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Abstract

We report on the performance of a library prototype for external memory

algorithms and data structures called LEDA-SM, where SM is an acronym

for secondary memory. Our library is based on LEDA and intended to com-

plement it for large data. We present performance results of our external

memory library prototype and compare these results with corresponding re-

sults of LEDAs in-core algorithms in virtual memory. The results show that

even if only a small main memory is used for the external memory algo-

rithms, they always outperform their in-core counterpart. Furthermore we

compare di�erent implementations of external memory data structures and

algorithms.
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1 Introduction

During the last years, many software libraries have been developed to sup-

port e�cient data structures and algorithms for in-core computation. As

the data to be processed has increased dramatically, most of these libraries

are used in a virtual memory setting, allowing their data structures to use

more memory than physically available. Most of the implemented algorithms

and data structures were designed for a theoretical RAM{model with un-

limited memory. It has been observed by many researchers that most of

these algorithms perform very badly when used in an external memory set-

ting. This led to the design of algorithms and data structures for external

memory [CGG

+

95, Arg96b, UY91]. Various theoretical results have been

obtained in the last years starting with classical sorting and searching prob-

lems [AV88]. Very recently a few researchers also considered practical im-

plementations. One of the �rst external memory libraries was TPIE [VV95].

TPIE consists of several so called external programming paradigms like scan-

ning, sorting and merging. The main drawback of TPIE is that there exists

no support to internal memory libraries [HMSV97]. Whenever internal data

structures or algorithms are needed they must be explicitly implemented. As

stated, TPIE was developed to support programmers in developing external

memory algorithms. Other authors independently developed implementa-

tions for special data structures [Chi95, HMSV97]. These special imple-

mentations are often used to analyze the performance of new external data

structures and algorithms. They are often e�cient but lack a basic concept

for external memory management. At the moment there is no library that

provides both, a collection of external data structures and algorithms and

a connection to a highly e�cient library for in-core algorithms and data

structures.

LEDA-SM was designed to close that gap. LEDA-SM is a prototype li-

brary that supports I/O{e�cient data structures that can be used in many

applications. To circumvent the rewriting of e�cient algorithms and data

structures for in-core problems, LEDA-SM is designed as an extension of the

LEDA-library [MN95] and hence requires to be used together with LEDA.

LEDA-SM provides a sizable collection of data types and algorithms in a

form which allows them to be used by non-experts. LEDA-SM gives a pre-
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cise and readable speci�cation for each of the data types and algorithms.

The speci�cations are short and abstract so as to hide all details of the

implementation. The LEDA-SM project was started in March 1997 and is

still under development. In this report we will focus on experimental results

that we obtained during the development of LEDA{SM so far. The report

is organized as follows. We will start with a short description of the theo-

retical I/O{model underlying external memory algorithms. In Section 1.2

we describe how LEDA-SM manages external memory. In Section 2 we give

some benchmarks and experimental results and show that the performance

of LEDA-SM is good from a practical point of view.

1.1 The Theoretical I/O{Model

Modern computers are equipped with several memory hierarchies starting

with registers of the CPU, caches, main memory and last but not least

secondary memory (magnetic disks or CD-ROMS) and tertiary memory

(tapes). The access time to the di�erent memory hierarchies di�ers a lot.

The biggest gap is between main memory and secondary memory where it

is typical that a disk is 10

5

to 10

6

slower than the main memory [HP90].

Unfortunately, the majority of the known algorithms ignore this fact and

use disks in the same way as if all data were �tted into internal memory, so

that they su�er from the so called I/O bottleneck: They spend most of the

time in moving data to/from the disk. As disks are mechanical devices the

access time is dominated by moving the disk arm. Therefore it is convenient

that one should transfer a block of data instead of a single item. Algorithms

for external memory should be aware of these features. The computational

model that re
ects most of these features is the theoretical I/O-model of

[AV88]. This model abstracts a computer to consist of a two-level mem-

ory: a fast and small internal memory of size M , and a slow and in�nitely

large external memory, called disk. Data between internal memory and the

disk are transfered in blocks of size B, this transfer is called I/O. The per-

formance of algorithms in this model is evaluated by measuring: (a) the

number of I/O operations performed, (b) the internal running time (CPU

time), and (c) the number of occupied blocks in the external memory (also

called disk pages). [VS94] re�ned this model by also investigating in the so

called D-disk model, where the external memory is realized by D disks that

can operate independently from each other. From now on, we will use this

model to study the complexity of external memory algorithms.

1.2 The LEDA-SM library prototype

One of the central questions for an external memory library is the realization

of external storage which can consist of D disks, each storing a �xed number
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of blocks

1

of size B bytes. Indeed there are three ways to model the external

memory. The �rst is to use low level disk access to the connected disks.

The advantage of this realization is fast disk access without any additional

software layers that slow down the disk access. The next two possibilities

both realize the external storage by �les of the operating system's �le system.

One way is to choose a �le for each data structure or for parts of it, the

other is to use one single big �le for each disk to be modeled. Let us brie
y

recall some basic facts about the underlying �le system. The Unix operating

system together with the C- and C

++

{libraries o�er a variety of prospects for

�le accesses. The basis for �le access is realized by the standard I/O system

calls. All standard I/O{libraries (stdio.h and iostream.h) use these low level

system calls. However the operating system also imposes some restrictions.

For example the number of open �les is limited by the operating system and

the maximum size of a �le is limited. Some limits can be removed others

are operating system speci�c, for example the �le size is often restricted to

2 Gbytes because only 32 bit seek pointers are supported by the operating

system. The restriction of the number of open �le descriptors is also useful

because each open �le descriptor will use main memory in the operating

system. Let us �rst discuss the method where we use a �le for each data

structure or parts of it. This method will open many �les and therefore this

could easily reach the limit of allowed open �les. Furthermore, by using

many �les, we are not sure that they will be contiguous on the disk; the �les

can also be fragmented. If one later wants to switch to low-level disk accesses

instead of �le accesses, the whole library must be rewritten because disks in

their low level view do not provide the �le layer. The second possibility is

the following: Each disk is modeled with a single �le and it is divided into

logical blocks of a �xed size B (disk pages). The size of this �le is �xed,

thus modeling the fact that real disk space is bounded. If we use an empty

disk and allocate the �le at the beginning, it is quite sure that the �le is

contiguous. However we are limited by the maximum allowed �le size which

will limit the size of the abstract disk. The advantage of this realization is

that it is quite easy to switch to low level disk access without changing the

overall design. All we have to do is to map the �le that models our abstract

disk to the raw disk and to rewrite the methods for block access.

We have chosen the following external memory realization for the LEDA-

SM library prototype. As described above, we model a disk by one single �le

of the �le system. This currently limits the abstract disk size to 2 Gbytes

(Solaris 2.5.1) and will be unlimited under Solaris 2.6. Since LEDA-SM is

using the �le system, its external memory data structures and algorithms

can explicitly take advantage of I/O-bu�ering and read-ahead strategy of

the �le system at no additional implementation e�ort.

2

1

In reality, disk space is not unlimited.

2

As the �le system is allowed to bu�er disk pages, some of the disk requests can
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LEDA-SM consists of a kernel that realizes the secondary memory access

and the management of secondary memory. The components of the kernel

visible to the user are the external memory manager (ext mem mgr), blocks

(block ), block identi�ers (B ID), user identi�ers (U ID), and the name server

(name server).

Recall that there are D disks and that the number of blocks that can

reside on the d-th disk, 0 � d < D, is max blocks [d]. The blocks on any

disk are numbered consecutively starting at zero. A block identi�er is a pair

(d,num) of integers. A block identi�er is called valid if 0 � d < D and

0 �num<max blocks [d] and it is called active if it is valid and the block

denoted by it was written to. The class B ID realizes block identi�ers.

Observe that block identi�ers refer to physical objects, namely, to regions

of storage on disk. In the remainder of this section there is the need to

distinguish between blocks as physical objects (= a region of storage on

disk) and blocks as logical objects (=a bit pattern of a particular size). We

will use the word disk block for the physical object and reserve the word

block for the logical object. The disk blocks are managed by the external

memory manager (class ext memory manager ). There is only one instance

of this class; it is de�ned in ext memory manager:h. The external memory

manager can be asked to allocate disk blocks, to free disk blocks, and to

transfer blocks between main memory and external memory. The allocation

of a disk block is either on a disk chosen by the user or on a disk chosen

by the system (if no disk is speci�ed in the allocation request). The return

value of an allocation request is a block identi�er which can later be used in

read- and write-operations.

An allocated disk block is always owned by a particular user. Only the

owner of a disk block can write the disk block. A user is identi�ed by a user

identi�cation (= an integer) of class U ID and user identi�ers are managed

by class name server . We use user identi�ers for memory protection. Every

instance of a data structure is a di�erent user of the kernel and hence data

structures are protected against one-another.

The parameterized type block<E> is used to store logical blocks in in-

ternal memory. An instance B of type block<E> can store one logical block

and gives a typed view of logical blocks. A logical block is viewed as two

arrays: an array of links to disk blocks and an array of variables of type E.

A link is of type block identi�er . The number num of bids of links is �xed

when the block is created. The number of variables of type E is denoted by

blk sz and is calculated at the time of creation. blk sz is dependent from the

maximal size EXT BLK SZ of block<E> and from the size of data type E.

Both arrays are indexed starting at zero.

Every block has an associated user identi�er and an associated block

immediately be satis�ed by the I/O{bu�er. This notably speeds up the real performances

of the external-memory algorithms.
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identi�er. The user identi�er designates the owner of the block and the block

identi�er designates the disk block to which the logical block is bound. The

block identi�er may be invalid and the user may be unspeci�ed (NO USER).

Objects of type B ID and U ID are managed by kernel data structures. At

any time the kernel keeps track of allocated and free disk blocks. All the

mechanisms described so far build an interface class that we call external

memory manager. It consists of

� An interface for allocating and deallocating blocks

� An interface for allocating and deallocating user ids

� An interface for block transfer management

allocate / deallocate
user-ids

allocate / deallocate
disk block

block operations:

data access and I/O

algorithm
user-defined data structure or

name server basic block

external memory manager

external disk external freelist

Figure 1.1: Architecture of the external memory manager

We call these parts interfaces because, we only specify the functionality

of these parts, it is possible to use several di�erent implementations for each

interface. All these interfaces use the concept of blocks. This concept is

unchangeable and builds the basis for the whole library. The block transfer

and the allocation and deallocation of block identi�ers can be handled in

di�erent ways. We can use up to four di�erent methods for block trans-

fer, namely standard I/O, system call I/O, memory mapped I/O and aio.

3

Besides the aio-library, these are standard methods for �le access and are

therefore portable to di�erent machines. System dependent information i.e.

the block size, the name of the disk(s), etc. is de�ned in a special con�g-

uration �le called .con�g leda-sm which is read when the program starts.

All supported external data structures are implemented by using these in-

terfaces and the concept of blocks. These data structures are the high level

3

see also UNIX manual \man aioread".
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access interface of the library, any I/O calls are completely hidden in the

implementation. The memory manager itself and the data structures are

implemented in C

++

as a set of template classes and functions. A special

feature of LEDA-SM's data structures is that during their constructions it is

possible to specify (and therefore control) the maximum amount of internal

memory that they are allowed to use. As most of the modern machines do

not distinguish between physical main memory and swap space, this fea-

ture must be used carefully. It is even possible to specify more memory for

the external data structures than physically available. In this case the ma-

chine will use swap space. To circumvent this problem, one should carefully

choose the main memory settings for the external data structures. One way

to verify this settings is to monitor the virtual memory behavior by using

designated tools

4

.

4

On machines running the Solaris operating system use vmstat.
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2 Low-level benchmarks for

LEDA-SM

We tested LEDA-SM on a Ultra SPARC-1/143 with a single 9 Gbytes Sea-

gate Elite 9 \Fast SCSI-2 Wide" disk (see Appendix A for technical details).

Our tests consist of low-level disk tests with LEDA-SM and performance

tests for the implemented data structures. In detail, we want to analyze

the speed of the LEDA-SM interface that connects the library to the disk

interface and we want to test our secondary memory data structures and al-

gorithms against their equivalents of the LEDA library in a virtual memory

setting. We measure the following three numbers:

1. transfer rate

By the transfer rate we understand the amount of data per second that

can be transfered by class block from the internal memory to the disk

or vice versa. The transfer rate is used to estimate the e�ectiveness

of LEDA-SM's disk access in comparison to the transfer rate, given

by the manufacturer of the disk. The transfer rate is measured either

by using a monitoring tool of the operating system

1

or by dividing

the total amount of transfered data of our test program by its real

running time. However the second way only leads to a reasonable

approximation of the transfer rate if the I/O calls are the dominating

part of the test program. There are applications where the internal

time which is used to work on the data is bigger than the time to load

and store the data (i.e. the algorithm is CPU-bound). In this case,

the transfer rate, if calculated from the total running time leads to

wrong interpretations of the e�ciency.

2. exact I/O bounds

Many of our implemented algorithms perform the same number of

I/Os expressed in big Oh-notation. Therefore, to compare these algo-

rithms, we are interested in giving exact I/O bounds. For the space

1

On machines running the Solaris operating system used iostat
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consumption, the constants are more important because in realistic

applications, the available disk space is limited.

3. real running times

What we really want to investigate is whether or when external mem-

ory algorithms are faster than \internal memory algorithms in virtual

memory". We do not measure user time and system time because even

the sum of both does not give us an exact behavior for our programs.

Our programs heavily perform I/Os, the time for raw data transfer

between disk and kernel memory of the operating system is not mea-

sured in neither system time nor user time. Therefore the sum of user

time and system time is only a bad approximation, and instead we

choose the wall clock time which is the time that passes between the

start of the process and its end.

During our tests we restricted the amount of used internal memory to

� 4 Mbytes. As many applications only use internal blocks and LEDA

data structures we simply calculated the necessary size. We did not count

the space for local variables or small local arrays. At the moment it is not

possible to calculate the main memory usage of LEDA data structures by

special functions. Therefore we use monitoring tools like top and vmstat

to verify that our main memory settings do not lead to heavy paging on

the machine. An automatic calculation of the space consumption of LEDA

data types and algorithms will be integrated into later versions of the LEDA

library.

2.1 Scanning

Scanning is the process of sequentially reading or writing data on the disk.

If N bytes are accessed, this requires exactly dN=Be I/Os. The scan test

is used to calculate the transfer rate that can be achieved by the LEDA-

SM library. It further illustrates the di�erence between sequential block

accesses and random block accesses. We used LEDA-SM's low level disk

block access routines that are provided by class block. We set the block

size to 8 kbytes which is exactly the page size of the �le system. The tests

consisted of reading and writing either (a) consecutive blocks on disk or (b)

random positions on the disk using di�erent �le I/O implementations. We

�rst consider writing consecutive blocks.

I/Os of the �le system can be done in a bu�ered way. If the I/Os are

bu�ered, the data to be written is copied to a memory region of the operating

system and the process can immediately proceed with its computation. After

the operating system has collected some requests (usually after a �xed time

interval), they are send to the disk asynchronously. The advantage of this

method is that the requests can be reordered by the operating system so that
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consecutive disk locations can be accessed. This would result in a higher

transfer rate. Another method for doing �le I/O is memory mapped I/O.

Memory mapped I/O lets us map a �le on disk into a bu�er in memory so

that, when we fetch bytes from the bu�er, the corresponding bytes of the

�le are read. Similarly, when we store data in the bu�er, the corresponding

bytes of the �le are read. The advantage of mmap is, that the operating

system is doing the I/Os directly on the the bu�er in memory, there is no

need to copy the data to a memory region of the operating system.

We now perform the following tests. We compare LEDA-SM's block

transfer mechanism to a standard �le access without LEDA-SM. The block

transfer mechanism uses di�erent �le I/O mechanisms, namely stdio and

syscall (both bu�ered) and mmap. The standard �le access method is stdio.

The tests of Figure 2.1 consist of performing consecutive write operations

using either LEDA-SM or a standard �le access. We see that mmap is a little

bit slower than the other access methods. Although memory mapped I/O

(mmap) directly writes to disk without bu�ering the data, it is slower than

the other access methods. Stdio and syscall bu�er the requests in kernel

memory and don't write directly to disk. Writing is done asynchronously by

the operating system when the bu�ers are 
ushed. By this, sequential writes

pro�t from the bu�ering process as much larger data blocks are really 
ushed

to disk. Memory mapped I/O (mmap) achieves an average transfer rate of

approximately 3:01 Mbytes per second. Standard I/O (stdio) achieves an

transfer rate of 4:97 Mbytes, and all the other methods including writing

normal �les without library overhead (�le) achieve approximately the same

transfer rate. This situation does not change if we perform consecutive read

operations. Reads are a little bit faster than writes (see Figure 2.2). This

comes from the fact that disks use read-ahead of further data to service the

following consecutive requests from their caches. LEDA-SM's block trans-

fer using memory mapped I/O is slower because of the following reasons.

When we establish the mapping, we exactly map one block of the �le. We

then perform the read or write access and then destroy the mapping. The

overhead, introduced by the two system calls to establish and destroy the

mapping leads to this slowdown. It is not possible to map the whole �le

because its size can be greater than the available internal memory.

By bu�ering and read-ahead of modern �le systems, consecutive �le op-

erations are easy to optimize for nearly every modern �le system. Random

I/Os behave di�erently. Now, bu�ering and read-ahead don't play an im-

portant role because we do not target consecutive disk locations. Thus more

seeks on the disk occur and should lead to a slowdown. As the operating

system is bu�ering requests, when performing linear I/Os we only see a few

seeks on the disk and many track to track seeks because the data will be

stored consecutively. If we use a random access pattern nearly every posi-

tioning will be a normal seek. If we look at the speci�cation of the Elite 9

disk, the ratio average seek time over track to track seek is 7. If we look at
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the average transfer rate, we see that it decreases dramatically. For standard

I/O and random writes, the transfer rate dropped to 0:88 Mbytes per second

(a slowdown of a factor 5:6). Memory mapped I/O is faster than the other

methods if we are performing only a small number of random writes, and is

getting slower for a larger number of operations. Random read operations

behave the same way as random write operations with the exception that

memory mapped I/O is slower than all other operations.

One goal was to estimate the overhead for �le access that we introduced

by using a class library. For consecutive reads and writes we see that the

overhead compared to standard �le access without library (�le) is negligible.

For random reads, file is 1:28 times faster than stdio and for random writes

it is 1:11 times faster. Thus we conclude that the overhead introduced by

our library is small.

The experiments show that the theoretical model is just an approxima-

tion of reality. In theory there is no di�erence between n random block I/Os

and n consecutive block I/Os whereas in practice there can be a speed factor

of 5 or more. We conclude that it is important to design algorithms that

perform mostly consecutive I/Os.
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2.1.1 Choosing the Block size

The block size is not a �xed parameter in the LEDA{SM library. It is pos-

sible to specify the block size. For most of the tests we used a block size of

8 kbytes because this is exactly the page size of the operating system and

the underlying �le system. By using the same amount of block transfer,

we are fair if we compare our algorithms to \internal memory algorithms in

virtual memory". If we increase the block size, we can increase the trans-

fer rate for consecutive operations and for random operations [Gro98](see

Appendix A.1. However we remark that choosing the block size according

to the fastest achievable transfer rate is not always suitable. Some applica-

tions cannot �ll the blocks, therefore one should choose a smaller block size

to avoid wasting disk space. Additionally, if we look at the log

M=B

merge

degree, of external multiway mergesort, the merge degree decreases if we

increase B.

2.1.2 Performance of File{System I/O

Although every database system is avoiding �le{system based I/O, it is not

a bad choice for computing in external memory. However we should keep in

mind that �le{systems are tuned for speci�c kinds of I/O{requests. All the

bu�ering mechanisms are tuned for normal user requests which are typically

small in their requested size and in number. However the bu�ering gives

us a good potential for speeding up consecutive operations. Furthermore

asynchronous write is exactly the kind of disk access that one wants to have.

This allows to overlap computation and I/O in some manner. However we

should be careful with random operations and also with data structures

that have in some kind a random access pattern to disk locations (either

read or write). In this case we will always experience the pure limit of disk

mechanics. If we use computers with larger main memory and don't allocate

all the available physical memory, the �le system I/O can pro�t a lot from

large I/O bu�ers as modern operating systems will use as much available

internal memory for bu�ering of requests. In some way we followed this

approach by using only a very small fraction of the available main memory

for the data structures (4 Mbytes during our tests).

2.2 Sorting in LEDA-SM

The classical algorithm for sorting in external memory is multiway-mergesort

[CLR90]. The input to be sorted is divided into runs of length M . These

runs are sorted in internal memory and later merged together. This leads

to a sorting algorithm which performs optimally O(n=B � log

M=B

n=B) I/Os

andO(n log n) operations. The space needed to sort n items of size x bytes is

2nx bytes on disk. We implemented multiway mergesort as follows. Internal
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sorting is realized by LEDA quicksort. The presorted runs are merged using

an internal LEDA priority queue. The runs are creation by reading blockwise

M items from the input, sorting them internally using LEDA quicksort and

then writing them back, thus the run creation phase needs 2 � n=B I/Os.

The data transfer rate that is achieved during the creation of the presorted

runs is very high because the I/O{requests target consecutive locations of

the disk. The merging process is invoked in log

M=B

n=B rounds. We always

try to merge as many runs as possible. During this process we cannot expect

consecutive I/O requests. This will immediately decrease the data transfer

rate and the total running time. Mergesort is implemented as a low level

template routine that can directly be used in many other data structures. A

comparison function can be used for the data types to be sorted. We give a

running example. We sort data type int (see Figure 2.5). A main memory

of 4 Mbytes was used, the block size was 16 kbytes.
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Figure 2.5: Running time of LEDA-SM's multiway-mergesort implementa-

tion

Our goal was to investigate whether and when external sorting is faster

than an \internal memory sorting algorithm that operates in virtual mem-

ory". Therefore we compared the external sorting algorithm with the LEDA

sorting algorithm that implements quicksort (see Figure 2.6). It is known

from [AEH84] that quicksort is the best choice for sorting in virtual mem-

ory. Our quicksort implementation was allowed to use all the available main

memory of size 64 Mbytes (M

q

) and as much swap space as needed; whereas

our multiway-mergesort implementation was restricted to use only approxi-
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mately 4 Mbytes (M

e

) of internal memory.
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Figure 2.6: Run-Time comparison between LEDA's quicksort implementa-

tion in virtual memory and LEDA-SM's multiway-mergesort implementation

Quicksort is much faster as long as we stay in internal memory. The

reasons for this is that multiway mergesort must �rst load the data from

the disk before the sorting is invoked, and afterwards it must write it back.

Multiway mergesort is getting faster if we exceed the main memory. At an

input size of n = 1:25 �M

q

(M

q

= 64 Mbytes), multiway mergesort is faster

than quicksort. In the range between M

q

and 1:25 �M

q

, quicksort is still

faster. There are several reasons for this. First of all, quicksort is allowed

to use more internal memory than multiway mergesort. Therefore, paging

only occurs in the �rst recursion of quicksort and it is likely that all the

other recursions will run in internal memory. The second reason is that

multiway mergesort must load its data from disk while the data of quicksort

remains in virtual memory. This behavior changes if we allow multiway

mergesort to use more internal memory. We analyze in more detail the I/O

complexity for our speci�c values of M

e

= 4 Mbytes and B = 16 kbytes.

The logarithmic I/O term (log

M

e

=B

n=B) of the I/O{complexity is always

between one and two. Therefore one merging step is su�cient to sort the

data. Indeed sorting 1 million integers does not need a merge phase whereas

sorting 2 million integers and all the following test sizes need one merging

phase. The sharp bend at the input size of 85 millions ints in the Figure 2.6

occurs because we change the internal heap realization of the merge steps.

During our tests we realized, that internal computation is critical for the
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performance. It turned out that the originally used LEDA Fibonacci-heap

was too slow for smaller inputs. Therefore we used a simple heap structure

based on arrays for smaller input size and change to Fibonacci heaps later.

As a result we see that for large n, the multiway-mergesort is 2 times faster

than quicksort. We also see that the gap between the two curves representing

the running times is increasing. The time consuming part of sorting is the

run-creation phase. Indeed, sorting is not I/O-bound as it �rst seems. Data

can be loaded at a speed of approximately 4 Mbytes/sec. 4 Mbytes amounts

to 10

6

ints, and sorting 10

6

ints takes approximately 1 second. Therefore

half of the time is used by internal computation. During our tests, only one

merging phase was necessary and merging is typically faster than the run-

creation phase. This came from the fact that our disk space was restricted

to 2 Gbytes and the setting of M and B allowed to merge the runs in

one phase. We note that even for large inputs, we don't expect a merge-

recursion that will be greater than 3. For example withM = 64 Mbytes and

B = 16 kbytes, it is possible to merge and input of 256 Gbytes in one round.

Thus, the total running time is dominated by internal sorting which should

always be a candidate for improvement. If we sort user-de�ned data types,

the comparison is done by using a user-de�ned compare function instead

of smaller-equal operators. By this, the comparison introduces an overhead

that is not negligible. Especially, if the user-de�ned data type is simple (for

example a tuple consisting of two ints), the function call overhead for the

comparison is tremendous. Therefore it is absolutely necessary to inline the

comparison code

2

. This inlining leads to an overall speedup of two for the

external sorting code.

2

This is done in LEDA-version 3.7.2 by using template-sorting code together with

inlining of comparison functions.
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3 B-Trees

B{Trees [BM72] are widely used in database systems for searching. B-Trees

are balanced search trees with a node fanout of O(B). For standard search{

tree online operations like insert, delete and search, the structure achieves

O(log

B

n=B) I/Os for a B{tree consisting of n elements. We have chosen a

B

�

implementation in which the information is stored in the leaf nodes and

internal nodes only store separator keys and the pointers to their children..

The implementation uses template code. To avoid parent pointers in internal

nodes that one needs for rebalancing B-trees , an external stack is used to

cache the path from the root of the tree to the leaft where the inserted

element should be placed. The leaves are doubly linked to supply fast access

to successors and predecessors. By caching the most frequently used disk

pages for both the leaves as well for the path from the root to the leaves, it

is possible to save some I/Os.

We compare B-Trees directly to internal memory search trees, e.g. 2-

4-trees of LEDA. B-Trees use the pagers to reduce I/Os. We perform the

inserts and delete mins seperately that means we �rst insert all elements by

calling n times insert and then perform n delete min operations. Figure 3.1

shows that 2-4-trees are outperformed by B-Trees. If we perform more than

2 � 10

6

insert operations on a LEDA 2-4-trees the system starts to swap

a lot. At the point of 2 � 10

6

insert operations B-Trees are faster than

2-4-trees. Figure 3.2 shows the performance of the operation delete min.

We immediately see, that delete min is faster than insert. Although both

operations run in O(log

B

n=B) I/Os, during delete min we don't need to

search the smallest element. Instead we simply store a pointer to the smallest

element so that we can immediately access the correponding leaf disk page.
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4 External Priority Queues

Priority queues can be used for a variety of algorithms. In internal memory,

there exist many e�cient implementations of priority queues. A good survey

for the e�ciency of priority queue implementations is given in [CGS97].

However many of these data structures behave very badly when used in an

external memory setting. This comes from the fact that the data structures

are often accessed in a random manner through pointers. A typical priority

queue operation that behaves like this is decrease priority. Therefore most of

the known external memory priority queues do not support this operation.

We will �rst introduce a fast and simple external memory priority queue

without a decrease priority operation. This queue is based on internal radix

heaps [AMOT90].

4.1 R{Heaps as external priority queues

We describe a simple and very fast priority queue data structure based on

internal two-level radix heaps [AMOT90] (shortly R{heaps). Let C be a

positive integer. We make two assumptions:

� All priority labels of the elements currently in the R{heap are non-

negative integers in the range [min;min+C], wheremin is the priority

value of the last element deleted from the heap (zero otherwise).

� The queue is monotone so that the priority values of the deleted ele-

ments are nondecreasing.

Let us now consider an arbitrary positive integer r (also called radix )

and choose the parameter h so that r

h

> C (that is, we set h = dlog

r

Ce).

Let k be an arbitrary element and let k

h

k

h�1

: : : k

0

be its representation in

base r (denoted by (k)

r

). Similarly, letm

h

m

h�1

: : : m

0

be the representation

of min in base r (denoted by (min)

r

). According to the assumptions above,

we have that if an element k belongs to the queue then k � min < r

h

.

Consequently k

h

= m

h

or k

h

= m

h

+ 1.

We are ready now to describe our external R{heap which consists of

three parts:
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� h arrays of size r each. An array entry is a linear list of blocks called

a bucket (In a simple way a bucket can be seen as an external stack).

Let B(i; j) denote the bucket associated with the j{th entry of the i{th

array, for 0 � i < h; 0 � j < r. For each bucket we maintain the �rst

block (disk page) in main memory. This constrains r to be such that

h � r �B �M .

� a bucket N containing all elements k with k

h

= (m

h

+ 1)mod b.

� an internal memory priority queue Q containing all indices of non-

empty buckets. The indices are ordered lexicographically, i.e., (i; j) <

(i

0

; j

0

) if either i < i

0

or i = i

0

and j < j

0

. Q will never store more than

h � r indices.

We now discuss how the operations Insert and Delete min are imple-

mented.

Insert: In order to insert a new element k in the external R{heap, we �rst

compute the least signi�cant h+1 digits of its representation in base r, thus

taking O(h) time and no I/Os. Then we insert k into the bucket B(i; j) such

that i = maxflm

l

6= k

l

; 0 � l � hg and j = k

i

. Clearly bucket B(i; j) may be

currently empty, and in this case we also insert the bucket index (i; j) intoQ.

Pseudo-code for insert(x) (x=< d; i >):

insert(x)

compute i = maxfl m

l

6= d

l

; 0 � l � hg and j = d

i

if ( B(i; j) is empty) Q.insert( (i; j) )

insert x into B(i; j)

Lemma 1 An Insert takes amortized O(1=B) I/Os and O(h+log(hr)) CPU

time.

Proof: This follows immediately from the discussion above. The constant

in the I/O term is one.

Delete min: If the bucket B(0;m

h

) is non-empty we just delete an ar-

bitrary element from this bucket. This takes amortized O(1=B) I/Os and

O(log(hr)) time. Otherwise we use the internal priority queue Q to �nd the

�rst non-empty bucket. The idea is to perform a Delete min on Q. This

is either a bucket B(i; j), for some i and j, or the bucket N (here we set

i = h). In both the two cases, we scan the non-empty bucket and determine

the new minimum element min. It is crucial to observe that all elements
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Figure 4.1: Radix heap example with r = 10: 13 is the current minimum,

497 di�ers in the second digit and is therefore stored in B(2; 4).

e in the examined bucket agree with the new minimum min in the digits

e

l

= min

l

, for all l � i, according to the way we allocated the keys into

the various buckets and that the new minimum min has to be stored in

bucket B(0;m

h

). Since the minimum has changed we have to reorganize the

elements in the current bucket (i; j).. The new bucket for each element in

B(i; j) is determined according to the rule exploited for the Insert: we store

e into B(i

0

; j

0

) where i

0

= maxfrm

r

6= k

r

; 0 � r � hg and j

0

= k

i

0

. Observe

that all these elements are moved to a bucket with smaller �rst index, since

these elements disagreed with the old minimum in their i-th digit and agree

with the new minimum in their i-th digit. We update Q accordingly and

return any element stored in the bucket B(0;m

h

).

Pseudo-code for x = delete min():

delete min()

(i; j) = Q.find min();

if ((i; j) == (0;m

h

)

delete an arbitrary element from B(0;m

h

)

if(B(0;m

h

) is empty) Q.delete((0;m

h

)) fi

fi
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else

determine the minimum element v =< d; i > in B(i; j)

compute (d)

r

set min = d

insert v into B(0; d

h

) = B(0;m

h

)

Q.insert((0; d

h

))

for all remaining elements e of B(i; j) except v

insert(e)

delete an arbitrary element from B(0;m

h

)

if(B(0;m

h

) is empty) Q.delete((0;m

h

)) fi

Lemma 2 A Delete min takes O(h=B) amortized I/Os and (h log(rh)) amor-

tized CPU time.

Proof: Each element can be redistributed at most h times, namely once

for each level. This amounts to 2 scans per redistribution, if we avoid the

scan for �nding the minimum element in a bucket. This implies the I/O-

bound. For the CPU time we observe that time O(log(hr)) is required to

�nd the �rst non-empty bucket (by using Q) and that the same amount of

time pays for moving a single element. Since each element is moved at most

h times, the bound follows.

It remains to determine the appropriate values of r and h that allow the

R{heap data structure to work correctly. The only constraint we imposed

on these parameters was that r �h �B �M , which allowed to stu� one block

per bucket into internal memory. Since h = log

r

C, it su�ces to choose the

maximum value of r such that the constraint above holds, that is (where

m =M=B):

r =M=(hB) = (m= logC) log r � (m= logC) log(m= logC):

We have therefore proved the following result:

Theorem 1 Let r = (m= logC) log(m= logC) and let h = log

r

C. An Insert

into an external R{heap takes amortized O(1=B) I/Os and O(h + log(hr))

CPU time and a Delete min takes O(h=B) amortized I/Os and O(h log(rh))

amortized CPU time.

As far as the external space consumption is concerned, we observe that

only one disk page can be non-full into each bucket (by looking at a bucket

as a stack). But this page does not reside on the disk, so that there are no

partially �lled disk pages. We can therefore conclude that:

Lemma 3 An external R{heap storing N elements occupies �(N=B) disk

pages.

25



Our implementation of radix heaps is designed in such a way that for a

given C it calculates automatically the best values for r and h. The values

are computed according to the condition that h should be chosen minimal.

4.1.1 Performance of Radix Heaps

When testing priority queues (i.e. Radix-Heaps and Bu�er-Trees), we use

the following benchmark. We �rst insert all elements and then delete all

elements. This test performs the maximum number of I/Os for both oper-

ations. If we would mix insertions and deletions, we could not guarantee

that I/Os are performed. I could be the case that most of the buckets are

small and a lot of elements could still be in internal memory. Therefore we

perform �rst all insertions and then all deletions. This allows us to calculate

the average transfer rates to disk that are achieved by this operations.

Radix heaps outperform all other priority queue implementations we

tested. The advantage of radix heaps are the small constants. Inserting

elements requires amortized 1=B I/Os. This is the fastest known I/O{bound

for external priority queues. The amortized number of I/Os for a delete-min

are 2 � (h=B). Figure 4.2 is an example demonstrating the performance

of insert and delete min operations of LEDA-SM's radix heaps. We used

4 Mbytes of internal memory (M) , the block size B was set to 8 kbytes and

C was set to 1000. As the number of I/Os performed during n inserts is

linear, we expect a linear running time for insert. The curve for delete min

has a small jump at the beginning, this jump occurs because the value of

log

r

C changes from one to two for our settings of M;B and C. Due to the

small jumps of the logarithmic term of delete min, the curve seems to be

linear. If we compute the transfer rate of insert, we achieve approximately

3 Mbytes/sec which is good compared to the maximum of 4.97 Mbytes/sec

than can be achieved using consecutive I/Os. It is also obvious from the I/O

bounds for the operations insert and delete min that insert performance

is independent from the value of k and delete min should be faster with

increasing k (see also Figure 4.5).

Practical Modi�cations The height h of the radix heap is always cho-

sen to be minimal therefore minimizing the amortized number of I/Os for

delete min. The choice leads to a value of r that can either be a power of

two or not. If r is not a power of two, we use a precomputed lookup table

for the powers of r and division to compute the bucket number for insert.

If r is a power of 2, we can compute the bucket numbers by bit shifts. This

leads to two di�erent variants

1

. It is obvious that the bit shift realization

is always faster than the division method (see Figures 4.3 and 4.4).

1

The implementation is not �xed, the radix heap calculates the best number for h; r

in the constructor, and afterwards depending on r it chooses either the bit shift method

or the division method
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The In
uence of the main memory size To be theoretically optimal

we should give all the available memory to the radix heap. However we

must be careful, there is still the internal priority queue that needs some

space and the whole library needs some space as well. Therefore we cannot

increase M to the main memory limit. Figure 4.6 shows the in
uence of

M on the performance of insert and delete min (C = 1000; B = 8 kbytes

and M between 2 and 64 Mbytes). From the theoretical I/O bounds we

know that insert should be independent from M and delete min should

become faster if M increases. If we look at Figure 4.6 we see the following:

delete min if getting faster ifM increases, however we see a big running time

increase if M > 58 Mbytes. This happens because the operating system

starts swapping. Insert does not seem to be independent from M because

there is a jump at the range of 40 Mbytes. However, this jump does not

occur because of increasing M , instead our implementation has switched

from bit shift to division so that insert was slowed down a bit. During insert

paging heavily occurs at about 56{58 Mbytes. The best performance ratio

is achieved for about 42 Mbytes. However we should not forget that this

speci�c result also depends on C,B and n.

4.1.2 External radix heaps versa virtual memory priority

queues

Another important task is to compare the external radix heaps to internal

priority queue data structures. We used an internal radix heap and a Fi-

bonacci heap and compared them to the external radix heaps. The external

radix heap outperforms the internal one except in very small cases (see Fig-

ures 4.7,4.8). In detail, the performance of insert and delete min for the

internal priority queues is very fast if the total size of the data structure

will �t into main memory. At the point of 1.6 million operations for the Fi-

bonacci heap (2.8 million for the radix heap) the performance dramatically

decreases. The reason is very simple. The size of a node in a Fibonacci heap

is approximately 40 bytes. This means that if we perform more than 1.6

million insertions, swap space is used. For the delete min, this is even worse.

We must construct the heap from the linked list of nodes. This accounts for

a lot of random accesses to pages of the virtual memory and is the reason

for the poor delete min performance.

4.1.3 Sorting integers with radix heaps

A radix heap can immediately be used if we have to sort non-negative in-

tegers in the interval f0; : : : ; Cg. N elements are sorted by calling N times

insert and then N times delete min. If the interval C is small, we can im-

mediately pro�t from the small height of the radix heap whereas mergesort

cannot pro�t from this expectation to the input. When sorting integers in
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a small range (for example between zero and 1000), the radix heap simply

outperforms multiway{mergesort (see Figure 4.9). The logarithmic term is

smaller than that of multiway{mergesort and the constants are better. We

achieve an exact complexity of n=B+2n�(h=B) I/Os whereas the complexity

of mergesort is 2n=B + 2n=B log

M=B

n=B I/Os.
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4.2 Bu�er Trees as Priority Queues

Bu�er trees [Arg96a] are lazy search trees, based on internal (a,b){trees. Us-

ing a fanout of M=B per node together with bu�ering of data, it is possible

to achieve an amortized I/O{bound of O(1=B log

M=B

n=B) per operation.

In the absence of online-changes this is optimal [Arg96a]. As bu�er trees are

general search trees they can be used for a variety of problems like sorting,

priority queues, etc. For example if they are used in a tree-sort algorithm,

this immediately leads to an I/O{optimal sorting algorithm. Unfortunately,

the data structure is quite complicated. We implemented the bu�er tree

using Arge's general bu�er emptying strategy [Arg96a]. During the devel-

opment phase it turned out that several details that Arge proposed do not

behave well in a practical setting (see also [HMSV97]):

� Arge's strategy for emptying bu�ers guarantees that only the leaf

bu�ers can contain more than M elements at a time (see [Arg96a]).

However it turned out during practical tests that this leads to a slow-

down of the bu�er emptying process. Therefore as in [HMSV97] we

also propose not to restrict the internal bu�er size. Thus we allow our

implementation to store more than M elements in an internal bu�er.

� It is critical for the performance to choose good values for the (a; b){

tree rebalancing and for the size of the internal bu�ers. We performed

some tests where we changed b and the internal bu�er size. We ob-

served the following:

1. If we increase the internal bu�er size as much as possible, in-

sert is getting faster. If we additionally decrease b this speed up

improves.

2. If one wants to speed up the time used for a delete min operation,

the original setting of the parameters a; b and the bu�er size for

the bu�er tree should be used.

In a normal priority queue setting, we perform mixed insert and delete min

operations. So, to speed up one single operation while slowing down another

is not the choice. We found that increasing the internal bu�er size can speed

up insert without slowing down delete min too much. Unfortunately the

setting of the parameters a;B and of the bu�er size is application-dependent

and can't be chosen in a general way.

4.2.1 Performance of Bu�er Tree Heaps

We tested the performance of bu�er trees with a setting whereM = 4Mbytes

and B = 8 kbytes. The priorities were integers as well as the informa-

tion. We �rst performed insertions and then delete min operations (see
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Figure 4.12). The transfer rate is really poor. For insert we achieve about

100 kbytes per second. For delete min we achieve approximately 187 kbytes

per second. This is not astonishing as a lot of CPU-operations are done

when emptying a bu�er. We note that due to the design of bu�er trees we

need 12 bytes per element since every elements also stores a time stamp.

The complexity of the structure causes this slowdown. We note that our

running time is conform with the results obtained by [HMSV97]. Therefore

we conclude that the data structure itself is slow and not our implementa-

tion. However, the advantage of bu�er trees in a priority queue setting is

that the priority data type is not restricted to integers as it is the case for

the radix heaps.

4.2.2 Sorting with Bu�er Trees

We also tested bu�er trees as a sorting procedure. We directly used the

bu�er tree heap by performing �rst all insertions and then all deletions. Even

there, the bu�er tree is not a good choice. Bu�er tree sort is outperformed

by every sorting algorithm we used (see Figure 4.13). Even the quicksort

with virtual memory is faster than bu�er{tree sort. It turns out that the

bu�er tree sort is a factor 14.5 slower than multiway mergesort

2

.

4.2.3 Bu�er Tree Heaps versus Radix Heaps

We compared the bu�er heaps to our radix heap implementation (see Fig-

ure 4.14). To be fair we increased C to the maximal possible value. The

insert of radix heaps is much faster than that of bu�er heaps. It is the best

that can be achieved due to its theoretical I/O bound. Even the delete min

of radix heaps is faster. This is amazing because the logarithmic terms di�er.

Radix heaps have a log

M=B

C term and bu�er trees log

M=B

n=B. Although

C > n=B, radix heaps are faster. This implies that the constants for radix

heaps are better. However this also implies that there is a input range where

the delete min of bu�er heaps will be faster than that of radix heaps.

2

If we take into account that the total data size for the Bu�er tree that must be

transported during the sorting is 1.625 larger than that of mergesort, we see that there is

still a slowdown factor of 9.
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5 Matrix Operations

Matrix operations are a classical external memory application. We intro-

duce a simple external memory algorithm for matrix multiplication. It is

based on [UY91]. So far, we do not provide special algorithms for sparse

matrix multiplication. Our algorithm is quite simple. We divide each ma-

trix in

p

M �

p

M sub-matrices. After this preprocessing step we simple

multiply sub-matrices with the standard matrix multiplication algorithm.

This leads to a O(n

3

=

p

MB) I/Os algorithm [UY91]. There are several im-

plementation problems. Dividing into sub-matrices needs a rearrangement

of the input. This is done by a permutation which requires sorting time and

I/Os. We want to choose quadratic sub-matrices since this prevents us from

handling a lot special cases. Since the number of rows/columns is normally

not a multiple of the number of the sub-matrices subsize, we have to pad the

input matrices to a multiple of the subsize. This leads to two preprocessing

and two post-processing steps. They have overall I/O{complexity of 6 scans

and 3 sorting steps. An additional 4 scans and 2 sorting steps are necessary

to bring back the input matrices to their original size and ordering. To show

the simplicity of code we give the multiplication example:

ext matrix ext matrix::operator*(ext matrix& D)

int i,j,k;

int subsize;

subsize = choose_subsize(mem_size,row,col); // choose subsize

cout << "Subsize is " << subsize << endl;

matrix op1(subsize,subsize); //allocate submatrices

matrix op2(subsize,subsize);

matrix sub_res(subsize,subsize);

int old_row = row;

ext_matrix::pad(subsize); //Padding of matrices

D.pad(subsize);

ext_matrix res(row,row);
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ext_matrix::to_blocks(subsize); //Dividing into sub-matrices

D.to_blocks(subsize);

for(i= 0;i< row/subsize;i++) //start multiplication

{

for(j=0;j< D.col/subsize;j++)

{

for(int ii=0;ii<sub_res.dim1();ii++)

for(int jj=0;jj<sub_res.dim2();jj++) sub_res(ii,jj) = 0;

for(k=0;k<D.row/subsize;k++)

{

load(i,k,subsize,subsize,op1);

D.load(k,j,subsize,subsize,op2);

sub_res += op1*op2;

}

res.write(sub_res,i,j,subsize,subsize);

}

}

res.out_blocks(subsize); // permute to row major order

res.unpad(old_row,old_row); // shrink to old size

return res;

We tested matrix multiplication performance by comparing it to LEDA ma-

trix multiplication code for data type double. The external matrix algo-

rithm was restricted to use at most 4 Mbytes internal memory and a block

size of 8 kbytes; while the LEDA matrix multiplication algorithm was al-

lowed to use all the available internal memory (64 Mbytes). We did not count

the time for post-processing the input matrices. We note that an external

matrix needs 12 bytes per entry, the LEDA matrix needs 8 bytes per entry.

Internal matrix multiplication in the external algorithm was done by LEDA

matrix multiplication. The external algorithm was a magnitude faster than

the internal one although we only used 4 Mbytes of internal memory per

matrix and the input data had to be read from disk before multiplication

(see Figure 5.1). At an input size of 0.5 times the size of the main memory,

the external algorithm was faster than the internal one. As both algorithms

have a CPU-time of O(N

3

), we know that the matrix multiplication is I/O{

bound and therefore the external algorithm outperforms the internal one.

As the external algorithm operates on blocks of data, the cache behavior is

much better than for the standard internal matrix multiplication algorithm.

This is the reason why the external algorithm is already faster for inputs
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that should �t into main memory.
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6 Summary

We introduced a new library prototype for external memory data structures

and algorithms. Based on the operating system's �le system we showed

that I/O can be implemented e�ciently if we rely on the performance of the

operating system. Several abstract data types as well as basic operations

were tested. We summarize the main results:

� Sorting

We implemented sorting by multiway{mergesort, bu�er tree sort, radix

heap sort and compared to standard virtual memory quicksort. Multiway{

mergesort was the fastest sorting algorithm. The quicksort itself is a

good choice for sorting if one allows it to use enough swap space.

Bu�er tree sort is the slowest sorting routine and should not be used

for sorting in external memory. Radix heap sort outperforms every

sorting algorithm if we know that the input are positive integers in a

small interval f0; : : : ; Cg. We note that if we compare quicksort with

mergesort in such a way that both use the same amount of internal

memory, then mergesort will be much faster than quicksort. But even

with restricted main memory, mergesort could beat one of the fastest

internal sorting algorithms.

� Priority Queues

We tested bu�er heaps and radix heaps. Radix heaps are always faster

than bu�er heaps for the input interval that we could test. The main

advantages of radix heaps are small constants. However they are re-

stricted to positive integer priorities (or at least to positive 
oating

point numbers). Internal priority queues in virtual memory completely

fail. For bu�er trees in general, we note that tuning the data structure

to achieve better performance is not easy. It seems that although this

data structure leads to a lot of optimal algorithms in theory, in practice

this data structure is not fast enough to achieve good performance.

� Matrix operations

We implemented the classical matrix multiplication algorithm of [UY91]

and compared it to the standard matrix multiplication algorithm in
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virtual memory. The algorithm of [UY91] is one order of magnitude

faster in the theoretical I/O{bound and even leads to a faster multi-

plication if the input is smaller than the main memory. This implies

that the cache{miss ratio of the external algorithm is much better.

It turned out that many internal data structures fail in virtual memory even

if the input size, counted in the number of elements, was \small". Therefore

external data structures are useful to solve this dilemma even if we do not

consider inputs in the range of Giga- and Terabytes.

6.1 Future Work

The work in this project is still ongoing. At the moment we are implementing

su�x arrays and external graphs. We also developed a new priority queue

which is only based on merging. This new data structure has been analyzed

theoretically but it has not been implemented up to now. In the last months,

we focussed our work on constructing large su�x arrays [MM93]. We have

developed three new construction algorithms for su�x arrays and the results

that we obtained are promising.
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Appendix A The Elite-9 Fast

SCSI-2 Wide Hard Disk

ST-410800W Elite 9

Unformatted capacity 10800

Formatted capacity(512 byte blk) 9090

Average sectors per track 133

Actuator type rotary voice coil

Tracks 132975

Cylinders 4925

Heads 27

Disks(5.25 in) 14

Media type thin �lm

Head type thin �lm

Recording method ZBR RLL (1,7)

Internal transfer rate(mbits/sec) 44-65

Internal transfer rate avg(mbyte/sec) 7.2

External transfer rate(mbyte/sec) 20 (burst)

Spindle speed 5400

Average latency(msec) 5.55

Command overhead(msec) <0.5

Bu�er 1024 Kbyte

Bytes per track 63000 - 91000

Sectors per drive 17845731

Bytes per cylinder 1058400 to 1587600

TPI(tracks per inch) 3921

Average access(msec) read/write 11/12

Single rack seek(msec) read/write 0.9/1.7

Max full seek(msec) read/write 23/24

Table A.1: Technical Data of the Seagate Elite-9 Fast SCSI-2 Wide Disk
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A.1 Low-Level transfer rate

We analyze the transfer rate of LEDA-SM by performing consecutive read

and write operations to the underlying disk using di�erent block sizes. We

give below some logging �les that are created by iostat. In detail, we perform

the following test: We write 100000 consecutive blocks to disk and then read

them again consecutively. The block size is 8 kbytes for the �rst test and

32 kbytes for the second. The �elds in the tables have the following meaning:

disk name of the disk

r/s reads per second

w/s writes per second

Kr/s kilobytes read per second

Kw/s kilobytes written per second

wait average number of transactions waiting for ser-

vice (queue length)

actv average number of transactions actively being

serviced (removed from the queue but not yet

completed)

svc t average service time, in milliseconds

%w percent of time there are transactions waiting

for service (queue non-empty)

%b percent of time the disk is busy (transactions

in progress)

Each entry in the listing accounts for a time interval of 15 seconds.

Writing blocks

extended disk statistics

disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b

sd7 0.1 88.4 0.4 4815.0 0.0 5.8 66.0 0 100

sd7 0.1 88.1 0.4 4852.4 0.0 5.6 63.6 0 100

sd7 0.0 87.1 0.0 4738.5 0.0 5.9 67.8 0 100

sd7 0.1 86.0 0.8 4722.1 0.0 6.3 72.6 0 100

sd7 0.1 85.6 0.4 4650.0 0.0 6.0 70.1 0 100

sd7 0.1 83.7 0.8 4635.1 0.0 5.8 69.2 0 100

sd7 0.1 88.4 0.8 4882.9 0.0 5.6 63.8 0 100

sd7 0.1 82.3 0.4 4477.3 0.0 5.8 69.9 0 100

sd7 0.1 82.2 0.4 4524.2 0.0 5.6 68.6 0 100

sd7 0.1 80.4 0.8 4369.1 0.0 6.0 74.1 0 100

sd7 0.1 78.7 0.4 4355.8 0.0 5.7 72.9 0 100

sd7 56.2 8.1 449.6 397.2 0.0 1.4 21.1 0 89

Reading blocks

sd7 63.3 0.0 506.7 0.0 0.0 0.9 13.9 0 88

sd7 63.3 0.0 506.1 0.0 0.0 0.9 13.9 0 88

sd7 62.5 0.8 500.3 34.1 0.0 0.9 14.6 0 88
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sd7 62.4 0.1 499.2 0.5 0.0 0.9 14.1 0 88

sd7 61.0 1.3 488.0 51.2 0.0 1.0 16.7 0 89

sd7 61.3 1.0 490.7 42.1 0.0 0.9 15.2 0 88

sd7 61.3 0.0 490.7 0.0 0.0 0.9 14.3 0 88

.

.

.

sd7 62.5 0.1 499.7 3.7 0.0 0.9 14.3 0 88

sd7 61.6 0.5 492.8 20.3 0.0 0.9 14.7 0 88

sd7 62.9 0.1 502.9 2.1 0.0 0.9 13.9 0 87

sd7 62.8 0.0 502.4 0.0 0.0 0.9 14.0 0 88

sd7 62.1 0.0 496.5 0.0 0.0 0.9 14.1 0 88

sd7 63.4 0.0 507.2 0.0 0.0 0.9 13.9 0 87

sd7 62.8 0.0 502.4 0.0 0.0 0.9 14.0 0 88

sd7 63.7 0.0 509.3 0.0 0.0 0.9 13.8 0 88

sd7 61.8 0.0 494.4 0.0 0.0 0.9 14.2 0 88

sd7 63.4 0.0 507.2 0.0 0.0 0.9 13.8 0 88

sd7 62.4 0.0 499.2 0.0 0.0 0.9 14.1 0 88

We see that for read, the disk is not busy for 100% of the time. The

average service time is short (14 milliseconds). As the disk is not busy all

the time, we hope to achieve higher transfer rates for read by using larger

blocks. The test for B = 32 kbytes follows .

Writing blocks

extended disk statistics

disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b

sd7 0.0 85.9 0.0 4744.1 0.0 5.9 68.2 0 100

sd7 0.1 84.8 0.4 4593.4 0.0 6.0 70.1 0 100

sd7 0.1 83.9 0.4 4650.7 0.0 5.6 66.9 0 100

sd7 0.1 86.7 0.4 4713.7 0.0 6.0 69.2 0 100

sd7 0.1 82.3 0.4 4553.2 0.0 5.6 68.4 0 100

sd7 0.0 81.4 0.0 4408.8 0.0 5.8 70.9 0 100

sd7 0.1 80.2 0.4 4422.5 0.0 5.9 73.6 0 100

sd7 0.1 78.1 0.8 4310.4 0.0 5.7 72.4 0 100

sd7 0.1 91.3 0.8 4978.1 0.0 5.9 64.7 0 100

sd7 0.2 109.9 1.2 6090.6 0.0 5.5 50.3 0 100

sd7 0.3 108.6 1.6 5907.5 0.0 5.7 52.8 0 100

sd7 0.5 108.2 3.2 6002.7 0.0 5.7 52.1 0 100

sd7 0.4 106.7 2.4 5761.0 0.0 6.0 56.2 0 100

sd7 43.1 40.7 1657.0 2250.4 0.0 2.9 34.9 0 99

sd7 65.2 3.2 2523.3 132.6 0.0 1.6 22.7 0 98

Reading blocks

sd7 67.2 0.7 2618.9 4.2 0.0 1.4 21.2 0 98

sd7 69.5 0.0 2735.0 0.0 0.0 1.3 19.2 0 98

sd7 70.9 0.0 2804.5 0.0 0.0 1.4 19.2 0 99

sd7 68.9 0.0 2706.6 0.0 0.0 1.3 19.6 0 98
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sd7 61.9 0.1 2255.7 4.7 0.0 1.7 26.7 0 99

sd7 68.2 0.3 2669.5 13.5 0.0 1.4 20.2 0 98

sd7 67.2 0.5 2630.7 25.5 0.0 1.4 20.1 0 98

sd7 69.5 0.0 2726.8 0.0 0.0 1.3 19.2 0 98

sd7 69.1 0.0 2697.2 0.0 0.0 1.4 19.6 0 98

sd7 68.6 0.1 2687.0 0.5 0.0 1.3 19.3 0 98

.

.

.

sd7 69.7 0.0 2719.0 0.0 0.0 1.4 19.5 0 98

sd7 68.5 0.1 2678.2 2.7 0.0 1.4 19.8 0 98

sd7 66.0 0.6 2547.5 23.3 0.0 1.5 21.9 0 98

sd7 69.2 0.1 2724.1 4.2 0.0 1.3 19.4 0 98

sd7 68.3 0.0 2674.9 0.0 0.0 1.4 19.9 0 98

sd7 70.2 0.0 2754.3 0.0 0.0 1.3 19.0 0 98

sd7 64.8 0.1 2520.2 1.6 0.0 1.3 20.3 0 98

sd7 69.4 0.0 2712.9 0.0 0.0 1.3 19.4 0 98

sd7 69.1 0.1 2686.7 4.7 0.0 1.4 20.1 0 98

sd7 65.2 0.0 2463.3 0.0 0.0 1.5 23.8 0 99

sd7 68.8 0.4 2694.7 12.4 0.0 1.4 19.8 0 98

sd7 68.9 0.5 2709.0 15.9 0.0 1.4 19.8 0 98

sd7 69.8 0.2 2684.8 5.6 0.0 1.4 19.9 0 98

sd7 69.0 0.0 2719.8 0.0 0.0 1.3 19.2 0 98

sd7 67.6 0.1 2643.3 0.9 0.0 1.3 19.4 0 98

sd7 70.0 0.1 2738.8 1.1 0.0 1.3 18.9 0 98

sd7 68.9 0.0 2706.3 0.0 0.0 1.4 20.0 0 98

sd7 64.4 0.2 2419.9 5.0 0.0 1.5 24.0 0 98

sd7 69.6 0.0 2733.6 0.0 0.0 1.4 19.5 0 98

For blocks of size 32 kbytes, the disk is nearly busy 100% of the time during

read. The average service time is about 20 milliseconds for a read which is

higher than before. This leads to the conclusion that it is further possible to

speed up the I/O performance of the library LEDA-SM by carefully choosing

the best block size. For our example this is for B = 32 kbytes.
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