-order variables are large enough, in which

case the undecidability arises already with two second-order variables. The

above possibility remains only if there is one second-order variable, or if there

is a small number of second-order variables with low arities.

We use a special case of a result in Farmer [13, Lemma 6.5] (Lemma 7) to

show that Corollary 2 holds for all nonmonadic languages. We make explicit

some additional information that we extract from the main part of its proof.

6

5

This observation was made by Voronkov.

6

Lemma 7 holds actually not just for simple equations but for a larger class of second-

order equations that are called \rigid" by Farmer. This notion is not related to the

de�nition of rigid equations in the context of rigid E-uni�cation.

21

Lemma 7 Let L

1

be a nonmonadic second-order language and let L be the

language (ff; cg;X

L

1

;F

L

1

), where f is a binary function symbol and c is a

constant. There is an e�ective mapping ' : T

L

1

! T

L

such that, for all

simple e = s � t in L

1

:

1. '(e) = '(s) � '(t) in L is simple,

2. e is solvable in L

1

if and only if '(e) is solvable in L,

3. the set of variables in e coincides with the set of variables in '(e),

4. the number of variable occurrences in e and '(e) are equal,

5. if s = s

1

fx 7! s

2

g for some simple s

1

and ground s

2

then '(s) =

'(s

1

)fx 7! '(s

2

)g.

Theorem 8 There is a positive integer n, such that, for any nonmonadic

second-order language L with at least two second-order variables with arity

� n, the uni�cation problem for L is undecidable already for simple equations

with at most �ve variable occurrences having arguments of depth � n.

Proof. It is enough to prove the statement for some second-order variables

F and G and L = (ff; cg; ;; fF;Gg), where f is a binary function symbol,

and c is a constant (cf [13, Lemma 2.1]). Let L

0

be L expanded with the �rst-

order variable x. Consider the universal second-order equation S

u

(x; F;G)

(that is obviously simple) and let ' : T

L

u

! T

L

0

be given by Lemma 7.

Let S

0

(x; F;G) = '(S

u

(x; F;G)). It follows that for any term t 2 T

�

L

u

,

S

u

(t; F;G) is solvable in L

u

if and only if '(S

u

(t; F;G)) is solvable in L

0

(i.e.,

in L) if and only if S

0

('(t); F;G) is solvable in L. The statement follows now

from Corollary 1 for n equal to some integer greater that the arities of F and

G and the depth of S

0

(x; F;G). �

7 Some open problems

Despite the similarity of SREU and second-order uni�cation in general, their

monadic fragments (i.e., when all function symbols have arity � 1) seem

to be farther apart. The reason is that the decidability of monadic second-

order uni�cation can be proved by reduction to word equations [12], whereas

monadic SREU is only known to reduce to a nontrivial extension of word

equations [19] and its decidability is currently an open problem, with only

some special decidable cases [19, 6]. It is also known that SREU is undecid-

able with three rigid equations [18] and decidable with one rigid equation [14].

22

The two rigid equations case remains an intriguing open problem, and the

relationship to second-order uni�cation might be useful to settle this ques-

tion. Further open problems related to SREU are discussed in Voronkov [34].

With respect to the number of variables, the decidability of SREU has re-

cently been settled completely [4, 31].

We conjecture that, by applying the techniques that are used by Farmer

(in particular [13, Lemma 5.2 and Lemma 6.1]), to the universal second-order

equation S

u

, one can obtain a more elementary proof of Farmer's main the-

orem that holds already for simple equations. We estimate that the number

of unary second-order variables that the reduction from S

u

would lead to

is roughly 4n where n is the maximum of the arities of the second-order

variables in S

u

. It is still not known whether second-order uni�cation is de-

cidable for \small" number of second-order variables with \low" arities. As

we have shown, when the arities can be large enough, then undecidability

arises already with two second-order variables. It is also an open problem if

second-order uni�cation is decidable with one second-order variable, unless

there are at most two occurrences of the second-order variable [22].

References

[1] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M.

Gabbay, and T.S.E. Mainbaum, editors, Handbook of Logic in Computer

Science, volume 2, pages 117{309. Oxford University Press, 1992.

[2] M. Dauchet. Rewriting and tree automata. In H. Comon and J.P.

Jouannaud, editors, Term Rewriting (French Spring School of Theo-

retical Computer Science), volume 909 of Lecture Notes in Computer

Science, pages 95{113. Springer Verlag, Font Romeux, France, 1993.

[3] A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov.

Decidability and complexity of simultaneous rigid E-uni�cation with

one variable and related results. Theoretical Computer Science, 1998.

To appear.

[4] A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov.

The decidability of simultaneous rigid E-uni�cation with one variable. In

Rewriting Techniques and Applications, 1998. To appear, also available

as UPMAIL Technical Report 139, March 1997, Uppsala University,

Computing Science Department.

[5] A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand's theorem

and equational reasoning: Problems and solutions. UPMAIL Techni-

23

cal Report 128, Uppsala University, Computing Science Department,

September 1996. Appears in the Bulletin of the European Association

for Theoretical Computer Science (Vol 60, October 1996).

[6] A. Degtyarev, Yu. Matiyasevich, and A. Voronkov. Simultaneous rigid

E-uni�cation and related algorithmic problems. In Eleventh Annual

IEEE Symposium on Logic in Computer Science (LICS'96), pages 494{

502, New Brunswick, NJ, July 1996. IEEE Computer Society Press.

[7] A. Degtyarev and A. Voronkov. Reduction of second-order uni�cation

to simultaneous rigid E-uni�cation. UPMAIL Technical Report 109,

Uppsala University, Computing Science Department, June 1995.

[8] A. Degtyarev and A. Voronkov. Simultaneous rigid E-uni�cation is

undecidable. UPMAIL Technical Report 105, Uppsala University, Com-

puting Science Department, May 1995.

[9] A. Degtyarev and A. Voronkov. Decidability problems for the prenex

fragment of intuitionistic logic. In Eleventh Annual IEEE Symposium on

Logic in Computer Science (LICS'96), pages 503{512, New Brunswick,

NJ, July 1996. IEEE Computer Society Press.

[10] A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid

E-uni�cation. Theoretical Computer Science, 166(1{2):291{300, 1996.

[11] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In

J. Van Leeuwen, editor, Handbook of Theoretical Computer Science, vol-

ume B: Formal Methods and Semantics, chapter 6, pages 243{309. North

Holland, Amsterdam, 1990.

[12] W.M. Farmer. A uni�cation algorithm for second-order monadic terms.

Annals of Pure and Applied Logic, 39:131{174, 1988.

[13] W.M. Farmer. Simple second-order languages for which uni�cation is

undecidable. Theoretical Computer Science, 87:25{41, 1991.

[14] J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-

uni�cation is NP-complete. In Proc. IEEE Conference on Logic in Com-

puter Science (LICS), pages 338{346. IEEE Computer Society Press,

July 1988.

[15] J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid

E-uni�cation: Equational matings. In Proc. IEEE Conference on Logic

in Computer Science (LICS), pages 338{346. IEEE Computer Society

Press, 1987.

24

[16] F. G�ecseg and M. Steinby. Tree Automata. Akad�emiai Kiod�o, Budapest,

1984.

[17] W.D. Goldfarb. The undecidability of the second-order uni�cation prob-

lem. Theoretical Computer Science, 13:225{230, 1981.

[18] Y. Gurevich and M. Veanes. Some undecidable problems related to the

Herbrand theorem. UPMAIL Technical Report 138, Uppsala University,

Computing Science Department, March 1997. Submitted to Information

and Computation.

[19] Y. Gurevich and A. Voronkov. The monadic case of simultaneous rigid

E-uni�cation. In ICALP'97, Lecture Notes in Computer Science, 1997.

[20] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley Publishing Co., 1979.

[21] J. Levy. Linear second-order uni�cation. In Rewriting Techniques and

Applications, volume 1103 of Lecture Notes in Computer Science, pages

332{346. Springer Verlag, 1996.

[22] J. Levy. Decidable and undecidable second-order uni�cation problems.

Accepted for RTA'98, 1997.

[23] G.S. Makanin. The problem of solvability of equations in free semi-

groups. Mat. Sbornik (in Russian), 103(2):147{236, 1977. English Trans-

lation in American Mathematical Soc. Translations (2), vol. 117, 1981.

[24] Yu.V. Matiyasevi�c. The diophantiness of recursively enumerable sets (in

Russian). Soviet Mathematical Doklady, pages 279{282, 1970.

[25] U. Petermann. A complete connection calculus with rigid E-uni�cation.

In JELIA'94, volume 838 of Lecture Notes in Computer Science, pages

152{166, 1994.

[26] D.A. Plaisted. Special cases and substitutes for rigid E-uni�cation.

Technical Report MPI-I-95-2-010, Max-Planck-Institut f�ur Informatik,

November 1995.

[27] M. Schmidt-Schau�. Uni�cation of strati�ed second-order terms. Techni-

cal Report 12/94, Johan Wolfgang-G�othe-Universit�at, Frankfurt, 1995.

[28] A. Schubert. Second-order uni�cation and type inference for Church-

style polymorphism. Technical report, Institute of Informatics, Warsaw

University, January 1997. To appear in POPL'98.

25

[29] M. Veanes. Uniform representation of recursively enumerable sets with

simultaneous rigid E-uni�cation. UPMAIL Technical Report 126, Upp-

sala University, Computing Science Department, July 1996.

[30] M. Veanes. On Simultaneous Rigid E-Uni�cation. PhD thesis, Com-

puting Science Department, Uppsala University, 1997.

[31] M. Veanes. The undecidability of simultaneous rigid E-uni�cation with

two variables. In Proc. Kurt G�odel Colloquium KGC'97, volume 1289

of Lecture Notes in Computer Science, pages 305{318. Springer Verlag,

1997.

[32] A. Voronkov. Proof search in intuitionistic logic based on constraint

satisfaction. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi,

editors, Theorem Proving with Analytic Tableaux and Related Methods.

5th International Workshop, TABLEAUX '96, volume 1071 of Lecture

Notes in Arti�cial Intelligence, pages 312{329, Terrasini, Palermo Italy,

May 1996.

[33] A. Voronkov. Proof search in intuitionistic logic with equality, or back

to simultaneous rigid E-uni�cation. In M.A. McRobbie and J.K. Slaney,

editors, Automated Deduction | CADE-13, volume 1104 of Lecture

Notes in Computer Science, pages 32{46, New Brunswick, NJ, USA,

1996.

[34] A. Voronkov. Herbrand's theorem, automated reasoning and semantic

tableaux. UPMAIL Technical Report 151, Uppsala University, Comput-

ing Science Department, February 1998. Accepted for LICS'98.

[35] A. Voronkov. Simultaneous rigid e-uni�cation and other decision prob-

lems related to the Herbrand theorem. UPMAIL Technical Report 152,

Uppsala University, Computing Science Department, February 1998.

Submitted to TCS.

26

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-I-98-2-005 M. Veanes The Relation Between Second-Order Uni�cation

and Simultaneous Rigid E-Uni�cation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Functional+Record Subtype

Constraints is NP-Hard

MPI-I-97-2-012 L. Bachmair, H. Ganzinger,

A. Voronkov

Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Bachmair, H. Ganzinger Strict Basic Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with

Complex Values

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set constraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories

of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

