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Abstract

We consider the two-dimensional compaction problem for orthogonal grid
drawings in which the task is to alter the coordinates of the vertices and
edge segments while preserving the shape of the drawing so that the total
edge length is minimized. The problem is closely related to two—dimensional
compaction in VLSI-design and is conjectured to be NP-hard.

We characterize the set of feasible solutions for the two—dimensional com-
paction problem in terms of paths in the so—called constraint graphs in z—
and y-direction. Similar graphs (known as layout graphs) have already been
used for one-dimensional compaction in VLSI-design, but this is the first time
that a direct connection between these graphs is established. Given the pair
of constraint graphs, the two—dimensional compaction task can be viewed as
extending these graphs by new arcs so that certain conditions are satisfied
and the total edge length is minimized. We can recognize those instances
having only one such extension; for these cases we can solve the compaction
problem in polynomial time.

We have transformed the geometrical problem into a graph-theoretical
one which can be formulated as an integer linear program. Our computational
experiments have shown that the new approach works well in practice. It is
the first time that the two—dimensional compaction problem is formulated as
an integer linear program.



1 Introduction

The compaction problem has been one of the challenging tasks in VLSI-
design. The goal is to minimize the area or total edge length of the circuit
layout while mainly preserving its shape. In graph drawing the compaction
problem also plays an important role. Orthogonal grid drawings, in par-
ticular the ones produced by the algorithms based on bend minimization
(e.g., [Tam87, FK96, KM98]), suffer from missing compaction algorithms.
In orthogonal grid drawings every edge is represented as a chain of hori-
zontal and vertical segments; moreover, the vertices and bends are placed
on grid points. Two orthogonal drawings have the same shape if one can
be obtained from the other by modifying only the lengths of the horizontal
and vertical segments without changing the angles formed by them. The or-
thogonal drawing standard is in particular suitable for Entity—Relationship
diagrams, state charts, and PERT-diagrams with applications in data bases,
CASE-tools, algorithm engineering, work—flow management and many more.

So far, in graph drawing only heuristics have been used for compacting
orthogonal grid drawings. Tamassia [Tam87] suggested “refining” the shape
of the drawing into one with rectangular faces by introducing artificial edges.
If all the faces are rectangles, the compaction problem can be solved in
polynomial time using minimum-cost network flow algorithms. In general,
however, the solution is far from the optimal solution for the original graph
without the artificial edges (see also Section 4). Other heuristics are based
on the idea of iteratively fixing the z— and y—coordinates followed by a one—
dimensional compaction step. In one-dimensional compaction, the goal is to
minimize the width or height of the layout while preserving the coordinates
of the fixed dimension. It can be solved in polynomial time using the so-
called layout graphs. The differences of the methods are illustrated in Fig. 1.
It shows the output of four different compaction methods for a given graph
with fixed shape. The big vertices are internally represented as a face that
must have rectangular shape. Figure 1(a) illustrates the method proposed
in [Tam87]. Figures 1(b) and 1(c) show the output of two one-dimensional
compaction strategies applied to the drawing in Fig. 1(a). Both methods use
the underlying layout graphs, the first algorithm is based on longest paths
computations, the second on computing minimum-cost flows. Figure 1(d)
shows an optimally compacted drawing computed by our algorithm.

The compaction problems in VLSI-design and in graph drawing are closely
related but are not the same. Most versions of the compaction problem
in VLSI-design are proven to be NP-hard [Len90]. For this reason, the
compaction problem in graph drawing is also conjectured to be NP-hard.
Research on the compaction problem in vLSI-design has concentrated on
one-dimensional methods. Only two papers have suggested optimal algo-
rithms for two—dimensional compaction (see [SLW83, KW84]). The idea is
based on a (0,1)-non-linear integer programming formulation of the prob-
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(c) Flow. (d) Optimal. .

Figure 1: The result of four different compaction algorithms.

lem and solving it via branch-and-bound. Unfortunately, the methods have
not been efficient enough for practical use.

Lengauer states the following: “The difficulty of two-dimensional com-
paction lies in determining how the two dimensions of the layout must inter-
act to minimize the area” [Len90, p.581]. The two—dimensional compaction
method presented in this paper exactly attacks this point. We provide a nec-
essary and sufficient condition for all feasible solutions of a given instance
of the compaction problem. This condition is based on existing paths in the
so—called constraint graphs in z— and y-direction. These graphs are simi-
lar to the layout graphs known from one—dimensional compaction methods.
The layout graphs, however, are based on visibility properties whereas the
constraint graphs arise from the shape of the drawing. As far as we know,
this is the first time that direct connections between the two graphs have
been used for two—-dimensional compaction.



Let us describe our idea more precisely: The two constraint graphs Dy,
and D, specify the shape of the given orthogonal drawing. We characterize
exactly those extensions of the constraint graphs which belong to feasible
orthogonal grid drawings. The task is to extend the given constraint graphs
to a complete pair of constraint graphs by adding new arcs for which the
necessary and sufficient condition is satisfied and the total edge-length of the
layout is minimized. Hence, we have transformed the geometrical problem
into a graph-theoretical one. Furthermore, we can detect constructively
those instances having only one complete extension. For these cases, we can
solve the compaction problem in polynomial time.

We formulate the resulting problem as an integer linear program that can
be solved via branch-and-cut or branch-and-bound methods. Our compu-
tational results on a benchmark set of 11,582 graphs [BGL*97] have shown
that we are able to solve the two—-dimensional compaction problem for all
the instances in short computation time. Furthermore, they have shown
that often it is worthwhile looking for the optimally compacted drawing.
The total edge lengths have been improved up to 37,0% and 65,4% as com-
pared to iterated one—dimensional compaction and the method proposed in
[Tam87].

In Section 2 we provide the characterization of the set of feasible solu-
tions. The formulation of the compaction problem in the form of an integer
linear program is given in Section 3. We describe a realization of our ap-
proach and corresponding computational experiments on a set of benchmark
graphs in Section 4. Finally, Section 5 contains the conclusions and our fu-
ture plans. '

2 A Characterization of Feasible Solutions

In this section we describe the transformation of the compaction problem
into a graph-theoretical problem. After giving some basic definitions we
introduce the notion of shape descriptions and present some of their proper-
ties. As a main result of this section, we establish a one-to—one correspon-
dence between shape descriptions satisfying a certain property and feasible
orthogonal grid drawings.

2.1 Definitions and Notations

In an orthogonal (grid) drawing T' of a graph G the vertices are placed on
mutually distinct integer grid points and the edges on mutually line—distinct
paths in the grid connecting their endpoints. We call I simple if the number
of bends and crossings in I' is zero. Each orthogonal grid drawing can be
transformed into a simple orthogonal grid drawing. The straightforward
transformation consists of replacing each crossing and bend by a virtual
vertex. Figure 2 gives an example.



Figure 2: An orthogonal grid drawing and its simple counterpart.

The shape of a simple drawing is given by the angles inside the faces,
i.e., the angles occurring at consecutive edges of a face cycle and the angles’
formed by bends on the edges. Note that the notion of shape induces a parti-
tioning of drawings in equivalence classes. Often, the shape of an orthogonal
drawing is given by a so—called orthogonal representation H. Formally, for
a simple orthogonal drawing, H is a function from the set of faces F' to
clockwise ordered lists of tuples (e, a,) where e, is an edge, and a, is the
angle formed with the following edge inside the appropriate face. Using the
definitions, we can specify the compaction problem:

Definition 1. The compaction problem for orthogonal drawings (COD) is
stated by the following: Given a simple orthogonal grid drawing I" with or-
thogonal representation H, find a drawing I'" with orthogonal representation
H of minimum total edge length.

The compaction problem (COD) is conjectured to be NP-hard. So far, in
practice, one-dimensional graph-based compaction methods have been used.
But the results are often not satisfying. Figure 3(a) shows an orthogonal
drawing with total edge length 2k + 5 which cannot be improved by one—
dimensional compaction methods. The reason for this lies in the fact that
one—-dimensional compaction methods are based on visibility properties. An
exact two—dimensional compaction method computes Fig. 3(b) in which the
total edge length is only k + 6.

Figure 3: A drawing generated with (a) an iterative one~dimensional and (b) an
optimal compaction method.



Let T be a simple orthogonal grid drawing of a graph G = (V, E). It
induces a partition of the set of edges E into the horizontal set Ej and the
vertical set F,. A horizontal (resp. vertical) subsegment in I is a connected
component in (V, Ey) (resp. (V, E,)). If the component is maximally con-
nected it is also referred to as a segment. We denote the set of horizontal
and vertical subsegments by 8, and §, resp., and the sets of segments by
Sy C 8, Sy € 8,. We further define § = §, U8, and S = S, U S,. The
following observations are of interest (see also Fig. 4).

1. Each edge is a subsegment, i.e., E C 83, E, C 8,.

2. Each vertex belongs to one horizontal and one vertical segment, de-
noted by hor(v) and vert(v).

3. Each subsegment s is contained in exactly one segment, referred to as
seg(s).

4. The limits of a subsegment s are given as follows: If s is horizontal,
let v and w be its leftmost and rightmost vertices, if s is vertical let v
and w be the bottommost and topmost vertices on s. The horizontal
limits of s are denoted as ap(s) and Q4(s) and specify the segments to
the left and to the right of s. Equivalently, we define the vertical limits
ay(s) and Q,(s). The following table contains the precise definitions.

direction of s | an(s) | Qu(s) | au(s) | Qy(s)
horizontal | vert(v) | vert(w) | seg(s) | seg(s)
vertical | seg(s) | seg(s) | hor(v) | hor(w)

The following lemma implies that the total number of segments is 2|V | —
|E|.

Lemma 1. Let T be a simple orthogonal grid drawing of a graph G =
(V,Ep UE,). Then |Sy| = |V| — |Ep| and |Sy| = |V| — |Ey|.

Proof. Induction on the number of edges m = my + m,. Induction basis
(m = 0): The maximally connected components consist of single vertices.
Thus, |Sy| = |Sy| = |V|. Induction step (m — m' = m + 1): Without loss
of generality, let the additional edge be horizontal, causing a union of two

horizontal segments. Then |[V'| = |V|, m}, = mp + 1 and m), = m,. It
follows, that |S,| = |Sy| = |[V| —my = |V'| = m; and |S}| = |Sh| -1 =
V| —mp—1=|V'| —mj. O

2.2 Shape Descriptions and its Properties

Let G = (V,E) be a graph with simple orthogonal representation H and
segments S, U S,. A shape description of H is a tuple o = (Dp, D,) of
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i | an(si) | Qn(si) | au(s:) | Qu(si)
1 S4 S4 S1 81
2 S4 S5 82 82
3 S4 S5 83 83
4 S4 S4 S1 83
5 S5 S5 S2 83

Figure 4: Segments of a simple orthogonal grid drawing and its limits.

so—called constraint graphs. Both graphs are directed and defined as Dy =
(Sy, Ap) and D, = (Si, A,). Thus, each node in Dy and D, is a segment
and the arc sets are given by

Ap = {(an(e),U(e)) |e € Ex} and A, = {(aw(e), Q(e)) | e € Ey}.

The two digraphs characterize known relationships between the segments
that must hold in any drawing of the graph because of its shape properties.
Let a = (s;,s;) be an arc in A, U A,. If a € A, then the horizontal segment
s; must be placed at least one grid unit below segment s;. For vertical
segments the arc a € Ay expresses the fact that s; must be to the left of
sj. Each arc is defined by at least one edge in E. Clearly, each vertical
edge determines the relative position of two horizontal segments and vice
versa. Figure 5 illustrates the shape description of a simple orthogonal grid
drawing.

For two vertices v and w we use the notation v —» w if there is a path
from v to w. Shape descriptions have the following property:

Lemma 2. Let 0 = ((Sy,, Ar), (Sh, Ay)) be a shape description. For every
subsegment s € 8y U8, the paths ap(s) — Qn(s) and ay(s) — Qy(s) are
contained in Ap U A,.

Proof. We prove the lemma for horizontal subsegments. The proof for ver-
tical subsegments is similar. By definition, the lemma holds for edges. Let

s be a horizontal subsegment consisting of k consecutive edges e, ... ,ek.
With an(e1) = an(s), Qn(exr) = Qn(s) and (an(e:), Qn(ei)) € Ap U Ay and
ay(s) = Qy(s) = seg(s) the result follows. O



Figure 5: A simple orthogonal drawing (dotted) and its shape description. S, =
{s1,...,85} and S, = {s¢,... , 50}

Definition 2. Let (s;,s;) € 8 x 8 be a pair of subsegments. We call the
pair separated iff one of the following conditions holds:

Qn(si) — an(s; (s; is to the left of s;)

( (s5)
Qn(s5) — an(s:) (si is to the right of s;
( (si)

1

2 )
3. Qu(s5) =5 ay(s; (s; is above s;)
4 )

Qu(8:) — ay(s;) (s; is below s;

In an orthogonal drawing at least one of the four conditions must be
satisfied for any such pair (s;,s;) where s; and s; are not adjacent. The
following two observations show that we only need to consider separated
segments of opposite direction.

Observation 1. Let (s;,s;) € 8 x 8 be a non-adjacent pair of subsegments.
If (seg(s;), seg(s;)) is separated then (s;, s;) is separated.

Proof. Note that ap(seg(s;)) — an(si) — Qn(si) — Qn(seg(s;)) and
an(seg(s;)) — an(sj) — Qu(s)) — Qn(seg(s;j)) according to Lemma 2.
The same holds for the corresponding vertical paths. Let seg(s;) and seg(s;)
be separated. Combined with Definition 2, this yields the separation of s;
and s;. O

Observation 2. Assume that the arcs between the segments form an acyclic
graph. Then the following is true: All non-adjacent segment pairs are sepa-
rated if and only if all non-adjacent segment pairs of opposite directions are
separated.

Proof. The forward direction of the proof is trivial. For the backward direc-
tion, assume that there is a non-adjacent pair (s;,s;) € S x S which is not
separated and every non-adjacent pair of opposite directions is separated.
Consider the following cases:



1. (si,85) € Sp x Sy or (s4,85) € Sy X Sp. This is a contradiction to the
assumption. '

2. (84,8j) € Sp x Sp. Let L = {an(ss), Qn(si), an(s;), Qn(s;)} be the
horizontal limits of s; and s;. For each vertical segment | € L, we
define h(l) as the segment which is limited by ! and p(l) as the other
horizontal segment. More precisely:

! h(1) p(l)
an(si) s 8
Qn(si) s s
ap(s;)  sj S5
Qh(sj) Sj 84

Now consider the four obviously non-adjacent pairs of opposite di-
rection in |J {(!,p(1))}. Note that a,(h(l)) = h(l) = Q,(h(l)) and
leL

ay(l) = h(l) = Q,(l) for all I € L. It follows that none of the pairs
is vertically separated, since

Q(p(l)) = o)) V. (1) = au(p(2))

< p(l) = au(l) Vv Qu(l) = p(!)
= p(l) = () Vv Al = p()
=4 S; —*) S Vv 8; —*-> Si,

which is a contradiction to the separation of s; and s;.
Concerning the horizontal separation, note that a(l) = Qx(l) = [ for
all I € L. The horizontal part of Definition 2 for every [ € L reads as
Q) = an(e()) Vv (1) = an())
& I an(p()) vV Qm(p() =1
For each I, one of the two terms implies the separation of s; and s;

and can be eliminated. The remaining four terms induce two cycles in
the graph, which is again a contradiction to the assumption.

3. (si,85) € Sy x Sy. This case is similar to the previous one. O

The following lemma shows that we can restrict our focus to separated
segments that share a common face. For a face f, we write S(f) for the
segments containing the horizontal and vertical edges on the boundary of f.

Lemma 3. All non-adjacent segment pairs are separated if and only if for
every face f the non-adjacent pairs of segments (s;,s;) € S(f) x S(f) are
separated.



Proof. The forward direction of the proof follows immediately because of
S(f) C S for every face f. To show the other direction we consider two
adjacent faces f and g, both satisfying the condition. Assume that there is
a pair of segments (s;, s;) that is not separated, without loss of generality let
s; € S(f) and s; € S(g) as in Fig. 6. Then there must exist a non-separated
segment pair (s;, s;) € S(g)xS(g), which is a contradiction. Since adjacency
is a transitive relation, the proposition is true for all faces and thus for the
whole graph. O

[ .8

Figure 6: Two adjacent faces with non-separated segments s; and s;.

2.3 Complete Extensions of Shape Descriptions

We will see next that any shape description o = ((Sy, Ax), (Sk, 4y)) can be
extended so that the resulting constraint graphs correspond-to a feasible
orthogonal planar drawing. We give a characterization of these complete
extenstons in terms of properties of their constraint graphs.

Definition 3. A complete extension of a shape description o = ((S,, Ap),
(Sh, Ay)) is a tuple 7 = ((Sy, Bp), (Sh, By)) with the following properties:

1. Ah g BhaA’U g Bv-
2. By and B, are acyclic.

3. Every non-adjacent segment pair is separated.

The following theorem characterizes the set of feasible solutions for the
compaction problem.

Theorem 1. For any simple orthogonal drawing with shape description o =
((Sy, An), (Sh, Ay)) there ezists a complete extension 7 = ((Sy, By), (S, By))
of o and vice versa: Any complete extension T = ((Sy, Bp),(Sh,By)) of a
shape description o = ((Sy, An), (Sh, Ay)) corresponds to a simple orthogonal
drawing with shape description o.



Proof. To prove the first part of the theorem, we consider a simple orthogo-
nal grid drawing I' with shape description o = ((Sy, Ap), (Sh, Ay)). Let ¢(s;)
denote the fixed coordinate for segment s; € Sp U S,. We construct a com-
plete extension 7 = ((Sy, Bh), (Sh, By)) for o as follows: B = {(s;, s;) €
Sy X Sy | ¢(si) < ¢(sj)}, i.e., we insert an arc from every vertical segment
to each vertical segment lying to the right of s;. Similarly, we construct the
set B,. Clearly, we have A, C By and A, C B,. We show the completeness
by contradiction: Assume first that there is some non-adjacent pair (s;, s;)
which is not separated. According to the construction this is only possible if
the segments cross in I', which is a contradiction. Now assume that there is
a cycle in one of the arc sets. Again, the construction of By, and B, forbids
this case. Hence 7 is a complete extension of o.

We give a constructive proof for the second part of the theorem by
specifying a simple orthogonal grid drawing for the complete extension
7. To accomplish this task we need to assign lengths to the segments.
A length assignment for a complete extension of a shape description 7 =
((Sv, Bn), (Sh, By)) is a function ¢ : S, US, — N with the property (s;,s;) €
By U B, = c(si) < c(s;). Given 7, such a function can be computed us-
ing any topological sorting algorithm in the acyclic graphs in 7, e.g., longest
paths or minimum-cost flow algorithms in the dual graph. For a fixed length
assignment, the following simple and straightforward method assigns coor-
dinates to the vertices. Let z € NV and y € NV be the coordinate vectors.
Then simply setting z, = c(vert(v)) and y, = c(hor(v)) for every vertex
v € V results in a correct grid drawing. The following points have to be
verified: :

1. All edges have positive integer length.
The length of an edge e € E is given by ¢(Q2(e)) — c(a(e)). We
know that both values are integer and according to Lemma 2 that
(a(e),2(e)) € Br U B, and thus ¢(Q(e)) > c(a(e)).

2. T maps each circuit in G into a rectilinear polygon.

For a face f let I'(f) be the geometric representation of vertices and
edges belonging to f. It it sufficient to show that I'(f) is a rectilinear
polygon for each face f in G. Every vertex v on the boundary of f is
placed according to the segments hor(v) and vert(v). Two consecutive
vertices v and w on the boundary of f either share the same horizontal
or the same vertical segment (since they are linked by an edge). Thus,
either x, = z, or Yy = Yu-

3. No non-adjacent subsegments cross.
Otherwise, assume that there are two such segments s; and s; that
cross. Then ¢(Qx(si)) > c(an(s;)), c(Qn(s5)) 2 clan(si)), c(Qu(s))) 2
c(ay(si)), and c(Qy(si)) > c(aw(s;)) (see also Fig. 7). This is a con-
tradiction to the completeness of 7. O

10



an(s:) i Qn(ss) Qh (:j) si  Qn(sj)

ay(s;)

Figure 7: Crossing subsegments of opposite (left) and same (right) direction.

We have transformed the compaction problem into a graph-theoretical
problem. Our new task is to find a complete extension of a given shape
description o that minimizes the total edge length. If a shape description
already satisfies the conditions of a complete extension (see Fig. 8(a)), the
compaction problem can be solved optimally in polynomial time: The cor-
responding inequalities form a totally unimodular matrix (see also the proof
of Observation 3). Sometimes the shape description is not complete but it is
only possible to extend it in one way (see Fig. 8(b)). In these cases also it is
easy to solve the compaction problem. But in most cases it is not clear how
to extend the shape description since there are many different possibilities
(see Fig. 8(c)).

N

/

(b)

Figure 8: Three types of shape descriptions. The dotted lines show the orthogonal
grid drawings, thin arrows arcs in shape descriptions and the thick gray arcs possible
completions.

Observe that the preprocessing phase of our algorithm described at the
beginning of Section 4 can test in polynomial time if a shape description
can be uniquely completed. In that case, our algorithm does the completion
and computes an optimal drawing in polynomial time.

11



3 An ILP Formulation for the Compaction Prob-
lem

The characterization given in the previous section can be used to obtain an
integer linear programming formulation for the compaction problem COD.
Let I be a simple orthogonal grid drawing of a graph G = (V, E, U E,)) with
orthogonal representation H and let o = ((Sy, Ax), (S, Ay)) be the corre-
sponding shape description. The set of feasible solutions for this instance of
COD can now be written as €(o) = {7 | 7 is a complete extension of o}. Let
C = Sp x SpLUS, x S, be the set of possible arcs in the digraphs of o. QI is
the vector space whose elements are indexed with numbers corresponding to
the members of C. For a complete extension 7 = ((S,, By), (S, By)) of o we
define an element z” € QIC! in the following way: ;=1 if (si,8;) € BRUB,
and :v:'] = 0 otherwise. We use these vectors to characterize the Compaction
Polytope Peop = conv{z” € Q¢l|re C(o)}.

In order to determine the minimum total edge length over all feasible
points in Pgop we introduce a vector ¢ € QI5rYSu| to code the length as-
signment and give an integer linear programming formulation for the com-
paction problem cop. Let M be a very large number (for the choice of M
see Lemma 5). The ILP for the compaction problem is the following:

(ILP) min z €y (e) = Canle) T Z CQu(e) — Cas(e)  Subject to

e€Ey ecE,

zij =1 V(si,s5) € AR U A, (1.1)

Tn(i).an() T T ()an (i) V(si,s5) € S x5,
TQ,(j),au(i) T TQ(i),a0(j) = 1 (8i,85) non—adJacent (1.2)
Gi—c+(M+1z;; <M V(si,35) € (1.3)
0<z; <1 V(si,s5) € (1.4)
¢ >0 Vs; € Sh US, (1.5)
z;; €N V(ssi,85) €C (1.6)

The objective function expresses the total edge length in a drawing for
G. Note that the formulation also captures the related problem of minimiz-
ing the length of the longest edge in a drawing. In this case, the constraints
€ (e) = Can(e) < lmax OT Co,(e) — Cay(e) < lmax must be added for each edge
e and the objective function must be substituted by min /.. Further-
more, it is possible to give each edge an individual weight in the objective
function. In this manner, edges with higher values are considered more im-
portant and will preferably be assigned a shorter length. In VLSI-design,
the weight factor is usually chosen according to the electric resistivity of the
corresponding wire. Here, wires with high resistivity should be short in the
resulting layout.

12



We first give an informal motivation of the three different types of con-
straints and then show that any feasible solution of the ILP formulation
indeed corresponds to an orthogonal grid drawing.

(1.1) Shape constraints. We are looking for an extension of shape description
o. Since any extension must contain the arc sets of o, the appropriate
entries of z must be set to 1.

(1.2) Completeness constraints. This set of constraints guarantees complete-
ness of the extension. The respective inequalities model Definition 3.3.

(1.3) Consistency constraints. The vector ¢ corresponds to the length as-
signment and thus must fulfill the property (s;, s;) € BRUB, = c(s;) <
c(sj). If z;; = 1, then the inequality reads c¢; — ¢; > 1, realizing the
property for the arc (¢,7). The case z;; = 0 yields ¢; — ¢; < M which
is true if M is set to the maximum of the width and the height of T'.
The choice of M is discussed in Lemma 5.

The following observation shows that we do not need to require integral-
ity for the variable vector ¢. The subsequent lemma motivates the fact that
no additional constraints forbidding the cycles are necessary.

Observation 3. Let (z,c;) with z € {0,1}/C! and c; € QIS»YSv be a feasi-
ble solution for (ILP) and let z¢ be the value of the objective function. Then
there is also a feasible solution (z,c) with c € NISrUSul gnd objective function
value z < zjy.

Proof. Since z is part of a feasible solution, its components must be either
zero or one. Then (ILP) reads as a totally unimodular optimization problem:
Consider that the consistency constraints for z;; = 0 can be ignored and the
remaining constraints form a totally unimodular matrix and thus define an
integral polyhedron [NW88]. Note that a fixed z in a solution corresponds
to a complete extension of the given shape description. O

Lemma 4. Let (z,c) be a feasible solution for ILP 1 and let Dy and D, be

the digraphs corresponding to z. Then Dy and D, are acyclic.
Proof. Assume without loss of generality that there is a cycle (s;,, Siy, - - , 8i;)
of length k in Dj. This implies z;, i, = Tii; = ... = Tj. 4, = 1 and the
appropriate consistency constraints read
G, —C,+(M+1) < M
Ci,—Cis+(M+1) < M

Cik—ci1+(M+l) < M

Summed up, this yields k£ - (M + 1) < k- M which is equivalent to
M+1< M. O

13



Theorem 2. For each feasible solution (z,c) of (ILP) for a shape descrip-
tion o, there is a simple orthogonal grid drawing I' whose shape corresponds
to o and vice versa. The total edge length of T' is equal to the value of the
objective function.

Proof. For the first part of the proof, let  and ¢ be the solution vectors
of (ILP). According to Observation 3 we can assume that both vectors are
integer. Vector z describes a complete extension 7 of o; the extension prop-
erty is guaranteed by constraints 1.1, completeness by constraints 1.2 and
acyclicity according to Lemma 4. The consistency constraints 1.3 require c
to be a length assignment for 7. With Theorem 1 the result follows.
Again, we give a constructive proof for the second part: Theorem 1
allows us to use I' for the construction of a complete extension 7 for o.
Setting c; to the fixed coordinate of segment s; and z;; to 1 if the arc (s;, s;)
is contained in 7 and to 0 otherwise, results in a feasible solution for the
ILP. Evidently, the bounds and integrality requirements for ¢ and z are not
violated and constraints 1.1 and 1.2 are clearly satisfied. To show that the
consistency constraints hold, we consider two arbitrary vertical segments s;
and s;. Two cases may occur: Assume first that s; is to the left of s;. Then
the corresponding constraint reads ¢; — ¢; > 1 which is true since ¢(j) > c(7)
and the values are integer. Now suppose that s; is not to the left of s;. In
this case the constraint becomes ¢; — ¢; < M which is true for a sufficiently
large M. For the choice of M see Lemma 5. A similar discussion applies to
horizontal segments. Obviously, the value of the objective function is equal
to the total edge length in both directions of the proof. O

The (ILP) can be solved via a branch-and-cut or branch-and-bound
algorithm. We now discuss the choice of the constant M.

Lemma 5. The value max{|Sh|,|Sy|} is a sufficient choice for M.

Proof. Note that any optimal drawing I' has width w < |S,| and height
h < |Sk|, otherwise a one-dimensional compaction step could be applied.
M has to be big enough to “disable” the constraints 1.3 if the corresponding
entry of x is zero; it has to be an upper bound for the distance between any
pair of segments. Setting it to the size of the bigger of the two sets fulfills
this requirement. O

4 Implementation and Computational Results

In this section we describe our implementation to solve the ILP presented in
the previous section. We report on results based on a large set of benchmark
graphs, comparing our implementation to standard heuristics.
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4.1 Solving the ILP

Our implementation which we will refer to as OPT throughout this section,
solves the integer linear program described in Section 3. It is realized as
a compaction module inside the AGD-library [AGMN97, AGD98] and is
written in C** using LEDA [MN95, MNSU98|.

In a preprocessing phase, the given shape description o is completed as
far as possible. Starting with a list L of possibly non-separated segments,
we remove a pair (s;, s;) from L if it either fulfills the definition of separation
or there is only one possibility to meet this requirement. In the latter case
we insert the appropriate arc and proceed the iteration. The process stops
if no such pair can be found in L. If the list is empty at the end of the
preprocessing phase, we can solve the compaction problem in polynomial
time by optimizing over the integral polyhedron given by the corresponding
inequalities.

Otherwise, let o* be the extension of o resulting from the preprocessing
phase. OPT first computes a corrupted layout for o* in polynomial time.
Then it checks which non—-separated pairs in L induce indeed a violation
of the drawing and adds the corresponding completeness and consistency
inequalities. The resulting integer linear program is solved with the Mixed
Integer Solver from CPLEX. The process of checking, adding inequalities
and solving the ILP may have to be repeated because new pairs in L can
cause a violation. However, this iteration of optimization algorithms has
shown to be superior to adding all the constraints corresponding to entries
in L and solving the resulting ILP. The disadvantage of this method is
that we do not have any quality guarantee during the computation unless
the algorithm processes the last ILP. Currently we are realizing a second
implementation within the branch-and-cut framework ABACUS [JT98].

For the initial construction of L we exploit Lemma 3 and Observation 2.
We only have to add pairs of segments which share a common face and which
are of opposite direction. By decreasing the size of L in this way we could
reduce the search space and speed up the computation remarkably.

4.2 Computational Results

We compare the results of our method to the results achieved by two other
compaction methods: ORIG is an implementation of the original method
proposed in [Tam87]. It divides all the faces of the drawing into sub—faces of
rectangular shape and assigns consistent edge lengths in linear time. 1DIM is
an optimal one-dimensional compaction algorithm. It first calls ORIG to get
an initial drawing and then runs iteratively a visibility—based compaction,
alternating the direction in each run. It stops if no further one-dimensional
improvement is possible.

The algorithms ORIG, 1DIM, and OPT have been tested on a large test
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set. This set, collected by the group of G. Di Battista, contains 11,582
graphs representing data from real-world applications [BGL197]. For our
experimental study, each of the graphs has been planarized by computing a
planar subgraph and reinserting the edges, representing each crossing by a
virtual vertex. The distribution of the resulting graphs is shown in Fig. 9.
After fixing the planar embedding for every graph we computed its shape
using an extension of Tamassia’s bend minimizing algorithm [KM98]. The
resulting graphs with fixed shape served as input for the three compaction
algorithms. We compared the total edge length and the area of the small-
est enclosing rectangle of the drawings produced by ORIG, 1DIM, and OPT.
Furthermore, we recorded their running times.
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Figure 9: Distribution of graphs in the test suite.

All the examples could be solved to optimality on a SUN Enterprise
10000. For all instances, the running times of ORIG and 1DIM have been
below 0.05 and 0.43 seconds, respectively. For OPT, the distribution of
running times is shown in Fig. 10. The vast majority of instances could be
solved in less than one second, few graphs needed more than five seconds.
The longest running time was 68 minutes.

The average improvement of the total edge length computed by opT
over the whole test set of graphs was 2.4% compared to 1DIM and 21,0%
compared to ORIG. Just looking at hard instances where OPT needed more
than two seconds of running time we yield average improvements of 7.5%
and 36.1%, resp. Figures 11 and 12 show this fact in more detail: The z-axis
denotes the size of the graphs, the y—axis shows the improvement of total
edge length in percent with respect to 1DIM and ORIG. We computed the
minimal, maximal and average improvement for the graphs of the same size.
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Figure 10: Running times for OPT.

The average improvement values are quite independent from the graph size,
and the minimum and maximum values converge to them with increasing
number of vertices. Note that OPT yields in some cases improvements of
more than 30% in comparison to the previously best strategy, Fig. 1 in
Section 1 shows the drawings for such a case (here, the improvement is
28%). For the area, the data look similar with the restriction that in few
cases the values produced by 1DIM are slightly better than those from OPT;
short edge length does not necessarily lead to low area consumption. The
average area improvements compared to 1DIM and ORIG are 2.7% and 29.3%,
however.
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Figure 11: Quality of OPT compared to 1DIM.

In general, we could make the following observations: Instances of the
compaction problem cOD divide into easy and hard problems, depending on
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Figure 12: Quality of OPT compared to ORIG.

the structure of the corresponding graphs. On the one hand, we are able
to solve some randomly generated instances of biconnected planar graphs
with 1,000 vertices in less than five seconds. In these cases, however, the
improvement compared to the results computed by 1DIM is small. On the
other hand, graphs containing tree-like structures have shown to be hard to
compact since their number of fundamentally different drawings is in general
very high. For these cases, however, the improvement is much higher.

5 Conclusions

We have introduced the constraint graphs describing the shape of a simple
orthogonal grid drawing. Furthermore, we have established a direct connec-
tion between these graphs by defining complete eztensions of the constraint
graphs that satisfy certain connectivity requirements in both graphs. We
have shown that complete extensions characterize the set of feasible draw-
ings with the given shape. For a given complete extension we can solve the
compaction problem COD in polynomial time. The graph-theoretical char-
acterization allows us to formulate COD as an integer linear program. The
preprocessing phase of our algorithm detects those instances having only one
complete extension and, for them, the optimal algorithm runs in polynomial
time. Our experiments show that the resulting ILP can be solved within
short computation time for instances as big as 1,000 vertices.

There are still open questions concerning the two-dimensional com-
paction problem. So far, there is no NP-hardness proof for cop. Fur-
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thermore, we are not satisfied having the ‘big’” M in our integer linear pro-
gramming formulation. We expect further improvements on the running
time of our algorithm by implementing it as a branch-and—-cut algorithm.
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