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Abstract

This paper is concerned with the uni�cation problem in the path logics asso-

ciated by the optimised functional translation method with the propositional

modal logics K, KD, KT, KD4, S4 and S5. It presents improved uni�cation

algorithms for certain forms of the right identity and associativity laws. The

algorithms employ mutation rules, which have the advantage that terms are

worked o� from the outside inward, making paramodulating into terms su-

peruous.
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1 Introduction

An area of application for uni�cation theory which has not been explored

much is modal logic. Modal inference can be facilitated by theory resolution

via the so-called functional translation or its variation for propositional modal

logics, the optimised functional translation approach. The functional trans-

lation method was proposed independently in the late eighties by a number of

groups. Fari~nas del Cerro and Herzig (1989, 1995) describe a transformation

of quanti�ed modal logics into so-called deterministic logics and use a modal

resolution calculus. Ohlbach (1988, 1991) and Au�ray and Enjalbert (1992)

embed quanti�ed modal logics into fragments of �rst-order logic and employ

�rst-order resolution theorem proving. Zamov (1989) describes a lock deci-

sion procedure for the translation of S4. All procedures involve theory uni�-

cation. The optimised functional translation method (Herzig 1989, Ohlbach

and Schmidt 1997) applies to propositional normal modal logics and gives

rise to a class of path logics, which this paper considers. Very much like

modal logics, path logics form a lattice with the weakest being the basic path

logic associated with the basic modal logic K and also KD. Di�erent path

logics are distinguished by di�erent theories involving equations. This paper

focuses on a subclass of path logics with theories consisting exclusively of

equations. Path logics with equational theories are associated with serial

modal logics, which are modal logics stronger than KD. Clauses in path log-

ics satisfy two important properties. One, they satisfy pre�x stability which

determines a certain ordering of the variables, and two, all Skolem terms in

input clauses are constants.

The purpose of this paper is to give a formal treatment of uni�cation

and normalisation for equational path theories explaining the core issues ex-

empli�ed for the equations corresponding to the modal schemas T and 4.

Due to the characteristic properties of clauses the uni�cation problems are

easier than in free semi-groups or monoids, for example. Related uni�ca-

tion algorithms and resolution calculi found in the literature are designed

either for more speci�c or more general uni�cation problems. The uni�ca-

tion algorithm of Otten and Kreitz (1996) is unsuitable for our purposes, as

it is designed for terms satisfying the T -string property, and although any

set of terms which satis�es this property is pre�x stable, the converse does

not hold. On the other hand, the algorithms designed for the non-optimised

translations are too general. The non-optimised functional translations re-

quire extended (strong) forms of Skolemisation in order that a particular
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ordering within terms is preserved. The resulting clauses satisfy the unique

pre�x property (Au�ray and Enjalbert 1992), which is a weaker property

than pre�x stability. Although it is possible to use the more general algo-

rithms for our purposes, much of the computations are unnecessarily wasted.

Another problem with some of the existing systems is their incompleteness.

The uni�cation algorithms we present are sound and complete (and terminat-

ing), they have fewer rules, the search spaces are smaller, and no uni�ers are

computed repeatedly. Moreover, our proofs are considerably simpler, though

remaining technical, and special consideration is given to normalisation.

The paper is organised as follows. Section 2 de�nes the class of path logics

and the equational schemas we consider. Section 3 considers uni�cation for

the basic path logic, recalling some essential de�nitions and facts of syntactic

uni�cation. In Section 4 we discuss E-uni�cation for the schemas T and 4

reviewing what is known from the literature. The main parts are Sections 5

and 6. Section 5 presents a mutation algorithm for the combination of T and 4

illustrating the computational gain and presenting new proofs of termination,

soundness and completeness. Section 6 proves pre�x stability is an invariance

property under binary E-resolution. The conclusion mentions some open

problems.

2 Path logics

Path logics arise from quanti�ed modal logics by the functional translation

method (Ohlbach 1991, Au�ray and Enjalbert 1992) and are related to deter-

ministic logics (Fari~nas del Cerro and Herzig 1995). We focus on a subclass

of path logics associated with propositional modal logics by the optimised

functional translation method (Ohlbach and Schmidt 1997). More precisely,

we consider the basic path logic and its extensions associated with popular

serial modal logics KD, KT, S4 (which coincides with KT4 or KDT4 ) and

S5 (which coincides with KDB4, KTB4 and KT5 ).

The functional translation is based on the functional semantics of modal

logic. In the functional semantics the central concept is that of a functional

frame (W;AF) consisting of a set W of worlds and a set AF of accessibility

functions (for serial modal logics). A modal formula 2' is true in a world

x i� ' is true in the world �(x) for any function � in AF. The functional

translation mapping � mimics this semantics. For serial modal logics it is
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de�ned by

�(') = 8x �('; x)

with � being an auxiliary function given by

�(p; s) = Ps

�(?; s) = ?

�('!  ; s) = �('; s)! �( ; s)

�(2'; s) = 8� �('; [s�]):

P is a unary predicate symbol uniquely associated with the propositional

variable p. The variables x and � belong to disjoint sorts, the sorts W and

AF. [�; �] is the application function W � AF �! W representing terms of

the form �(s) by [s�]. Instead of [[s�]�] we write [s��]. The reason for this

notation is that it reects paths in the underlying semantics. For example,

[s��] denotes the world(s) reached from the world s via the function � and

the function �. For non-serial modal logics the operation � is slightly more

complex (Schmidt 1997).

Applying the quanti�er exchange operator � yields the optimised func-

tional translation. � swaps functional quanti�ers according the rule

9�8� ' becomes 8�9� ':

Although ��(') is not logically equivalent to �('), we have:

Theorem 2.1 (Ohlbach and Schmidt 1997) For any complete proposi-

tional modal logicK�, a formula ' is a theorem of K� i� :��(') is refutable

modulo the theory �(�) or ��(�).

� denotes a (possibly empty) set of additional modal schemas. For the

purposes of this paper we assume any non-empty � includes the schema

D = 2p ! 3p, which ensures seriality. Important for this paper is that it

ensures the theories are equational.

The net e�ect of the exchange operation followed by negation is that no

non-constant Skolem terms occur in the clausal form of :��('). As :��(')

is of the form 9x : : : , every term in the clausal form starts with the same

constant, the initial world, which we choose to denote by the empty list [].

Figure 1 illustrates the steps of the conversion of a modal formula '

into clausal form. The functional translation � associates the boxes in (the
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' : 32(23p _ 2p)

�(') : 8x9�8� (89� :P [x���] _ 8� P [x���])

��(') : 8x8�88�9�9� (:P [x���] _ P [x���])

:��

f

(') : 9x9�99�8�8� (P [x���] _ :P [x���])

S

'

: 1: P [���]

2: :P [�

0

��]:

Figure 1: A sample translation

disjunctive normal form of) ' with di�erent universal quanti�ers and the

diamonds with di�erent existential quanti�ers. It also transforms the propo-

sitional symbol p into a monadic predicate P . The next conversion by the

quanti�er exchange operator � moves existential quanti�ers inward. It does

so in a way that the Skolemised clause form of the negation of ��(') does

not contain any complex Skolem terms. This optimisation is always possible.

In the example the order of the quanti�ers in the pre�x of the �rst part of

the disjunction is reversed. Now, the formula is negated and transformed

into clausal form S

'

. By convention the underlined symbols denote Skolem

constants.

Formally, the target logic of the translation of KD (and also K and S5 )

is the basic path logic. It is a clausal logic de�ned over a language with two

principal sorts: the sortW and the sort AF. The vocabulary includes �nitely

many unary predicates P;Q; : : : , variables �; �; : : : of sort AF, �nitely many

constants �; �; : : : of sort AF, a special constant [] of sortW , and the function

[�; �]. Terms in the basic path logic have the form

t = [[[[[]u

1

]u

2

] : : : ]u

m

]; or in shorthand notation t = [u

1

u

2

: : : u

m

];

with any u

i

denoting a functional term (by which we mean a term of sort

AF). We also refer to such terms as paths.

By de�nition, the pre�x of a variable or constant u

i

in t is [] if i = 1 and

[u

1

: : : u

i�1

], otherwise. A set T of terms is said to be pre�x stable if for any

variable � all its occurrences in T have one common pre�x. A clause is said

to be pre�x stable if the set of its terms has this property. By de�nition, a

formula  is a path formula i� it is a conjunction of pre�x stable clauses.
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Stronger path logics which we consider are obtained by extending the

basic path logic with (�nite equational) presentations given by a subset of

the following two schemas.

Right identity: [xe] = x (1)

Associativity: [x(� � �)] = [x��] (A)

The symbol x denotes a variable of sort world, e (the identity constant)

is a functional constant and � (composition) is an operation of the kind

AF�AF �! AF. The universal closures of the two equations are the global

versions of the functional correspondence properties of the modal schemas

T = 2p ! p and 4 = 2p ! 22p, respectively. The two equations can

be seen to be reformulations of the the relational correspondence properties,

namely, reexivity and transitivity. Right identity says that e is the identity

function in AF which maps any world x to itself. Associativity says that for

any world x and any two functions � and � applied consecutively, there is

a function, namely the composition of � and �, which maps x to the same

world.

The inferences rules of path logics with equational theories are those of

standard E-resolution. For e�ciency reasons, as general E-uni�cation is an

expensive operation, we adopt a calculus comprising of at least binary E-

resolution, syntactic factoring and normalisation under E. As we do not

do semantic factoring there is no need for considering E-uni�cation (with

E 6= ;) of non-singleton problems sets.

More formally, let L; L

0

; L

i

denote literals, C;C

0

clauses, and S a set of

clauses. The rules are the following.

Binary E-resolution:

C _ L C

0

_ :L

0

(C _ C

0

)�

where � is a minimal (most general) E-uni�er of L _ L

0

. Implicit renaming

of variables ensures that the premises are variable disjoint.

Syntactic factoring:

C _ L

1

_ : : : _ L

n

(C _ L

1

)�

where � is the (syntactic) most general uni�er of L

1

_ : : : _ L

n

.

Normalisation under E: S [ fCg . S [ fN

E

(C)g
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where N

E

(C) is an E-normal form of C. The symbol . denotes the deriv-

ability relation (for example, S . S [ fCg if C is an E-resolvent of two

clauses in S). The normalisation rule will be applied eagerly. The following

rule is optional.

Syntactic condensing: S [ fCg . S [ fcond(C)g;

where cond(C) is a minimal subclause of C which is also a factor of it. Here,

minimality is with respect to size. Condensations are unique modulo variable

renaming (Joyner Jr. 1976).

We use the notationR

E

N

E

and R

E

cond � N

E

to denote complete E-resolution

calculi employing the above rules. The index cond � N

E

indicates that

normalisation is applied before condensing. The calculi R

E

N

E

and R

E

cond � N

E

are refutationally sound and complete.

This completes the syntactic de�nition of basic path logic and some of its

extensions. Their semantics is de�ned as usual by Herbrand models.

Later we will refer to the following alternative characterisation of pre�x

stability (inspired by the de�nition of tree-likeness found in Zamov 1989). A

set T of terms is pre�x stable i� for any two terms [u

1

: : : u

m

] and [v

1

: : : v

n

]

in T these conditions hold for variables:

T1 If some variable u

i

and some variable v

j

are identical then i = j, and

T2 the terms of each pair u

k

and v

k

preceding u

i

and v

i

, respectively, are

also identical.

T1 implies paths are linear terms, and it also implies every variable that

occurs at position i in some term of the set T occurs at position i in every

term, when it does occur in that term.

A note on our notation is in order. The symbols u; u

1

; u

2

; : : : ; v; v

1

; v

2

; : : :

are reserved for terms of sort AF. The symbols s; t; : : : are reserved for any

world terms (of sort W ). A term [s t] is strictly speaking malformed since

the second argument of [�; �] is meant to have the sort AF, but when we write

[s t] we mean the term [s u

1

: : : u

i

] given that t = [u

1

: : : u

i

]. For any term

s = [u

1

: : : u

m

], de�ne sj

i

by

sj

0

= []; and

sj

i

= u

i

for any 0 < i � m.

If each subterm u

i

of s is either a variable or a constant then s is called a

basic path.
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Delete P [ fs =

?

sg  P (for world terms)

P [ fu =

?

ug  P (for terms of sort AF)

Decompose P [ f[su] =

?

[tv]g  P [ fs =

?

t; u =

?

vg

Conict P [ f[su] =

?

[]g  ?

P [ f� =

?

�g  ? when � 6= �

Coalesce P [ f� =

?

�g  Pf� 7! �g [ f� =

?

�g

when � 6= � are variables both occurring in P .

Eliminate P [ f� =

?

�g  Pf� 7! �g [ f� =

?

�g

when � is a variable occurring in P and � is constant.

Figure 2: Syntactic uni�cation rules for the basic path logic

3 Uni�cation for the basic path logic

Because the basic path language has no compound functional terms, any non-

empty substitution � de�ned over sets of basic paths consists of bindings that

have one of two forms, namely � 7! � or � 7! . A substitution is said to

be admissible for the basic path logic i� its bindings have this form. It is

immediate that admissible substitutions or uni�ers do not change the depths

(or lengths) of paths, and only terms of equal depth are uni�able.

The general transformation rules of syntactic tree based uni�cation (from

Jouannaud and Kirchner (1991), for example) adapt to those of Figure 2 for

the basic path logic. P denotes a problem set of pairs s =

?

t, of world terms,

or u =

?

v, of functional terms. The equality relation =

?

is assumed to be

symmetric. The symbol  denotes the derivability relation in a uni�cation

calculus. ? indicates failure of the uni�cation problem. All other symbols

have the usual interpretation, and s and t may be empty paths. It is im-

portant that we keep in mind any term [u

1

: : : u

m

] is an abbreviation for a

nested term [[[[[]u

1

]u

2

] : : : ]u

m

]. This determines how paths are decomposed,

namely from right to left, as this example illustrates.

f[��] =

?

[���]g

Dec

 f =

?

�; [��] =

?

[��]g

Dec

 f =

?

�; � =

?

�; [�] =

?

[�])g

Del.

 f =

?

�; � =

?

�g:

Evidently, any most general uni�er of a uni�cation problem over basic paths

obtained by the rules of Figure 2 is an admissible substitution. As no world
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variables occur in basic path clauses, the occurs check rule is superuous.

Soundness and completeness is immediate by soundness and completeness of

the general rules for syntactic uni�cation.

In the example we did not use the rules Coalesce and Eliminate. In fact,

they are redundant for singleton problem sets:

Theorem 3.1 Let P be a singleton set fs =

?

tg with s and t terms for which

T1 for variables holds. Then the rules Coalesce and Eliminate are redundant.

Proof. The uni�cation rules are assumed to be applied don't care non-de-

terministically. This allows us to apply Decompose repeatedly until we get

fs

0

=

?

[]; u

1

=

?

v

1

; : : : ; u

m

=

?

v

m

g, where s

0

is not empty when the length of

s is greater than that of t. Now it is easy to see that since s and t are linear

terms the conditions of Coalesce and Eliminate cannot be satis�ed. 2

The situation is pleasantly simple for the logic S5. In S5 any sequence

of modal operators can be replaced by the �rst one in the sequence, and S5

corresponds to the fragment of monadic �rst-order logic in one variable (via

the relational translation). This is reected in the corresponding path logic

by the fact that any singleton uni�cation problem [u

1

: : : u

m

] =

?

[v

1

: : : v

n

] can

be seen to reduce to the uni�cation problem of [u

1

] =

?

[v

1

]. Such problems

can be solved modulo (a subset of) the rules of Figure 2.

4 Uni�cation for (1) and (A)

We turn to uni�cation of paths under the right identity law (1) and the

associativity law (A).

Uni�cation under (1) is �nitary and decidable. This can be seen easily

by considering a uni�cation problem in n variables and forming 2

n

syntactic

uni�cation problems by replacing some of the variables by e. Each of the

problems is decidable by syntactic uni�cation in linear time. Therefore, the

decision problem of uni�cation under (1) is in NP, and by a result of Arnborg

and Tid�en (1985) for standard right identity it is at least NP-complete.

Uni�cation under (A) is related to uni�cation under standard associa-

tivity. Plotkin (1972) shows uni�cation in free semi-groups is in�nitary and

he gives a uni�cation algorithm that is sound and complete, but it is not
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Delete P [ fs =

?

sg  P

Decompose P [ fs � s

0

=

?

t � t

0

g  P [ fs =

?

t; s

0

=

?

t

0

g

Check P [ f� =

?

sg  ?

when s is not a variable and � occurs in s

Coalesce P [ f� =

?

�g  Pf� 7! �g [ f� =

?

�g

when � 6= � are variables both occurring in P

Eliminate P [ f� =

?

sg  Pf� 7! sg [ f� =

?

�g

when � is a variable occurring in P and s is not a variable

Identity P [ fs � � � s

0

=

?

tg  P [ f� =

?

e; s � s

0

=

?

tg

Path-separat. P [ f� � s =

?

t � t

0

g  P [ f� =

?

t; s =

?

t

0

g

Splitting P [ f� � s

00

� s =

?

t � t

00

� � � t

0

g

 P [ f� =

?

t � t

00

� �

1

; � =

?

�

1

� �

2

; s

00

� s =

?

�

2

� t

0

g

when s

00

and t

00

are non-empty and �

1

, �

2

are new variables.

Figure 3: Ohlbach's uni�cation rules for (1) and (A)

guaranteed to terminate. Fortunately, though Plotkin's algorithm is non-

terminating in the general case, it decides uni�cation problems of one lin-

ear equation, or one equation in which no variable occurs more than twice

(Schulz 1992). This implies, uni�cation of one pair of paths under the form

of associativity we consider is also �nitary and decidable. There are decision

procedures for testing satis�ability by Makanin (1977) and Ja�ar (1990), for

example, but these are far too complex for our purposes. In work still in

manuscript form we showed that uni�ability under (A) and/or (1) can be

achieved in the worst case by a quadratic time algorithm. This algorithm

exploits a correspondence to regular expressions.

Uni�cation algorithms are described in Ohlbach (1988, 1991), Fari~nas del

Cerro and Herzig (1995) and Au�ray and Enjalbert (1992) for the non-

optimised translation of quanti�ed modal logics and in Zamov (1989) for

the non-optimised translation of propositional S4. The �rst three algorithms

are not complete. Problems of the form fs =

?

s � eg, fs =

?

s ; idg and

fs !� ! f(s !�) =

?

s ! f(s)g (using in essence the notation of the respective

authors) are not treated properly, which can be recti�ed by adding a rule for

deleting the identity constant. The standard deletion rule su�ces for solv-

ing singleton problems of basic paths though, so that under this condition

the system from Ohlbach (1991) relevant for propositional S4, presented in

9



� � � �  � � =

?

� � � � 

Dec

 � =

?

�; � �  � � =

?

� � 

Dec

 � =

?

�;  � � =

?

�

Id

 � =

?

e  1:

Dec

 � =

?

e redundant

Id

 � =

?

e; � �  � � =

?

  : : : not solved

Sep

 � =

?

� � ; � =

?

  2:

Sep

 � =

?

�;  � � =

?

  : : : not solved

Sep

 � =

?

e; � �  � � =

?

 redundant

Id

 � =

?

e; � �  =

?

� � 

Dec,Del

 � =

?

�  3:

Id

 � =

?

e; � �  =

?

 not solved

Sep

 � =

?

e; � �  =

?

 redundant

Split

 � =

?

� �  � �

1

; � =

?

�

1

� �

2

; �

2

=

?

  4:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(

0

)

Split

 � =

?

� � �

1

; � =

?

�

1

� �

2

; � �  � � =

?

�

2

� 

.

.

. like (

0

)

Id

 � =

?

e; � �  � � =

?

� � � �   : : :

Id

 � =

?

e; � � � �  =

?

� � � �   : : :

Id

 � =

?

e; � � � �  � � =

?

� �   : : :

Figure 4: A sample derivation of A1-uni�ers according to Ohlbach's algo-

rithm

Figure 3, is complete.

1

The language is a variation from ours. Terms are

lists built from variables and constants of the sort AF with an associative

operation �, making the additional operation � superuous. (The corre-

spondence to world terms of basic path logic is given by h([[]u]) = u and

h([su]) = h(s) � u when s 6= [].) The symbols s, s

0

, t and t

0

in the �gure

denote (possibly empty) lists.

By way of an example we will demonstrate the system can be improved.

Figure 4 sketches a derivation of A1-uni�ers for f� � � �  � � =

?

� � � � g.

2

1

Strictly, Figure 3 is a reformulation in terms of rules. It corrects an omission in the

RTA'98 paper.

2

An A1-uni�er is a uni�er modulo the equations (1) and (A).
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Terms are decomposed from left to right. Failure branches are those that do

not produce solved forms, that is, sets of the form f�

1

=

?

u

1

; : : : ; �

n

=

?

u

n

g

with each �

i

occurring exactly once in the set. The successful branches in

the derivation tree are those marked with numbers, whose solved forms yield

the following uni�ers:

1: f� 7! �; � 7! �; � 7! eg

2: f� 7! �; � 7! � � ; � 7! g

3: f� 7! �; � 7! �; � 7! eg (a duplicate of 1:)

4: f� 7! �; � 7! � �  � �

1

; � 7! �

1

� g

etcetera.

In the next section we will give a set of rules applying paramodulation only

at the top symbols of the terms of an equation s =

?

t bearing a more e�cient

uni�cation algorithm. These restricted forms of paramodulation rules are

known as mutation rules and are sound and complete only for very particular

E. For instance, they may be applied where E (is a �nite resolvent set of

equations and) de�nes a syntactic theory. Two results from the literature

are of relevant. One, Kirchner and Klay (1990) prove mutation rules are

complete for syntactic collapse-free theories. Two, Comon, Haberstrau and

Jouannaud (1994) consider mutation with (and without) collapsing equations

for shallow theories and prove any shallow theory is syntactic. A collapsing

equation has the form x = t with x a variable of t and x 6= t.

3

This is

relevant for the identity law which is collapsing and shallow. The result of

Kirchner and Klay is relevant for our associativity law which can be shown

to be syntactic by an analogous argument as in Klay (1991) for ordinary

associativity.

There are a number of negative results concerning termination for al-

gorithms with mutation rules. Klay (1991) showed collapse-free syntactic

theories exist with undecidable uni�cation problems. It is also undecidable

whether a given �nite set E of collapse-free identities is resolvent or whether

the theory de�ned by E is syntactic. The standard A-uni�cation algorithm

by mutation coincides with the algorithm of Plotkin (1972). Mutation to-

gether with decomposition and merging need not terminate, but since we will

3

A theory E is collapse-free if no presentation of E contains a collapsing equation. A

shallow theory has a �nite presentation of shallow equations, de�ned to be equations s = t

with all variables of s or t occurring at depth one.

11



consider only singleton uni�cation problems and our terms are linear, we do

not need merging.

4

It is not clear from the literature whether the combination of mutation

rules for shallow and collapsing axioms and those for syntactic axioms au-

tomatically bear a complete procedure. The next section outlines a proof

for the completeness of the combination of right identity and associativity,

without relying on the notion of syntactic-ness.

5 Mutation and normalisation for (1) and (A)

The normalising functions N

1

and N

A

rearrange terms according to the

rewrite rules

[xe]! x and [x(� � �)]! [x��]:

Inductive speci�cations of N

1

and N

A

are: N

1

([]) = [] and N

1

([se]) = N

1

(s),

and N

A

([]) = [],

N

A

([su]) = [N

A

(s)u] provided u is a variable or constant, and

N

A

([s(v � v

0

)] = N

A

([N

A

([sv])v

0

]):

Normalisation under both (1) and (A) is by N

A1

(s) = N

1

(N

A

(s)), which �rst

eliminates the operation � and then the identity constant e. Clearly, all three

functions are recursive.

As we employ a resolution calculus requiring uni�cation under a non-

empty theory E in the resolution rule only, and not the factoring rule, we

make the following assumption.

Assumption: Any uni�cation problem has the form P = fs =

?

tg where

s and t are variable disjoint basic paths, (i) fs; tg is pre�x stable,

(ii) s and t do not contain world variables, and (iii) are normalised

by N

A1

.

(ii) is ensured for the negation of the translation of any modal formula and

it is preserved since no world variables will be introduced during uni�cation.

Thus, admissible substitutions have the form � 7! u with u a functional

term.

4

I do not know whether there are syntactic theories with undecidable uni�cation prob-

lems even without merging.
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Delete P [ fs =

?

sg  P

P [ fu =

?

ug  P

Variable Elim. P [ f� =

?

ug  Pf� 7! ug

when � is an introduced variable and does not occur in u.

Decompose P [ f[su] =

?

[tv]g  P [ fs =

?

t; u =

?

vg

Mutate-1 P [ f[s�] =

?

tg  P [ fs =

?

t; � =

?

eg

Mutate-A P [ f[s�] =

?

[tv]g  P [ f[s�

0

] =

?

t; � =

?

�

0

� vg

when �

0

is a new variable and not both s and t are empty.

Figure 5: Uni�cation rules for the path logics closed under (1) and (A)

Our uni�cation rules for path logics closed under (1) or (A), or both,

are those listed in Figure 5.

5

Here, s and t may denote empty paths, except

where stated otherwise. Observe, the variable elimination rule applies only to

variables introduced by applications of the Mutate-A rule. The system does

not decompose or mutate functional terms involving �, and no normalisation

is done in the uni�cation algorithm. The rules are (in essence) instances of

a subset of the rules from Comon et al. (1994).

6

There is a subtle di�erence of Mutate-1 and Mutate-A to the respective

instances of the general mutation rules, which are

P [ f[su] =

?

tg  P [ fs =

?

t; u =

?

eg and

P [ f[su] =

?

[tv]g  P [ f[s�

0

] =

?

t; u =

?

�

0

� vg:

It is clear that the case, when u is a constant di�erent from e in the �rst

rule, leads to an unsatis�able situation � =

?

e. In the second rule when u is

a constant this leads to the situation � =

?

�

0

� v which is unsatis�able when

v is not logically equivalent to e, and in this case � =

?

�

0

is redundant.

Mutate-1 binds a variable in a right-most position with the identity con-

stant e and deletes the variable from the original term. For example, the only

minimal (most general) 1-uni�er for f[��] =

?

[]g is f� 7! e;  7! �g. The

uni�cation problem f[��] =

?

[]g has two minimal 1-uni�ers: f� 7! ; � 7!

5

In the RTA'98 paper one of the deletion rules was forgotten.

6

For readers familiar with this paper we note, in our context their cycle breaking rule

can be seen to be superuous, since there are no world variables in the original problem,

and for the functional variables Cycle applies to equations of the form � � u =

?

� or

u � � =

?

�, which our algorithm does not produce as we will see.

13



eg and f� 7! e; � 7! g. The algorithm computes a third uni�er, namely

f� 7! e; � 7! e;  7! eg, which is not most general.

Mutate-A applies to terms s = [u

1

: : : u

m+1

] =

?

[v

1

: : : v

n+1

] = t with the

pair (u

m+1

; v

n+1

) being either a variable-constant pair, a constant-variable

pair or a variable-variable pair. For the �rst two constellations there is one

transformation by Mutate-A and for the last constellation there are two.

f[u

1

: : : u

m

�] =

?

[v

1

: : : v

n

�]g

A

 f� =

?

�

0

� �; [u

1

: : : u

m

�

0

] =

?

[v

1

: : : v

n

]g

f[u

1

: : : u

m

�] =

?

[v

1

: : : v

n

]g

A

 f� =

?

�

0

� ; [u

1

: : : u

m

�

0

] =

?

[v

1

: : : v

n

]g

or f =

?



0

� ; [u

1

: : : u

m

] =

?

[v

1

: : : v

n



0

]g:

This illustrates that the search tree for transformations with Mutate-A can

be seen to be an instance of the search tree of Plotkin's (1972) algorithm

for semi-groups (applied to paths and employing right-to-left as opposed to

left-to-right decomposition).

Compare the derivation in Figure 4 according to Ohlbach's system with

the derivation in Figure 6 according to the mutation system. The successful

branches in the derivation tree yield the following uni�ers:

1: f� 7! ; � 7! � � ; � 7! �g

2: f� 7! ; � 7! (�

00

� �) � ; � 7! � � �

00

g

3: f� 7! e; � 7! �; � 7! �g

4: f� 7! e; � 7! �

0

� �; � 7! � � �

0

g

5: f� 7! �

0

� ; � 7! (� � ) � �

0

; � 7! �g

6: f� 7! �

0

� ; � 7! ((�

00

� �) � ) � �

0

; � 7! � � �

00

g:

Clearly, the search tree is considerably smaller and there are no repetitions

in the solution set. The solution set is not minimal though.

Now, we prove our system is sound and complete. By de�nition, a set

of transformation rules is sound and complete in a theory E if the following

two conditions hold:

Soundness: If P transforms to P

0

by the application of any of the transfor-

mation rules, written P

�

 P

0

, then every E-uni�er of P

0

is an E-uni�er

of P .

Completeness: For any E-uni�er � of P , there is some P

0

in solved form

such that P

�

 P

0

and the idempotent uni�er � associated with P

0

14



[���] =

?

[��]

Dec

 � =

?

; [��] =

?

[��]

Dec

 � =

?

; [��] =

?

[�] not solved

1

 � =

?

e; [��] =

?

[�] not solved

A

 � =

?

�

0

� ; [��] =

?

[��

0

]

2�Dec,Del

 �

0

=

?

�; � =

?

�  1:

1

 �

0

=

?

e; [��] =

?

[�]

not solved

2�A;Dec,Elim

 �

0

=

?

�

00

� �; � =

?

� � �

00

 2:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(

00

)

1

 � =

?

e; [��] =

?

[��]

Dec,Del

 [��] =

?

[��]

2�Dec

 � =

?

�; � =

?

�  3:

1

 � =

?

e; [��] =

?

[�] not solved

2�A;Dec,Elim

 � =

?

�

0

� �; � =

?

� � �

0

 4:

A

 � =

?

�

0

� ; [���

0

] =

?

[��]

Dec

 � =

?

�

0

; [��] =

?

[�] not solved

1

 �

0

=

?

e; [�� =

?

[��]  : : : not solved

1

 � =

?

e; : : : not solved

A

 � =

?

�

0

� �

0

; [��] =

?

[��]

.

.

. like (

00

)  5: and 6:

Figure 6: A sample derivation of A1-uni�ers
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is more general than � with respect to the variables occurring in P ,

written � �

E

�[Var(P )].

Formally, a solved form is either the empty set or a �nite set of the form

f�

1

=

?

u

1

; : : : ; �

n

=

?

u

n

g and �

1

; : : : ; �

n

are distinct variables occurring

in no u

i

. A variable � is solved in a set P if P includes a pair � =

?

u (or

u =

?

�) and � occurs exactly once in P . A variable that is not solved is an

unsolved variable. By de�nition, � =

E

�[V ] i� for any variable x in V , x�

and x� are E-equivalent, and � �

E

�[V ] i� there is a substitution such that

��

0

=

E

�[V ].

Equivalence (inequivalence and inclusion) modulo right identity and as-

sociativity will be denoted by =

A1

( 6=

A1

and �

A1

).

Theorem 5.1 The system of Figure 5 is sound.

Proof. By inspecting the rules. 2

In the remainder of this section, P denotes a singleton uni�cation problem

of variable disjoint basic paths satisfying (i), (ii) and (iii) of the assumption,

and P

0

denotes a set obtained from P by any sequence of transformations in

Figure 5. For the next lemma (and also Lemma 5.7) it is important that the

initial pair in P is variable disjoint.

Lemma 5.2 For any identity � =

?

u in P

0

, the variable � does not occur

in u.

Proof. By inspecting the rules. 2

Lemma 5.3 Each P

0

irreducible by the rules of Figure 5 is in solved form

or it is unsatis�able in =

A1

.

Proof. The only irreducible equations not in the form � =

?

u with � a solved

variable have the form: [s�] =

?

[], � =

?

� and � =

?

e. If P

0

includes any one

of these it is not solvable. Observe, as e does not occur in the starting P ,

situations like [set] =

?

[] do not arise. 2

We now prove completeness.

Theorem 5.4 The system of Figure 5 is complete.
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The core structure of the proof is standard. We let

P = f[su] =

?

[tv]g

with s = [sj

1

: : : sj

m

] and t = [tj

1

: : : tj

n

], each non-empty, that is, 1 � m;n.

We let � be any A1-uni�er of P , that is,

[su]� =

A1

[tv]�:

The aim is to show there is a sequence of transformations of P to such that

the associated uni�er � is more general than �. In parallel to transforming

P we extend the uni�er � by adding bindings of new variables to � obtaining

�

0

. Below, in Lemmas 5.8 and 5.9, we will de�ne �

0

in such a way that if �

uni�es P and P  P

0

, that is, if P transforms to P

0

in one step, then �

0

uni�es P

0

. The resulting procedure starts with the pair (P; �) and computes

at least one pair (P

0

; �

0

), such that

1. P

�

 P

0

,

2. P

0

is in solved form,

3. � � �

0

and �

0

j

Var(�)

= � (the restriction of �

0

to the variables of �

coincides with �).

By assumption � is a uni�er of P , and consequently, by induction on the proof

length, �

0

of the �nal pair is a uni�er of P

0

. This establishes completeness,

when every derivation is �nite. The next lemmas supply the technical details.

Lemma 5.5 The uni�er � associated with the solved P

0

is more general

than � with respect to the variables of P

0

and P .

Proof. Every equation in P

0

has the form � =

?

u. Since �

0

uni�es P

0

, ��

0

=

u�

0

. � is also a uni�er of P

0

, hence �� = u� = u. Therefore, for any variable

� in P

0

, ��

0

= ���

0

and this means � is more general than �

0

with respect to

Var(P

0

). 2

Since � and �

0

restricted to the variables of P are equivalent, it follows that:

Lemma 5.6 The uni�er � associated with P

0

is more general than � with

respect to the variables of P

0

and P .
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The procedure of transforming (P; �) to a suitable (P

0

; �

0

) terminates:

Lemma 5.7 Any fair implementation of a uni�cation algorithm for the

transformation system of Figure 5 terminates for any P satisfying the as-

sumption.

Proof. Let �(s) denote the functional depth of a term s. De�ne a measure �

of any uni�cation problem P by �(P ) = (d; v), where v denotes the number

of unsolved variables in P , and d is determined by the depths of the pairs

of world terms in P (of which there are at most one). More speci�cally,

d = �(s) + �(t) if s =

?

t 2 P and both s and t are of type world, and d = 0

if no such pair exists.

Examine each transformation rule in turn to see that �(P

0

) is smaller

than �(P ) under the lexicographical ordering. Except for Variable Eliminate

each rule decreases the value of d. Variable Eliminate leaves d unchanged

but it decreases v. The rules do not convert the status of any variable from

solved to unsolved. 2

The following two lemmas are concerned with the one step conversions of

any pair (P; �) to a suitable pair (P

0

; �

0

). In order to avoid cluttering in the

proofs we write just `=' in place of `=

A1

'.

Lemma 5.8 Consider P [ f[su] =

?

[tv]g with s = [sj

1

: : : sj

m

] and t =

[tj

1

: : : tj

n

] for 1 � m;n. The terms [su] and [tv] are assumed to be in A1-

normal form. Let � be any A1-uni�er of P [ f[su] =

?

[tv]g, in particular,

[su]� =

A1

[tv]�: (��)

�

0

as de�ned in the following is in each case an A1-uni�er of P

0

.

1. If u� =

A1

v�, then let �

0

= � and apply Decompose to P , yielding

P

0

= P [ fs =

?

t; u =

?

vg:

2. If u� =

A1

e, then let �

0

= � and apply Mutate-1 to P , yielding

P

0

= P [ fs =

?

[tv]; u =

?

eg:
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3. If u is a variable �, say, and u� =

A1

[tj

k

: : : tj

n

v]� for some 1 � k � n,

then let

�

0

= ��

0

with �

0

= f�

0

7! [tj

k

: : : tj

n

]g

�

0

= ��

0

with �

0

= f�

0

7! [tj

k

: : : tj

n

]g and apply Mutate-A to P ,

yielding

P

0

= P [ f[s�

0

] =

?

t; � =

?

�

0

� vg;

for �

0

a new variable not occurring in P or �.

Proof. 1. By assumption (��), [su]� = [tv]�, which implies [(s�)(u�)] =

[(t�)(v�)]. Then, since u� = v�, [(s�)(u�)] = [(t�)(u�)]. Consequently,

s� = t�. Therefore, � = �

0

is an A1-uni�er of P

0

.

2. � = �

0

is an A1-uni�er of P

0

, since u� = e and

[tv]� = [su]� by (��)

= [(s�)(u�)] = [(s�)e] since u� = e

= s� by the right identity law.

3. �

0

is well-de�ned since �

0

is a new variable that does not occur in �.

(a) �

0

is an A1-uni�er of � =

?

�

0

� v:

(�

0

� v)�

0

= (�

0

� v)��

0

= ([tj

k

: : : tj

n

] � v)� since �

0

= f�

0

7! [tj

k

: : : tj

n

]g

= �� since �� = [tj

k

: : : tj

n

v]� = ([tj

k

: : : tj

n

] � v)�

= ���

0

= ��

0

since ��

0

= �.

(b) �

0

is an A1-uni�er of [s�

0

] =

?

t:

[s�]�

0

= [s�]��

0

= [s�]� = [tv]� by (��)

= [tv]��

0

= [tv]�

0

:

That is, [s�]�

0

= [tv]�

0

, which implies

[(s�

0

)(��

0

)] = [([tj

1

: : : tj

k�1

]�

0

)([tj

k

: : : tj

n

v]�

0

)]:

Since [tj

k

: : : tj

n

v]�

0

= [tj

k

: : : tj

n

v]��

0

= [tj

k

: : : tj

n

v]� = �� by (a),

[(s�

0

)(��

0

)] = [([tj

1

: : : tj

k�1

]�

0

)(��

0

)]:

19



Therefore, s�

0

= [tj

1

: : : tj

k�1

]�

0

. Then

[s�

0

]�

0

= [(s�

0

)(�

0

�

0

)] = [([tj

1

: : : tj

k�1

]�

0

)(�

0

�

0

)]:

�

0

�

0

= �

0

��

0

= [tj

k

: : : tj

n

]� = [tj

k

: : : tj

n

]��

0

= [tj

k

: : : tj

n

]�

0

. Hence

[s�

0

]�

0

= [([tj

1

: : : tj

k�1

]�

0

)(�

0

�

0

)]

= [([tj

1

: : : tj

k�1

]�

0

)([tj

k

: : : tj

n

]�

0

)]

= [tj

1

: : : tj

k�1

tj

k

: : : tj

n

]�

0

= t�

0

:

This means, �

0

is an A1-uni�er of [s�

0

] =

?

t. 2

The lemma also covers the cases that v� =

A1

e and v� =

A1

[sj

k

: : : sj

n

]� for

some 1 � k � m and v a variable. Observe that when u� =

A1

[tj

k

: : : tj

n

v]�

but both u and v are constants, the conditions of either 1. or 2. hold. If u

and v are both constants then either (a) u = v or (b) u = �, say, and v = e.

(a) implies u� = v�, and (b) implies v� = e.

It remains to clarify whether there are cases which the lemma does not

cover. Are there cases such that neither of the following hold?

1. u� =

A1

v�,

2. u� =

A1

e (or v� =

A1

e),

3. u is a variable and u� =

A1

[tj

k

: : : tj

n

v]� for some 1 � k � n (or v is

a variable and v� =

A1

[sj

k

: : : sj

n

]� for some 1 � k � m).

The answer is, yes, as in this example

P = f[��

0

�] =

?

[��]g and � = f� 7! � � ; � 7! �

0

� �g (���)

when in the general case [sj

k

: : : sj

m

u]� =

A1

[tj

l

: : : tj

n

v]� is true, for some

1 � k � m and 1 � l � n. If u and v are both constants then, as above,

either u� = v� or u� = e or v� = e. The following result deals with the case

that one of u or v is a variable. (It implies 3. of the previous lemma.)

Lemma 5.9 Let � be an A1-uni�er of P [f[s�] =

?

[tv]g with s = [sj

1

: : : sj

m

]

and t = [tj

1

: : : tj

n

] for 1 � m;n, and both [s�] and [tv] are in A1-normal form.

Let

[sj

k

: : : sj

m

�]� =

A1

[tj

l

: : : tj

n

v]�
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for some 1 � k � m and 1 � l � n. If � includes a binding of � to u, that is,

� 7! u 2 �, then let

�

0

= ��

0

with �

0

= f�

0

7! u

0

g

where u

0

is given by u =

A

u

0

� v

0

and v

0

= v�, and apply Mutate-A to P ,

yielding

P

0

= P [ f[s�

0

] =

?

t; � =

?

�

0

� vg;

for �

0

a new variable not occurring in P or �. Then �

0

uni�es P

0

.

Proof. (a) �

0

is an A1-uni�er of � =

?

�

0

� v, since

(�

0

� v)�

0

= (�

0

�

0

) � (v

0

�

0

) = u

0

� v

0

= u = �� = ��

0

:

(b) �

0

is an A1-uni�er of [s�

0

] =

?

t: By assumption [s�]� = [tv]�, hence

[(s�)(��)] = [(t�)(v�)]. As �� = u = u

0

� v

0

and v� = v

0

we have

[(s�)(u

0

� v

0

) = [(s�)a

0

v

0

] = [(t�)v

0

]:

It follows that [(s�)a

0

] = t�. Then, [s�]�

0

= [s�]��

0

= [s�]� = t� = t�

0

, as

required. 2

For example, the pair (���) is converted to

P

0

= f[��

0

�

0

] =

?

[��]; � =

?

�

0

� g and

�

0

= f� 7! � � ; � 7! �

0

� �; �

0

7! �g:

The lemma makes assumptions, which are not met in the following two

situations. First, if no u

0

exists such that u =

A

u

0

� (v�) then v� is equivalent

to e. This case is dealt with in 2. of the previous lemma. Second, the situation

that neither � nor v are in the domain of � and �� 6=

A1

v� is impossible (for

otherwise [s�] and [tv] are not uni�able).

6 Preservation of pre�x stability

Now, we verify that the application of A1-uni�ers followed immediately by

normalisation under N

A1

preserves pre�x stability. This justi�es the as-

sumptions made in the previous section, namely, that the terms in the initial
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problem set are basic paths and the world terms on the left hand sides of

the transformation rules of Figure 5 are also basic paths. We also prove a

preservation result for forming R

A1

N

A1

and R

A1

cond � N

A1

-resolvents. The proofs

are very similar to those for applying syntactic uni�ers and forming standard

resolvents. For the reader inclined to verify the proof of Theorem 6.4 we now

prove the corresponding theorem for the basic path logic from which it is

adapted. It establishes the preservation of pre�x stability under syntactic

bindings.

Theorem 6.1 Let T be a set of terms in the vocabulary of the basic path

logic. Let s = [u

1

: : : u

m

] and t = [v

1

: : : v

n

] be two terms in T such that for

some k > 0,

u

1

= v

1

; : : : ; u

k�1

= v

k�1

and u

k

6= v

k

and u

k

is a variable. Let � be the substitution fu

k

7! v

k

g. Then T� satis�es

T1 and T2, provided T does.

Proof. We consider two arbitrary terms in T�. They are of the form s� and

t� with s and t some terms in T . For s and t conditions T1 and T2 hold.

We want to show they hold for the terms s� and t�, too.

By de�nition, two paths s and t (of equal length) are k-equal if s and

t are equal except possibly at position k, that is, for every position i 6= k,

sj

i

= tj

i

.

Lemma 6.2 The terms s� and s are k-equal and di�er only when sj

k

= u

k

.

Proof. � a�ects only the variable u

k

and in any term of T , u

k

occurs only at

position k else condition T1 is violated. Hence, if u

k

occurs in s then sj

k

= u

k

and for any l 6= k, sj

l

6= u

k

. In this case s�j

k

= v

k

6= sj

k

. 2

We continue the proof of Theorem 6.1. The lemma is true for t� and t, as

well. If neither s nor t contain the variable u

k

then the substitution � does

not e�ect s and t. Then s� = s and t� = t. In this case s� and t� trivially

satisfy T1 and T2 (since s and t do).

Therefore, we assume without loss of generality that sj

k

= u

k

. Then

sj

k

� = v

k

. Distinguish two cases:

22



1. tj

k

6= u

k

and tj

k

6= v

k

. � leaves t unchanged so that t� = t. Suppose

s�j

i

= t�j

j

is a variable. Then s�j

i

= t�j

j

= tj

j

. Also, j 6= k and

i 6= k, since otherwise tj

j

= v

k

which contradicts our assumption. This

implies sj

i

= s�j

i

= t�j

j

= tj

j

. By T1 which holds for s and t we get

i = j. By T2 for any l < i = j we have sj

l

= tj

l

. Hence i = j < k since

otherwise, if i = j = k then sj

i

= u

k

6= tj

i

which is a contradiction,

or if i = j > k then since sj

k

6= tj

k

by assumption, s and t contradict

T2. Consequently by the Lemma s�j

l

= sj

l

= tj

l

= t�j

l

. Therefore,

conditions T1 and T2 are true for case 1.

2. Now we consider the case that tj

k

= u

k

or tj

k

= v

k

. Then t�j

k

= v

k

=

s�j

k

. Suppose s�j

i

= t�j

j

is a variable.

(a) If i = k then s�j

i

= v

k

= t�j

j

. Then, either tj

j

= u

k

or tj

j

= v

k

.

In either case, it follows that j = k and hence i = j.

(b) If j = k then by a similar argument i = j.

(c) If i 6= k and j 6= k then the Lemma implies s�j

i

= sj

i

and t�j

j

=

tj

j

. Since s�j

i

= t�j

j

we have sj

i

= tj

j

and it follows by T1 that

i = j.

Therefore, s� and t� satisfy T1.

Let l < i = j be arbitrary. By T2 we have sj

l

= tj

l

.

(a) Consider the case that l 6= k. By the Lemma s�j

l

= sj

l

and

t�j

l

= tj

l

. Since sj

l

and tj

l

coincide, we conclude s�j

l

= t�j

l

. (Note

that if tj

k

= v

k

then sj

k

= u

k

6= tj

k

and consequently i = j < k.)

(b) For l = k: s�j

l

= v

k

= t�j

l

by assumption.

This completes the proof. 2

Based on this result it is not di�cult to prove that pre�x stability is

preserved under syntactic factoring and ordinary resolution.

7

Also, as pre�x

stability remains invariant under the formation of subsets, it is immediate

that pre�x stability is preserved by subsumption deletion and condensing.

Thus, the basic path logic is closed under ordinary resolution, syntactic fac-

toring, subsumption deletion and condensing.

7

Proofs can be obtained by following Ohlbach (1991) or Zamov (1989), or they can be

found in Schmidt (1997).
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Now, we address closure of the extensions of the basic path logic under

the fundamental operations in our resolution calculus for E = fA; 1g. We let

T be a set of terms in the vocabulary of basic path logic, because remember,

every theory resolvent is immediately normalised by N

A1

. The analogue of

Theorem 6.1 is not true in its full generality for bindings of A1-uni�ers. It

is true when su�xes are variable disjoint, and when more restrictions (to be

made precise below) hold for instantiations with � terms. For bindings of the

form � 7! e the following is immediate by Theorem 6.1.

Corollary 6.3 Let T be a set of terms in the vocabulary of basic path logic.

Let s = [u

1

: : : u

m

] and t = [v

1

: : : v

n

] be two terms in T such that for some

k > 0,

u

1

= v

1

; : : : ; u

k�1

= v

k�1

and u

k

6= v

k

;

u

k

is a variable, and the su�xes [u

k+1

: : : u

m

] and [v

k+1

: : : v

n

] are variable

disjoint. Let � be a substitution fu

k

7! eg. Then N

1

(T�) satis�es T1 and

T2, provided T does.

For bindings of the form u

k

7! v � v

0

, which cause the term depth to

increase, the concept of k-equality needs to be generalised to the concept of

(k; l)-equality. Two basic paths s and t are (k; l)-equal if t is like s except

possibly the term sj

k

in the k-th position is replaced by a list w

1

: : : w

l

of

length l. In other words, s and t are (k; l)-equal provided s = t, or when

s = [sj

1

: : : sj

m

] then t = [sj

1

: : : sj

k�1

w

1

: : : w

l

sj

k+1

: : : sj

m

], or the other way

around.

Theorem 6.4 Let s and t be two terms in T de�ned as in the previous

result. Let � be a substitution fu

k

7! wg where

N

A1

([w]) = [w

1

: : : w

l

] and w

1

= v

k

;

and s and w are variable disjoint.

8

Then N

A1

(T�) satis�es T1 and T2,

provided T , N

A1

([w]) and the set f[w]; [v

k

: : : v

n

]g do.

Proof. Proceed as in the proof of Theorem 6.1 with the obvious modi�cations.

Let s and t be any terms in T that satisfy the conditions T1 and T2 and

consider N

A1

(s�) and N

A1

(t�) in N

A1

(T�). It is not di�cult to verify that

8

More accurately, N

A1

([w]) coincides with N

A1

([[]; w]) = [[]w

1

: : : w

l

].
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the pairs N

A1

(s) and N

A1

(s�), and also N

A1

(t) and N

A1

(t�), are (k; l)-equal.

We assume without loss of generality that sj

k

= u

k

(for otherwise if u

k

does

not occur in either of s or t then the result is trivially true). Then

N

A1

(s�) = [sj

1

: : : sj

k�1

w

1

: : : w

l

sj

k+1

: : : sj

m

]:

Since s and [w

1

: : : w

l

] have no common variables and w satis�es T1 and T2,

so does s�.

Now, consider two cases: 1. � leaves t unchanged so that t� = t and 2. it

does not. In the either case we need to prove T1 and T2 hold for i and j

strictly below k+ l. This is tedious and as the arguments are similar to those

of Theorem 6.1, we omit the details. 2

This theorem and the previous corollary will be used in an induction

argument over the decomposition into bindings of idempotent uni�ers proving

preservation of T1 and T2 (Theorem 6.6).

Lemma 6.5 Let s and t be two variable disjoint basic paths. Let � be any

A1-uni�er computed by the system of Figure 5. Then

1. � is an idempotent uni�er.

2. � = �

1

: : : �

l

, where the �

i

are of the form f�

i

7! wg such that for any

pair �

i

and �

j

with 1 � i < j � n, if �

i

and �

j

occur at positions

k

i

and k

j

in s or t, (that is, sj

k

i

= �

i

or tj

k

i

= �

i

, and sj

k

j

= �

j

or

tj

k

j

= �

j

) then k

i

� k

j

.

3. If �

1

of �

1

is a variable occurring in s then the following are equivalent.

(a) s = [u

1

: : : u

m

] and t = [v

1

: : : v

n

] have a common pre�x [u

1

: : : u

k+1

],

u

k

6= v

k

and u

k

is a variable.

(b) Either �

1

= fu

k

7! eg or �

1

= fu

k

7! wg where N

A

([w]) =

[w

1

: : : w

l

] and w

1

= v

k

.

4. N

A

([w]) satis�es T1 and T2 provided s and t do.

5. fN

A

([w]); [v

k

: : : v

n

]g satis�es T1 and T2 provided s and t do.

Proof. 1. is evident by the de�nition of solved forms.
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Consequently, � coincides with a composition of bindings �

i

. Compose

the bindings as determined by the positions in s and t of the variables �

i

.

This veri�es 2.

3. is true for otherwise s and t are not uni�able.

4. No uni�cation rule duplicates variables, hence N

A

([w]) is a linear term

and satis�es T1 and T2.

5. A1-bindings of the form �

i

7! w are such that: N

A

([w]) has length

smaller or equal to [v

k

: : : v

n

], and w

1

= v

k

, w

2

= v

k+1

, : : : , w

l�1

= v

k+l�2

.

If w

l

= v

k+l�1

then N

A

([w]) is a pre�x of [v

k

: : : v

n

], which means that

fN

A

([w]); [v

k

: : : v

n

]g satis�es T1 and T2. If w

l

6= v

k+l�1

then w

l

is a vari-

able introduced by an application of Mutate-A, v

k+l�1

is a variable and

�

2

= fv

k+l�1

7! w

0

g. Also, in this case fN

A

([w]); [v

k

: : : v

n

]g satis�es T1

and T2. 2

Theorem 6.6 Let � be an A1-uni�er of two variable disjoint terms s and t

in T . If T satis�es properties T1 and T2 then so does N

A1

(T�).

Proof. The proof is by an induction argument over the decomposition into

bindings of idempotent uni�ers. Let � be �

1

: : : �

l

as in 2. of the previous

lemma. Iteratively, consider the triples s, t and �

1

, then N

A1

(s�

1

), N

A1

(t�

1

)

and �

2

, etcetera, and apply Corollary 6.3 and Theorem 6.4. By 3., 4. and

5. of the previous lemma, in any iteration the conditions T1 and T2 are

satis�ed by any N

A1

(s�

1

: : : �

i

), N

A1

(t�

1

: : : �

i

) and �

i+1

. 2

Consequently, as the union of two variable disjoint sets of pre�x stable

terms is pre�x stable, the preservation result for binary R

A1

N

A1

-resolvents fol-

lows. More generally, specialisation to just (1) or (A) renders:

Theorem 6.7 For E � fA; 1g, the E-normal form of an E-resolvent of two

variable disjoint clauses satisfying T1 and T2 also satis�es T1 and T2.

The main preservation theorem follows:

Theorem 6.8 Let S be a �nite set of basic path clauses. Then (R

E

N

E

)

n

(S)

and (R

E

cond � N

E

)

n

(S), for any n, are well-formed in the basic path logic, when

E � fA; 1g.

Proof. By the previous theorem and by preservation of pre�x stability under

syntactic factoring and condensing. 2
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7 Conclusion

In summary, we have discussed issues concerning uni�cation and normalisa-

tion of E-resolution for certain path logics, namely, those closed under right

identity and associativity, or both. We have de�ned complete (and terminat-

ing) uni�cation algorithms employing mutation rules. We have shown the

search spaces are considerably smaller than those of Ohlbach's procedure.

And, we have proved syntactic uni�cation can be simpli�ed for singleton

problems.

We conclude with some remarks concerning further work.

Due to the assumption we make in Section 5, in particular, that the

input set consists of one pair of terms, our resolution calculi are de�ned by

binary E-resolution and syntactic factoring. For semantic factoring we need

general E-uni�cation for which our algorithm is not su�cient (this would

require a deletion rule of the identity constant and a more general form of

the variable elimination rule). Given a set of terms (literals), computing the

syntactic most general uni�er (when it exists) is easier than computing the

set of minimal E-uni�ers. Semantic factoring can produce an exponential

number of factors causing a signi�cant overhead. The price we pay for using

syntactic factoring is incompatibility with strategies like tautology deletion.

So, evidently there is a tradeo� which should be kept in mind and deserves

further investigation.

The uni�cation algorithm presented in this paper is not optimal. It does

not compute a minimal complete set of E-uni�ers. The redundant uni�ers

will need to be �ltered out by post processing. Possibly this can be avoided

by additional uni�cation rules similar to those of Otten and Kreitz (1996)

who present a system consisting of ten rules for terms satisfying the stronger

T-string property.

Uni�cation for other path theories has not been examined. Ohlbach

(1988, 1991) considers uni�cation for the modal schema B in the non-op-

timised context. In our context using the global form of the correspondence

property of B is not sound and we are forced to use the local form, namely

[x� i(x; �)] = x. Uni�cation by mutation rules will not do in this case.

For example, the solution f =

?

i([s�]; �); � =

?

i([s]; �)g of the problem

f[s���] =

?

sg can only be derived by paramodulating into the left term, at

a position not at the top.

As many other path theories (not considered here) are collapse-free, the

results of Kirchner and Klay (1990) and also Doggaz and Kirchner (1991),
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which are about collapse-free syntactic theories, may be of value for develop-

ing terminating (mutation) uni�cation algorithms. The latter paper presents

a completion algorithm for automatically converting a presentation of linear

and collapse-free equations to a �nite resolvent set of equations.
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