
'$�

�

'$

�

��

I N F O R M A T I K

 	

� �

Satis�ability of

Functional+Record Subtype

Constraints is NP-Hard

Sergei Vorobyov

MPI{I{98{2{004 January 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany

Author's Address

Sergei Vorobyov: Max-Planck Institut f�ur Informatik, Im Stadt-

wald, D-66123, Saarbr�ucken, Germany, sv@mpi-sb.mpg.de,

http://www.mpi-sb.mpg.de/~sv.

Publication Notes

January 21, 1998

Acknowledgements

Thanks to David McAllester for motivating this research, for fruitful discus-

sions, careful proofreading, thoughtful and illuminating remarks.

Abstract

We show the NP-hardness of the satis�ability problem for subtype inequali-

ties between object types built by using simultaneously both the functional

and the record type constructors, without base types. Earlier research con-

centrated on the complexity of subtyping either solely functional, or solely

record types. In both cases deterministic cubic time algorithms are known.

Keywords

Functional, record type constructors, partial, object types, type reconstruc-

tion problem, subtyping, subsumption, subtype constraints, satis�ability,

complexity, NP, PSPACE, NEXPTIME.

Contents

1 Introduction 2

1.1 Partial Types . 3

1.2 Object Types . 3

1.3 Functional Types with Base Subtyping 4

1.4 Contribution of This Paper . 4

2 Functional+Record Types 6

3 Proof of the Main Theorem 8

3.1 Truth Values . 8

3.2 Representing Clauses . 8

3.3 Satis�ability of a Propositional Formula 9

4 Discussion 12

5 Conclusions 14

1

1 Introduction

In this paper we address the inherent computational complexity of the sub-

typing constraints satisfaction problem for object types built by using si-

multaneously the functional and the record type constructors, but without

base types and subtyping relation on them. The motivation for subtyp-

ing record+functional types comes from the Object-Oriented Programming,

where an object (record) can be emulated by another object that has more

more re�ned methods (functions). To handle this phenomenon, the so-called

subsumption with record+functional types is needed. The primary impor-

tance of the problem stems from the fact that satis�ability of systems of

subtype inequalities is known to be polynomial time equivalent to the type

reconstruction problem for lambda and object terms (Kozen, Palsberg &

Schwartzbach 1994, Hoang & Mitchell 1995, Palsberg 1995). The latter prob-

lem is in the core of e�cient typechecking in functional and object-oriented

programming.

The Satis�ability of Subtype Constraints Problem (further, the SSCP for

short) is de�ned as follows.

SSCP: Given a �nite set of subtype inequalities

n

�

i

� �

i

o

n

i=1

between type expressions �

i

, �

i

containing free type variables, does

there exist a substitution of type expressions for these variables

making all inequalities simultaneously true?

The SSCP is obviously parameterized by:

� the choice of type constructors involved in type expressions,

� the choice of subtyping rules,

� presence/absence of base types with a subtype relation on them.

The most common features involved in type construction considered in the

literature are as follows:

1. the functional type constructor � ! � ,

2. the record type constructor [l

1

: �

1

: : : ; l

n

: �],

3. base types with a subtype relation on them, e.g., int � real .

The following cases of SSCP are well investigated in the literature:

1. Subtyping of partial types built with a single functional type construc-

tor !, the top type
, and no base types (Kozen et al. 1994).

2

2. Subtyping of object types built with a single record type constructor

[l

1

: �

1

: : : ; l

n

: �] and no base types (Palsberg 1995).

3. Subtyping with a single type constructor ! and base types with a

subtype relation on them (Lincoln & Mitchell 1992, O'Keefe & Wand

1992, Tiuryn 1992, Benke 1993, Hoang & Mitchell 1995, Pratt & Tiuryn

96, Frey 1997).

In this paper we consider the SSCP for types built by using si-

multaneously the functional and the record type constructors,

but without base types.

We now briey survey these results in more detail.

1.1 Partial Types

(Kozen et al. 1994) consider the so-called partial types introduced by (Thatte

1988), built from a single base type
 by using the single functional type

constructor !, i.e., de�ned by the grammar

� ::=
 j �

1

! �

2

and the subtype relation � de�ned by

� �
 for any type � ,

� ! � � �

0

! �

0

i� �

0

� � and � � �

0

. (1)

(The latter is the standard subtyping rule for functional types.)

By using a nice automata-theoretic technique (Kozen et al. 1994) prove

that the SSCP for these partial types is solvable in deterministic time O(n

3

).

(O'Keefe & Wand 1992) were the �rst to show decidability of the problem

by giving an exponential algorithm.

1.2 Object Types

(Palsberg 1995) considers the so-called object types built by using the single

record type constructor, i.e., de�ned by the grammar

� ::= [l

1

: �

1

; : : : ; l

n

: �

n

] for n � 0;

where the �eld labels l

i

's are drawn from an in�nite set. (Note that in case

n = 0 we get the empty record type []. Obviously, � � [] for each type � .)

The subtype relation on these object types is de�ned by

� � � i�

�

� has �eld l : �) � has �eld l : �

�

:

3

Note that this subtyping rule is di�erent from a more well-known rule � � �

i�

�

� has �eld l : �

0

) � has �eld l : �

0

such that �

0

� �

0

�

. (Palsberg 1995)

shows, also by using the automata-theoretic techniques similar to (Kozen

et al. 1994), that the SSCP for the object types is decidable in deterministic

time O(n

3

), and proves that the problem is PTIME-complete.

1.3 Functional Types with Base Subtyping

The SSCP for functional types de�ned starting from a set of base types with

a given subtype relation on them extended to the set of all functional types

by the standard subtyping rule (1) attracted most attention in the liter-

ature (Lincoln & Mitchell 1992, Tiuryn 1992, Pratt & Tiuryn 96, Benke

1993, Hoang & Mitchell 1995, Tiuryn 1997, Frey 1997). When the subtyping

relation on base types is identity, the whole subtype relation is also iden-

tity, and the SSCP becomes the uni�cation problem for simple types, known

to be PTIME-complete (Dwork, Kanellakis & Mitchell 1984). (Lincoln &

Mitchell 1992), improving (Wand & O'Keefe 1989), demonstrated that for

some �xed ordering of base types the SSCP is NP-hard. (Tiuryn 1992, Pratt

& Tiuryn 96) improved it to PSPACE-hardness for some simple �xed order-

ings of base types called crowns. (Lincoln & Mitchell 1992, Tiuryn 1992)

gave the NEXPTIME upper bound for the problem. Recently (Frey 1997)

improved it to PSPACE. Thus the SSCP for functional types with base

types is PSPACE-complete, in general. When the subtype relation on base

types is a disjoint union of lattices (Tiuryn 1992) or a tree-like partial order

(Benke 1993), then the SSCP is in PTIME, i.e., becomes tractable.

It is interesting to note that the partial types subtyping of (Kozen et al.

1994) forms a lattice and the object types subtyping of (Palsberg 1995) forms

a tree-like structure. But the relation between the PTIME results of (Tiuryn

1992, Benke 1993) on the one hand and the results of (Kozen et al. 1994,

Palsberg 1995) on the other, seemingly, remains unexplored.

1.4 Contribution of This Paper

The complexity of the SSCP for types built by using simultaneously the func-

tional! and the record [] type constructors (both in presence or absence of

base types) remained unknown, although type systems combining functions

and records are quite natural in object-oriented programming. The papers

cited above concentrate either solely on functional or only on record types,

leaving open what happens when both features are combined together. The

main result of this paper is that

4

even without any base types the SSCP for functional+record types

is NP-hard.

Thus, the absence of subtyping on base types does not lead to tractability, as

contrasted to PSPACE/PTIME complexity for functional types with/without

base subtyping, recall (Tiuryn 1992, Lincoln & Mitchell 1992, Tiuryn 1997).

Moreover, functions+records without base types, seemingly, do not allow

to model the crown structures of (Tiuryn 1992, Pratt & Tiuryn 96), proved

to be a useful uniform tool in showing NP and PSPACE lower bounds. Our

proofs are not done by reduction from results of (Tiuryn 1992, Pratt & Tiuryn

96), we use a di�erent method.

As compared to (Kozen et al. 1994, Palsberg 1995), our result shows that

subtyping of functional types, as in (Kozen et al. 1994) cannot be straightfor-

wardly combined with record subtyping of (Palsberg 1995) (both determin-

istic cubic time) to yield a polynomial deterministic algorithm. Thus, this is

the intrinsic interplay between functional and record type subtyping (with-

out base subtyping) that adds to the computational complexity of the SSCP.

This shows that some generalizations are necessary to deal successfully with

subtyping in type systems combining functions and records.

The remainder of the paper is organized as follows. In Section 2 we

introduce the type system, and in Section 3 prove the main theorem. In

Section 4 we discuss it and further results. We conclude in Section 5.

5

2 Functional+Record Types

Let V = f�; �; ; : : :g be an in�nite set of type variables and L = fl

1

; : : : ;

l

n

; : : :g be an in�nite set of �eld labels.

De�nition 2.1 (Types) are de�ned by the grammar

� ::= V j �

0

! �

00

j [l

1

: �

1

; : : : ; l

n

: �

n

]; (2)

where n > 0 and l

i

's are di�erent labels from L. 2

That is, types are constructed inductively, starting from type variables, by

using the functional ! and the record [: : :] type constructors. The subex-

pressions l

i

: �

i

in the record construction are called record �elds. Note that

in the record construction the set of �elds is always non-empty, i.e., we ex-

clude the empty record. The reasons and consequences of this choice will be

considered later.

Notational Conventions. Types will be denoted by Greek letters � , �,

�, . . . To stress the outermost type constructor in a type we will sometimes

superscript a type by the corresponding outermost constructor, like �

!

or

�

[]

. 2

De�nition 2.2 (Subtype Relation) is de�ned by the following standard

rules:

Reexivity: � � � ,

Transitivity: � � � and � � � imply � � �,

Functional: � ! � � �

0

! �

0

i� �

0

� � and � � �

0

,

Record: �

[]

� �

[]

i� for every �eld l : �

0

in �

[]

there is a �eld

l : �

0

in �

[]

such that �

0

� �

0

.

A subtype judgment � � � is true i� it is derivable by these rules. 2

Remark. Note that a functional type is never a subtype of a record type,

nor vice versa. All provable subtyping judgments are either � � � for a

type variable �, or of the form �

!

� �

!

, or of the form �

[]

� �

[]

, i.e., the

subtyping relation is strictly structural. 2

6

We are now ready to state precisely the problem we are interested in.

Satis�ability of Subtype Constraints Problem (SSCP).

Given a �nite system of subtype inequalities

n

�

i

� �

i

o

n

i=1

;

does there exist a substitution of types for variables in �

i

's, �

i

's

making all inequalities simultaneously true? 2

Our main result is as follows.

Theorem 2.3 The SSCP for functional+record types is NP-hard. 2

The proof of this theorem will be given in the next section.

7

3 Proof of the Main Theorem

Our proof is by reduction from the well-known NP-complete problem:

SATISFIABILITY. Given a Boolean formula in Conjunctive

Normal Form (CNF), does there exist an assignment of truth

values to variables making the formula true?

We therefore proceed to representing truth values, clauses, and satis�ability

in terms of types and subtyping.

3.1 Truth Values

Fix a type variable . De�ne the truth values t (true) and f (false) as types

t �

df

[1 :];

f �

df

 ! ;

where 1 is an arbitrary label from L.

Clearly, neither f � t, nor t � f, because one is functional and the

other is record (recall that the subtyping is strictly structural). Note that by

de�nition of t, f, and �, for any type � one has

t � �) � = t; (3)

f � �) � = f: (4)

This is because the empty record [] is excluded from consideration by De�-

nition 2.1.

3.2 Representing Clauses

A clause is a disjunction of literals. A literal is either a propositional variable,

or a negation of a propositional variable. Propositional variables A

1

; : : : ; A

k

are represented by labels 1; : : : ; k. A clause (i.e., a disjunction of literals)

C � A

i

1

_ : : : _ A

i

m

_ :A

j

1

_ : : : _ :A

j

n

;

where fi

1

; : : : ; i

m

g\fj

1

; : : : ; j

n

g = ; and fi

1

; : : : ; i

m

g[fj

1

; : : : ; j

n

g � f1; : : : ; kg,

is represented as a type

C

�

�

df

[i

1

: t; : : : ; i

m

: t; j

1

: f; : : : ; j

n

: f]:

Proposition 3.1 A truth assignment � : fA

1

; : : : ; A

k

g �! ft; fg satis�es a

clause C i� i : �(A

i

) occurs in C

�

for some i 2 f1; : : : ; kg.

8

Proof. � satis�es C i� for some propositional variable A

i

one has:

� either �(A

i

) = t and C = : : : _ A

i

_ : : :; by de�nition of C

�

, C =

: : : _ A

i

_ : : : i� i : t occurs in C

�

,

� or �(A

i

) = f and C = : : : _ :A

i

_ : : :; by de�nition of C

�

, C = : : : _

:A

i

_ : : : i� i : f occurs in C

�

. 2

Proposition 3.2 Let C

�

� � for some type � . Then � � C

�

, where

[i : �

i

]

m

i=1

� [j : �

j

]

n

j=1

i� fi : �

i

g

m

i=1

� fj : �

j

g

n

j=1

.

(Recall that � 6= [], by De�nition 2.1.)

Proof. By de�nition of record subtyping, C

�

� � implies that

C

�

� [: : : i

1

: �

1

; : : : ; i

p

: �

p

; : : :] � [i

1

: �

1

; : : : ; i

p

: �

p

] � � and �

j

� �

j

, where

�

j

2 ft; fg. The conclusion now follows immediately by (3), (4). 2

3.3 Satis�ability of a Propositional Formula

De�nition 3.3 The translation of a propositional formula in CNF (i.e., a

conjunction of clauses)

� �

l

^

i=1

C

i

is a set of subtyping judgments

�

�

�

df

n

C

�

i

� �

i

; � � �

i

o

l

i=1

; (5)

where �, �

i

are fresh pairwise distinct type variables. A solution to �

�

is a

substitution of types for free type variables making all subtyping judgments

in �

�

true. 2

The main technical result we need is as follows.

Lemma 3.4 � is satis�able if and only if �

�

has a solution.

Proof.

� ()). Let an assignment �(A

i

) = v

i

of truth values v

i

2 ft; fg satisfy

�. Then, by Proposition 3.2, the substitution

� [1 : v

1

; : : : ; i : v

i

; : : : ; k : v

k

];

�

i

 [i : v

i

j �(A

i

) = v

i

and i : v

i

2 C

�

i

]

is a solution to �

�

.

9

� ((). Suppose, �

�

has a solution � �

�

, �

i

 �

�

i

. Construct the

truth assignment � by de�ning for every i = 1; : : : ; l

{ �(A

i

) = t if i : � occurs in �

�

for some record type �,

{ �(A

i

) = f if i : � occurs in �

�

for some functional type �,

{ �(A

i

) = t if neither of the above.

We claim that such a � satis�es � � ^

l

i=1

C

i

, i.e., � satis�es C

i

for

every i = 1; : : : ; l. Since � �

�

, �

i

 �

�

i

is a solution to �

�

, by

Proposition 3.2,

C

�

i

� �

�

i

implies �

�

i

� C

�

i

:

Consequently, by de�nition of C

�

, �

�

i

is a nonempty record consisting

of elements j : v

j

with v

j

2 ft; fg and with di�erent j's.

Let j : v

j

occur in �

�

i

. Since �

�

� �

�

i

and j : v

j

occurs in �

�

i

, the type

�

�

should contain j : � for some type � � v

j

. Recall that v

j

is either t

or f.

{ If v

j

= t, then � must be a record type, hence, by construction of

�, �(A

j

) = t. But j : v

j

= j : t 2 C

�

i

means that C

i

= : : :_A

i

_: : :.

Therefore, � satis�es C

i

.

{ If v

j

= f, then � must be a functional type, hence, by construction

of �, �(A

j

) = f. But j : v

j

= j : f 2 C

�

i

means that C

i

=

: : : _ :A

i

_ : : :. Therefore, � satis�es C

i

.

Therefore the assignment � satis�es C

i

, and the proof is �nished. 2

Since the solvability of a system of subtyping judgments is equivalent to

the solvability of a single judgment (by using records), and the translation

�

of propositional formulas into systems of subtype constraints (5) is obviously

polynomial time computable, we thus proved our main result:

Theorem 3.5 The problem of determining whether a given subtype judg-

ment containing free variables is satis�able by some type assignment to its

free variables in the system of De�nitions 2.1, 2.2 is NP-hard. 2

Remark. The proof above uses the number of record �elds labels equal to

the number of propositions in an input propositional formula. In fact, just

two labels, say 0 and 1, su�ce. Instead of at records [1 : v

1

; : : : ; k : v

k

] used

in the proof we could have used nested records like

[0:[0:[0:u

000

; 1:u

001

]; 1:[0:u

010

; 1:u

011

]]; 1:[0:[0:u

100

; 1:u

101

]; 1:[0:u

110

; 1:u

111

]]];

[0:[0:[0:v

000

; 1:v

001

]; 1:[0:v

010

; 1:v

011

]]; 1:[0:[0:v

100

; 1:v

101

]; 1:[0:v

110

; 1:v

111

]]]:

10

It is clear that two these record types are in the subtype relation i� for all

i; j; k 2 f0; 1g one has u

ijk

� v

ijk

.

Thus the NP-hardness result holds already in case of a two-label set.

In contrast, for just one label the SSCP is deterministic polynomial (even

linear) time decidable, as we discuss it below. This follows from the linearity

of typability of an untyped term by simple types. 2

Remark. Another generalization comes from the fact that the particular

case of SATISFIABILITY, 3-SATISFIABILITY, restricted to formulas with

at most three literals per clause is also NP-complete. It follows that the

SSCP remains NP-hard for systems of constraints containing at most three

�elds per record. 2

Remark. If the empty record type [] is excluded from the type system

of (Palsberg 1995) (by adding a type constant or type variables to make

the set of types non-empty), the SSCP becomes NP-hard. The proof is by

simpli�cation of the argument given above Indeed, it su�ces to represent

the truth values as t = [1 :] and f = [2 :] (i.e., without functional

type constructor). Without the empty record type, the properties (3), (4)

hold, and the remainder of the proof works without any substantial changes.

It follows that deriving type information is strictly more complicated than

deriving partial type information, although, both problems are important

and deserve attention.

By the same argument, the NP-hardness result holds for the purely record

types with two incomparable type constants (to model t and t), and the

empty record type [] excluded. 2

11

4 Discussion

(Kozen et al. 1994, Hoang & Mitchell 1995, Palsberg 1995) show that sat-

is�ability of systems of subtype inequalities is polynomial time equivalent

to the type reconstruction problem (i.e., given a term can it be assigned

some type?). By similar arguments we can prove that in any reasonable type

system based on functional+record types with subtyping as de�ned in De�ni-

tions 2.1, 2.2 the type reconstruction problem is polynomial time equivalent

to the SSCP, hence also is NP-hard.

Therefore, unlike the results of (Kozen et al. 1994, Palsberg 1995), which

show deterministic cubic time tractability of the SSCP for either functional

or record types (separately), our Main Theorem 2.3 shows that subtyping and

type reconstruction in presence of both functional and record types is NP-

hard, i.e., presumably intractable. It follows that the automata-theoretic

decidability techniques of (Kozen et al. 1994, Palsberg 1995) (for the func-

tional and record subtyping, separately) do not carry over straightforwardly

to the combined case of functional+record types. Extra e�ort is necessary

even to establish decidability of the SSCP for functional+record types. Here

we just claim without a proof the following complexity result

Theorem 4.1 The SSCP for functional+record types of De�nitions 2.1, 2.2

is in NEXPTIME. 2

Recall that NEXPTIME is the class of problems solvable by nondeter-

ministic Turing machines in time O(2

n

k

) for some �xed k, where n denotes

the length of input.

The proof of Theorem 4.1 proceeds by a tedious pumping argument show-

ing that whenever an instance of SSCP of size n has a solution, then it

necessarily has a solution of depth polynomial in n. Thus, given an SSCP

instance, it su�ces to nondeterministically guess a polynomially deep solu-

tion tree (forest), with the resulting tree size O(2

poly(n)

), and to check that

it is indeed a solution in deterministic exponential time. This proves the

NEXPTIME membership. Of course, this is not a very e�cient algorithm.

It remains an open problem whether the SSCP for functional+record types

is in PSPACE or NP. We believe that more sophisticated data structures,

like DAGs and automata on DAGs, may lead to improvement of the above

NEXPTIME upper bound to PSPACE, or even NP. It is also possible that

the sophisticated techniques of (Tiuryn 1992) may raise the lower bound to

PSPACE. This remains an intriguing subject for further investigations.

12

The Empty Record. (Palsberg 1995) admits the empty record []. In his

subtype system this comes naturally, since it allows for a very simple one-

alternative de�nition of types: � ::= [l

1

: �

1

; : : : ; l

n

: �

n

], where the case n = 0

corresponds to the base case of the empty record []. If the empty record is

excluded, some type constant or variable is needed to make the set of types

non-empty. Note that � � [], i.e., [] plays the top type role in Palsberg's

object type system.

Di�erent reasons for including or excluding the empty record type may

be given. One reason for excluding it is as follows. In the case of just

one-element label set L = fappg the subtyping relation is identity, because

there is just one label and no empty record. Consider the set of simple types

constructed from type variables by using ! only, and translate them into

the purely record object types with the unique label app by:

�

#

= � (i.e., type variables are �xed points),

(� ! �)

#

= [app : �

#

! �

#

]:

�-terms can also be converted into �rst-order object terms (due to David

McAllester, personal communication, July 1997) in such a way that the fol-

lowing commutation property holds: a �-term t is typable with a simple

type � i� its object conversion T [t] is typable in an appropriately de�ned

associated object type system with type �

#

. In this sense the object type

system with the unique label and without the empty record type is a pre-

cise counterpart of the type system for the simply typed lambda terms. As

for the simple types, both the SSCP and the type reconstruction problem

are in PTIME in this case

1

. Typability lies outside the scope of this paper,

so precise de�nitions and proofs for the commutation property will appear

elsewhere.

When the empty record is admitted, the precise correspondence with the

simply typed terms via the object conversion is lost. Some \senseless" �-

terms untypable with simple types become typable, e.g., �x:xx. Probably,

the resulting object system becomes the precise counterpart of the system

of partial types due to (Thatte 1988), but this needs further investigation.

Recall that the top type
 only carries the least possible information \well-

typed", terms do not have \principal" or minimal types, sometimes partially

typed terms need dynamic type checking. On the positive side, every �-term

in normal form has a partial type (Palsberg 1993), and each term typable

with a partial type strongly normalizes

2

. The following intriguing problem

1

Recall that the proof of the NP-lower bound of Theorem 2.3 requires at least two

labels; here we have just one { app .

2

(Palsberg 1993) refers to an unpublished manuscript of Wand & O'Keefe \Partially

typed terms are SN" (December, 1991).

13

arises naturally. Does there exist a functional+record system of partial types,

which: 1) has the PTIME SSCP and type reconstruction problem, 2) types

all normal forms, 3) all typable terms are SN, 4) a typable term never goes

wrong (appropriately de�ned)? Could PTIME decidability of such a system

be obtained by a generalization of the automata-based decision procedures

of (Kozen et al. 1994, Palsberg 1995)?

5 Conclusions

We presented the NP-lower bound for the Satis�ability of Subtype Constraints

Problem (SSCP) for the types built by using simultaneously the functional

! and the record [: : :] type constructors. Earlier research concentrated ex-

clusively either on the SSCP for purely functional, or for purely record types,

but not for both simultaneously. Both in the case of the purely functional

types (Lincoln & Mitchell 1992, Tiuryn 1992, Kozen et al. 1994) and purely

record types (Palsberg 1995), deterministic polynomial time algorithms are

possible. In the case of the purely functional types constructed from base

types with nontrivial subtyping relation on them the SSCP, in general, is NP-

hard (Lincoln & Mitchell 1992) and even PSPACE-hard (Tiuryn 1992) (and,

in fact, PSPACE-complete (Frey 1997)). In contrast, our result shows that

even without any base types, the SSCP for functional+record types is NP-

hard. We give the NEXPTIME upper bound for the problem, but conjecture

that by using more sophisticated data structures and more subtle arguments

this upper bound can be improved to PSPACE (or even NP). It is also quite

possible that the techniques of (Tiuryn 1992) may lead to the PSPACE lower

bound. All these topics constitute an interesting and promising direction for

future research, together with the investigation of the related partial type

systems with possible simpli�cation of the SSCP, as suggested by results of

(Kozen et al. 1994, Palsberg 1995).

14

References

Benke, M. (1993), E�cient type reconstruction in presence of inheritance, in

`Mathematical Foundations of Computer Science'93', Vol. 711 of Lect.

Notes Comput. Sci., Springer-Verlag, pp. 272{280.

Dwork, C., Kanellakis, P. & Mitchell, J. (1984), `On the sequential nature of

uni�cation', J. Logic Programming 1, 35{50.

Frey, A. (1997), Satisfying subtype inequalities in polynomial space, in `Static

Analysis (SAS'97)', Vol. 1302 of Lect. Notes Comput. Sci., Springer-

Verlag, pp. 265{277.

Hoang, M. &Mitchell, J. C. (1995), Lower bounds on type inference with sub-

types, in `22nd ACM Symp. on Principles of Programming Languages

(POPL'95)', pp. 176{185.

Kozen, D., Palsberg, J. & Schwartzbach, M. I. (1994), `E�cient inference of

partial types', J. Comput. Syst. Sci. 49, 306{324.

Lincoln, P. & Mitchell, J. C. (1992), Algorithmic aspects of type inference

with subtypes, in `19th ACM Symp. on Principles of Programming Lan-

guages (POPL'92)', pp. 293{304.

O'Keefe, P. M. & Wand, M. (1992), Type inference for partial types is decid-

able, in `European Symposium on Programming (ESOP'92)', Vol. 582

of Lect. Notes Comput. Sci., Springer-Verlag, pp. 408{417.

Palsberg, J. (1993), `Normal forms have partial types', Information Process-

ing Letters 45, 1{3.

Palsberg, J. (1995), `E�cient inference of object types', Information and

Computation 123, 198{209. Preliminary version in LICS'94.

Pratt, V. & Tiuryn, J. (96), `Satis�ability of inequalities in a poset', Funda-

menta Informatic� 28, 165{182.

Thatte, S. (1988), Type inference with partial types, in `International Collo-

quium on Automata, Languages, and Programming (ICALP'88)', Vol.

317 of Lect. Notes Comput. Sci., Springer-Verlag, pp. 615{629.

Tiuryn, J. (1992), Subtype inequalities, in `Symposium on Logic in Computer

Science', pp. 308{315.

15

Tiuryn, J. (1997), Subtyping over a lattice (abstract), in `5th Kurt G�odel

Colloquium (KGC'97)', Vol. 1289 of Lect. Notes Comput. Sci., Springer-

Verlag, pp. 84{88.

Wand, M. & O'Keefe, P. (1989), On the complexity of type inference with

coercion, in `Functional Programming Languages and Computer Archi-

tecture'89', pp. 293{298.

16

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-004 S. Vorobyov Satis�ability of Functional+Record Sybtype

Constraints is NP-Hard

MPI-I-97-2-012 L. Bachmair, H. Ganzinger,

A. Voronkov

Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Bachmair, H. Ganzinger Strict Basic Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with

Complex Values

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set constraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories

of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D.A. Basin, S. Matthews, L. Vigan�o Natural Deduction for Non-Classical Logics

MPI-I-96-2-005 A. Nonnengart Auxiliary Modal Operators and the

Characterization of Modal Frames

