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Abstract

This document describes the LEDA program dc delaunay:c for computing

Delaunay graphs by the divide{and{conquer method. The program can be

used either with exact primitives or with non-exact primitives. It handles

all cases of degeneracy and is relatively robust against the use of imprecise

arithmetic.

We use the literate programming tool noweb by Norman Ramsey.
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1 Introduction

This document describes a LEDA [MN98] program for the computation of the Delaunay

triangulation of a set of points in the plane. The implementation follows Guibas and Stol�

[GS85]. Additionally we implement an improvement of the Guibas-Stol� algorithm that was

proposed by Dwyer [Dwy87]. Our program handles all cases of degeneracy and use exact

integer arithmetic. This is not the �rst such implementation; another robust implementation

was already given by Karasick, Lieber and Nackmann [KLN91].

We also implement several non-exact versions of our program, one version that uses

LEDA big
oat arithmetic and one using ordinary doubles. In Sections 7 and 8 we make

several experiments to study the behaviour of the di�erent implementations. We use either

LEDA rat points or LEDA points to represent the input, depending on whether the compile


ag USE RAT TYPES is set or not.

1.1 The interface

The main procedures DELAUNAY STOLFI and DELAUNAY DWYER have the same in-

terface and semantics. They both take the input points as a LEDA list list<POINT> S

and return the resulting Delaunay graph DG(S) as the directed LEDA graph

GRAPH<POINT ; int> G. Note that for degenerate input DG(S) is not a triangulation.

To simplify the program, we �rst compute an arbitrary completion DT (S) of DG(S) to a

triangulation. In the end we remove these completion edges. There is an optional boolean

parameter with check that indicates whether a program checker should be applied to check

the computed Delaunay graph or not.

1 hdc delaunay.h 1i� (2b) 2a .

#include <LEDA/graph.h>

#include <LEDA/list.h>

#include <LEDA/rat_point.h>

#ifdef USE_RAT_TYPES

typedef rat_point POINT;

#else

typedef point POINT;

#include "primitives.h"

#endif

void DELAUNAY_STOLFI(

const list<POINT>& S, GRAPH<POINT,int>& G, bool with_check=false

);

void DELAUNAY_DWYER(

const list<POINT>& S, GRAPH<POINT,int>& G, bool with_check=false

);

De�nes:

DELAUNAY DWYER, never used.

DELAUNAY STOLFI, never used.

POINT, used in chunks 3{7, 13, 15, and 16.
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1.2 Data structure and conventions

Every node of the graph G computed by DELAUNAY STOLFI or DELAUNAY DWYER

stores exactly one of the input points. G is a bidirected planar graph, i.e., each Delaunay

edge is represented in G by two directions and each such direction is associated with a face

that can be traversed clockwise or counterclockwise. By convention, G:face cycle succ(e) gives

the counterclockwise successor of e on the face left to e to which e is associated. Likewise,

G:face cycle pred (e) gives the counterclockwise predecessor of e on the face associated to e.

The reversal edge of e is accessed by G:reversal (e). Moreover, it is possible to traverse the

edges e with a common source node v in counterclockwise order by callingG:cyclic adj succ(e)

and in clockwise order by calling G:cyclic adj pred (e).

The edges of G contain additional, auxiliary information encapsulated in the enumeration

type edge info. Those edges of the Delaunay graph that are on the convex hull have the type

HULL EDGE ; more precisely, HULL EDGE s are the edges associated with the unbounded

face of the graph. In general, the reversal edge of a HULL EDGE is not a HULL EDGE .

All other edges of G are either DIAGRAM EDGE s or NON DIAGRAM EDGEs. Here the

NON DIAGRAM EDGEs are the temporary completion edges that we use to make G a

triangulation.

2a hdc delaunay.h 1i+� (2b) / 1

enum edge_info{

DIAGRAM_EDGE = 0, NON_DIAGRAM_EDGE = 1, HULL_EDGE = 2};

De�nes:

edge info, never used.

The implementation is given in the �le dc delaunay:c. The meaning of the di�erent chunks

will be explained later.

2b hdc delaunay.c 2bi�

hdc delaunay.h 1i

#include <assert.h>

#include <LEDA/array.h>

hbasic procedures 6bi

hgeometric primitives 15i

hprocedure merge halves 7i

hprocedure compute Delaunay Triangulation 5ai

hprocedure delete completion edges 4bi

hcheck procedure 16ai

hprocedure DELAUNAY STOLFI 3ai

#include <math.h>

hprocedure DELAUNAY DWYER 13i
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2 The Guibas-Stol� procedure

In this section we describe the procedure DELAUNAY STOLFI .

2.1 The skeleton of DELAUNAY STOLFI

First the given list S of points is sorted lexicographically by ascending order where we remove

duplicate points. The result is stored in the LEDA array array<POINT> A. Then we

call the recursive procedure compute Delaunay Triangulation to compute G as the Delaunay

Triangulation of S. We clean up G by removing NON DIAGRAM EDGEs. If required by

with check , we call the program checker check Delaunay Graph to check whether G is the

correct Delaunay diagram of S or not.

3a hprocedure DELAUNAY STOLFI 3ai� (2b)

void DELAUNAY_STOLFI(

const list<POINT>& S0, GRAPH<POINT,int>& G, bool with_check)

{

G.clear();

list<POINT> S = S0;

if (S.empty()) return;

S.sort();

array<POINT> A(S.length());

int n;

hwrite the n distinct elements of S into A 3bi

htreat cases with less than two points 4ai

edge e, f;

compute_Delaunay_Triangulation(G, A, 0, n-1, e, f);

if (with_check) check_Delaunay_Graph(G,S,e);

delete_completion_edges(G);

}

De�nes:

DELAUNAY STOLFI, never used.

Uses compute Delaunay Triangulation 5a, delete completion edges 4b, and POINT 1.

The sorted list of points L that appears as an argument of the procedure

DELAUNAY STOLFI must be given to compute Delaunay Triangulation as an array A.

Here we remove all duplicates in the list. Note that we cannot use the LEDA iterator

for all items since we might destroy some items in the iteration.

3b hwrite the n distinct elements of S into A 3bi� (3a 13)

{

list_item it, ne;

n = 0;

it = S.first();

while (it) {

A[n++] = S.contents(it);

while ((ne = S.succ(it)) && S.contents(ne) == S.contents(it))

{

S.del_item(it);

it=ne;
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}

it=ne;

}

}

If there is only one point in the list, we return the graph that consists of the single node

containing the point. If the list is empty, there is nothing to do.

4a htreat cases with less than two points 4ai� (3a 13)

{

if (n <= 1)

{

if (n == 1)

G.new_node(A[0]);

return;

}

}

At the end of the procedure DELAUNAY STOLFI we remove all edges that are labelled

with NON DIAGRAM EDGE . Note that again the LEDA iterator forall edges does not

allow to delete the current edge u.

4b hprocedure delete completion edges 4bi� (2b)

static void delete_completion_edges(GRAPH<POINT,int>& G)

{

list<edge> U;

edge u;

forall_edges(u,G)

{

if (G[u] == HULL_EDGE)

G[G.reversal(u)] = HULL_EDGE;

if (G[u] == NON_DIAGRAM_EDGE)

U.append(u);

}

forall(u,U) G.del_edge(u);

}

De�nes:

delete completion edges, used in chunks 3a and 13.

Uses POINT 1.

2.2 Recursive computation of the Triangulation

In the function compute Delaunay Triangulation we compute the Delaunay triangulation for

points in the range from A[i] to A[j] . Here we divide the point set into two halves, recursively

compute the Delaunay triangulation for both halves and merge them together. For the merge

step it is convenient to have access to the nodes containing p

i

= A[i] and p

j

= A[j] . Note

that both nodes are on the convex hull of the points in the restricted range p

i

: : : p

j

. The
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access is provided by the return parameters e i and e j where the �rst is a hull edge with

target p

i

and the second is a hull edge with source p

j

.

5a hprocedure compute Delaunay Triangulation 5ai� (2b)

static void compute_Delaunay_Triangulation(

GRAPH<POINT,int>& G,

const array<POINT>& A,

int i, int j,

edge& e_i, edge& e_j)

{

// precondition: A[i] < A[i+1] < ... A[j]

// (in lexicographic order)

if (j <= i+2)

htreat cases with at most three points 5bi

else

{

int m = (i+j)/2;

edge e_l, e_r;

compute_Delaunay_Triangulation(G, A, i , m, e_i, e_l);

compute_Delaunay_Triangulation(G, A, m+1, j, e_r, e_j);

merge_halves(G,e_l,e_r,e_i,e_j);

}

}

De�nes:

compute Delaunay Triangulation, used in chunks 3a and 14.

Uses merge halves 7 and POINT 1.

The basis of the recursion arises when the interval given by i and j contains only two or

three points. Note that i and j are never equal, so we have at least two points here.

5b htreat cases with at most three points 5bi� (5a)

{

if (j == i+1)

htwo-point case 5ci

if (j == i+2)

hthree-point case 6ai

}

In the two-point case we simply introduce nodes for both of the points and an edge

between them. For the latter job we call function make single edge(G; v;w) that returns an

edge from w to v.

5c htwo-point case 5ci� (5b)

{

node v = G.new_node(A[i]);

node w = G.new_node(A[j]);

e_i = e_j = make_single_edge(G,v,w);

}

In the three-point case we have to test whether the points with indices i, i+ 1, i+ 2 form
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a left turn, a right turn, or are collinear. The three cases correspond to the return values 1,

�1 and 0 of the LEDA function orientation . In the �rst two cases the resulting diagram is

a triangle that is computed by the function make triangle(v; w; x) and in the third case the

diagram consists of the edges v-w and w-x. Note that make triangle(v; w; x) returns the edge

from w to v.

6a hthree-point case 6ai� (5b)

{

node v = G.new_node(A[i]);

node w = G.new_node(A[i+1]);

node x = G.new_node(A[i+2]);

int side = orientation(A[i],A[i+1],A[i+2]);

if (side > 0)

{

e_i = make_triangle(G,v,w,x);

e_j = G.face_cycle_pred(e_i);

}

if (side < 0)

e_i = e_j = make_triangle(G,v,x,w);

if (side == 0)

{

e_i = make_single_edge(G,v,w);

e_j = make_single_edge(G,w,x);

}

}

Uses make triangle 6b.

We need the proceduresmake single edge andmake triangle to generate the di�erent types

of Delaunay Graphs that arise in the base cases of the recursion. The function make triangle

does not call make single edge because not all of its edges are hull edges. It uses a special

function make triangle edge that labels the three edges associated with the interior of the

triangle with DIAGRAM EDGE and the remaining three edges with HULL EDGE . It is

necessary to specify the three points de�ning the triangle in counterclockwise order.

6b hbasic procedures 6bi� (2b)

inline edge make_single_edge(GRAPH<POINT,int>& G,

node v, node w)

{

edge e_vw = G.new_edge(v,w,HULL_EDGE);

edge e_wv = G.new_edge(w,v,HULL_EDGE);

G.set_reversal(e_vw,e_wv);

return e_wv;

}

inline edge make_triangle_edge(GRAPH<POINT,int>& G,

node v, node w)

{

edge e_vw = G.new_edge(v,w,DIAGRAM_EDGE);

edge e_wv = G.new_edge(w,v,HULL_EDGE);

G.set_reversal(e_vw,e_wv);

return e_wv;
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}

inline edge make_triangle(GRAPH<POINT,int>& G,

node v, node w, node x)

{

// precondition: (v,w,x) is a left turn

edge e_wv = make_triangle_edge(G,v,w);

make_triangle_edge(G,x,v);

make_triangle_edge(G,w,x);

return e_wv;

}

De�nes:

make edge,, never used.

make triangle, used in chunk 6a.

Uses POINT 1.

3 The merge function

The procedure merge halves is internally used in compute Delaunay Triangulation to merge

the two recursively computed halves A[i];:::; A[m] and A[m+ 1];:::; A[j] of the Delaunay Tri-

angulation.

The merge step is best decribed by introducing the vertical separating line T : x = x

i;j

where x

i;j

is the arithmetic mean of the x coordinates of points p

l

= A[m] , p

r

= A[m+ 1] .

The set of points L with indices i; : : : ;m are left of T and the set of points R with indices

m+1; : : : ; j are right of T . (In fact, both L and R may contain points on T that are separated

by a horizontal line.)

The basic idea is that the new edges in the Delaunay Triangulation DT (L [ R) are

only edges from L to R and furthermore these edges can be computed in the order of their

intersection with T . We consider the new edges as a staircase along T . In the process of

computing the staircase, we can identify the edges from DT (L) and DT (R) that are not

present in DT (L [ R) and hence have to be removed. We call the other edges of DT (L) [

DT (R) that are still present in DT (L [R) remaining edges.

The lowest stair lying on the convex hull of DT (L[R) is computed �rst. Here we maintain

two invariants.

� The current stair is given by the edges lstair from L to R and rstair from R to L. lstair

is the reverse edge of rstair .

� The edge lcand is a remaining edge from DT (L) with the same source as lstair . The

edge rcand is a remaining edge from DT (R) with the same source as rstair .

The meaning of lcand and rcand will be discussed in more detail later. Roughly speaking, they

are two candidates for the choice of the next stair. The iteration stops if neither candidate

lcand nor rcand can be found, which is the case if none of the boolean values lcand valid and

rcand valid is true.
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7 hprocedure merge halves 7i� (2b)

static void merge_halves(

GRAPH<POINT,int>& G,

edge e_l, edge e_r,

edge& e_i, edge& e_j)

{

edge lstair, rstair;

hcompute and insert lowest stair 8i

hupdate e i and e j 9i

edge lcand, rcand;

bool lcand_valid, rcand_valid;

while(true)

{

hcompute lcand and lcand valid 10i

hcompute rcand and rcand valid 11i

if (!lcand_valid && !rcand_valid)

break;

hcompute and insert next stair 12i

}

G[lstair] = HULL_EDGE;

}

De�nes:

merge halves, used in chunks 5a and 13.

Uses POINT 1.

To compute the lowest stair we start with an edge between the rightmost point p

l

in L

and the leftmost point p

r

in R. Remember that we have access to these points because the

edge e

l

has source p

l

and the edge e

r

has target p

r

. The idea is to lower the intersection of

e and T as far as possible. Here we alternately move the left endpoint of e to the successor

node on the hull of L and right endpoint of e to the predecessor node on the hull of R, as

long as it leads to a lower intersection of e and T . We start with the edge f

l

= e

l

on the

hull of L and the edge f

r

= e

r

on the hull of R. While changing f

l

and f

r

we maintain the

invariant that e is between the source of f

l

and the target of f

r

. In each step we go from f

l

to its hull successor if the target of f

r

is left of the directed edge f

l

. Similarly, we go from

f

r

to its hull predecessor if the source of f

l

is left of the directed edge f

r

. This procedure

stops with a stair e

stair

such that the incident edges f

r

, e

stair

form a right turn and similarly

the incident edges e

stair

, f

l

form a right turn. Hence the resulting edge e

stair

is in fact the

wanted hull edge. See Figure 1.

8 hcompute and insert lowest stair 8i� (7)

{

bool liftable_l = true, liftable_r = true;

edge f_l = e_l;

edge f_r = e_r;

while (liftable_l || liftable_r)

{

liftable_l = leftturn(G,f_l,G.target(f_r));

if (liftable_l)
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Figure 1: The construction of the lowest stair e

stair

f_l = G.face_cycle_succ(f_l);

liftable_r = leftturn(G,f_r,G.source(f_l));

if (liftable_r)

f_r = G.face_cycle_pred(f_r);

}

lstair = G.new_edge(

f_l,G.target(f_r),DIAGRAM_EDGE,after

);

rstair = G.new_edge(

G.reversal(f_r),G.source(f_l),HULL_EDGE,before

);

G.set_reversal(lstair,rstair);

}

Uses leftturn 15.

We have to compute updated values of e i and e j that are on the convex hull of the

merged set of points. Note that the old, recursively computed values for e i and e j might

not even be edges in the merged diagram. However we can compute the updated values of

e i and e j using the already computed lowest stair lstair , rstair . The following statements

allow us to compute the new e i and e j .

� If the edge rstair has target p i , then we can set e i = rstair . Otherwise the recursively

computed edge e i remains valid because it is still at the convex hull of the diagram for

the merged point set.

� If the edge rstair has source p j , then we can set e j = rstair . Otherwise the re-

cursively computed edge e j remains valid because it is still at the convex hull of the

diagram for the merged point set.

9 hupdate e i and e j 9i� (7)

if (G.target(rstair) == G.target(e_i))

e_i = rstair;

if (G.source(rstair) == G.source(e_j))

e_j = rstair;
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We now compute the edge lcand which is the DT (L) candidate for the edge joining the

current stair lstair with the next stair. Let w be the source of lstair . We initialize lcand as

the successor edge of lstair with source w in counterclockwise order. If lcand is a hull edge, it

may happen that lstair and lcand do not form a right turn; in this case lcand is invalidated

and our computation of lcand stops. Otherwise we proceed with the computation of lcand .

We maintain another edge lnext , which is always the counterclockwise successor of lcand with

source w. If the source point p of rstair from R is inside the circle formed by the nodes inident

to lcand and lnext , we say that p con
icts with the triangle lcand , lnext . In this case the edge

lcand is deleted from the Delaunay triangulation. We proceed walking around the source of

lstair until either p does not con
ict with the triangle formed by lcand and lnext or lcand is

a hull edge. See Figure 2 where the dotted edges are deleted while the computation of lcand .

A degenerate result of the con
ict test indicates that lcand remains in the triangulation,

L R

lstair

lcand

lnext

possible new lstair

w

p

Figure 2: The computation of lcand

but is a completion edge. Hence we mark lcand as a NON DIAGRAM EDGE in this case.

However, here we have to take care of the following special case observed by [KLN91]. It is

possible that lnext becomes equal to lstair . Here, performing the con
ict test would result in

a false degenerate case and would also be unnecessarily expensive, in particular with exact

computation. In the general case of lnext != lstair we use the function side of circle which

takes the two edges forming a circle C and the node v that is tested for con
ict. It returns

1 if v is strictly inside C, �1 if v is strictly outside C, and 0 in the degenerate case where v

is on C.

10 hcompute lcand and lcand valid 10i� (7)

{

lcand = G.cyclic_adj_succ(lstair);

edge lcrev = G.reversal(lcand);

lcand_valid = (G[lcrev]!=HULL_EDGE)||leftturn(G,lstair,G.target(lcand));

if (lcand_valid)

{

edge lnext;

node rnode = G.source(rstair);

int side=1;

bool lnext_valid=true;

10



while ((side > 0) && lnext_valid)

{

lnext = G.cyclic_adj_succ(lcand);

lnext_valid = (lnext != lstair) && (G[lcand] != HULL_EDGE);

if (lnext_valid)

{

lcrev = G.reversal(lcand);

side = side_of_circle(G,rnode,lcand,lnext);

if (side == 0)

G[lcrev] = G[lcand] = NON_DIAGRAM_EDGE;

if (side > 0)

{

G.del_edge(lcand);

G.del_edge(lcrev);

lcand = lnext;

}

}

}

}

}

Uses leftturn 15 and side of circle 15.

The only di�erence of the computation of rcand is that we now walk clockwise around

rnode .

11 hcompute rcand and rcand valid 11i� (7)

{

rcand = G.cyclic_adj_pred(rstair);

rcand_valid = (G[rcand]!=HULL_EDGE)||leftturn(G,rcand, G.target(rstair));

if (rcand_valid)

{

edge rcrev, rnext;

node lnode = G.source(lstair);

int side=1;

bool rnext_valid=true;

while ((side > 0) && rnext_valid)

{

rnext = G.cyclic_adj_pred(rcand);

rnext_valid = (rnext != rstair) && (G[rnext] != HULL_EDGE);

if (rnext_valid)

{

rcrev = G.reversal(rcand);

side = side_of_circle(G,lnode,rnext,rcand);

if (side == 0)

G[rcrev] = G[rcand] = NON_DIAGRAM_EDGE;

if (side > 0)

{

G.del_edge(rcand);

G.del_edge(rcrev);

rcand = rnext;

}

11



}

}

}

}

Uses leftturn 15 and side of circle 15.

Now we are able to decide which of the edges lcand and rcand joins the current stair with

the next stair. If exactly one of lcand and rcand is invalid, e.g. because the stair is already

at the upper convex hull on that side, we take the other edge. In the general case we do

another con
ict test of the triangle formed by lcand and lstair with the node rnode on the

R side of the stair.

12 hcompute and insert next stair 12i� (7)

{

int side = -1;

bool take_lcand = lcand_valid;

bool take_rcand = rcand_valid;

if (lcand_valid && rcand_valid)

{

side = side_of_circle(G,G.target(rcand),lstair,lcand);

if (side <= 0) take_rcand = false;

else take_lcand = false;

}

if (take_lcand)

{

rstair = G.new_edge(

rstair,G.target(lcand),DIAGRAM_EDGE,before

);

edge lcrev = G.reversal(lcand);

lstair = G.new_edge(

lcrev,G.source(rstair),DIAGRAM_EDGE,after

);

if (side == 0)

G[rstair] = G[lstair] = NON_DIAGRAM_EDGE;

if (G[lcrev] == HULL_EDGE)

G[lcrev] = DIAGRAM_EDGE;

}

if (take_rcand)

{

lstair = G.new_edge(

lstair,G.target(rcand),DIAGRAM_EDGE,after

);

edge rcrev = G.reversal(rcand);

rstair = G.new_edge(

rcrev,G.source(lstair),DIAGRAM_EDGE,before

);

if (G[rcand] == HULL_EDGE)

G[rcand] = DIAGRAM_EDGE;

}

G.set_reversal(lstair,rstair);

}

12



Uses side of circle 15.

4 Dwyers Algorithm

In this section we describe the procedure DELAUNAY DWYER that is built on top of

compute Delaunay Triangulation . First the given list S of n points is sorted in yx-order,

that is, �rst by increasing y-order and then by ascending x-order. Here we already remove

duplicate points. To do this we use the compare function cmp yx that computes the yx-order

on POINT s and use it in the LEDA sort function. The result is stored in the LEDA array

array<POINT> A. Next A is partitioned into m = b(n= log

2

n)

1=2

c vertical stripes whose

size is less than dn=me. For each stripe starting at position i we compute its Delaunay

Triangulation and also a topmost hull edge u[i] and a downmost hull edge l[i]. Using this

information we only have to merge the stripes in pairs of equal size.

We remark that our procedure di�ers from the algorithm presented by Dwyer in that the

stripes are enforced to be of equal size by yx-sorting the points in advance. This is to guard

us against having to merge possibly empty stripes. The running time of the algorithm is

always �(n log n) because of the sorting step and not O(n log log n) even for well{distributed

point sets. However in our tests with n � 10

6

this did not matter since the time for the

merging always exceeded the time for the sorting by far.

13 hprocedure DELAUNAY DWYER 13i� (2b)

int cmp_yx(const POINT&, const POINT&);

void DELAUNAY_DWYER(

const list<POINT>& S0, GRAPH<POINT,int>& G, bool with_check)

{

list<POINT> S = S0;

G.clear();

if (S.empty()) return;

S.sort(&cmp_yx);

array<POINT> A(S.length());

int n;

hwrite the n distinct elements of S into A 3bi

htreat cases with less than two points 4ai

int m = (int) floor(sqrt(n*log(2)/log(n)));

int sz = (int) ceil(n/double(m));

array<edge> u(m), l(m);

int low, high;

hcompute the Delaunay Graphs for each stripe of size sz 14i

for(int k=1;k<m;k*=2)

for(int j=0;j<m-k;j+=2*k)

{

merge_halves(G,u[j],l[j+k],l[j],u[j+k]);

u[j] = u[j+k];

}

if (with_check)

13



check_Delaunay_Graph(G,S,l[0]);

delete_completion_edges(G);

}

De�nes:

cmp yx, used in chunk 14.

DELAUNAY DWYER, never used.

Uses delete completion edges 4b, merge halves 7, and POINT 1.

The Delaunay Triangulations for each stripe are computed by the Guibas-Stol� algorithm,

that is, by calling compute Delaunay Triangulation . In addition we have to compute u[i], the

hull edge of stripe i with topmost source, and we also have to compute l[i], the hull edge

of the same stripe with downmost target. We get u[i] by walking from the hull edge e with

leftmost target in clockwise direction. Likewise, we get l[i] by walking from the hull edge f

with rightmost source in clockwise direction. There is one subtle point in starting the search

from e. Namely, the target of e can be at the same time leftmost and downmost. In this case

we have to start our search for u[i] in the successor edge of e. Note that cmp yx (p; q) returns

a value > 0 if p is bigger than q in yx -ordering.

14 hcompute the Delaunay Graphs for each stripe of size sz 14i� (13)

{

edge e, f;

for(int i=0; i<m; i++)

{

low = i*sz;

high = (i+1)*sz-1;

if (high > n-1) high = n-1;

A.sort(low,high);

compute_Delaunay_Triangulation(G, A, low, high, e, f);

if (cmp_yx(G[G.source(e)],G[G.target(e)]) >= 0)

e = G.face_cycle_succ(e);

while (cmp_yx(G[G.source(e)],G[G.target(e)]) < 0)

e = G.face_cycle_succ(e);

u[i] = e;

while (cmp_yx(G[G.source(f)],G[G.target(f)]) > 0)

f = G.face_cycle_succ(f);

f = G.face_cycle_pred(f);

l[i] = f;

}

}

Uses cmp yx 13 and compute Delaunay Triangulation 5a.

5 Geometric primitives

We need the following geometric primitives.

� leftturn(G; e; v) returns true if the node v is properly left of the directed line through

the edge e
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� side of circle(G; v; e; f) returns 1 if the node v is inside the circle de�ned by the nodes

de�ning the edges e and f , �1 if v is outside the circle and 0 if v is exactly on the circle.

Precondition: e and f have the same source and the sequence of nodes e

s

, e

t

, f

t

forms

a left turn where e

s

and e

t

are the source and target of e and f

t

is the target of f .

Normally our implementation uses the standard LEDA routines orientation and

side of circle, which are de�ned for both POINT types. For LEDA points, the mentioned

LEDA predicates are non-exact, using doubles. For LEDA rat points, the predicates are

implemented using exact LEDA integer arithmetic and a 
oating point �lter.

If the point type is LEDA point , two other implementations of the predicates are addi-

tionally used for the purpose of testing:

� Exact big
oat arithmetic, combined with a semi{static �lter that uses doubles. This

choice of the predicates always gives the correct results. Here the compile 
ag

USE EXACT PREDICATES must be set.

� Approximate big
oat arithmetic, with a freely chosen mantissa length bigger than 2 (in

bits). For example, if the mantissa length is 53, a predicate behaves exactly like the

type double (it ist only slower). This choice of the predicates does not always give exact

answers, except if the input points have integral coordinates of bounded length and the

big
oat mantissa length is big enough to guarantee exactness. Here the compile 
ag

USE BF PREDICATES must be set.

15 hgeometric primitives 15i� (2b)

inline bool leftturn(

const GRAPH<POINT,int>& G, edge e, node v)

{

POINT& p = (POINT&) G[G.source(e)];

POINT& q = (POINT&) G[G.target(e)];

POINT& r = (POINT&) G[v];

#ifdef USE_EXACT_PREDICATES

return (exact_orientation(p,q,r) > 0);

#endif

#ifdef USE_BF_PREDICATES

return (bf_orientation(p,q,r) > 0);

#endif

return (orientation(p,q,r) > 0);

}

inline int side_of_circle(

const GRAPH<POINT,int>& G,

node v, edge e,edge f)

{

POINT& p = (POINT&) G[G.source(e)];

POINT& q = (POINT&) G[G.target(e)];

POINT& r = (POINT&) G[G.target(f)];

POINT& s = (POINT&) G[v];

#ifdef USE_EXACT_PREDICATES

return exact_side_of_circle(p,q,r,s);

#endif

#ifdef USE_BF_PREDICATES
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return bf_side_of_circle(p,q,r,s);

#endif

return side_of_circle(p,q,r,s);

}

De�nes:

leftturn, used in chunks 8, 10, 11, 17, and 18.

side of circle, used in chunks 10{12 and 18.

Uses POINT 1.

6 Program checking

The check procedure has a hull edge as a parameter. We check the correctness of the Delaunay

Graph G in the following steps; see [MNS

+

96]

1. We test whether the nodes of G correspond uniquely to the input points.

2. We test whether the convex hull is indeed locally convex and a closed simple curve.

3. We test wether all non-hull edges satisfy the 
ip test.

Our procedure check Delaunay Graph has a hull edge start edge as a parameter to make the

checking easier.

16a hcheck procedure 16ai� (2b)

void check_Delaunay_Graph(

GRAPH<POINT,int>& G, list<POINT> L,

edge start_edge

)

{

hcheck nodes of G 16bi

hcheck convex hull of G 17i

hdo 
ip tests in the interior of G 18i

}

De�nes:

check Delaunay graph, never used.

Uses POINT 1.

We �rst test wether G has as many nodes as there are points in the list. The precondition

here is that all the duplicates in the list L are already removed. Then we sort the lists and

compare the single entries to check the one-to-one correspondence of the nodes in G with the

points in the list L.

16b hcheck nodes of G 16bi� (16a)

{

L.sort();

node v;

list<POINT> GL;

forall_nodes(v,G)
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GL.append(G.inf(v));

GL.sort();

if (L.length() != GL.length())

error_handler(1,"error: number of points wrong");

list_item it1 = L.first();

list_item it2 = GL.first();

while(it1)

{

if (L.contents(it1) != GL.contents(it2))

error_handler(1,"error: points in graph wrong");

it1 = L.succ(it1);

it2 = GL.succ(it2);

}

}

Uses POINT 1.

Testing the correctness of the convex hull requires three checks.

1. For every hull edge e we test wether (e; v) is a right turn for the next node v after e on

the hull.

2. We check whether all nodes of the hull are on one side of the line through a �xed hull

edge called start edge.

3. We check wether a �xed node start node , the source of start edge, is left of all lines that

pass through the hull edges. Here all lines are oriented as the corresponding edges.

4. We check whether the number of hull edges agrees with the number of edges labelled

HULL EDGE

17 hcheck convex hull of G 17i� (16a)

{

node v;

edge e = start_edge;

node start_node = G.source(start_edge);

int number_hull_edges=0, labelled_hull_edges=0;

do

{

v = G.source(e);

e = G.face_cycle_succ(e);

number_hull_edges++;

if (leftturn(G,e,v))

error_handler(1,

"error: hull not locally convex");

if (leftturn(G,e,start_node) > 0)

error_handler(1,

"error: hull not convex or not simple");

if (leftturn(G,start_edge,v) > 0)

error_handler(1,

"error: hull not convex or not simple");

}
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while (e!= start_edge);

forall_edges(e,G)

if (G[e] == HULL_EDGE)

labelled_hull_edges++;

if (number_hull_edges != labelled_hull_edges)

error_handler(1,"error: hull label wrong");

}

Uses leftturn 15.

Finally we do 
ip tests for every non-hull edge of the graph. Note that we also exclude

completion edges here.

18 hdo 
ip tests in the interior of G 18i� (16a)

{

node v;

edge e, e_rev, e_pre, e_opp;

forall_edges(e,G)

{

e_rev = G.reversal(e);

if (G[e]!=HULL_EDGE && G[e_rev]!=HULL_EDGE)

{

if (G[e] != G[e_rev])

error_handler(1,"check_Delaunay_Graph: label wrong");

e_pre = G.face_cycle_pred(e);

e_opp = G.face_cycle_succ(e_rev);

v = G.target(e_opp);

edge f = G.reversal(e_pre);

if (!leftturn(G,e,G.target(f)))

error_handler(1,

"check_Delaunay_Graph: triangle wrong");

int side = side_of_circle(G,v,e,f);

if (G[e]==NON_DIAGRAM_EDGE)

{

if (side!=0)

error_handler(1,

"check_Delaunay_Graph: NON_DIAGRAM_EDGE wrong");

}

else if (side >= 0)

error_handler(1,

"check_Delaunay_Graph: DIAGRAM_EDGE WRONG");

}

}

}

Uses leftturn 15 and side of circle 15.
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7 Running times

7.1 Di�erent algorithms, using rat points

We �rst compared the two routines DELAUNAY DWYER and DELAUNAY STOLFI with

each other and also with the former LEDA default implementation DELAUNAY FLIP that

uses a 
ipping algorithm. Let n in the sequence denote the size of the used point set. We

chose random 20-bit coordinates for the points, as the running time here did not signi�cantly

depend on the bit size.

We found that The Guibas-Stol� divide{and{conquer method was always as fast as 
ip-

ping, even for small n between 4 and 100 points. From this we conclude that it is does not

make sense at all to use the 
ipping method to stop the recursion in DELAUNAY STOLFI

instead of our direct method for n = 2; 3. For n > 32, DELAUNAY DWYER becomes faster

than DELAUNAY STOLFI . The relative running times for n = 2

1

; 2

2

; : : : ; 2

13

= 8192 are

given in Table 1. For example, the �rst column Stol�/Flip shows the quotient of the running

times of the Guibas-Stol� algorithm and the LEDA 
ip algorithm. All measurements were

made on an Ultra SPARC 2 machine with 200 Mhz. For big n, DELAUNAY DWYER takes

Stol�/Flip Dwyer/Flip Dwyer/Stol�

n = 2 1.09 1.57 1.44

n = 4 0.99 1.33 1.35

n = 8 0.83 0.90 1.08

n = 16 0.74 0.77 1.03

n = 32 0.64 0.57 0.95

n = 64 0.64 0.57 0.88

n = 128 0.62 0.50 0.81

n = 256 0.64 0.51 0.79

n = 512 0.63 0.47 0.73

n = 1024 0.60 0.43 0.71

n = 2048 0.62 0.41 0.67

n = 4069 0.61 0.40 0.65

n = 8192 0.62 0.42 0.68

Table 1: Ratios

less than half the time of the 
ipping algorithm.

The average asymptotic running time in our experiments was very similar for all three

implementations. Only Dwyers algorithm seems to be a little bit faster than the others,

because here all steps except the initial sorting take time O(n log logn) and not O(n log n)

as in the Guibas-Stol� algorithm.

7.2 Dwyer's algorithm, using di�erent predicates and point types

We chose n = 10

5

and n = 10

6

random points with integer coordinates in a square of side

length 2

20

. We use three di�erent con�gurations:

1. rat points and exact predicates using LEDA integer arithmetic

2. points and exact predicates using LEDA big
oat arithmetic, accelerated by a double

�lter
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3. points and inexact predicates, using doubles

As one expects, the inexact point variant is signi�cantly faster than the exact rat point vari-

ant, mainly because the latter uses homogeneous coordinates instead of Cartesian coordinates.

However, it is not signi�cantly faster than the exact point variant which uses �ltered big
oat

computation. The running times are shown in Table 2.

POINT type exactness time n = 10

4

time n = 10

5

rat point exact 0.52 7.01

point exact 0.34 4.87

point inexact 0.32 4.77

Table 2: Variants of Dwyer's algorithm

8 Robustness

It is di�cult to assess the amount of robustness of an inexact implementation (whatever that

term means). Basically, the only safe statement we can make is that an exact implementation

is absolutely robust since it does not make any error and that an inexact implementation

works for some but not all cases. Nevertheless, we tried to do meaningful tests that reveal

the weaknesses of those variants of our implementation that use inexact predicates. These

variants are

1. points with predicates using doubles.

2. points with predicates using big
oats of arbitrary by �xed precision.

The big
oat variant is so much slower than the other that it does not pay to use it in practice.

We consider this con�guration only to assess the robustness of our implementation.

First of all, we found it rather di�cult to let the Guibas-Stol� program and the Dwyer

program fail. We could not produce an input that breaks the double variant, hence we tried

the big
oat version with very small precisions like 16 binary digits. This is made possible by

the unique feature of big
oats that the precision is freely scalable in bits (not only in machine

words of typically 32 bits as it is found with other multiple-precision packages). Choosing a

big
oat precision of 16 tells us how doubles would behave if the mantissa length were 16 bit

and not the usual 53 bit, except that big
oats never generate over
ow or under
ow.

Two data sets are used to produce 'di�cult' input:

1. Many points on a common circle (rounded to double precision)

2. Many points on a common circle plus as many random points in a square containing

the circle whose side length is equal to the diameter of the circle.

In Experiment 1 we tested nearly circular sets of 100 points for various precisions. We

found it very di�cult to decide whether the output is correct or not because the human

eye does not nearly have the resolution that corresponds to double precision. Hence in this

experiment our goal was to break the code, i.e., to produce a fatal error like an in�nite loop

or a segmentation fault. If the predicates used double precision, Dwyer's algorithm and the
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Guibas-Stol� algorithm never crashed. However, the LEDA 
ip algorithm took an in�nite

loop, never stopping to 
ip diagonals. The Guibas-Stol� algorithm at least produced an

(although incorrect) result even if the precision was as low as two (!) binary digits. Note

that using this precision the predicates hardly do anything else than guessing the result at

random. Dwyer's algorithm produced a result if the precision was at least 4 bits, but took

an in�nite loop for precisions of 2 and 3 bits.

In Experiment 2 we tested 1000 nearly cocircular points plus the same number of random

points in the smallest square around the circle. In this con�guration, none of the divide-

and-conquer algorithm crashed. However, we noticed errors whose severity increased with

decreasing precision, almost smoothly. For Dwyer's algorithm, see Figure 3. The behaviour

of the original Guibas-Stol� algorithm is very similar.

We conclude that the Guibas-Stol� algorithm and Dwyer's algorithm are highly robust

at least in our tests and fail only if the predicates are evaluated with a ridiculously small

precision.
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Figure 3: Left above, 19 bit mantissa: Correct result. Right above, 18 bit mantissa: The

merge step does not work correctly anymore. Left below, 16 bit mantissa: The hull is non-

convex. Right below, 2 bit mantissa: Errors are all over the place; however, the program still

does not crash.
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9 Identi�ers

check Delaunay graph: 16a

cmp yx: 13, 14

compute Delaunay Triangulation: 3a, 5a, 14

DELAUNAY DWYER: 1, 13

DELAUNAY STOLFI: 1, 3a

delete completion edges: 3a, 4b, 13

edge info: 2a

leftturn: 8, 10, 11, 15, 17, 18

make edge,: 6b

make triangle: 6a, 6b

merge halves: 5a, 7, 13

POINT: 1, 3a, 4b, 5a, 6b, 7, 13, 15, 16a, 16b

side of circle: 10, 11, 12, 15, 18

10 Code chunks

hbasic procedures 6bi 2b, 6b

hcheck convex hull of G 17i 16a, 17

hcheck nodes of G 16bi 16a, 16b

hcheck procedure 16ai 2b, 16a

hcompute and insert lowest stair 8i 7, 8

hcompute and insert next stair 12i 7, 12

hcompute lcand and lcand valid 10i 7, 10

hcompute rcand and rcand valid 11i 7, 11

hcompute the Delaunay Graphs for each stripe of size sz 14i 13, 14
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hdc delaunay.c 2bi 2b

hdc delaunay.h 1i 1, 2a, 2b

hdo 
ip tests in the interior of G 18i 16a, 18

hgeometric primitives 15i 2b, 15

hprocedure compute Delaunay Triangulation 5ai 2b, 5a

hprocedure DELAUNAY DWYER 13i 2b, 13

hprocedure DELAUNAY STOLFI 3ai 2b, 3a

hprocedure delete completion edges 4bi 2b, 4b

hprocedure merge halves 7i 2b, 7

hthree-point case 6ai 5b, 6a

htreat cases with at most three points 5bi 5a, 5b

htreat cases with less than two points 4ai 3a, 4a, 13

htwo-point case 5ci 5b, 5c

hupdate e i and e j 9i 7, 9

hwrite the n distinct elements of S into A 3bi 3a, 3b, 13
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