
O
.D

INFORMATIK

Unification in Extensions of
Shallow Equational Theories

Florent Jacquemard
Christoph Meyer

Christoph Weidenbach

MPI—I—98—2—002 January 1998

FORSCHUNGSBERICHT RESEARCH REPORT-

MAX-PLANOuK-INSTITUT
FUR

INFORMATIK

Im Stadtwald 66123 Saarbriicken Germany

Authors’ Addresses ‘

Florent Jacquemard
LORIA and INRIA
615 rue du Jardin Botanique
BR 101, 54602 Villers-les-Nancy Cedex, France
Florent.JacquemardQloria.fr

Christoph Meyer
Max-Planck-Institut fiir Informatik
Im Stadtwald
66123 Saarbriicken
meyeepi-sb . mpg . de

Christoph Weidenbach
Max-Planck-Institut fiir Informatik
Im Stadtwald
66123 Saarbriicken
weideampi—sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be
copyrighted if accepted.

Acknowledgements

We have to thank our reviewers at RTA-98 whose constructive criticism lead
to significant improvements of the conference paper version of this report
and finally this report itself. Thanks to Harald Ganzinger for many valuable
discussions and to Jiirgen Stuber for comments and suggestions on this work.

Abstract

We show that unification in certain extensions of shallow equational theo-
ries is decidable. Our extensions generalize the known classes of shallow or
standard equational theories. In order to prove decidability of unification in
the extensions, 3. class of Horn clause sets called sorted shallow equational
theories is introduced. This class is a natural extension of tree automata
with equality constraints between brother subterms as well as shallow sort
theories. We show that saturation under sorted superposition is effective on
sorted shallow equational theories. So called semi-linear equational theories
can be effectively transformed into equivalent sorted shallow equational the-
ories and generalize the classes of shallow and standard equational theories.

Keywords

E-Unification, Tree automata, Monadic Theories, Superposition, Decidability

1 Introduction

Algorithms to solve unification and word problems in an equational theory
play a crucial role in many areas of computer science like automated deduc-
tion, logic and functional programming, and symbolic constraint solving.
Many algorithms are dedicated to particular theories and often semantic
conditions are assumed. In addition, a lot of progress has been made to—
wards syntactic characterizations of classes of equational theories or rewrite
systems in which these problems are decidable. This is the case of unifica-
tion in ground theories (Kozen 1981) or of the word problem with respect
to left—linear right-ground rewrite systems (Oyamaguchi 1990). The class of
shallow theories, axiomatized by equations in which variables occur at most
at depth one, has been shown by Comon, Haberstrau & Jouannaud (1994)
to have a decidable unification problem. They exploit a transformation of
the system into an equivalent cycle-syntactic presentation (Kirchner 1986).
By a termination analyses under basic superposition Nieuwenhuis (1996)
generalized the result to so—called standard theories.

Furthermore, tree automata and tree grammars have also been used for
unification purposes. Limet & Réty (1997) use 'Iree ’I‘uple Synchronized
Grammars to generate solutions to unification problems by a simulation of
narrowing. In (Kaji, Toru & Kasami 1997) it is shown that the closure with
respect to some kind of term rewriting system of the (recognizable set) of
ground instances of a linear term is recognizable. Similar techniques based
on the completion of tree automata are presented by Comon (1995) and
Jacquemard (1996) for linear shallow TRS and a generalization called linear
growing TRS. The decidability of the word problem as well as restricted
cases of unifiability in the concerned theories can be derived from these
results.

In this paper we show the decidability of unification in so—called semi-
linear equational theories which strictly extend shallow theories. Informally,
a semi-linear system contains equations in which non—linear variables only
appear in the same subterms. For example, the equation f (f (x,m),y) z
g(f(a:,a:)) is semi-linear whereas f(g(z),h(x),h(g(y))) z h(g(:c)) is not.
Our techniques are influenced by tree automata, sorted unification and
saturation-based methods.

Sorted shallow equational theories naturally generalize tree automata
with equality constraints (Bogaert & Tison 1992) as well as shallow sort
theories (Weidenbach 1998). Throughout the paper, we consider the fol—
lowing example of Nieuwenhuis (1996). The equational theory is given by
the equations f(g(x),y) z h(y) and f(x,a:) z g(:c) Nieuwenhuis’ defini-
tion of standard theories does not include this case. The closure of the
theory under basic superposition, the calculus he suggests, leads to an in-
finite set of equations g(h"(g(x))) % hn+1(g(x)). The infinite expansion
can be avoided by abstracting the linear (semi-linear) term g(:r) into a

sort declaration S (g(a:)) The theory is then transformed into a sorted
shallow equational theory consisting of the Horn clauses H —> S(g(ac)),
5(1‘)” —> f(m,y) = h(y), H —> f(x,$) = g(a:). Our notation for clauses
is of the form Sort Constraint || Antecedent ~—> Succedent where the sort con-
straint atoms are particular, monadic antecedent atoms for which specific
inference rules are provided by our sorted superposition calculus.

The paper is organized as follows: Section 3 starts with a discussion on
tree automata with brother constraints. We prove that they are not sufficient
for our purpose. Then sorted shallow equational theories are studied. It
is shown that saturation under sorted superposition terminates and that
unifiability modulo the saturated theory is decidable. A procedure which
transforms a sorted semi—linear equational theory into an equivalent sorted
shallow one is given in Section 4. This implies the decidability of unifiability
modulo a set of (sorted) semi-linear equations. This result strictly embeds
previous ones concerning shallow theories by Comon et al. (1994). We show
in Section 5 that with similar techniques, we can treat a generalization of
standard theories as proposed by Nieuwenhuis (1996). In the same section,
we also show that our decidability results are close to the border between
decidability/undecidability and discuss some related work on E—unification.

2 Preliminaries

We adhere to the usual definitions for variables, terms, substitutions, equa-
tions, atoms, (positive and negative) literals, multisets, and clauses, see
Dershowitz 85 Jouannaud (1990) for what concerns equational theories. We
give just the most important definitions for our purpose.

The algebra of terms over a finite set of function symbols 7-" and a set
X of variables is denoted T(}', X) and T(.7-') is its subalgebra of ground
terms. An equation is an unoriented pair of terms of 7'(]:, X) denoted s x t.
For sake of simplicity, we may apply to equations or other atoms the same
following notations as for terms. The function vars maps terms, atoms,

literals, clauses and sets of such objects to the set of variables occurring
in these objects. A position p in a term (equation, atom) is a word over
the natural numbers. For a term (equation, atom) t we define t|p of t at
position p by t|E = t and tli.p = ti]p where t = f(t1, . . . ,tn) and 1 S i S n.
We write t[s]p to denote that t|p = s and t[p/s’] is the term obtained from t
by replacing its subterm at position p by 5'.

A term is called complex if it is neither a constant nor a variable. A term
t is called shallow if t is a variable or is of the form f (x1, . . . ,mn) where the x,
are not necessarily distinct. An equation 3 z t is called shallow if both .3 and
t are shallow. Note that shallow variables in s z t can be arbitrarily shared
by s and t. A term t is called linear if every variable occurs at most once in
t. A term t is called semi-linear if it is a variable or of the form f(t1, . . . ,tn)

such that every t,- is semi-linear and whenever vars(t,~)flvars(tj) # (D we have
t,- = t, for all i, j. An equation 5 z t is semi-linear if (i) s and t are variables
or (ii) 5 = f(sl, . . . ,3") and (a) ift is a variable and t E vars(s,~) then s, = t
for all i or (b) if t = g(t1,...,tm) and vars(s,~) fl vars(tj) # 0 then s,- = t]-
for all 2', 3'. For instance, the term f(g(:z:),g(x), h(y,y)) and the equations
h(g(x),g(x),y) % f(y,g(x),y) and f (9(x),g(x),y) z y are semi-linear, but
f(g(év),g(x),h($,y)), h(g($),rc), and h(9($),g(x)) z x are not-

Atoms formed from unary predicates are called monadic. For the pur-
pose of this paper, a clause is written in the form 9 H1" —> A[[P]] where
the sort constraint 9 is a multiset of monadic atoms representing the sort
restrictions, the term constraint P is a conjunction of syntactic equations
of the form 5 = t and the multisets I‘ and A denote the antecedent and
succedent atoms of the clause, respectively. If P is empty we simply omit
the term constraint. Semantically, a clause 9 || 1" —-> A[[P]] is interpreted as
90 [I To -> A0 where or is the syntactic most general unifier of P, denoted
by mgu(P). As usual, all variables are assumed to be universally quantified
and the clause is interpreted as an implication where the conjunction of all
sort constraint and antecedent atoms implies the disjunction of all succedent
atoms. If there exists no mgu a for P, the clause is a tautology and can
therefore always be removed in our context. We say that the constraint P
is in solved form, if P is of the form x1 = t1 /\ . . . /\ 23,, = tn where :2,- 95 $3-
for all i, j and xi 9? vars (tk) for all 2' g k S n. Using the rules of syntactic
unification (see, e.g., Jouannaud & Kirchner (1991)) any constraint can be
transformed in polynomial time into solved form or .1. indicating that the
term constraint has no solution and therefore the clause can be removed.
The following operations on the constraint do also not change the semantics
of a clause 8 ”F —> Aflx = t/\ P]]: We can propagate the equation x = t
into 9, I‘, A, and P by instantiating arbitrary occurrences of :1: with t. If
x g vars(t) U vars(P) U vars(@ U I‘ U A) then at = t can be removed from P
and we call the equation a: = t redundant. For the purpose of this paper, we
assume that constraints are always in solved form, redundant equations are
always removed from term constraints and clauses with an unsolvable term
constraint are always deleted.

A partition 01,...,Cn of a clause C is called a variable component
partition, if for every pair of literals L 6 0,, K E Cj (i 75 j) we have
vars(L) fl vars(K) 2 (ll and no C,- can be further partitioned such that this
condition is still satisfied. Every C,- is then called a variable component of
the clause C.

For any initial clause set we assume that the arguments of all sort con-
straint atoms are variables and that all term constraints are empty. This is
a necessary prerequisite for our calculus to be complete, since term po-
sitions in sort constraint atoms are always subject to the basic restric-
tion (Weidenbach 1996). Furthermore, for the theories which we consider
here it is always the case that either the antecedent or the succedent of a

clause is empty.
We call a sort constraint 9 solved in a clause @HI‘ —> A[[P]] with

= mgu(P) if vars(@o) Q vars(Po U A0) and all terms occurring in (90
are variables. A clause T1(a:1), . . . ,Tn(a:,,) H —> S(t) is called a declaration
if T1(x1), . . . ,Tn($n) is solved. In case t is a variable, a declaration is called
a subsort declaration. A declaration T1(x1), . . . ,Tn(:cn) H ——> S'(t) is shallow
(linear, semi-linear) if t is shallow (linear, semi-linear). A sort theory is
a finite set of declarations. It is called shallow (linear, semi-linear) if all
declarations are shallow (linear, semi—linear). A sorted equation (sorted dis-
equation) is a clause 9 II —> I z r (a clause 9 “I z r ——>) where (9 is solved.
A sorted equational theory is a finite set of sorted equations and declara-
tions. It is called shallow (semi-linear) if all equations and all declarations
are shallow (semi-linear).

A substitution is a mapping from X to T(.7-', X). As usual, we do not
distinguish between a substitution and its homomorphic extension in the free
algebra 717:, X). Given an equational theory E, i.e., a finite set of equations,
we write sf>t iff there exists an equation I z r 6 E and a substitution 0'
such that slp = lo and t = s[p/ro]. The symmetric closure of —> is denoted
by <f> and the reflexive, symmetric and transitive closure by 4%) Two
terms 3 and t are called unifiable modulo an equational theory E iff there
exists a substitution 0 such that soéfiyto. Note that this is equivalent to
stating that the clause set consisting of the equational theory E and the
clause || 3 z t —-> is unsatisfiable.

We say that a clause 9 H F —> A[[P]] subsumes a clause A H ‘11 —> HEQ], if
there exists a substitution 0 such that 80 Q AO’, I‘o Q \Ilo, Ao Q Ho and
Po Q Q0, where we consider the term constraint to be a set of equations
and we assume that matching with respect to the commutativity of = and 0’
maps only variables to variables. Accordingly, a clause C’ is a condensation
of some clause D, if C is a factor of D and C subsumes D. Our notion of
subsumption and condensation is weaker than usual, but it is obviously com-
patible with the redundancy concept of basic paramodulation (Bachmair,
Ganzinger, Lynch & Snyder 1995, Nieuwenhuis & Rubio 1995), the calculus
we will use to develop the decidability results in Section 3.3 and Section 5.

For a set of Horn clauses .A and a clause C, A I: C denotes the usual
semantic entailment relation where all variables of A and C are assumed to
be universally quantified.

3 Shallow Sorted Equational Theories

In this section we show that there exist non-linear shallow equational theories
whose unification problem can be decided by saturation—based methods, but
not by tree automata (with constraints) techniques.

3.1 Tree automata and linear shallow theories

We adopt here a definition of tree automata by means of Horn clauses.
This definition, though non-standard, is equivalent to the usual ones,
e.g., (Bogaert & Tison 1992). A systematic correspondence between var—
ious types of Horn clause sets and known classes of tree automata with
constraints has been studied by Weidenbach (1998).

Definition 3.1
A tree automaton A is a finite set of linear shallow declarations of the form
51(z1),---y3n($n)ll -> S(f(xi,~-,zn))-
Following tree automata terminology, the unary predicates are called states
and the Horn clauses of A are transition rules or just transitions.

Note that in Definition 3.1 not all linear shallow declarations are valid
tree automata transitions. _

However, Weidenbach (1998) indicates that a set containing declarations
like Sl(x1) l] —> S(f(g(a),x1)) or subsort declarations like 51(1‘), 52(z) l] —>
S(x) can be transformed into an equivalent set of declarations like in Defi-
nition 3.1.

A term t 6 7(7) is recognized by A in some state S if A I: S(t). If
we fix in A a subset S of final states (final predicates), then t 6 7(7) is
recognized by A (with respect to S) if t is recognized by A in some final
state. A set L g T(.7) is a recognizable language if L is the set of ground
terms which are recognized by a tree automaton A (with respect to some
set of final states).

The class of recognizable languages is closed under Boolean operations.
Every recognizable language is recognized by some deterministic tree au-
tomaton A such that a ground term cannot be recognized by A in more
than one state. Every recognizable language is recognized by some com-
pletely specified tree automaton A, such that every ground term is recog-
nized by A at least in one state. It is decidable in polynomial time whether
a given term t E 7'(.7) is recognized by a tree automaton A. It is decidable
in linear time whether the language recognized by some tree automaton A
is empty or not.

Tree automata and grammars have been used by Kaji et al. (1997) and
Limet & Réty (1997) to solve word and unifiability problems. In the first
paper as well as in the papers by Comon (1995) and Jacquemard (1996) the
recognizability of the closure of some recognizable set L with respect to term
rewriting systems of restricted classes is investigated. In the following we
denote the closure of a set of terms L C_: 7'(.7) with respect to an equational
system E by (<%>)(L) := {s 6 7(7) I 3t 6 L teg—m}. For a given system
E we can reduce the word problem s%>t to the membership problem for
s E (<%>)({t}) if the closure set and L is recognizable. For a goal 3 = t
where s and t are both linear and vars(s) fl vars(t) = 0, unifiability modulo

E is equivalent to {so I a ground} 0 (+§+)({t0 I a ground}) 75 (2). Since the
set of ground instances of s and t are both recognizable, unifiability in this
case can be reduced to an emptiness decision problem for tree automata.

We call an equational system E a system with ground terms, if arbitrary
ground terms are allowed to occur in E. For many equational systems, like
sorted shallow systems, the extension to ground terms does not increase
expressivity, since any ground term can be generated by a finite number of
linear shallow declarations.

Theorem 3.2 ((Comon 1995))
Let E be a linear shallow equational system with ground terms and L be a
recognizable language. Then (4%))(L) is a recognizable language.

The principle of the construction for linear shallow equational Systems is
the following. We start with a tree automaton A0 which recognizes L
and contains one state S], for each direct ground subterm li in equations
f(11, . . . ,1”) z 7' in E such that l,- (and only [2-) is recognized by A0 in 51,.
In some sense these subterms are abstracted by A0. Then A0 is completed
with respect to inference rules like the following:

ii —*f(l1,..,ln)zg(7'1,...,7'm)

51($1),-~75n($n) H —*S(f($1,---7$n))
Inf T1(x1),...,Tm(:cm)H—>S(g(w1,...,:cm))

where f(ll,...,ln) z g(r1,...,rm) E E is a linear shallow equation with
ground terms, if lj is a ground term then it is recognized by Sj and the T,-
are constructed in the following way: If r, is a ground term, then T,- 2 Sn and
if 7‘, is a variable that is equal to some variable lj, then T,- : Sj. If we apply
paramodulation to the premises of the above inference rule we obtain the
clause 51(11), . . . ,Sn(ln) H —> S(g(r1, . . . ,rn)). With the above conditions,
this clause is equivalent to T1(y1), . . . ,Tm(ym) H ——> S(g(y1, . . . ,ym)). This
relates the automata theoretic approach and its generalization presented in
Section 3.3. Unfortunately, the above recognizability result of Theorem 3.2
cannot be extended to non-linear systems.

Lemma 3.3
There exists a recognizable set L and a (non—linear) shallow equational sys-
tem E such that (<%>)(L) is not recognizable.

Proof. Assume f is a binary function symbol, 5 is unary and a is a con-
stant, and let L = {a}, E = {f(;r,2:) z a}. Assume now that (%)(L)
is recognized by a tree automaton A, wrt. the distinguished set of final
states 8. We assume without loss of generality that A is determinis—
tic. Since A has only finitely many states, there exist two distinct terms1

ls"(a) := s(. . . 5(a))
V

71

s"1(a) and s"2(a) which are recognized by A in the same state S. Since
f(s"1(a),s"1(a)) E (4%))(L), and since .A is deterministic, it contains a
clause of the form 5(x1),S(:c2)l| —-> Sf(f(a:1,x2)) where Sf E S is a
final state, and thus A I: Sf(f(s"1(a),s”1(a))). But this also implies
A I: S{(f(s"1(a),s"2(a))) and this is a contradiction because this term
f($"1(a),s”2 (a)) is not in 0%))(L). E]

3.2 Brothers automata and the non-linearities

Bogaert &, Tison (1992) introduce tree automata with constraints which
define a strict superclass of recognizable languages to deal with non—linear
rewrite systems.

Definition 3.4
A tree automaton with equality constraints between brother subterms is
a finite set of shallow declarations of the form 81(x1),... ,Sn(xn) || ——)
S (f ($1, . . . ,xn)) where the xi are not necessarily distinct.

We call Rec: this class of recognizers as well as the class of recognized
languages; the notion of recognized terms and languages is the same for
tree automata with equality constraints between brother subterms as for
(standard) tree automata.

The class Rec¢ (Bogaert & Tison 1992) is strictly larger than Rec: be-
cause (syntactic) disequations between variables x,- # 103- are also allowed
in the antecedent of clauses. The nice closure properties of tree automata
still apply here, namely closure under Boolean operations, under determin-
ism and complete specification. The emptiness problem is also decidable
for Rec¢ though EXPTIME-complete (the problem of deciding emptiness
of the intersection of some rational tree languages (see (Friihwirth, Shapiro,
Vardi 85 Yardeni 1991, Seidl 1994) for a proof of EXPTIME-completeness)
may indeed be reduced to emptiness for Rec¢). However, disequalities are
not necessary for our purpose (see the conclusion for a discussion about this
extension), but we can show that neither Rec: nor Rec¢ suffice to generalize
Theorem 3.2 to the case of non—linear shallow systems.

Lemma 3.5
There exists some recognizable set L and (non-linear) shallow equational
system E such that the set (4%))(L) is not in Rec¢.

Proof Let f, g be two binary function symbols, a be some constant
and consider the system E := {f(x,x) —> g(x,z)} and language L :=
{9(51,52) I 31,32 6 7'(.7-')}. Assume that L’ := (%)(L) is recognized by
some A E Rec¢ with respect to the distinguished set of final states 5. We
may assume without loss of generality that A is deterministic and completely
specified. Let n be the number of states of A.

We define a sequence of well-balanced ground terms of 717:) by t1 :=
f(a,a) and for all 2' 2 1, ti+1 :2 f(t,~,ti)._ For all 2' Z 1, the cardinality of the
equivalence class of ti modulo (7*? is 221‘1. Let 2’0 = [log(log(n + 2))1.

For each i _>_ i0, we have two distinct ground terms uz- and 12,, both
equivalent to t, modulo <%> and both recognized by A in the same state
called 8,. Moreover, by construction, f (uhvi) E L’. Thus, this term is
recognized by A in some final state noted T,- E 8. By determinism of A, this
means that there exists a clause C,- = Si(x1), Si(:v2) H -+ T¢(f(x1,272)) 6 A2,
such that A I: Clo with o = {2:1 +—> ui,:r2 i—> 11,}. Note that for all i 2 i0,
the variables x1 and $2 in clause C,- are distinct because u,- # 11,.

There exist two distinct integers j > k 2 2'0 such that Sj = 5k. Thus,
A l: Cjo where a = {x1 i—> Uj,x2 r—> uk}, because the variables 9:1 aé 1:2
in 03- and thus f (uj, uk) is recognized by A in the final state Tj. This is a
contradiction because this term is not in L’. D

We can conclude from Lemma 3.5 that the syntactic equality constraints of
the automata in Rec: are too rough for our purpose. The sorted shallow
equational theories studied in the following section are a strict generaliza—
tion of Rec: An important achievement of this approach is that semantic
equality tests are possible.

3.3 Saturation

The following inference rules form schemata for sound and refutationally
complete calculi for Horn clause sets consisting of declarations and sorted
(dis)equations. They are mainly an adaption of basic superposition with se—

lection (Bachmair et al. 1995, Nieuwenhuis & Rubio 1995) to the particular
form of the Horn clauses considered here, where the sort constraints are al—

ways subject to the basic restriction and are solved by a particular selection
strategy (Weidenbach 1996). This strategy is expressed by the rule Sort
Constraint Resolution, see below. As usual, we assume a reduction ordering
>— that is total on ground terms. We call the calculus consisting of the in—
ference rules Basic Sort Constraint Resolution, Basic Superposition Right,
Basic Superposition Left and Basic Equality Resolution plus the reduction
rules subsumption and condensation (see Section 2) the basic sorted super-
position calculus. The calculus consisting of the inference rules Basic Sort
Constraint Resolution, Basic Paramodulation Right, Basic Paramodulation
Left and Basic Equality Resolution plus the reduction rules subsumption and
condensation the basic sorted paramodulation calculus. If term constraints
are always eagerly propagated, i.e., we perform unification and apply the
unifier to the literals, the resulting calculi are called the sorted superposition
calculus and the sorted paramodulation calculus, respectively. Note that the

2Clauses defining rules of Rec¢ automata also contain syntactic disequations between

variables, but these disequations do not matter here.

basic restriction does not interfere with subsumption or condensation, be-
cause we restricted the matchers in this context to only have variables in
their codomain.

Definition 3.6 (Basic Sort Constraint Resolution)
The inference

T1(t1),...,Tn(tn),‘I’HF—)A up]

91“ —>T1(81) [[Qlil

en ll ms,» [[i
Uieia‘I/HrfiA iiPAiAi(Qi/\ti =3i))li

where no atom in I‘ is selected, a = mgu(P),
(i) tlo = . .. = tna is a non-variable term

or
(ii) tia with tie ¢ vars(I‘a U A0),

no further atom S(t,-a) occurs in \110, and all 92' are solved, is called a Basic
Sort Constraint Resolution inference.

Inf

Definition 3.7 (Basic Superposition/Paramodulation Right)
The inference

\Illl —>szt [[191]
@ll—>A[S']1.p [[Ql]

Inf we H —> A[l.p/t] [[P /\ Q /\ s' = 51]
where t)4 s, if A is an equation I z r with llp = s' then r >4 I, s’ is not
a variable, and the sort constraints \I/ and (9 are solved, is called a Basic
Superposition Right inference. If we drop the requirement r)4 l the inference
is called a Basic Paramodulation Right inference.

Definition 3.8 (Basic Superposition/Paramodulation Left)
The inference

‘1! || —>s z t [P]
G H [[s’]p z r —-> [[Qfl

Inf \II,@Hl[p/t]zr—> flPAQAs'=sB
where t >4 s, r)4 l, s’ is not a variable, and the sort constraints ‘11 and G
are solved or I z r is selected, is called a Superposition Left inference. If
we drop the requirement r)4 l the inference is called a Paramodulation Left
inference.

In case of a Basic Paramodulation Left inference the conclusion of the
inference can be further refined to

\Il,®|!l[p/:c] zr—> [[PAQAS':3/\$=t]]
for some new variable a: (Bachmair et a1. 1995, Nieuwenhuis 1996).

Definition 3.9 (Basic Equality Resolution)
The inference

@llszt—a [[PB
9|] ——>[[P/\s=t]]Inf

where G) is solved or s z t is selected is called a Equality Resolution inference.

The next Lemma 3.10 shows that sorted shallow equational theories can
be finitely saturated by sorted superposition. The process of exhaustively
applying the inference rules of sorted superposition to the theory terminates
in the sense that no new clauses are generated that are not redundant with
respect to subsumption or condensation. Syntactically, this is always the
case for some calculus, if the depth of terms in generated clauses as well as
the cardinality of variable components of the clauses can be bound. Any
set of clauses with respect to some finite number of predicate and function
symbols where the depth of clauses as well as the cardinality of variable
components of these clauses is bound by some constant and no clause in the
set can be subsumed or condensed is finite. This characterization goes back
to Joyner Jr. (1976).

Lemma 3.10
Sorted shallow equational theories can be finitely saturated by sorted super-
position.

Proof. We shall show that the saturation process results in clauses of the
form

T1(t), . . . ,Tn(t), 51(x1), . . . ,Sm(xm) H —> A
where n, m are possibly zero, A is either a monadic atom T(s) or an equation
I z r and t, s, l and r are always shallow terms. If the saturation process
produces only clauses of this form, then it will terminate, because the depth
of all these clauses as well as the length of variable chains between their
literals are bound.3 The length of variable chains is bound, because all
predicates are monadic and there are at most three different non-variable
shallow terms in any clause.

It remains to prove that all clauses generated by the saturation process
have the above form. Obviously, shallow declaration clauses and sorted shal-
low equations are of the above form, where t as well as the m are variables

occurring in A. For symmetry reasons it is sufficient to consider three cases
of possible inferences: (i) The term t is a non-variable shallow term and we
perform a sort constraint resolution inference. (ii) The term t is a variable
that does not occur in A and we perform a sort constraint resolution infer-
ence. (iii) The sort constraint T1(t), . . . ,Tn(t), 51(x1), . . . ,Sm(xm) is solved
and we perform a superposition right inference. We separately consider

3See the discussion above this lemma.

10

these cases:
(i) The other clauses involved in the inference are all of the form
Q1(y1), . . . ,Qk,(yki) H —> Ti(s,~) where the yj occur in s,- and s,- is a shal—
low term. The unifier a only maps a variable to a non—variable shallow term
if the variable is some 5,. Hence, the result of the inference is a clause of
the desired form.
(ii) Again all other clauses involved in the inference are of the form
Q1(y1), . . . ,Qk,(yk,) H ——> T,(s,~) where the yj occur in s,- and s,- is a shallow
term. The unifier a possibly maps the variable t to a non-variable shallow
term, but since t does not occur in A the result of the inference is again a
clause of the desired form.
(iii) Since we do not superpose into variables and for any equation of the
form f(x1, . . . ,xn) z y either y = x,- for some i and hence f(z1, . . . ,2") >- x,-
or y does not occur in f ($1, . . . ,xn), a case analysis over the different com—
binations of the form of A and the involved sorted equation shows that the
result is always of the desired form. Note that in the case of a Superposition
Right inference, the involved clauses have a solved sort constraint. E!

For example, we apply the saturation process to the sorted shallow equa—
tional theory presented in Section 1:

(1) 5(90) ll ->f($,y) % h(y)
(2) ll —>f(x»x) % 9(1‘)
(3) || ->S(9($))

where we assume f (x,y) > 9(3)) > h(ac). Then the saturation process gen-
erates the additional clauses 4) and (5) by Superposition Right inferences.(

(4) 5(93) ll ->g(x) % We)
(5) 5(56) H -+ 50406))

The clauses (1)—(5) are saturated by sorted superposition.

Corollary 3.11
Sorted shallow equational theories can be finitely saturated by sorted
paramodulation.

Proof. The only difference between sorted superposition and sorted
paramodulation is that the sorted paramodulation calculus paramodulates
into both sides of equations, disregarding ordering restrictions. However, we
only paramodulate with right hand sides of equations that are not smaller
than the respective left hand side. Therefore, the proof of Lemma 3.10, in
particular case (iii), carries over to sorted paramodulation. C]

With respect to our example above, sorted paramodulation would pro—
duce the additional clause

11

(6) 5(13) ll ->f($,x) % We)
via a Paramodulation Right inference between the clauses (4) and (2). But
clause (6) is subsumed by clause (1), hence the above clauses (1)—(5) are
also saturated by sorted paramodulation.

Since our notion of subsumption and condensation is compatible with
the basic restriction, the above results on finite saturation hold also for the
basic variants of the sorted superposition/paramodulation calculus.

Corollary 3.12
Sorted shallow equational theories can be finitely saturated by basic sorted
superposition and basic sorted paramodulation.

In particular, Corollary 3.12 allows for a very nice decidability proof of
unification in sorted equational theories, since with respect to a clause set
that is finitely saturated by basic sorted paramodulation, there are only
finitely many applications of basic paramodulation left for some given equa-
tion. Therefore, we replaced the proof suggested in our conference pa—
per (Jacquemard, Meyer 85 Weidenbach 1998) by the one below.

Lemma 3.13
Unifiability with respect to finitely saturated shallow sorted equational the-
ories is decidable.

Proof Two arbitrary terms t, s are unifiable iff we can derive the empty
clause from the saturated theory and the goal clause |]t z s —->. Since
the sorted shallow equational theory is saturated, no inferences inside the
theory need to be considered. Furthermore, the goal is purely negative, so
we can delete all clauses with an unsolved sort constraint from the satu-
rated theory. Let us in particular assume that our theory is saturated by
(basic) sorted paramodulation. Then by selecting the disequation t z s
only (basic) paramodulation left or equality resolution inferences can be
performed until the disequation is resolved. Now for a theory saturated
under (basic) sorted paramodulation, every position in the disequation has
only to be considered once for a paramodulation left inference (see the re—
mark below Definition 3.8). Hence, the application of Paramodulation Left
and Equality Resolution terminates on the goal clause, resulting in a clause
31(t1), . . . ,Sn(tn) H —> [P]. Now exhaustive application of Sort Constraint
Resolution terminates on this clause, because the lexicographic combination
of the number of different variables in the clause and the multiset of all term
depths decreases with any Sort Constraint Resolution application. [I

We evaluate two example queries with respect to the above saturated
sorted shallow equational theory. First, we want to unify f (x,y) and h(y)
starting with the goal clause

H f(x7y) '4 My) -+

12

We apply Superposition Left with (1) giving S(:c) |] z z h(y) —> [[2 = h(y)]].
Next we apply Sort Constraint Resolution with (3) yielding ll h(y) z h(y) —>
[[2 = h(y)]] and finally an application of Equality Resolution yields the empty
clause. Therefore, f (10,31) and h(y) are unifiable in the considered shallow
equational theory.

Second, consider the unification problem of f (a,x) and h(x) Where a
is some constant. The problem has no solution justified by the saturated
clause set consisting of the clauses (1)—(5) and the clauses below where we
propagated all term constraints:

Hf(a,1¢)z MI) —>
5(a) II —>

H 9(a) % Ma) ->
We already mentioned the close relationship between sorted unification,

tree automata and the sort theories considered here in Section 3.1. This
relationship can be exploited to derive results with respect to the number
of unifiers of an equational problem.

Corollary 3.14 (Weidenbach (1998))
Let L be a finitely saturated shallow sorted equational theory and let
C = 51(t1), . . . ,Sn(tn) H —> be some clause. Then we can derive a clause
T1(y1), . . . ,Tk(yk) || —) from C and .C by Sort Constraint Resolution ifi the
sorted unification problem x1 = t1, . . . ,xn = tn, sort(ri) = 5,, has a well-
sorted mgu with respect to the sort theory contained in L where all cc,- are
new.

Corollary 3.15 (Weidenbach (1998))
Unification in shallow sort theories is NP-complete, finitary and the number
of well-sorted mgus is simply exponential in the size of the sort theory and
unification problem.

Now from the above two corollaries and Lemma 3.13 we obtain that there
are at most simply exponentially many well-sorted mgus for a unification
problem with respect to a finitely saturated shallow sorted equational theory.

Corollary 3.16
The number of well-sorted mgus with respect to a finitely saturated shallow
sorted equational theory is simply exponential. Deciding the unification
problem is NP-hard.

The following example shows, that the number of syntactic mgus is al—
ready infinite for linear, shallow theories. Consider the saturated theory:

I! -> 5(a)
5(93) II —> S(9(:c))

H ->T(a)
T06) || —>T(g($))

13

where we can derive infinitely many syntactic mgus of the form {x +—> gi(a)
from the clause S(m),T(:c) H —->.

4 Semi-Linear Sorted Equational Theories

In this section we prove that unification in semi—linear equational theorie
is decidable, too. We do so by transforming a semi-linear equational theory
into a sorted shallow equational theory, preserving satisfiability. Then w
apply Lemma 3.10 and Lemma 3.13 to obtain the decidability result. Th
following rule transforms sorted semi-linear equational theories into sorte
shallow equational theories.

Definition 4.1
The transformation

‘1}:SI($1)7"~7Sm(xm) H "’Altlpi

Sl(£1)a"' aSm($m) ll _)T(t)

T(:c),\IIH ——>A[p1,...,pn/x]

provided t is a non-variable subterm7 1:1- 6 vars(t) for all i, vars(\Il) r
vars(t) = 0, Ipil = 2 for all i, the positions p1,...,pn refer to all pos:
tions q of t in A with |q[= 2, T is a new monadic predicate and a: is new t
the replaced clause, is called flattening.

Red

Lemma 4.2
Exhaustive application of flattening to a (sorted) semi-linear equational the
ory terminates, results in a sorted shallow equational theory and preserve
satisfiability.

Proof. Termination follows from the fact that the transformation replace
a clause by two clauses with strictly fewer function symbols. No transf01
mation is applicable to a clause that is a shallow declaration or a sorte
shallow equation, since all terms at depth two of such atoms are alway
variables (if they exist). On the other hand, if the direct subterm of a
atom is not shallow, it has a subterm at depth two which is not a variab]
and therefore the transformation applies as long as the transformation pre
serves semi—linearity (see below). Hence, the transformation terminates in
sorted shallow equational theory.

By an induction argument it is sufficient to show that a sing]
step of the transformation preserves satisfiability and results in a sorte
semi-linear equational theory. The crucial property is that vars(t) I
vars(A[p1, . . . ,pn/ZED = (0. We Show this by contradiction. Assume the
after an application of the transformation there is a variable y occurring i
t and A[p1, . . . ,pn/x]. By construction this can only be the case if y he
an occurrence in A that is not inside an occurrence of t in A. So y OCCLU

14

in some term 3 # t with A|q = s, |q| = 27 contradicting that the original
clause was semi-linear. For the same reason, the result of an application
of the transformation is again a sorted semi-linear equational theory and
xj a vars(A[p1,...,pn/x]) for all j. E]

Theorem 4.3
Unifiability in semi-linear equational theories is decidable.

Proof. By Lemma 4.2 we can effectively translate semi-linear equational
theories into sorted shallow equational theories preserving satisfiability. By
Lemma 3.10 these theories can be effectively saturated by sorted superposi—
tion and by Lemma 3.13 unifiability is decidable with respect to saturated
sorted shallow equational theories. El

Application of the transformation to the example presented in the in-
troduction yields the sorted shallow equational theory considered in the
previous section.

4.1 Applications

Any equational theory E can be transformed into a semi-linear equational
theory E’ by replacing non-linear variable occurrences with fresh variables.
Then E’ is an upper approximation for E in the sense that 6%) Q (fr),
i.e., non-unifiability in E’ implies non—unifiability in E. Furthermore, by
Theorem 4.3, non-unifiability in E’ is decidable. Ganzinger, Meyer &
Weidenbach (1997) showed that in this case non-unifiability in E’ can be
used to effectively direct the search of a theorem prover in finding proofs
with respect to E. One of our future goals is to improve the perfor-
mance of SPASS (Weidenbach 1997, Weidenbach, Meyer, Cohrs, Engel &
Keen 1998) using this technology. Note that flattening applied to an arbi-
trary equational theory where we keep some Si(x,-) in the transformed clause
if xi 6 vars(A[p1, . . . ,pn/m]) is already a transformation that generates an
appropriate approximation.

5 Extensions

A possible extension is to apply our method to compute the (eventual) so—
lution of a unification problem in a semi-linear theory. Weidenbach (1996)
showed that sort constraint resolution simulates sorted unification. Unifica—
tion in shallow sort theories is known to be NP-cornplete and of unification
type finitary. This implies that unification in sorted shallow equational theo-
ries is NP-hard and also of unification type finitary, if we consider well-sorted
unifiers. The results of Theorem 4.3 in Section 4 obviously extend to sorted
semi-linear equational theories.

15

Generalization of standard theories. The standard equations
in (Nieuwenhuis 1996) include one form which is not embedded by the semi—
linear case: the form f (. . . , g(x), . . .) :2: 1: where g is a unary function symbol,
assuming additional restrictions on the positions of linear terms and non—
linear shallow variables in other equations. Obviously, the subterm g(x)
cannot be transformed into a sort declaration. However, we can show that
E-unification in those theories can still be decided by basic sorted paramod-
ulation. The following discussion mainly follows the previous argumentation
on sorted shallow and semi-linear systems. Additionally, we slightly general-
ize the form of invariants of the saturation process. Moreover, our definition
of shallow terms has to be adapted such that not only variables but also
constants as arguments of shallow terms are allowed. In the sequel we will
use this generalized definition of shallow terms.

In order to show that the generalized fragment is still closed under ba-
sic sorted paramodulation we have to treat certain equations which contain
variable disjoint sides carefully, e.g. the equation f (x,y) % 9(2). Equa—
tions of this form cannot be oriented by any admissible ordering and thus
have to be applied in both directions. Saturation may not terminate when
such equations are superposed on subterms of the form g(x) in an equa—
tion f(. . . , g(z), . . .) z x. Arbitrary deep term structures can be generated
by subsequent paramodulation steps. However, it is possible to transform
such equations dynamically during the saturation process. For example, the
equation f(z,y) z g(z) can be transformed into equations f(z,y) z a and
g(z) z a where a is a new constant symbol. As a consequence we have to
show that only a finite number of new symbols can be generated.

Consider the simplest equation x z y. If this equation is derived we can
just stop saturation since the Herbrand universe collapses in this case. For

more complicated sorted equations with variable disjoint sides, eg. S(x) H —+
:c z t and 1: ¢ vars(t), we can only deduce similar information about the
particular sort S. As we have mentioned above a critical situation may come
up when such equations are superposed onto a subterm g(a:). In general,
this may happen using sorted equations of the form S(:r), \II M ——> a: z t or
S(.r), \II [I —> g(r) z t where x a? vars(t). Importantly, equations of the form
‘I/ H —> f1(x1, . . . ,xn) z f2(y1, . . . , ym) where {$1, . . . ,xn}fl{y1, . . . ,ym} = 0
and mm > 1 do not have to be considered. Paramodulation by those
equations onto a subterm 9(a) is not possible.

Consider the transformation of a sorted equation S(x) 1| —> :r = f(y, y)
into two equations S(x) H —> a = a and 5(23) H —) f(y,y) = (1. Such
a transformation step is called splitting. The splitting of similar unsorted
equations has already been used in (Nieuwenhuis 1996). If the constant sym-
bol a is a new symbol splitting clearly preserves (un—)satisfiabi1ity. However,
(un-)satisfiability is also preserved if the constant a is being reused if a has
been introduced before for the same solved sort constraint S (2:)

Splitting terminates for clause sets which contain only finitely many

16

sorts. There are two important observations. For finitely many sorts there
are an exponential number of intersections of sorts. Thus variables can have
only finitely many different sorts. Shallow equations in which both sides
have root symbols with arity greater than one are not split. For if one side
contains a newly introduced constant symbol as an argument splitting would
generate new constant symbols which depend on previously introduced sym-
bols. For example, splitting of a sorted equation S(:1:) II —> f(x, a) = h(y, z)
generates a sorted equation S(x) H —> f (13(1) 2 b where a is a constant
symbols previously introduced by Splitting and b is a new constant symbol.
In this way splitting does not terminate in general.

Despite of the syntactic flavor of splitting we can also motivate it seman-
tically. For the equation S(x) [l —> a: = f(z,z) to become true the sort S
contains at most one element. Splitting introduces an explicit name for this
element, if it exists.

Definition 5.1
Let N be a set of clauses. A splitting step is defined as the transformation
of a clause in N by the rule Splitl or Split2:

\I/H—Hvzt
\II||—>xza
\Illl—Hfza

Splitl

where the sort constraint ‘1! is solved, t is a shallow term, the top symbol
of t is not a unary function symbol, m g vars(t), and if there is a clause
\I! H —> a: z b in N then let a := b or, otherwise, let a be a fresh constant
symbol.

‘I’ll—MIUC)‘:t
‘II|[—>g(x)za
\I’Il —>tza

Split2

where the sort constraint ‘11 is solved, t is a shallow term, g is a unary
function symbol, a: 6 vars(t), and if there is a clause ‘1! [l —> g(x) z b in N
then let a := b or, otherwise, let a be a fresh constant symbol.

Proposition 5.2
Let N be a set of clauses of the following forms:

1. Q!” —>:rzaor

2. ‘11” —>g(m)za

where the sort constraint ‘1! is solved, a is a constant, and g is a unary
function symbol. Then up to different a, variable renaming, and condensing
the set N is finite.

17

Proof. Let n be the number of different monadic predicate symbols and let
m be the number of unary function symbols, occurring in clauses of N. Then
there are 2" different sort constraints on one variable and 0(2") different
sort constraints on several variables up to condensing. Consequently, the
set N contains 0(2") different clauses up to different a, variable renaming,
and condensing. E]

In the following lemma we show that splitting can only be applied finitely
many times. Sorted equations are split only if at least one side is a sorted
variable or a term g(z) where g is unary and a: is a sorted variable. More
complex sorted equations f(sl,...,sn) z h(t1,...,tm) are not Split if f
and h are n—ary functions with n > 1 and the 3, and tj are variables or
constants. Recursive occurrences of formerly introduced constants would
lead to an infinite splitting process. A constant introduced by splitting is
a name for the single element in a particular intersection of sorts on one
variable. In this sense constants are reused by splitting whenever the same
intersection of sorts arises several times. Finally, splitting is applied only to
sorted equations in which both sides are shallow. Obviously, there are only
finitely many different sorted shallow terms over a finite signature.

Lemma 5.3
Let N be a set of clauses over a finite signature 7-". Then splitting can
be applied only finitely many times in any derivation of the basic ordered
paramodulation calculus with splitting.

Proof. Only the splitting rules Splitl and Split2 may introduce new constant
symbols. We assume that all sort constraints are minimal in the sense that
no further condensing is possible. Let C be a clause \11 H —> a: z t from N
where the conditions of Splitl hold for C. Suppose that there is no clause
‘1' [I —> :1: z b in N. In this case Splitl introduces a new constant symbol
a and transforms C to C" = ‘11 H —> a: z a. Note that in general the sort
constraint \II' is not in solved form in C’ anymore since the equation does
not contain the variables of t. Suppose the sort constraint of C’ has been
simplified to ‘II’ where \II’ does not need to be in solved form. The constant a
may be viewed as a label for \I/’ , not for ‘11. Thus in a subsequent application
of Splitl to a clause ‘11 H —> :r z t’ a new constant has to be introduced.
However, an application of Splitl to a clause \II' M —> a: z t’ can reuse the
constant a. By Proposition 5.2 there are only finitely many clauses of the
form ‘1! H —> x z (1. Thus Splitl introduces only finitely many new constant
symbols. Note that there are only finitely many different sorted shallow
terms over a finite signature up to variable renaming and condensing. Thus
Splitl can even be applied only finitely many times. The proof for Split2 is
similar. D

18

Lemma 5.4
Let N and N’ be two sets of clauses. The set N’ is the result of a trans-
formation of N by the rules Splitl and Split2. Then N is satisfiable if and
only if N’ is satisfiable.

Proof. Let N be a set of clauses and let C be the clause \I/ H —> a: z t in N
where the conditions of Splitl hold for G. Let C’ and D be the conclusions
\I/ H —> (c z a and ‘11 H -—> t z a, respectively, of an application of Splitl to
0. Let N’ be the set {N \ C} u {C’,D}.

Suppose I is a model of N. If there is no clause ‘11 H —> x 5:: b in N
then a is a fresh constant symbol and we may construct I’ by adding, for all
ground substitutions a such that ‘110 Q I, the ground instances aw z a and
to z a to I. Note that for any ground substitution 0‘ with \Ilo Q I we have
that 1:0 = to is true in I since C is true in I. Thus I’ is a model of N’.

Let C” be a clause \I’ H —> x z b in N. In this case a has been chosen to
be equal to b. Since G” is true in I the clause C" is also true in I. To show
that D is true in I we distinguish two cases. Suppose that a is a ground
substitution where ‘110 Q I. Then :30 z to E I and war a b E I since C and
C” are true in I, respectively. By the transitivity of a: we have that to z b
and thus D0 are true in I. On the other hand, suppose that for a ground
substitution 0 there is a sort constraint A E \II where A0 6,? I. Then D0 is
also true in I. Consequently, I is a model of N’.

The other direction follows immediately since C is a consequence of a
(sound) paramodulation step on a in C” to t using D. The proof for Split2
is similar. E]

Note that we can also show that splitting is monotone in the sense that
the conclusions are always smaller then the premise assuming that con-
stant symbols are smaller in the precedence than any non-constant function
symbol. Suppose the potential splitting candidate S(x),\Il H —> a: z t is
transformed using the constant symbol a. Then all instances of the premise
where x is substituted by a constant b and b is smaller than a have to be
added. Similarly, for a splitting candidate S(z), \II M -—> g(a:) z t where t is a
variable all instances with t substituted by a constant b have to be enumer—
ated. We may assume that there are only finitely many constants b which
are smaller than 0.. Under these assumptions splitting remains effective and
is an admissible simplification rule, of. (Bachmair et al. 1995).

Lemma 5.5
The combination of the basic ordered paramodulation calculus with splitting
is sound and refutationally complete assuming a finite signature f.

Proof. By Lemma 5.4 splitting preserves (un-)satisfiability. We may addi-
tionally assume that splitting is an admissible simplification rule in the sense

19

of Bachmair et a1. (1995), see the discussion above. Due to Lemma 5.3 Split—
ting can be applied only finitely many times and thus fairness is not affected.
Consequently, the lemma follows from the soundness and refutational com-
pleteness of basic ordered paramodulation. I]

We call an equation f(t1, . . . ,tn) z a: semi-shallow if for all 2' with 1 g
2' S n the term t,- is either a variable or the term g(:c) where g is a unary
function symbol. Thus several occurrences of 9(a) are possible. If there
is any g(:c) among the t,- then all other tj which are variables are distinct
from ac. A sorted equational theory is called semi-shallow if all declarations
are shallow and all equations are either shallow or semi-shallow where each
semi—shallow equation f (t1, . . . ,tn) z a: contains at most one it,- of the form
9(3). An equation is called collapsing if at least one side of the equation is
a variable. Otherwise, the equation is called non-collapsing.

We assume that equality constraints are propagated eagerly into the
clause part unless a semi-shallow equation is generated. For example,
a clause S(2:) [l —> :c z yflx = g(y)]] is transformed into S(g(y)) l] —>
g(y) z yflTfl whereas a clause S(x) H -+ f(:z:) z yflx = g(y)]] is transformed
into S(g(y)) ll —> f(x) 2: y[[x = g(y)]]. The constraint propagation corre—
sponds to a weakening of the equational constraint which is always possible,
of (Nieuwenhuis & Rubio 1995).

Note that in the following lemma we do not explicitly include constants
as arguments of shallow terms in the definition of the invariant, although
constants may also occur in this way during saturation. However, as long as
constants are the smallest symbols in the precedence, constants can only be
replaced by constants using paramodulation. Therefore, we skip this case
to simplify technical matters.

Lemma 5.6
Sorted semi-shallow equational theories over a finite signature .7: can be
finitely saturated by basic sorted paramodulation and splitting.

Proof. The closure process is parameterized by a simplification ordering
>— on terms assuming that the precedence >1, is compatible with arities,
i.e. whenever the arity of a function symbol f is greater than the arity of
a function symbol 9 then f >p 9. Note that therefore constants are the
smallest symbols in the precedence. Additionally, we assume that splitting
is done with the highest priority, i.e. a sorted equation is always split if
possible before any other rule is applied to this equation.

We show that saturation under basic sorted paramodulation with Split-
ting is closed for sets of clauses of the following forms:

1. 51(5),...,Sn(s),T1(t),...,Tm(t),\Il|| —> A[[T]] where n, m are possi-
bly zero, \I/ is solved, A is either a monadic atom P(t’) or an equation
I z r, and s, t, t’, l, and 7‘ are always shallow terms.

20

2. \II M —> f(:c1,...,g(a:),...,xn) 2: rflTfl where n is possibly zero, \II is
solved, 9 is a unary function symbol, and g(x) occurs only once.

3- T1(t),---,Tn(t)a‘1’|| —* f($1a~-,$m) % xlxii =9($),---,$ik =9($)l
where n and m are possibly zero and k > 0, \II is solved, 9 is a unary
function symbol, 15 ¢ {9:1, . . . ,zm}, and t is a shallow term.

Each clause of the original theory belongs to Category 1 or Category 2 and
has a solved sort constraint. The predicates in these clauses are all predicates
of the original theory.

Assuming a finite signature there is only a bounded (with respect to
the theory) number of clauses which belong to each of the three categories
because the depth of all these clauses as well as the length of variable chains
between its literals is bounded. Hence, there are only finitely many different
clauses of this form with respect to subsumption and condensing, see Sec—
tion 2. If the saturation process produces only clauses of this form, it will
terminate.

If a rule in Category 1, 2, or 3 has unsolved sort constraints then we
can perform a basic sort constraint resolution inference. The result is a
clause of the same category. Otherwise, there are several ways to apply
basic paramodulation right on clauses with solved sort constraints:

1. The basic paramodulation right of a clause 01 in Category 1 on a
clause 02 in Category 1 results in a clause Cg of the same category
shown in the proof of Lemma 3.10. Note that this result still holds
for the extended definition of shallow terms since constants are the
smallest symbols in the precedence.

2. The basic paramodulation right of a clause 01 in Category 1 on a
clause 02 in Category 2 results in a clause 03 of:

(a) Category 3 if Cl contains a non-collapsing equation and is applied
at topmost position.

(b) Category 2 if Cl is a non—collapsing sorted equation 6-) H —> g(:r) z
h(x)[[T]] and is applied on non-topmost position. Note that an
equation of the form f(sl, . . . ,x, . . . , 3k) z g(a:) where k > 1
cannot be applied because it is always oriented from left to right
due to the assumption that the precedence >—p is compatible with
the arity of function symbols.

(c) Category 1 if 01 is a sorted equation 9“ —> g(a:) z t[[T]] or
G |[——> :c z t[[T]] where :c 95 vars(t) and is applied at non-topmost
position. Splitting ensures that t is always a constant. Note that
the equation in Cg may contain constants as arguments. However,
we do not consider this case explicitly here to simplify technical
matters. Informally, constants can only be paramodulated to

21

other constants since constant symbols are assumed to be the
smallest symbols in the precedence. Thus constants are similar
to variables in this case.

(d) Category 1 if C1 contains a collapsing equation, regardless of
topmost or non-topmost application.

3. The basic paramodulation right of a clause C1 in Category 2 on a
clause Cg in Category 1 results in a clause C3 of:

(a) Category 3 if Cg contains a non-collapsing equation. If the equal—
ity constraint can be propagated without getting a semi-shallow
equation then 03 belongs to Category 1.

(b) Category 1 if Cg contains a collapsing equation or a sort declara-
tion.

4. The basic paramodulation right of a clause 01 in Category 2 or 3
on a clause Cg in Category 2 or 3 results in a clause C3 of Cate-
gory 1. Note that if both C1 and Cg belong to Category 2 then two
different non-variable terms may occur in the sort constraint of the re-
sulting clause C3 of Category 1. For example, if 01 = Sl(y)]| —->
f(g(x),y) x mm and 02 = 5m H —> mm» e um then
03 = 31(h(u)),Sg(g(a:)) H -—> u z: xflTfl. Note that C3 will be split
if the sort constraint of C3 is solvable. Another example explains
the restriction of semi-shallow theories where only one occurrence
of a term g(:c) is allowed in each semi-shallow equation. Suppose
01 = n a merge» :2 mm and 02 = II a g<h<y>> x mm]
where 01 is obviously semi-shallow but is not allowed in the original
clause set. Then we may derive 03 = I] —) f(y,g(h(y))) z h(y)[[T]]
which is also not semi-shallow.

5. The basic paramodulation right of a clause 01 in Category 3 on a
clause Cg in Category 1 or vice versa results in a clause Cg of:

(a) Category 3 if Cg contains a non-collapsing equation. If the equal-
ity constraint can be propagated without getting a semi-shallow
equation then C3 belongs to Category 1.

(b) Category 1 if Cg contains a collapsing equation or a sort declara-
tion.

It is important to see that clauses of Category 3 which contain several oc—
currences of a subterm g(x) appear only during the saturation process. The
occurrences of the g(:c) in those clauses are blocked due to basic restrictions.
In other words, a paramodulation step on a subterm g(x) is only possible in
clauses of Category 2. Those clauses either belong to the original theory or
are conclusions of case 2b. El

22

Lemma 5.7
Unifiability with respect to finitely saturated sorted semi-shallow equational
theories is decidable.

Proof. The result follows from the proof of Lemma 3.13 which can easily be
extended to sorted semi-shallow equational theories. D

We call an equation f(t1,...,tn) z :c semi-standard if f(t1,...,tn) is
semi-linear and moreover, there is one unary symbol 9 such that for all ti
with a: 6 vars(ti) we have that ti = g(a:). An equational theory E is called
semi-standard if E only contains semi—linear equations or semi-standard
equations of the form f (t1, . . . ,tn) z x where only one t1- can be of the form

9(x)~
Note that similar to the semi-linear case a semi-standard equational the-

ory can be transformed into a sorted semi-shallow equational theory while
satisfiability is preserved. The transformation procedure of a semi-linear the-
ory into a sorted shallow system due to Lemma 4.2 can easily be extended
to work also for semi-standard theories.

It is sufficient for this purpose to leave the occurrences of subterms of
the form g(:c) untouched during the transformation. The transformation
is performed by using the following rules for the transformation of (sorted)
equations and declarations. Since there are no equality constraints in clauses
of the original theory we use the standard clause notation.

Definition 5.8
The following transformation is called semi-flattening:

‘1’,51($1),---75m($m)|| *Altlpl

T(x), ‘II |[——> A[p1, . . . ,pn/x]

provided t is a non—variable subterm, x1- 6 vars(t) for all i, vars(\Il) fl
vars(t) = 0, WI = 2 for all i, the positions p1,...,pn refer to all posi-
tions q of t in A with |q| = 2, T is a new monadic predicate, a: is new to the
replaced clause, and if A is a semi-standard equation 5 z y then y does not
occur in t.

Red

Lemma 5.9
Exhaustive application of the transformation presented in Definition 5.8 to
a semi—standard equational theory terminates, it results in a sorted semi-
shallow equational theory and it preserves satisfiability.

Proof. The transformation procedure is almost the same as the one of
Definition 4.1 where an occurrence of 9(2) in a semi-standard equation
f (. . 7g(:z:),...) z a: is left untouched. Consequently, the transformation
terminates and preserves satisfiability, c.f. Lemma 4.2. D

23

Theorem 5.10
Unifiability in semi-standard equational theories is decidable.

Proof. By Lemma 5.9 we can translate E into a sorted semi-shallow equa—
tional theory while satisfiability is preserved. Now by Lemma 5.6 such a the-
ory can be effectively saturated by basic sorted paramodulation and split—
ting. Due to Lemma 5.7 unifiability is decidable with respect to finitely
saturated sorted semi-shallow equational theories. [3

6 Limitations and Related Work

6. 1 Limitations

We present a generalization of semi-linear equational systems which cannot
be treated with the methods of Sections 3.3 and 4.

The combination of associativity for one function symbol and a linear (!)
shallow sort theory already yields an undecidable unification problem. This
can be seen by a reduction of the emptiness of the intersection of context
free languages to this problem.

Also, if the syntactic conditions in the definition of semi-linear systems
are weakened, then unifiability becomes undecidable. A notion of pseudo-
lz'near sort theories is introduced in (Weidenbach 1996) as a generalization of
semi-linear sort theories in which unification is still decidable. However, our
saturation method does not permit to solve unification in the corresponding
pseudo-linear equational theories. These theories generalize sorted semi-
linear equational theories in a way that multiple occurrences of a variable
in an equation are allowed, provided they are all at the same depth. For
instance, every semi-linear theory is pseudo-linear, f (h(:c), g(a:)) z g(g(z))
and m(h(:::)7 g(a:),y) z y are pseudo-linear equations which are not semi—
linear and f (h(:c), g(x)) z 9(3) is not pseudo—linear.

Proposition 6.1
The word problem for pseudo-linear equational theories is undecidable. Even
for theories in which all symbols are unary (string equational systems), and
equations are ground or have one of the forms a(b(x)) z c(d(z)) or a(ac) = t
and t is ground.

This kind of theory is close to the simplest case of pseudo-linear non-shallow
equational system. The Proposition 6.1 characterizes a gap between semi—
linear and pseudo-linear systems with respect to the transformation pre—
sented in Section 4.

Proof. (proposition 6.1) We reduce the Turing machine blank accepting
problem. Let M be a Turing machine with input alphabet {0,1,3}
(B is the blanc symbol), with states set Q and with transition function

24

6 : {0, LB} x Q —> {0,1,3} x Q X {Left,Right}. Note that we do not use
marker symbols. The B will actually replace the markers. We make the
following non-restrictive assumptions concerning M:

1. M is deterministic (i.e. 6 is indeed functional);

2. The tape of M has always the form of a word of B°°{0, 1}*B°° during
computations (B°° represents an infinite sequence of blanc symbols);

3. M starts its computations in the state gm 6 Q;

4. M always stops its successful computations by cleaning (replacing by
B) all the non-B symbols of the tape and then goes to the unique final
state qf;

5. Moreover, we assume that no move is possible if M is in state qf;

To ensure that M does not violate the condition 2, we can add to M the
ability to make few moves close to the position of the head (while letting the
symbols on tape untouched) in order to check a replacement of an B by a 0
or an 1 or vice-versa is conform to condition 2. Lets consider the following
alphabets:

AM={e,o,1,B}L+J{0,[q}L+J{1q|q}L+J{Bqlq}

A=AMLTJ{T,TI}

All symbols of A have arity 1 except 6 which is a constant. For sake of sim-
plicity, we note alaz . . . an(e) (or alaz . ..an(x), x E X) for a1(a2(. . .an(e)))
(resp. a1(a2(. . . an(x)))). As usual, we make no distinction between a word
aoal ...an E (A \ {6})* and the ground term a1(a2(. . .an(e))) E T(A). In
particular, we may use regular expressions (star notation) to design subsets
of T(A).

The configurations of M will be represented by words of B*AjV,B*. The
aim of symbols of the form Oq, 1,1 or Bq is to represent both the state and
the position of the head of M in a configuration. More precisely, assume
that M is in state q and has B°°a1...anB°° on the tape and its head
is at position i g n. Then we represent this configuration by a word of
B*a1a2...a,-_1aqai+1...anB*, where a = (11-.

In a first step in the reduction of the blank accepting problem for M, we
construct a term rewriting system (TRS) ’R, instead of an equational system.
In the next step the rewrite rules of R will be unoriented.

A (pseudo-linear) sub—system of R called RM is associated to the tran—
sition rules of M. It is defined on AM in the following manner: for each
(a,q) 6 {0,1,3} x Q,

o If 6(a,q) = (b,q’,Left), then
RM 3 a’aq(:c) —> a;,b(w) for every (1’ E {0,1,B}

25

o If 6(a,q) = (b, q',Right), then
”RM 3 aqa'(:c) —> ba;,(a:) for every (1’ 6 {0,1,3}.

Lemma 6.2
M accepts a blank tape B°° iff {v E B*qB* 1 Eu E B*qnB*, ufiw} #
0

The words of B*qB* are generated from T(e) by the ground TRS R1.

7?. _ T(e) —> BT(6) T(e) —> qnT’(e)
1‘{ T’(e) —> BT’(e) T'(e) —> 0(5) }

The third shallow TRS R2 reduces a ground term of B*qB*C to q(e)

R2 = {q(96) —> Bank) Bq(x) -> Bq:(€)}
Let R =R1 URM UR}

Lemma 6.3
The Turing machine M accepts a blank tape iff T(e) %>q(€).

Proof. By construction of R1 and R2 and by Lemma 6.2, the existence of
a rewriting sequence of the form T(e)—7—z*—1—>uR—:4+v%2>3qf(e) (with u,v 6
T(A)) is equivalent of the blank accepting for M.

Also, any rewriting T(e)7"‘z—>q(e) can be transformed into a sequence
of the above form by permutations. Indeed, ’R, has no critical pairs by
hypothesis on M (Hypothesis 5) and by construction of RM; D

We let E = {I z r [l -—> r E ’R}. Since 7?, has no critical pairs and q(e)
is an R-normal-form, we have:

Lemma 6.4
The Turing machine M accepts a blank tape iff T(e) @qe).

C]

Note that this reduction also proves that ((3*?))(L) is not necessarily recog-
nizable when L is recognizable and E is a pseudo-linear equational system.

A reduction of the blank accepting problem to a unifiability problem
for a pseudo-linear string equational system in which all equations have the
form a(b(x)) z c(d(:c)) (no ground equations) is also possible. Note that the
word problem in such a system is decidable, since equations of the above
type are length—preserving.

26

6.2 Related Work

Oyamaguchi (1990) shows that the word problem for right-ground TRS is
undecidable whereas the word problem in left-linear and right-ground TRS
is decidable in polynomial time. In the undecidability proof for right-ground
systems rewrite rules which simulate a transition of one configuration to the
next contain non-linear variable occurrences at different depth. Note that
non—linear variable occurrences at different depth are excluded from semi—
linear systems.

Fassbender & Maneth (1996) investigate decidability of E-unification in
theories induced by TRS called top-down tree transducers. Syntactic restric-
tions based on separated function and constructor alphabets are assumed.
E-unification in top—down tree transducers with only one function symbol
in the alphabet is shown to be decidable. Due to the constructor-based re-
strictions the results are difficult to compare to semi-linear theories. Otto,
Narendran & Dougherty (1995) show that E-unification is decidable in equa-
tional theories axiomatized by monadic, confluent string-rewriting systems.

Kaji et al. (1997) show the recognizability of the right-closure of a certain
class of right-linear, confluent TRS applied to a linear term. The variables
occurring both in the left and right hand side of a rule I —+ r are assumed to
be linear in l and, moreover, l and the subterms of r are related by additional
restrictions which can be effectively computed. The techniques presented
in Subsection 3.1 provide a decision method for some restricted unifiabil-
ity problems modulo the above systems. Actually, the problem addressed
in (Kaji et al. 1997) is more general because they deal with “constrained
substitutions” which range in some recursively defined (recognizable) set of
terms.

Comon et al. (1994) investigate the properties of non-linear shallow the—
ories which are an instance of semi-linear equational theories. Shallow pre-
sentations can be transformed into equivalent cycle-syntactic presentations
for which decidability of unification has been shown. The first—order theory
of the quotient algebra T(F)/=E is also shown to be decidable where F is
finite and E is shallow. However, the proof techniques are entirely different
to our approach.

Nieuwenhuis (1996) generalizes the result of Comon et al. (1994) to
so—called standard theories. Standard theories extend non—linear shallow
theories in a way that non-ground terms containing linear (non-significant)
variables are allowed in certain restricted positions in both sides of the equa-
tions. An equation f(sl, . . . 7sn) = g(t1, . . . ,tm) may contain linear terms
51-, respectively ti, where all other equations with top symbol f, respectively
g, must have linear terms in position i. Non-linear variable occurrences are
limited to shallow positions 4. The saturation-based methods are closely re-
lated to our work. The decidability results are also obtained by termination

4Another extension included in standard theories is discussed in Section 5.

27

analyses of saturation under basic superposition.
Limet & Réty (1997) show the decidability of E-unification in theories

represented by a particular class of confluent, constructor-based TRS. The
set of possibly infinite solutions is represented by Tree Tuple Synchronized
Grammars. A TRS is transformed into such a grammar which then simulates
narrowing. The additional restrictions on the TRS are purely syntactic.
However, semi-linear systems are difficult to compare to the constructor—
based systems in this approach.

7 Conclusions and Future Work

We have shown that unifiability modulo a sorted shallow equational theory
is decidable by means of saturation methods under sorted superposition.
With the help of a transformation procedure this result extends to (sorted)
semi-linear equational theories. Our result strictly extends previous work
concerning shallow theories by Comon et a1. (1994). It can be obviously
extended into sorted equational theories and also into a generalization of
Nieuwenhuis (1996). However, we currently do not have any complexity
results concerning the decision procedure or the number of generated mgus.
The presented theory is already included in the first-order theorem prover
SPASS (Weidenbach 1997, Weidenbach et a1. 1998) that can be used for
experiments with respect to the presented results.

Let us conclude with another possible improvement of this work. Sorted
shallow equational theories generalize Rec: tree automata. To subsume the
whole class Rec¢ (Bogaert & Tison 1992), it is necessary to add syntactic
disequations to clauses while preserving decidability results concerning mem—
bership and emptiness problems. This may have interesting applications in
call-by-need normalization strategies for TRS. Durand & Middeldorp (1997)
use tree automata techniques both to apply a call-by-need strategy based on
the detection of needed redexes and to characterize the class of rewrite sys-
tems for which it is effective. The key idea is, given a rewrite system R, to
recognize the closure (7‘59)(NFS) by 8 of the set of ground S-normal-forms,
where S is a certain approximation of ’R. If we approximate 7?, into a non-
linear shallow system S, the above set could be a recognized sorted shallow
equational theory with syntactic disequalities, generalizing Rec¢ automata.
Thus, with the appropriate extension of the theory of needed—redexes, more
general call-by-need normalization strategies for some classes of non-linear
rewrite systems could be obtained.

References

Bachmair, L., Ganzinger, H., Lynch, C. & Snyder, W. (1995), ‘Basic
paramodulation’, Information and Computation 121(2), 172—192.

28

Bogaert, B. 81, Tison, S. (1992), Equality and disequality constraints on di—
rect subterms in tree automata, in A. Finkel & M. Jantzen, eds, ‘Pro—
ceedings of 9th Annual Symposium on Theoretical Aspects of Computer
Science, STACSQ2’, Vol. 577 of LNCS, Springer, pp. 161—171.

Comon, H. (1995), Sequentiality, second order monadic logic and tree au-
tomata, in ‘Proceedings 10th IEEE Symposium on Logic in Computer
Science, LICS’95’, IEEE Computer Society Press, pp. 508—517.

Comon, H., Haberstrau, M. & Jouannaud, J.—P. (1994), ‘Syntacticness,
cycle—syntacticness and shallow theories’, Information and Computa-
tion 111(1), 154 —191.

Dershowitz, N. & Jouannaud, J.-P. (1990), Rewrite systems, in J. van
Leeuwen, ed., ‘Handbook of Theoretical Computer Science’, Vol. B,
Elsevier Science Publishers, chapter 6, pp. 243—320.

Durand, I. & Middeldorp, A. (1997), Decidable call by need computations
in term rewriting (extended abstract), in W. McCune, ed., ‘Automated
Deduction — CADE-14, 14th International Conference on Automated
Deduction’, LNCS 1249, Springer—Verlag, Townsville, North Queens-
land, Australia, pp. 4—18.

Fassbender, H. & Maneth, S. (1996), A strict border for the decidability
of E-unification for recursive functions, in M. Hanus & M. Rodriguez—
Artalejo, eds, ‘Algebraic and Logic Programming (ALP-5) : 5th inter-
national conference, Aachen, Germany, September 25-27, 1996’, Vol.
1139 of Lecture notes in computer science, Springer, Berlin.

Fruhwirth, T., Shapiro, E., Vardi, M. & Yardeni, E. (1991), Logic programs
as types of logic programs, in ‘Proc. 6th Symposium on Logics in Com—
puter Science (LICS)’, pp. 300—309.

Ganzinger, H., Meyer, C. & Weidenbach, C. (1997), Soft typing for or-
dered resolution, in ‘Proceedings of the 14th International Conference
on Automated Deduction, CADE-14’, Vol. 1249 of LNAI, Springer,
Townsville, Australia, pp. 321—335.

Jacquemard, F. (1996), Decidable approximations of term rewriting sys-
tems, in H. Ganzinger, ed., ‘Rewriting Techniques and Applications,
7th International Conference, RTA-96’, Vol. 1103 of LNCS, Springer,
pp. 362—376.

Jacquemard, F., Meyer, C. & Weidenbach, C. (1998), Unification in ex-
tensions of shallow equational theories, in T. Nipkow, ed., ‘Rewriting
Techniques and Applications, 9th International Conference, RTA—98’,
Vol. 1379 of LNCS, Springer, pp. 76—90.

29

Jouannaud, J .-P. & Kirchner, C. (1991), Solving equations in abstract al-
gebras: A rule—based survey of unification, in J. Lassez & G. Plotkin,
eds, ‘Computational Logic, Essays in Honor of Alan Robinson’, MIT
Press, chapter 8, pp. 257—321.

Joyner Jr., W. H. (1976), ‘Resolution strategies as decision procedures’,
Journal of the ACM 23(3), 398—417.

Kaji, Y., Toru, F. & Kasami, T. (1997), ‘Solving a unification problem under
constrained substitutions using tree automata’, Journal of Symbolic
Computation 23, 79—117.

Kirchner, C. (1986), Computing unification algorithms, in ‘Proceedings of
the First Symposium on Logic in Computer Science’, Cambridge, Mas-
sachusetts, pp. 206—216.

Kozen, D. (1981), ‘Positive first order logic is NP-complete.’, IBM Journal
of Res. Develop. 25(4), 327—332.

Limet, S. & Réty, P. (1997), E—unification by means of tree tuple syn-
chronized grammars, in M. Bidoit 85 M. Dauchet, eds, ‘TAPSOFT
’97: Proceedings of the Seventh Joint Conference on Theory and
Practice of Software Development, 7th International Joint Conference
CAAP/FASE, Lille, France’, Vol. 1214, Springer-Verlag, Lille, France.

Nieuwenhuis, R. (1996), Basic paramodulation and decidable theories (ex—
tended abstract), in ‘Proceedings 11th IEEE Symposium on Logic in
Computer Science, LICS’96’, IEEE Computer Society Press, pp. 473—
482.

Nieuwenhuis, R. 85 Rubio, A. (1995), ‘Theorem proving with ordering
and equality constrained clauses’, Journal of Symbolic Computation
19, 321—351.

Otto, F., Narendran, P. & Dougherty, D. J. (1995), Some independence re—
sults for equational unification, in J. Hsiang, ed., ‘Rewriting Techniques
and Applications, 6th International Conference, RTA—95’, LNCS 914,
Springer—Verlag, Kaiserslautern, Germany, pp. 367—381.

Oyamaguchi, M. (1990), ‘On the word problem for right—ground term—
rewriting systems’, The Transactions of the IEICE 73(5), 718—723.

Seidl, H. (1994), ‘Haskell overloading is DEXPTIME—complete’, Information
Processing Letters 52(2), 57—60.

Weidenbach, C. (1996), Computational Aspects of a First—Order Logic with
Sorts, Dissertation, Technische Fakultat der Universitat des Saarlandes,
Saarbriicken, Germany.

30

Weidenbach, C. (1997), ‘Spass version 0.49’, Journal of Automated Reason-
ing 18(2), 247—252.

Weidenbach, C. (1998), Sorted unification and tree automata, in W. Bibel &
P. H. Schmitt, eds, ‘Automated Deduction - A Basis for Applications’,
Vol. 1 of Applied Logic, Kluwer, chapter 9, pp. 291—320.

Weidenbach, C., Meyer, 0., Cohrs, C., Engel, T. & Keen, E. (1998), ‘Spass
v0.77’, Journal of Automated Reasoning 21(1), 113~113.

31

3i
INFORMATIK

Below you find a list of the most recent technical reports of the Max—Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp .mpi-sb .mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http: //www.mpi-sb .mpg.de. If you have any
questions concerning ftp or W access, please contact reportspi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e—mail at the address below.

Max-Planck-Institut fiir Informatik
Library
attn. Birgit Hofmann
Im Stadtwald
D-66123 Saarbriicken
GERMANY
e-mail: librarmpi-sb .mpg . de

MPI-I—98—2-018

MPI—I-98-2-017

MPI-I-98-2-014

MPI-I-98-2-013
MPI—I-98-2-012

MPI-I-98-2-011

MPI—I—98-2-010

MPI-I—98-2-009

MPI—I-98-2-008

MPI—I-98-2-007

MPI-I-98-2-006
MPI-I—98—2-005

MPI-I-98—2—004

MPI-I—98-2-OO3

MPI—I-98-1-030

MPI—I-98-1-029

MPI-I-98-1-028

MPI—I-98—1-027

MPI-I-98-1-026

MPI-I-98-1-025

MPI-I—98-1-024

MPI—I—98—1-023

F. Eisenbrand

M. Tzakova, P. Blackburn

Y. Gurevich, M. Veanes

H. Ganzinger, F. Jacquemard, M. Veanes

G. Delzanno, A. Podelski

A. Degtyarev, A. Voronkov

S. Ramangalahy

S. Vorobyov

S. Vorobyov

S, Vorobyov

P. Blackburn, M. Tzakova

M. Veanes

S. Vorobyov

R.A. Schmidt

H. Bronniman, L. Kettner, S. Schirra,
R. Veltkamp

P. Mutzel, R. Weiskircher

. Crauser, K. Mehlhorn, E. Althaus,

. Brengel, T. Buchheit, J. Keller,

. Krone, O. Lambert, R. Schulte,
Thiel, M. Westphal, R. Wirth

. Burnikel

7,:
0

m
ax

»

Jansen, L. Porkolab

F Jansen, L. Porkolab

S. Burkhardt, A. Crauser, P. Ferragina,
H. Lenhof, E. Rivals, M. Vingron

C. Burnikel

A Note on the Membership Problem for the First
Elementary Closure of a Polyhedron

Hybridizing Concept Languages

Partisan Corroboration, and Shifted Pairing

Rigid Reachability

Model Checking Infinite-state Systems in CLP

Equality Reasoning in Sequent-Based Calculi

Strategies for Conformance Testing

The Undecidability of the First-Order Theories of One
Step Rewriting in Linear Canonical Systems

AE-Equational theory of context unification is
Co—RE-Hard

The Most Nonelementary Theory (A Direct Lower
Bound Proof)

Hybrid Languages and Temporal Logic

The Relation Between Second-Order Unification and
Simultaneous Rigid E~Unification

Satisfiability of Functional+Record Subtype
Constraints is NP-Hard

E-Unification for Subsystems of S4

Applications of the Generic Programming Paradigm in
the Design of CGAL

Optimizing Over All Combinatorial Embeddings of a
Planar Graph

On the performance of LEDA-SM

Delaunay Graphs by Divide and Conquer

Improved Approximation Schemes for Scheduling
Unrelated Parallel Machines

Linear-time Approximation Schemes for Scheduling
Malleable Parallel Tasks

q-gram Based Database Searching Using a Sufi-ix Array
(QUASAR)
Rational Points on Circles

MPI-I—98-1-022
MPI-I—98-1-021

MPI-I-98-1-020

MPI-I—98—1-019

MPI-I-98-1-018

MPI-I-98—l-017

MPI-I—98-1-016

MPI-I-98—1-015

MPI-I-98-1-014

MPI-I—98-1-013

MPI—I-98-1-012

MPI—I-98-l-01 1

MPI-I—98-1-010

MPI—I-98-1-009

MPI-I—98-l-008

MPI-I-98-1-007

MPI—I-98—1-006

MPI—I-98-1-005

MPI-I-98-1-004

MPI-I—98-1-003

MPI—I-98-1-002

MPI-l-98-1-001

MPI-I-97-2-012

MPI-I-97-2-011

MPI‘I-97-2-010

MPI-I-97—2-009
MPI-I-97-2-008

MPI-l—97-2-007

MPI—I—97—2-006

MPI-I-97-2-005

MPI—I-97-2-004

MPl-I-97-2-003

MPI—I—97-2-002

C. Bumikel, J. Ziegler

S. Albers, G. Schmidt

C. Riib

D. Dubhashi, D. Ranjan
A. Crauser, P. Ferragina, K. Mehlhorn,
U. Meyer, E. Ramos

P. Krysta, K. Lorys

M.R. Henzinger, S. Leonardi

U. Meyer, J.F. Sibeyn

G.W. Klau, P. Mutzel

S. Mahajan, E.A. Ramos,
K.V. Subrahmanyam

G.N. Frederickson, R. Solis-Oba

R. Solis-Oba

D. Frigioni, A. Marchetti-Spaccamela,
U. Nanni

M. Jiinger, S. Leipert, P. Mutzel

A. Fabri, G. Giezeman, L. Kettner,
S. Schirra, S. Schonherr

K. Jansen

K. Jansen

S. Schirra

S. Schirra

G.S. Brodal, M.C. Pinotti

T. Hagerup

L. Bachmair, H. Ganzinger, A. Voronkov

L. Bachmair, H. Ganzinger

S. Vorobyov, A. Voronkov

A. Bockmayr, F. Eisenbrand

A. Bockmayr, T. Kasper

P. Blackburn, M. Tzakova

S. Vorobyov

L. Bachmair, H. Ganzinger

W. Charatonik, A. Podelski

U. Hustadt, R.A. Schmidt

R.A. Schmidt

Fast Recursive Division

Scheduling with Unexpected Machine Breakdowns

On Wallace’s Method for the Generation of Normal
Variates

2nd Workshop on Algorithm Engineering WAE ’98 —
Proceedings

On Positive Influence and Negative Dependence

Randomized Extemal-Memory Algorithms for Some
Geometric Problems

New Approximation Algorithms for the Achromatic
Number

Scheduling Multicasts on Unit-Capacity Trees and
Meshes

Time-Independent Gossiping on Full—Port Tori

Quasi-Orthogonal Drawing of Planar Graphs

Solving some discrepancy problems in NC*

Robustness analysis in combinatorial optimization

2-Approximation algorithm for finding a spanning tree
with maximum number of leaves

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

A Note on Computing a Maximal Planar Subgraph
using PQ-Trees

On the Design of CGAL, the Computational Geometry
Algorithms Library

A new characterization for parity graphs and a coloring
problem with costs

The mutual exclusion scheduling problem for
permutation and comparability graphs

Robustness and Precision Issues in Geometric
Computation

Parameterized Implementations of Classical Planar
Convex Hull Algorithms and Extreme Point
Compuations

Comparator Networks for Binary Heap Construction

Simpler and Faster Static ACo Dictionaries
Elimination of Equality via Transformation with
Ordering Constraints

Strict Basic Superposition and Chaining

Complexity of Nonrecursive Logic Programs with
Complex Values

On the Chvatal Rank of Polytopes in the 0/1 Cube
A Unifying Framework for Integer and Finite Domain
Constraint Programming

Two Hybrid Logics

Third-order matching in /\ —>-Curry is undecidable

A Theory of Resolution

Solving set constraints for greatest models

On evaluating decision procedures for modal logic

Resolution is a decision procedure for many
propositional modal logics

