
Linear-time Approximation

Schemes for Scheduling Malleable

Parallel Tasks

Klaus Jansen Lorant Porkolab

MPI{I{98{1-025 October 1998

Author's Address

Klaus Jansen

IDSIA Lugano

Corso Elvezia 36

6900 Lugano

Switzerland

klaus@idsia.ch

Lorant Porkolab

Max-Planck-Institute for Computer Science

Im Stadtwald

66123 Saarbr�ucken

Germany

porkolab@mpi-sb.mpg.de

Acknowledgements

Research supported in part by EU ESPRIT LTR Project No. 20244

(ALCOM-IT) and by the Swiss O�ce F�ed�eral de l'�education et de la Sci-

ence project n 97.0315 titled "Platform".

Abstract

A malleable parallel task is one whose execution time is a function of the number

of (identical) processors alloted to it. We study the problem of scheduling a set

of n independent malleable tasks on a �xed number of parallel processors, and

propose an approximation scheme that for any �xed � > 0, computes in O(n) time

a non-preemptive schedule of length at most (1 + �) times the optimum.

1 Introduction

In this paper, we study the following scheduling problem. Suppose there is given a set

of tasks T = fT

0

; : : : ; T

n�1

g and a set of identical processors M = f1; : : : ; mg. Each

task T

j

has an associated function t

j

: M ! Q

+

that gives the execution time t

j

(`) of

task T

j

in terms of the number of processors ` 2 M that are assigned to T

j

. Given �

j

processors alloted to task T

j

, these �

j

processors are required to execute task T

j

in union

and without preemption, i.e. they all have to start processing task T

j

at some starting

time �

j

, and complete it at �

j

+ t

j

(�

j

). A feasible non-preemptive schedule consists of

a processor allotment �

j

2 M and a starting time �

j

� 0 for each task T

j

such that for

each time step � , the number of active processors does not exceed the total number of

processors, i.e.

X

j:�2[�

j

;�

j

+t

j

(�

j

))

�

j

� m:

The objective is to �nd a feasible non-preemptive schedule that minimizes the overall

makespan

maxf�

j

+ t

j

(�

j

) : j = 0; : : : ; n� 1g:

This problem is called malleable parallel task scheduling (MPTS), and has recently been

studied in several papers, see e.g. [3, 7, 16, 19]. The problem of non-malleable parallel

task scheduling (NPTS) is a restriction of MPTS in which the processor allotments

are known a priori, i.e. for each task both the number of assigned processors and its

execution time are given as part of the input. Closely related problems to NPTS are

rectangle packing (see e.g. [4, 6, 13, 18]) and resource constrained scheduling (see e.g.

[5, 12]).

In several applications, a network topology is also speci�ed for the processors (see

e.g. [8, 9, 14, 16]). In these cases the tasks are scheduled not on an arbitrary subset of

processors, but on a subset of processors with a particular interconnection network that

depends on the underlying architecture. For example on hypercubes and meshes, the

tasks would require subcubes and submeshes, respectively. If the underlying architecture

is not taken into account, the problem is referred to as scheduling on a PRAM. For

simplicity, we will consider only the latter problem in this paper, but the results can

also be extended to arbitrary network topologies (e.g. lines, hypercubes and meshes).

The NPTS and MPTS problems are strongly NP-hard [7], and 2 is the best currently

known approximation ratio for them achieved in polynomial time [10, 16]. For a

particular input I, let OPT (I) be the minimum makespan, and let A(I) denote the

makespan obtained by algorithm A. A polynomial-time approximation scheme for this

problem is an algorithm A, which for any (constant) � > 0 and input I outputs in

time polynomial in the length of I a feasible schedule A(I) with performance guarantee

R

A

(I; �) =

A(I)

OPT (I)

� 1+�. Such an algorithm can also be viewed as a family of algorithms

fA

�

j� > 0g such that A

�

(I) � (1+ �)OPT (I). A fully polynomial approximation scheme

is an approximation scheme A that runs in time polynomial not only in the length

of I but also in

1

�

. Regarding the problems discussed in this paper, the existence of

1

an approximation scheme was previously known only for NPTS on hypercubes of �xed

dimension [14, 15].

Since both NPTS and MPTS are strongly NP-hard even for a �xed number (m � 5)

of processors [7], it is natural to ask how well the optimum for these restricted variants

can be approximated. In this paper, we focus on the case when there are only a

constant number of processors and present polynomial-time approximation schemes for

both MPTS and NPTS which compute for any �xed � > 0 �-approximate schedules in

O(n) time.

The main steps of the approximation scheme are the following. First, it computes

d

j

= min

`=1;:::;m

t

j

(`) for each task T

j

and selects a constant number k = k(m; �) of

tasks T

j

1

; : : : ; T

j

k

with the largest d

j

values. Next, it constructs all relative schedules

for the set L = fT

j

1

; : : : ; T

j

k

g consisting of processor assignments and an execution

order of the tasks in L. For each relative schedule, there is a (mixed integer) linear

program for scheduling all tasks in T such that the relative schedule of L is respected.

This linear program can be decomposed into two parts: a fractional packing problem

and a linear program with a constant number of variables and constraints. By using

this decomposition and an approximation scheme for packing problems the algorithm

solves the linear programming relaxation approximately. Then based on this solution,

it computes a schedule for most of the tasks, and then executes the rest of them at the

end. We will show that the makespan of the �nal (feasible) schedule produced by this

procedure is at most (1 + �) times the optimum. The running time of the algorithm is

not polynomial in

1

�

, but this is not surprising, since due to the strong NP-hardness no

fully polynomial approximation scheme can be expected.

2 Linear Programs

In this section, �rst we consider the NPTS problem and formulate it as a linear program.

A similar LP formulation was given in [1] for scheduling independent multiprocessor tasks

on dedicated processors, where each task requires a prespeci�ed subset of processors.

Afterwards, we describe how the linear program for NPTS can be extended to MPTS by

introducing new variables and additional constraints. Based on this linear programming

formulation we will give a linear time approximation scheme for MPTS in Section 3.

2.1 Non-Malleable Tasks. For each task T

j

2 T , let the number of allotted

processors be denoted by �

j

and the execution time by p

j

. Let L � T . A processor

assignment for L is a mapping f : L ! 2

M

such that jf(T

j

)j = �

j

for each task T

j

2 L.

Two tasks T

j

and T

j

0

are compatible, if f(T

j

) \ f(T

j

0

) = ;. For a given processor

assignment for L, a snapshot of L is a subset of compatible tasks. A relative schedule

of L is a processor assignment f : L ! 2

M

along with a sequence M(1); : : : ;M(g) of

snapshots of L such that

� each T

j

2 L occurs in a subsequence of consecutive snapshots M(�

j

); : : : ;M(!

j

),

1 � �

j

� !

j

< g, where M(�

j

) is the �rst and M(!

j

) is the last snapshot that

contains T

j

;

2

� consecutive snapshots are di�erent, i.e. M(t) 6=M(t + 1) for 1 � t � g � 1;

� M(1) 6= ; and M(g) = ;.

A relative schedule corresponds to an order of executing the tasks in L. One can

associate a relative schedule for each non-preemptive schedule of L by looking at

the schedule at every time where a task of L starts or ends and creating a snapshot

right after that time step. Creating snapshots this way, M(1) 6= ;, M(g) = ; and

the number of snapshots can be bounded by max(2jLj; 1). Given a relative sched-

ule R = (f;M(1); : : : ;M(g)), the processor set used in snapshot M(i) is given by

P (i) = [

T2M(i)

f(T). Let F denote the set containing (as elements) all the di�erent

(M nP (i)) sets, i = 1; : : : ; g. (Thus the sets in F are the di�erent sets of free processors

corresponding to R.) For each F 2 F , let P

F;i

; i = 1; : : : ; n

F

, denote the di�erent parti-

tions of F , and let P

F

= fP

F;1

; : : : ; P

F;n

F

g: Furthermore let D

`

be the total processing

time for all tasks in S = T n L executed on ` processors. For each partition P

F;i

, the

number of processor sets F

j

2 P

F;i

with cardinality ` is denoted by a

`

(F; i). (These

F

j

's are reserved for `-processor tasks, i.e. for tasks that use exactly ` processors.)

The number a

`

(F; i) gives the parallelization factor of `-processor tasks for partition P

F;i

.

For each relative schedule R = (f;M(1); : : : ;M(g)) of L, we formulate a linear

program LP (R), as follows.

Minimize t

g

s.t.

(0) t

0

= 0,

(1) t

i

� t

i�1

, i = 1; : : : ; g,

(2) t

!

j

� t

�

j

�1

= p

j

, 8T

j

2 L,

(3)

P

i:P (i)=MnF

(t

i

� t

i�1

) = e

F

, 8F 2 F ,

(4)

P

n

F

i=1

x

F;i

� e

F

, 8F 2 F ,

(5)

P

F2F

P

n

F

i=1

a

`

(F; i) � x

F;i

� D

`

, ` = 1; : : : ; m,

(6) x

F;i

� 0, 8F 2 F ; i = 1; : : : ; n

F

.

The variables of LP (R) have the following interpretation:

t

i

: the time when snapshot M(i) ends (and M(i + 1) starts), i = 1; : : : ; g � 1. The

starting time of the schedule and snapshot M(1) is denoted by t

0

= 0 and the

�nishing time by t

g

.

e

F

: the total time while exactly the processors in F are free.

3

x

F;i

: the total processing time for P

F;i

2 P

F

; i = 1; : : : ; n

F

; F 2 F , where only

processors of F are executing short tasks and each subset of processors F

j

2 P

F;i

executes at most one short task at each time step in parallel.

The given relative schedule R along with constraints (1) and (2) de�ne a feasible

schedule of L. In (3), the total processing times e

F

, for all F 2 F are determined.

Clearly, these equalities can be inserted directly into (4). The inequalities in (4) require

for every set of free processors F 2 F that its total processing time (corresponding to the

di�erent partitions) to be bounded by e

F

. Furthermore, the inequalities (5) guarantee

that there is enough time for the execution of all `-processor tasks in S.

Notice that the solutions of LP (R) allow for each `-processor task from S: to be

preempted, to be executed in parallel on multiple subsets of processors from P

F;i

of

cardinality `, to change processor assignments during the execution. Thus there might

be incorrectly scheduled tasks in the schedule based on the solution of LP (R). These

have to be corrected afterwards.

2.2 Malleable Tasks. In this section, we show how the above linear program can be

extended for MPTS. Suppose that the di�erent processing times of task T

j

2 T are given

by the function t

j

: M ! Q

+

. In the NPTS problem, the number of alloted processors

for each task is known a priori, therefore the D

`

values in LP (R) are �xed constants.

However in the MPTS problem, each task can be executed on an arbitrary number of

available processors, and therefore the D

`

's cannot be considered �xed anymore. Note

that (for a �xed relative schedule R) all the other coe�cients (and constraints) of system

(0)� (6) are independent from the processor allotments, thus they remain the same for

MPTS. In order to handle the possibility of non-�xed processor allotments, we introduce

0� 1-variables y

j`

for each task T

j

2 S and each number ` 2M with the interpretation

that

y

j`

=

(

1; if T

j

is executed on ` processors,

0; otherwise.

In fact, these variables will be relaxed later. For a given relative schedule R, let ILP (R)

denote the extension of LP (R) to MPTS. In ILP (R), the D

`

's, ` = 1; : : : ; m, are

variables (in contrast to LP (R), where they are constant coe�cients), and we have the

following constraints in addition to (0)� (6):

(7)

P

T

j

2S

t

j

(`) � y

j`

= D

`

, ` = 1; : : : ; m,

(8)

P

m

`=1

y

j`

= 1, 8T

j

2 S,

(9) y

j`

2 f0; 1g, 8T

j

2 S, ` = 1; : : : ; m.

The constraints of (8) � (9) describe the processor allotments for the tasks in S.

The equations of (7) express for every ` = 1; : : : ; m, D

`

, the total processing time of all

tasks in S that are executed on ` processors. As before, these equations can be inserted

directly into the inequalities of (5).

4

2.3 Relaxation. As it was pointed out above, for any �xed relative schedule, the

only di�erence between NPTS and MPTS with respect to system (0) � (6) is that the

D

`

's are not constants any more. Therefore the MPTS problem can also be solved by

solving LP (R) for every relative schedule R (of MPTS) and every possible m-vector

(D

1

; : : : ; D

m

), and then selecting the best solution. However generating all of the m

jSj

possible (D

1

; : : : ; D

m

) vectors (e.g. by considering all of the 0 � 1 feasible solutions of

(8) � (9)) require an exponential number of operations in terms of n. To avoid the

exponential dependence on n (recall that our goal is to solve the problem in O(n) time),

we will use the following relaxation of (7) � (9) to compute only all \approximately

di�erent" m-vectors (D

1

; : : : ; D

m

). (This procedure will be described in Section 3.3 in

detail.)

(7)'

P

T

j

2S

t

j

(`) � y

j`

� D

`

, ` = 1; : : : ; m,

(8)'

P

m

`=1

y

j`

= 1, 8T

j

2 S,

(9)' y

j`

� 0, 8T

j

2 S, ` = 1; : : : ; m.

Let ELP (R) denote the linear program consisting of LP (R) along with (7)

0

� (9)

0

.

Notice, that for any relative schedule R, ELP (R) is a relaxation of ILP (R), and

therefore the optimum of ELP (R) is a lower bound on the minimum makespan for

schedules respecting R. Also note that in the above constraints the new y

j`

variables are

not assumed to be integers, and therefore in general they attain some fractional values

in the solution of ELP (R).

3 Algorithm

In this section, we present an approximation scheme for the MPTS problem. First, we

describe the main algorithm and then discuss some of the steps in detail. The procedure

is based on selecting a small subset L � T with cardinality k = k(m; �). In the following

we assume that n > k = k(m; �), since otherwise one can easily compute an optimal

solution in constant(m; �) time by considering all feasible schedules for T .

3.1 The Main Algorithm.

1. Compute d

j

= min

1�`�m

t

j

(`), j = 0; : : : ; n� 1, and assume that d

j

= t

j

(�

j

), for

some �

j

2M: Set D =

P

n�1

j=0

d

j

, � =

�

2m

, and K = 4m

m+1

(2m)

d

1

�

e+1

.

2. Select the K+1 longest tasks with respect to the d

j

's. Assume d

0

� d

1

� : : : � d

K

.

Find the smallest k � K such that d

k

+ : : :+ d

2mk+3m

m+1

�1

� � �D. Partition the

set of tasks T into two subsets L and S such that L contains the k longest tasks

according to the d

j

's.

3. Construct all possible relative schedules of L consisting for each task T

j

2 L a

processor allotment �

j

, a processor assignment f(T

j

) � M of cardinality �

j

, and

a sequence of snapshots M(1); : : : ;M(g) for L.

5

4. For each relative schedule R of L:

4.1. Compute an approximate solution (t; e; x; y) of ELP (R) by (approximately)

solving LP (R) for every \approximately di�erent" m-vector (D

1

; : : : ; D

m

) for

which the packing problem (7)

0

� (9)

0

is feasible. (See Section 3.3.)

4.2. Convert the assignment part y into an equivalent one represented by a forest

and determine the set V of those tasks for which it gives a non-unique

processor allotment. (See Section 3.4.)

4.3. Construct a pseudo-schedule S(f;M) for the tasks in S nV. (See Section 3.5.)

4.4. Determine the set U of those tasks which are scheduled incorrectly in S(f;M).

Then, modify S(f;M) by executing sequentially every T

j

2 V [U at the end

of the schedule using �

j

processors.

5. From all schedules constructed in step 4:4, select one that has the smallest

makespan.

3.2 Example for MPTS. Consider a subset of tasks L = f1; 2; 3g with processor

assignments f(1) = f2g, f(2) = f3g, f(3) = f1g and execution times p

1

= 12, p

2

= 15

and p

3

= 25. A relative schedule R for L is given in Figure 1. In this relative schedule

the sequence of snapshots is

(f1; 3g; f3g; f2; 3g; f2g; ;)

with processor sets P (1) = f1; 2g, P (2) = f1g, P (3) = f1; 3g, P (4) = f3g and P (5) = ;.

The execution times of the other tasks in T n L are given in Table 1.

P

3

P

2

P

1

2

1

3

t

0

t

1

t

2

t

3

t

4

t

5

Figure 1: Relative schedule R for tasks 1; 2; 3.

task T

j

4 5 6 7 8 9 10

t

j

(1) 5 6 6 4 10 10 10

t

j

(2) 3 2 2 2 5 6 7

t

j

(3) 2 1 1 1 2 4 5

Table 1: Execution times for tasks in T n L.

6

The free processor sets in this particular relative schedule are

f3g; f2; 3g; f2g; f1; 2g; f1; 2; 3g, and therefore, the following partitions have to be

considered: P

f3g;1

= (f3g), P

f2;3g;1

= (f2; 3g), P

f2;3g;2

= (f2g; f3g), P

f2g;1

= (f2g),

P

f1;2g;1

= (f1; 2g), P

f1;2g;2

= (f1g; f2g), P

f1;2;3g;1

= (f1; 2; 3g), P

f1;2;3g;2

= (f1g; f2; 3g),

P

f1;2;3g;3

= (f2g; f1; 3g), P

f1;2;3g;4

= (f3g; f1; 2g), P

f1;2;3g;5

= (f1g; f2g; f3g).

For the given relative schedule R of Figure 1, the linear programELP (R) is the following:

Minimize t

5

s.t.

t

1

= 12, t

2

� t

1

, t

3

= 25, t

3

� t

2

, t

4

= t

2

+ 15, t

4

� t

3

, t

5

� t

4

,

e

f3g

= 12, e

f2;3g

= t

2

� t

1

, e

f2g

= t

3

� t

2

, e

f1;2g

= t

4

� t

3

, e

f1;2;3g

= t

5

� t

4

,

x

f3g;1

� e

f3g

, : : :, x

f1;2;3g;1

+ : : :+ x

f1;2;3g;5

� e

f1;2;3g

,

x

f3g;1

+ 2x

f2;3g;2

+ : : :+ 3x

f1;2;3g;5

� D

1

, : : :, x

f1;2;3g;1

� D

3

,

x

f3g;1

; : : : ; x

f1;2;3g;5

� 0,

5y

4;1

+ 6y

5;1

+ : : :+ 10y

10;1

� D

1

, : : :, 2y

4;3

+ y

5;3

+ : : :+ 5y

10;3

� D

3

,

y

4;1

+ y

4;2

+ y

4;3

= 1, : : :, y

10;1

+ y

10;2

+ y

10;3

= 1,

y

4;1

; : : : ; y

10;3

� 0.

In a solution of this linear program, all tasks have a unique processor allotment:

�

4

= 1, �

5

= 3, �

6

= 3, �

7

= 1, �

8

= 3, �

9

= 1 and �

10

= 1 (clearly, this does not hold

in general). The assignment of the tasks in T n L to the free processors is illustrated in

Figure 2. We note that t

2

= t

1

and that tasks 9 and 10 are scheduled incorrectly. For

task 9 there is a change in processor assignment at time t

1

, and task 10 with allotment

�

10

= 1 is executed on two processors during the interval [t

3

; t

4

). At step 4:4 of the

algorithm, both tasks are removed and scheduled sequentially at the end of the schedule

after time t

5

on three processors.

4 7 9 2

1 9 10

3 10

56 8

t

0

t

1

= t

2

t

3

t

4

t

5

Figure 2: Pseudo-schedule for all tasks in T .

7

3.3 Approximate Solution for ELP(R). Consider now the packing problem

P (d) de�ned by constraints (7)

0

� (9)

0

for a given m-vector d = (D

1

; : : : ; D

m

).

This problem has a special block angular structure, where the blocks

B

j

= fy

j

2 R

m

j y

j`

� 0;

P

m

`=1

y

j`

= 1g, for T

j

2 S, are m-dimensional simpli-

cies, and the coupling constraints are the linear inequalities

P

T

j

2S

t

j

(`) � y

j`

� D

`

,

` = 1; : : : ; m. The Logarithmic Potential Price Directive Decomposition Method [11]

developed for a large class of problems with block angular structure provides a �-relaxed

decision procedure for P (d). This procedure either determines that P (d) is infeasible,

or computes (a solution that is nearly feasible in the sense that it is) a feasible solution

of P ((1 + �)d). This can be done (see Theorem 3 of [11]) in m(lnm + �

�2

ln �

�1

)

iterations, where each iteration requires O(m ln ln(m�

�1

)) operations and jSj � n

block optimizations performed to a relative accuracy of O(�). In our case each block

optimization is the minimization of a given linear function over an m-dimensional

simplex which can be done (not only approximately, but even) exactly in O(m) time.

Therefore the overall running time of the procedure for P (d) is O([n+ln ln

m

�

](

m

�

)

2

ln

m

�

).

The next lemma provides lower and upper bounds for OPT , the optimum makespan

of the MPTS problem, in terms of the minimum execution times.

Lemma 3.1. Let d

j

= min

1�`�m

t

j

(`); j = 0; : : : ; n � 1, and D =

P

n�1

j=0

d

j

. Then

D � OPT �

D

m

.

Proof. Consider an optimum solution with schedule length OPT , processor allotments

�

j

� 1 and execution times t

j

(�

j

). Then d

j

� t

j

(�

j

), and thus we obtain by using an

averaging argument that

OPT �

n�1

X

j=0

�

j

� t

j

(�

j

)

m

�

1

m

�

n�1

X

j=0

d

j

=

1

m

�D:

This lemma implies that every D

`

, ` = 1; : : : ; m, in ELP (R) can also be bounded by

mD=`. Suppose � = �(m; �) (it will be speci�ed later) is a rational number such that

m

�

is an integer. Consider the partition of the interval [0; mD] into

m

�

subintervals [0; �),

[�; 2�), : : :, [mD � �;mD] of equal size �. Let � = f i�D : i = 0; 1; : : : ;

m

�

g

m

. The

algorithm determines the set D � � that contains every m-vector (D

1

; : : : ; D

m

) 2 �

with D

`

� mD=` for which the above described �-relaxed decision procedure returns an

approximate solution. For a given relative schedule R and m-vector d = (D

1

; : : : ; D

m

),

let t

�

g

(ELP (R)) and t

�

g

(LP (R); d) denote the optimum of ELP (R) and LP (R) with d,

respectively.

Lemma 3.2. For any two non-negative m-vectors a and !, the following inequalities

hold

t

�

g

(LP (R); a) � t

�

g

(LP (R); a+ !) � t

�

g

(LP (R); a) +

m

X

`=1

!

`

: (3.1)

8

Proof. If (t; e; x) is a solution of LP (R) with (a + !), then it is also a feasible

solution of LP (R) with a. This implies the �rst inequality. To show the second one

assume that (t; e; x) is a solution of LP (R) with a, and consider M 2 F . (Note

that M 2 F , since M(g) = P (g) = ;, for every relative schedule R.) It is easy

to check that for every ` = 1; : : : ; m, there exists an index i

`

2 f1; : : : ; n

M

g such

that a

`

(M; i

`

) 6= 0, and i

`

0

6= i

`

, for every `

0

6= `. (E.g. i

`

can be selected such that

P

M;i

`

= ff1; : : : ; `g; f`+1g; : : : ; fmgg.) Then one can obtain a feasible solution (t

0

; e

0

; x

0

)

of LP (R) with a+ ! by modifying (t; e; x) in the following way. Let x

0

M;i

`

= x

M;i

`

+ !

`

,

for every ` = 1; : : : ; m, e

0

M

= e

M

+

P

m

`=1

!

`

, t

0

g

= t

g

+

P

m

`=1

!

`

, and let all of the

other components of (t

0

; e

0

; x

0

) be the same as in (t; e; x). Clearly (t

0

; e

0

; x

0

) is a feasible

solution of LP (R) with a+ ! whose objective function value is t

g

+

P

m

`=1

!

`

, hence the

second inequality of (3:1) follows.

Lemma 3.3. Let � =

�

4m

2

and � =

�

4m

2

(logm+1)

. Suppose for a given relative schedule

R, Min

d2D

t

�

g

(LP (R); d) = t

�

g

(LP (R);

�

d). Then the optimum solution of LP (R) with

(1 + �)

�

d is an approximate solution of ELP (R) such that

t

�

g

(ELP (R)) � t

�

g

(LP (R); (1 + �)

�

d) � t

�

g

(ELP (R)) +

�

2

�OPT: (3.2)

Proof. By the de�nition of

�

d and D, any solution of LP (R) with (1 + �)

�

d is a feasible

solution of ELP (R), therefore the �rst inequality above holds. Suppose that in the

optimum solution of ELP (R), (D

1

; : : : ; D

m

) = (

~

D

1

; : : : ;

~

D

m

) =

~

d, i.e. t

�

g

(ELP (R)) =

t

�

g

(LP (R);

~

d). By the de�nition of � there exists a

^

d = (

^

D

1

; : : : ;

^

D

m

) 2 � such that

~

D

`

�

^

D

`

�

~

D

`

+ �D, for every ` = 1; : : : ; m. Then by using Lemma 3.1 and 3.2 we

obtain that

t

�

g

(LP (R); (1 + �)

�

d) � t

�

g

(LP (R);

�

d) +mD�

P

m

`=1

1

`

� t

�

g

(LP (R);

^

d) +mD�(logm + 1)

� t

�

g

(LP (R);

~

d+ (�D; : : : ; �D)) +m(logm+ 1)D�

� t

�

g

(LP (R);

~

d) +m�D +m(logm+ 1)D�

� t

�

g

(ELP (R)) +m

2

(�+ (logm+ 1)�) �OPT:

Since � =

�

4m

2

and � =

�

4m

2

(logm+1)

, this implies the second inequality of (3:2).

Determining D requires the approximate solution of j�j � (

m

�

)

m

packing problems

P (d) with accuracy � =

�

4m

2

(logm+1)

. Therefore according to the argument in the

beginning of this section, this can be done in n(

m

�

)

O(m)

time. Then by solving jDj � (

m

�

)

m

linear programs LP (R) of constant(m; �) size (with at most O(K) = m

O(

m

�

)

variables and

constraints) one can �nd

�

d of Lemma 3.3 and compute the corresponding approximate

solution of ELP (R) in constant(m; �) time. Thus the overall running time of Step 4:1

is O(n) for any �xed m and � > 0.

9

3.4 Fractional Components. The y-components of the approximate solution of

ELP (R) of Lemma 3.3 (determined as a �-approximate solution of P (

�

d)) can be

considered as fractional assignments. Let the lengths of y be de�ned as L

`

=

P

T

j

2S

t

j

(`)�

y

j`

, ` = 1; : : : ; m. A fractional assignment y can be represented by a bipartite graph

G = (V

1

; V

2

; E), where V

1

and V

2

correspond to row and column indices of y, respectively,

and (j; `) 2 E if and only if y

j`

> 0. Any assignment y represented by a bipartite graph

G of lengths L

`

, ` = 1; : : : ; m, can be converted in O(jEjminfjV

1

j; jV

2

jg) = O(nm

2

) time

into another (fractional) assignment of lengths at most L

`

, ` = 1; : : : ; m, represented by

a forest [17] (see Lemma 5.1).

Therefore we can assume that if the above procedure outputs an approximate solution

for P (d) then it is a �-approximate solution represented by a forest. For a fractional

assignment y, a task T

j

has a non-unique processor allotment if there are at least two

processor numbers ` and `

0

, ` 6= `

0

, such that y

j`

> 0 and y

j`

0

> 0. Suppose it is given a

fractional assignment y represented by a forest G, and consider a connected component

C of G with i elements in V

2

. There can be at most i�1 tasks with non-unique processor

allotment in C, since otherwise there would be at least 2i edges in an induced subgraph

of C or G with 2i vertices. This implies the following result.

Lemma 3.4. jVj � m� 1:

3.5 Generating a Schedule. Step 4:3 of the main algorithm requires the computa-

tion of a pseudo-schedule S(f;M) for the tasks in S n V, in which the tasks are allowed

to be preempted and/or be executed parallel on multiple blocks of processors. In this

subsection, �rst we describe an algorithm to compute a pseudo-schedule, and then give

an upper bound on the number of incorrectly scheduled tasks.

Let

^

D

`

be the total processing time for all tasks in S n V assigned to ` processors,

and let (t

�

; e

�

; x

�

) be the optimum solution of the corresponding linear program. First,

we order all `-processor tasks in S n V: T

`;1

; : : : ; T

`;n

`

, for every ` = 1; : : : ; m. Then, we

analyze all intervals [t

�

a

; t

�

a+1

) with t

�

a

< t

�

a+1

one after another starting with [t

�

0

= 0; t

�

1

).

Each interval [t

�

a

; t

�

a+1

) has an associated processor set P (a+1) used by the tasks in L. Let

L

a+1

be the length of the interval. For this interval, we consider all di�erent partitions

P

F;1

; : : : ; P

F;n

F

of the set F =M nP (a+1) (the free processors) with x

�

F;i

> 0. We choose

the �rst partition P

F;i

with x

�

F;i

> 0 (possibly a part of x

�

F;i

has been considered before).

Then, we select for each set X 2 P

F;i

the �rst non-completely scheduled task T

`;j

that

needs ` = jXj processors. The processor set X is �lled with the tasks T

`;j

; T

`;j+1

; : : : until

the total processing time of the selected tasks becomes at least L

�

= minfx

�

F;i

; L

a+1

g, or

until all `-processor tasks have been scheduled. If the total processing time is strictly

greater than L

�

, then the last selected task is preempted such that the total time is

exactly L

�

. After the assignments of the tasks for the sets X 2 P

F;i

, we compare the

length x

�

F;i

of the partition P

F;i

with the length of the interval L

a+1

. If x

�

F;i

< L

a+1

, then

we set L

a+1

= L

a+1

� x

�

F;i

, x

�

F;i

= 0 and consider the next partition P

F;i+1

. Otherwise

we reduce the length x

�

F;i

by L

a+1

and go to the next interval [t

�

a+1

; t

�

a+2

).

10

Since

P

F2F

P

n

F

i=1

a

`

(F; i) � x

�

F;i

�

^

D

`

, this procedure completely schedules all `-

processor tasks, and it runs in O(n) time. However it is possible that some tasks are

preempted, that some `-processor tasks are assigned to several blocks of ` processors

or that some tasks can get di�erent processor assignments in di�erent intervals. The

following lemma gives an upper bound on the number of incorrectly scheduled tasks.

Lemma 3.5. jUj � 2(m� 1)k + 2m

m+1

.

Proof. First, we may assume that all partitions with m free processors are in the last

interval [t

g�1

; t

g

); otherwise we can shift all such intervals at the end of the schedule.

There are two di�erent cases of incorrectly scheduled tasks: 1. inside of an interval

[t

i

; t

i+1

) caused by a change from a partition P

F;a

to P

F;a+1

; 2. at the end of an interval

[t

i

; t

i+1

) or inside of an interval without a change of partitions. In the second case, we

have at most (m � 1) new incorrectly scheduled tasks (not counted before) for each

interval [t

i

; t

i+1

). In the interval [t

g�1

; t

g

), the last selected task is either not preempted

or counted before. In total, we obtain at most (m � 1)g � 2(m � 1)k incorrectly

scheduled tasks in case 2. In the �rst case, for each change from a partition P

F;a

to

P

F;a+1

we get at most m incorrectly scheduled tasks. The number of all partitions

can be bounded by m! + m

m

� 2m

m

, which implies the bound 2m

m+1

for incorrectly

scheduled tasks in case 1.

The following bound is a corollary of those in Lemmas 3.4 and 3.5.

Corollary 3.1. jV [Uj � (2m� 1)k + 3m

m+1

.

4 Analysis of the Algorithm

The following lemmas generalize some of the results in [1]. The �rst one provides a

bound on the number of relative schedules in terms of k and m, and the second one

shows how the constant k = k(m; �) has to be selected.

Lemma 4.1. If jLj = k > 0, then the total number of relative schedules of L is at most

(2

m+2

k

2

)

k

.

Proof. Since there are only 2

m

� 1 di�erent non-empty subsets of f1; : : : ; mg, there

are at most (2

m

� 1)

k

possible processor assignments for the tasks in L. A snapshot

is created when a task of L starts or ends its execution. Since jLj = k, there are at

most 2k such events, and consequently, at most 2k snapshots. Furthermore, for each

task T

j

2 L, the �rst and last snapshots containing T

j

have to be chosen. There are

4k

2

possible choices for each task, and therefore the number of di�erent sequences of

snapshots is bounded by (4k

2

)

k

. Thus in total there are at most (2

m+2

k

2

)

k

di�erent

relative schedules.

11

Lemma 4.2. Suppose d

0

� d

1

� : : : � d

n�1

> 0 is a sequence of real numbers and

D =

P

n�1

i=0

d

i

. Let m be a positive integer, � > 0, and assume that n � 4m

m+1

(2m)

d

1

�

e

.

Then there exists an integer k � 4m

m+1

(2m)

d

1

�

e�1

such that

d

k

+ d

k+1

+ : : :+ d

2mk+3m

m+1

�1

� � �D:

Proof. Decompose the sum d

0

+ : : : + d

n�1

into blocks B

0

= d

0

+ : : : + d

f(1)�1

,

B

1

= d

f(1)

+ : : : + d

f(2)�1

, : : :, B

i

= d

f(i)

+ : : : + d

f(i+1)�1

, where the function f(i)

is de�ned recursively by the following equations

f(0) = 0; f(1) = 2m+ 3m

m+1

; f(i+ 1) = 2m � f(i) + 3m

m+1

; i = 1; 2; : : :
(4.3)

Since

P

n�1

j=0

d

j

= D, at most d

1

�

e � 1 blocks have size larger than � �D. Now let i be the

smallest integer for which B

i

� � �D. Then i � d

1

�

e�1, and B

i

= d

f(i)

+ : : :+d

f(i+1)�1

�

��D. This implies that there is an index k � f(i) such that d

k

+: : :+d

2mk+3m

m+1

�1

� ��D.

It follows from (4:3) that

f(i) = (2m)

i

+ 3m

m+1

(1 + 2m + : : :+ (2m)

i�1

);

and thus

f(i) �

(3m

m+1

+2m�1)(2m)

i

�3m

m+1

2m�1

� 4m

m+1

(2m)

i

;

which along with the bound on i implies the lemma.

By considering all relative schedules for L, Lemma 3.3 can guarantee that the

makespan for the partial (feasible) schedule of T n(V[U) is bounded by OPT+

�

2

�OPT .

Corollary 3.1 and Lemma 4.2 with � =

�

2m

imply that the tasks in V[U can be scheduled

(at the end) with a total length of at most

�

2

�OPT . Thus the overall makespan of the

(complete) schedule is bounded by (1 + �) � OPT . According to the arguments above,

for every �xed m and �, all computations can be carried out in O(n) time. Thus the

following result has been proved.

Theorem 4.1. For any �xed m, there is a polynomial-time approximation scheme for

the MPTS problem that computes for any �xed � > 0 in O(n) time a feasible schedule

whose makespan is at most (1 + �) times the optimum.

For NPTS, we obtain a simpler and faster (linear time) approximation scheme, since

in this case the y

j`

variables are not needed and so the the corresponding linear program

has only a constant(m; �) number of variables and constraints.

12

5 Instances with Work Constraints

In this section we consider MPTS under the following (natural) assumption: For each

task T

j

2 T and each number p 2 M , the work/execution time t

j

(1) on 1 processor

is bounded by the work pt

j

(p) on p processors. This assumption is motivated by the

fact that in general, executing a task on p processors requires communications between

the processors, and therefore the overall work on p processors is at least as large as on

1 processor. The time for communications among processors that work on the same

task can be taken into account implicitly in the execution time. In the following we

show that under this assumption the previous linear programs and therefore also the

approximation schemes substantially simplify.

The idea is to transform a short task T

j

running on p processors into p parallel

sequential tasks T

1

j

; : : : ; T

p

j

, where each of these p tasks has the same execution time of

at most t

j

(p) (see Figure 3).

T

j

!

T

3

j

T

2

j

T

1

j

Figure 3: Transformation of a 3-processor task T

j

into 3 parallel 1-processor tasks

T

1

j

; T

2

j

; T

3

j

.

In general the produced schedules are not feasible, because the 1-processor short

tasks are executed now in parallel. But by using the approach of Section 3.4, one can

put the short tasks into the gaps with free processors (in the relative schedule) such that

the number of incorrectly scheduled tasks is bounded by a constant. The advantage

of this new approach is that the y

j`

variables are not needed any longer. Therefore by

assuming that every short task is executed on 1 processor, the linear program (for each

relative schedule of the long tasks in L) can be simpli�ed as follows:

Minimize t

g

s.t.

(0)-(2)

(3)'

P

i:jP (i)j=m�j

(t

i

� t

i�1

) = e

j

, j = 1; : : : ; m,

(4)'

P

m

j=1

j � e

j

� D

1

.

In this linear program, the variable e

j

corresponds to the processing time whilem�j

processors are executing long tasks of L and j processors are free for short tasks. The

13

value D

1

gives the total processing time

P

T

j

2T nL

t

j

(1) of all short tasks on 1 processor.

Inequality (4)

0

guarantees that there is enough time for all short tasks. By using a similar

argument as before the number of incorrectly scheduled tasks can be bounded in terms

of m and �, and therefore one can execute them sequentially at the end of the schedule

with a total execution time of at most

�

2

�OPT . Since now the linear programs have only

a constant(m; �) number of variables and constraints, one can get a faster approximation

scheme for this case.

6 Conclusions

We mention in closing that by using similar ideas linear time approximation schemes

can also be obtained for the following scheduling problems with makespan minimization

on a �xed number of machines: preemptive versions of NPTS and MPTS; preemptive

and non-preemptive scheduling of unrelated parallel machines (with and without cost);

ow and open shop scheduling, Pmjset

j

jC

max

. In fact, these linear-time approximation

schemes, except for the last three models, are fully polynomial. We plan to address these

problems along with other extensions of the above results in a subsequent paper.

This work was motivated by [1], whose authors (by extending their previous results)

have also obtained independently a linear-time approximation scheme for NPTS with a

�xed number of processors [2].

References

[1] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling independent

multiprocessor tasks, Proc. 5th European Symposium on Algorithms (1997), LNCS 1284,

pp. 1{12.

[2] A.K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, private communication.

[3] K. Belkhale and P. Banerjee, Approximate algorithms for the partitionable independent

task scheduling problem, International Conference on Parallel Processing (1990), Vol. 1,

pp. 72{75.

[4] B. Baker, E. Co�man, and R. Rivest, Orthogonal packings in two dimensions, SIAM

Journal on Computing 9 (1980), pp. 846{855.

[5] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz, Scheduling under resource

constraints - deterministic models, Annals of Operations Research 7 (1986).

[6] E. Co�man, M. Garey, D. S. Johnson, and R. Tarjan, Performance bounds for level-

oriented two-dimensional packing problems, SIAM Journal on Computing, 9 (1980),

pp. 808{826.

[7] J. Du and J. Leung, Complexity of scheduling parallel task systems, SIAM Journal on

Discrete Mathematics, 2 (1989), pp. 473{487.

[8] A. Feldmann, M.-Y. Kao, J. Sgall, and S. H. Teng, Optimal online scheduling of parallel

jobs with dependencies, Proc. 25th ACM Symposium on the Theory of Computing (1993),

pp. 642{651.

[9] A. Feldmann, J. Sgall, and S.H. Teng, Dynamic scheduling on parallel machines, Proc.

32nd IEEE Symposium on Foundations of Computer Science (1991), pp. 111{120.

14

[10] M. Garey and R. Graham, Bounds for multiprocessor scheduling with resource constraints,

SIAM Journal on Computing 4 (1975), pp. 187{200.

[11] M.D. Grigoriadis and L.G. Khachiyan, Coordination complexity of parallel price-directive

decomposition, Mathematics of Operations Research 21 (1996), pp. 321{340.

[12] M. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under

resource constraints, SIAM Journal on Computing 4 (1975), pp. 397{411.

[13] C. Kenyon and E. Remila, Approximate strip packing, Proc. 37th IEEE Symposium on

Foundations of Computer Science (1996), pp. 31{36.

[14] Y. Kopidakis and V. Zissimopoulos, An approximation scheme for scheduling independent

jobs into subcubes of a hypercube of �xed dimension, Theoretical Computer Science

(1997), pp. 265{273.

[15] Y. Kopidakis, Approximabilite des Problemes d 'Ordonnancement dans les Systemes

Paralleles, These de Doctorat, Universite de Paris-Sud (1997).

[16] W. Ludwig and P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, Proc.

5th ACM-SIAM Symposium on Discrete Algorithms (1994), pp. 167{176.

[17] S.A. Plotkin, D.B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional

packing and covering problems, Mathematics of Operations Research 20 (1995), pp. 257{

301.

[18] A. Steinberg, A strip packing algorithm with absolute performance bound 2, SIAM Journal

on Computing 26 (1997), pp. 401{409.

[19] J. Turek, J. Wolf, and P. Yu, Approximate algorithms for scheduling parallelizable tasks,

Proc. 4th ACM Symposium on Parallel Algorithms and Architectures (1992), pp. 323{

332.

15

