
���
�

�� ����

I N F O R M A T I K

� �

� �

q�gram Based Database Searching
Using a Su�x Array �QUASAR�

Stefan Burkhardt Andreas Crauser

Paolo Ferragina Hans�Peter Lenhof

Eric Rivals Martin Vingron

MPI�I��������	 October ����

FORSCHUNGSBERICHT RESEARCH REPORT

M A X � P L A N C K � I N S T I T U T

F
UR

I N F O R M A T I K

Im Stadtwald ����� Saarbr�ucken Germany

Authors� Addresses

Stefan Burkhardt
Max�Planck�Institut f�ur Informatik

D������ Saarbr�ucken� Germany

stburk�mpi�sb�mpg�de

Andreas Crauser
Max�Planck�Institut f�ur Informatik

D������ Saarbr�ucken� Germany

crauser�mpi�sb�mpg�de

Paolo Ferragina
Max�Planck�Institut f�ur Informatik

D������ Saarbr�ucken� Germany

paolo�mpi�sb�mpg�de

Hans�Peter Lenhof
Max�Planck�Institut f�ur Informatik

D������ Saarbr�ucken� Germany

len�mpi�sb�mpg�de

Eric Rivals
Deutsches Krebsforschungszentrum

Abt	 Theoretische Bioinformatik� INF �
�

D������ Heidelberg� Germany

E�Rivals�dkfz�heidelberg�de

Martin Vingron
Deutsches Krebsforschungszentrum

Abt	 Theoretische Bioinformatik� INF �
�

D������ Heidelberg� Germany

M�Vingron�dkfz�heidelberg�de

Acknowledgements

Stefan Burkhardt grateful acknowledges �nancial support from a
Graduiertenkolleg graduate fellowship of the Deutsche Forschungsgemein�
schaft �DFG�� Martin Vingron and Eric Rivals grateful acknowledge �nancial
support from BMBF within the German Human Genome Project�

Abstract

With the increasing amount of DNA sequence information deposited in our
databases searching for similarity to a query sequence has become a basic
operation in molecular biology� But even today�s fast algorithms reach their
limits when applied to all�versus�all comparisons of large databases� Here
we present a new data base searching algorithm dubbed QUASAR �Q�gram
Alignment based on Su�x ARrays� which was designed to quickly detect se�
quences with strong similarity to the query in a context where many searches
are conducted on one database� Our algorithm applies a modi�cation of
q�tuple �ltering implemented on top of a su�x array� Two versions were de�
veloped	 one for a RAM resident su�x array and one for access to the su�x
array on disk� We compared our implementation with BLAST and found
that our approach is an order of magnitude faster� It is	 however	 restricted
to the search for strongly similar DNA sequences as is typically required	 e�g�	
in the context of clustering expressed sequence tags �ESTs��

Keywords

Database Searching	 EST�Clustering	 Su�x Array	 Computational Molecular
Biology

� Introduction

Numerous and large databases holding DNA and protein sequences are now readily available
over the WEB and are quickly becoming the �lifeblood of molecular biology�
Wal���� This
is due to the combination of the power of biomolecular sequence comparison with the ease�of�
use of tools for searching such databases for sequences exhibiting similarity to a given query
sequence� These searches are nowadays routine and vital for molecular biology because they
serve to �generate new knowledge�
Doo���� Whenever a new gene is cloned and sequenced	
visiting the appropriate databases is the next step� Di�erent	 but equally interesting	 applica�
tions of these databases are the clustering of similar sequences into sequence families
KV���	
and the assembly of sequence fragments in genome sequencing
VAS�����

Fast programs like the BLAST and FASTA packages
AMS���	 PL��� or iterated Smith�
Waterman
SW�
� sequence alignments are used for this purpose� Especially BLAST is im�
pressively fast� This program performs a linear scan of the whole collection of sequences
searching for a set of words belonging to the neighborhood of some substrings of the query
string� The result is a list of candidate hits in the database� Although this algorithm performs
single database searches at an amazing speed	 today�s applications tend to introduce more
stringent performance requirements where these algorithms reach their limits� Be it in the
comparison of an EST database to itself for the purpose of clustering or in the context of shot�
gun sequencing	 all�against�all comparisons of large amounts of data need to be computed�
The problem is further augmented by the current exponential growth in primary sequence
data� Thus	 database searching tools that read through the entire database may in the near
future become too slow to cope with the avalanche of data �see also
Mye�����

In the �eld of exact string matching	 techniques have been developed that preprocess a
text in such a way that	 upon searching a pattern	 only small parts of that text actually
need to be explicitly accessed� Since in the applications described above	 one imposes a very
stringent match criterion	 the hope is to draw on these techniques in order to further improve
the e�ciency of database searching algorithms� Candidates are sophisticated indexing data
structures like su�x trees
McC���	 su�x arrays
MM���	 or Patricia trees
Knu�
�	 that
allow to perform queries in time proportional to the length of the query string while being as
independent as possible of the size of the searched text
McC����

Only few attempts have been made to adapt these techniques to the similarity searches
needed for biological purposes� Martinez
Mar���	 for example	 gave the �rst application of
a position tree in molecular biology� This data structure requires about
� times the space
needed to store the original data which clearly may create serious problems when applied to
large data collections �see also
Heu��	 MH����� Myers
Mye��� suggested a sublinear �in the
database size� search algorithm that is centered around an index built on small substrings of
the database sequences� However	 with today�s database sizes this implies a very stringent
search criterion and possibly a certain �sublinear in the database size� amount of random disk
accesses� The IBM product FLASH
CR��a	 CR��b� takes advantage of a large �probabilistic�
index where not all q�tuples are considered	 but only some of them are randomly chosen�
They report a
� GB index for a
�� million residue database which makes such an approach
impractical for large databases�

In this paper we restrict ourselves to the search for sequences that are strongly similar to
a given query sequence� A typical scenario is searching an EST database for sequences that
are derived from the same gene as the query sequence� The degree of similarity expected
here is high since	 in essence	 one only needs to deal with sequencing errors� Furthermore	

�

we have in mind an application where many searches are run together like	 e�g�	 in an all�
versus�all comparison of a set of sequences� Thus	 we aim at a search algorithm that is
very fast on each single search at the expense of �possibly� diminished sensitivity� Given the
low performance of current disks compared to internal memory �regarding access time and
transfer rate�	 QUASAR is based on an index data structure to avoid the linear scan of the
entire database�

Following a standard approach �see e�g�
JU�
	 HBD��	 PW��	 PL���	 we reformulate
the problem of searching for database sequences which are very close to the query sequence
to the problem of performing a number of exact searches on short subsequences of length q
�called q�grams�� Our approach is based on the following observation� if two sequences have

an edit distance below a certain bound� one can guarantee that they share a certain number of

q�grams
JU�
�� This observation allows us to design a �lter that selects candidate positions
from the database where the query sequence possibly occurs with a high level of similarity�
These positions can later be inspected in more depth with a standard alignment algorithm�

The crucial point in the approach we use for QUASAR was therefore the design of the �lter
which combines some already known ideas in a new way� We logically partition the database
into equal length blocks of size	 say	 b �cf�
MW����� The search of the query sequence S
is then decomposed into a certain number of �similarity� searches for subsequences of S of
�xed length� Such a search is implemented by searching for all the occurrences of its q�grams
in the database	 counting for each block the number of searched q�grams which occur in it�
At this point	 a properly chosen bound on the number of shared q�grams allows us to detect
blocks which possibly correspond to database portions which are highly similar to the query
sequence S �i�e�	 candidate hits�� An array of counters�one per block�is used to speed up
the counting process and a su�x array
MM��� is applied as a space�e�cient data structure
for quickly retrieving the positions where the searched q�grams occur in the database� We
implemented two versions of our data structure and algorithm� one assuming that the whole
data collection is resident in the internal memory of the computer	 and the other assuming
that the index data structure is large and thus has to reside on disk�

The results we achieve with this approach show that our match criterion and �ltering ap�
proach are successful	 especially since our focus is on near�perfect matching for many queries�
Our evaluations will focus on such situations showing that our new algorithm is more than
one magnitude faster than BLAST while maintaining about the same sensitivity� In the case
of an all�against�all comparison	 where the running time depends quadratically on the number
of sequences compared	 such an improvement leads to a substantial increase in overall perfor�
mance� Similarly	 one can envisage that a heavily used web service might take advantage of
the speed o�ered by our approach by collecting queries for a few seconds and then searching
for them in the database�

The paper is organized as follows� The Algorithm Section starts by introducing the match
criterion we want all our candidate hits to ful�ll and explains how it is applied as a �lter to
select blocks for inspection� It introduces the structure of QUASAR	 shows how the su�x
array was combined with q�gram matching	 and describes the implementation� The Results
Section contains the experimental analysis of the internal memory and the secondary memory
version of our algorithm� It will elaborate on run�time	 sensitivity	 and also give details on
the e�ciency of the match criterion we use as a �lter�

�

� The Algorithm

We have developed and implemented an approximate matching algorithm for determining all
sequences in a database D that have a local similarity to a query sequence S� We say that a
sequence d � D is locally similar to S	 if there exists at least one pair �S
i � i� w �
�� d�� of
substrings with the following properties�

� S
i � i� w �
� is a substring of S of length w and d� is a substring of d�

� The substrings d� and S
i � i � w �
� have edit distance at most k	 i�e�	 d� can be
transformed into S
i � i� w �
� by at most k insert	 delete and replace operations�

We call this the approximate matching problem with k di�erences and window length w� For
simplicity we assume that D is one single string of length jDj� A pair of substrings with
the above properties is called an approximate match� Starting with S

 � w� we perform the
approximate matching calculations for all possible substrings of S of length w�

For simplicity we now consider the �rst substring S

 � w� of length w and describe how
to determine all approximate matches of S

 � w� with substrings of D� Our general idea
is the following� We modify an idea introduced by
OM��� and
JU�
� to solve approximate
matching by reducing it to exact matching of short substrings of length q �called q�grams��
It relies on the following lemma�

Lemma �
JU�
� Let an occurrence of S

 � w� with at most k di�erences end at position
j in D� Then at least w �
 � �k �
�q of the q�grams in S

 � w� occur in the substring
D
j � w �
 � j��

This lemma gives a necessary condition for a subsequence of D to be a candidate for an
approximate match with S

 � w�� At least t � w �
 � �k �
�q of the q�grams contained
in S

 � w� occur in a substring of D with length w� Substrings of D with this property are
potential approximate matches and will later be tested with alignment algorithms�

��� Su�x Array as Index Data Structure

In order to �nd the potential approximate matches of S

 � w� in D	 for each q�gram Q in
S

 � w� we have to e�ciently retrieve its list of occurrences in D �we call this a hitlist�� By
using an index data structure for all q�grams in D we hope to direct the search for Q towards
small portions of D and thus to avoid a scan of the whole data base� Since q is a parameter in
our approach	 we decided to use a full�text indexing data structure so that it is not necessary
to rebuild the index if we change q� We use the su�x array as introduced by Manber and
Myers
MM���� The su�x array A built on database D is an array of length jDj storing the
lexicographically ordered sequence of all su�xes of D� Entry A
j� contains the text position
where the j�th smallest su�x of D starts� Therefore A requires storing exactly one pointer
per text position �usually � bytes�� The su�x array for D is constructed in a preprocessing
step� As we are only interested in the occurrences of q�grams	 it is not necessary to use the
search procedure introduced by Manber and Myers� Instead we precompute the positions of
the hitlists in the su�x array A for all possible q�grams and store them in an auxiliary search
array of size j�jq	 where � is the alphabet� This allows us to �nd the start position of a given
query q�gram in constant time� If we want to change q	 we only have to precompute the start
positions again�

�

��� Block Addressing

In order to �nd all approximate matches between S

 � w� and D	 we have to identify all
the substrings in D that share at least t q�grams with S

 � w�� A simple approach would
be to assign a counter to each substring of length w in D �jDj � w �
 counters� and to
increment all the counters of blocks containing q�grams from S

 � w�� After processing the
hitlists of the query q�grams all substrings with counter values greater than or equal to t are
potential approximate matches� A main drawback of this solution is the space required to
store the counters� Therefore we combine several substrings of length w into a block and
assign only one counter to this block
MW���� This strategy has two e�ects� on the one hand	
it reduces the amount of counters required	 but it can also lead to more false positives� It
therefore introduces a tradeo� between space requirements and the number of falsely identi�ed
candidates�

In detail our block addressing scheme works as follows� The database D is conceptually
divided into blocks of �xed size b �b � �w�� We assign a counter to each block� This counter
will be incremented whenever a search for a q�gram Q reports an occurrence inside the block�
After processing all q�grams in S

 � w�	 the counter of a certain block indicates how many
q�grams from S

 � w� are contained in this segment of the database� These counter values
are stored in an array of size jDj�b� Using this array we can �nd all interesting portions of
the database	 i�e� all blocks that contain t or more occurrences of q�grams from S

 � w�
�see Lemma
�� These blocks have to be checked for approximate matches using a sequence
alignment algorithm�

If we look in more detail at the simple block addressing scheme	 we see that we will miss
candidates for approximate matches that cross block boundaries� In a worst case scenario	 the
occurrences of q�grams from S

 � w� are spread among two adjacent blocks and none of these
block counters reaches the threshold t� In order to avoid this problem	 we use a second block
decomposition of the database	 i�e� a second block array� The second block decomposition is
shifted by half the length of a block �b��� �see Figure
�� It is obvious that	 if a situation as

B 1 B

B 2

B B B

BB

B B

B

3 i-2

i-1

i

i+1

i+2 c-1

c-2

c-3

gttcacatt . . .tgccgaatgaatgcctgatgg . . .

1 b/2 b (i-1)b/2 + 1 (i+1)b/2

.

.

Figure
� Partition of the database D into overlapping buckets of size b�

described above occurs for blocks B� and B� in Figure
	 then block B� contains the potential
candidate�

At the end of the search procedure for the q�grams of S

 � w� the blocks containing
approximate matches to S

 � w� have a counter value of at least t�

��� Window Shifting and Alignment

So far we have discussed our approach to �nd all approximate matches for the window S

 � w��
In order to determine the approximate matches for the next window S
� � w �
�	 we only
have to consider the �old� q�gram S

 � q� and the �new� q�gram S
w � q �
 � w �
�� We
have to reconsider the hitlist of the q�gram S

 � q�� We decrement the counter values of all
blocks that contain copies of this q�gram and that have not reached the threshold t	 i�e� if
a counter for a block has already reached t	 we leave it unmodi�ed� In this way we store all

�

candidate blocks already found� Then we use the su�x array to search for all occurrences of
the �new� q�gram S
w � q �
 � w �
� and increment the corresponding block counters� We
shift the window of length w over the string S until we reach its end�

After computing the list of blocks containing potential hits	 BLAST
AGM���� is used
to scan all these blocks� The version we integrated into our code is a modi�cation of NCBI
BLAST ������ A database in BLAST format is built in main memory which is then passed to
the BLAST search engine� The construction of this database requires a signi�cant amount of
time and introduces unnecessary overhead�

��� Secondary Memory Version

The size of larger databases may prohibit storing the su�x array in internal memory� There�
fore we developed a secondary memory version of QUASAR where the su�x array is stored
in secondary memory � �hard disk�� As hard disks are mechanical devices	 the time to access
data is dominated by moving the disk head to the location where the data resides� This seek
time is not a linear function of distance	 i�e� seeks over short distances are much faster than
seeks over the full distance
RW���� Additionally	 modern disk drives are optimized to be fast
on sequential operations� This is achieved by read�ahead strategies and command�bu�ering�
Therefore it is necessary to avoid random disk accesses whenever possible� Our approach
above would introduce random disk accesses to read the hitlists of the q�grams out of the
su�x array and increment the counters of the corresponding blocks� Our simple solution to
circumvent this problem is as follows� We group together several query sequences� Then we
generate a list of all q�grams contained in these sequences and sort them with respect to the
start positions of their hitlists in the su�x array� This allows us to access the su�x array se�
quentially	 reducing the number of random disk accesses and taking advantage of read�ahead
strategies�

��� Complexity

The preprocessing�step �the construction of the su�x array and the precomputation of the
search array� can be done in O�jDj log jDj� time
MM���� Searching for a speci�c q�gram
requires constant time but the number of reported occurrences can be linear in jDj� As there
are O�jSj� q�grams	 our approach takes O�jSj � jDj� time� If at the end c blocks reach the
threshold t	 the alignment with BLAST takes further O�c �b � jSj� time� The space complexity
of our algorithms is dominated by the space used for the su�x array� At construction time
we need �jDj space	 later during the searching we need �jDj�

� Results

We evaluated the performance and sensitivity of QUASAR and compared it to NCBI BLAST
������ In the following we describe the setup of our experiments	 compare the lists of similar
sequences found by BLAST and QUASAR	 and analyze the running times and the e�ciency
of our �lter� As QUASAR was designed for processing multiple queries	 we used test sets of

��� queries �ESTs from the databases themselves�� When evaluating BLAST we also used

�At the moment� the text of the database still remains in main memory� We plan to change this in the near

future�

�

��� queries at a time� This allows BLAST to keep the database in main memory	 so it only
has to load it once at the start of the test run�

��� Experiments

Three data sets were used for the tests� Firstly	 the set of mouse EST sequences having
no homology to known mouse mRNAs was used �
����� sequences	 ���� Million base pairs
�Mbps��� Since we are also engaged in clustering mouse ESTs we produced a version of this
database which was modi�ed for clustering purposes �
����
 sequences	 ���� Mbps�� In this
set we removed the sequences containing typical mouse repeat sequences and preprocessed
the data to limit the amount of �contextual� repeats� We removed sequence tails containing
poly�X �X� fA�C�G� T�Ng� which are frequently introduced by sequencing inaccuracies and
are usually �clipped� by the sequencing centers� In fact some sequences contained large poly�
X strands of up to ��� bp� We also clipped the poly�A and poly�T signals at the beginning
or end of the sequences� The largest data set we used for testing is the set of human ESTs
as contained in the NCBI Human Unigene database ������� sequences	 ����� Mbps�� This
data set was preprocessed analogously to the mouse EST data	 of course without removing
common mouse repeat sequences�

BLAST was executed with E �
���	 all other parameters were left at their default values�
We ran QUASAR with a window length of w � �� bps	 q�grams of length

 and a threshold
t which guarantees to �nd windows with at most �� di�erence �i�e� an edit distance of ��� All
tests were conducted on one processor �SUN SparcII	 ��� Mhz� of a dedicated Sun Enterprise

���� with � GB of main memory and a local disk array�

��� Sensitivity

For the comparison between BLAST and QUASAR in terms of sensitivity one would ideally
compare P�values� However	 as pointed out in the Algorithms Section	 we postprocess the
matches between the query and selected blocks using BLAST� We call this version QUASAR�
BLAST to keep things apart� Thus	 QUASAR�BLAST scans only a �ltered subset of the
entire database� Consequently for a pair of sequences	 QUASAR�BLAST and BLAST P�
values are not comparable because they refer to databases of di�erent size�

Nevertheless	 if a sequence is recorded as a hit by BLAST and QUASAR�BLAST it will
yield the same alignment and the same score in both cases� This allows us to compare the
lists of matches produced by QUASAR�BLAST and BLAST� Two outcomes are possible� If
both lists contain the same hit�sequences	 they will be in the same order with the exception
of sequences with equal P�values� We report this as identical results� If the two lists di�er	
we report the BLAST P�value of the best match that QUASAR missed�

In the column Identical results in Table
	 one can see that in most cases ��
��� and
���
��	 QUASAR �nds exactly the same hits as BLAST �with E �
����� When the results
di�er �column False negative�	 the average P�values of the �rst missed match are
���� and

���� respectively� Note that we averaged the logarithms of the P�values	 not the P�values
themselves� The overall minimum P�values for false negatives are
���� and
����� Given
that we are guaranteed to have passed every block containing at least one window of more
than ��� identity to QUASAR�BLAST and that a real match of ESTs typically has near�zero
P�value	 this assures us that we did not miss any sequences we intended to �nd� The cuto�
of
��� for the BLAST P�value is not a value one would use to search for very conservative

�

matches� Thus the large majority of cases where QUASAR achieves the same sensitivity as
BLAST shows that QUASAR is also able to �nd evolutionary divergent homologues of a given
query�

The level of sequence identity in some window to which QUASAR is guaranteed to �nd
a match was set to ��� This level is for the �worst case�	 i�e� a match where di�erences
are regularly spaced along the matching sequence� In practice we achieve better results	 for
mouse ESTs the maximum percentage of di�erences reported by QUASAR averaged over all

��� queries is
��� The overall maximum is �
�	 with these numbers being computed on
all matches having more than �� di�erences� We are aware of the fact that theoretical and
empirical analyses are necessary to aid the user in setting the parameters required to achieve
the level of sensitivity he wants� For Mouse ESTs	 we also evaluated the sensitivity for block
sizes between �
� and ����� The comparison with BLAST as described above yielded exactly
the same results�

��� Performance

The last three columns of Table
 summarize the average run times in seconds for QUASAR	
QUASAR running in external memory �QUASAR�E� and BLAST� In the Mouse and Human
EST databases	 QUASAR searches through ���� Mpbs and ����� Mbps in ��
� respectively
���� seconds� QUASAR�E with the su�x array on the disk achieves nearly the same perfor�
mance with ��
� and ���� seconds� Both QUASAR and QUASAR�E are approximately ��
times faster than BLAST�

The performance of a q�gram based approach like ours might be in uenced by repeats or
low�complexity regions� The run times on the original mouse EST database that still contains
repeats	 poly�A	 etc� show that this e�ect is moderate� A search on this database required on
average ���� seconds which is still considerably faster than BLAST� Furthermore	 the external
memory version QUASAR�E is nearly as fast as QUASAR� This is due to the sorting of the
q�grams before accessing their hitlists on the disk and to much smaller data structures in
main memory�

In practice this results in a substantial increase in speed over BLAST and allows us to
work on larger problems� For instance	 we were able to run an all�versus�all comparison of
the modi�ed Mouse ESTs �
����
 queries� on an Ultra Sparc � with
 GB of main memory
in less than

 hours� We estimated the time required to conduct these searches with BLAST
to be larger than
� days on the same machine�

��� Dependency of the �ltration overhead on the block size

To evaluate the quality of our �ltration	 we introduce the term �ltration overhead� It is
de�ned as the percentage of the database which is selected by the �ltration and passed to the
alignment step� We compute the �ltration overhead as follows�

! �ltered sequences

! sequences in database

Since the length of ESTs does not vary much	 this is approximately the same as counting
numbers of base pairs instead of numbers of sequences� For block sizes between �
� and �
��	
Figure � shows the total running time of QUASAR	 the time spent on the �ltration and the
time spent in the alignment phase� In the same graph	 we show the �ltration overhead in
percent�

�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

512 1024 2048 4096 8192

T
im

e
in

 s
ec

, F
ilt

ra
tio

n
ov

er
he

ad
 in

 %

Block size (bp)

Filtration Overhead
Total time

Alignment Time
Filter Time

Figure �� Run times and �ltration overhead for various block sizes�

DB Size Queries Identical False Neg Filtration CPU times in seconds
Mbps Size�bps� Results P�value overhead QUASAR QUASAR�E BLAST

Mouse ���� ��� �
�� �
���� ����� ��
�� ��
�� ����

Human ����� ��� ���
 �
���� ��
�� ���� ����
����

Table
� Sensitivity and running times of searches in Mouse and Human EST databases with
block size of
���bps� From left to right� database and its size	 average query size	 percentage
of searches giving identical results	 for searches yielding di�erent results the minimum and
average P�values of the �rst missed sequence	 the �ltration overhead and the CPU times of
QUASAR	 QUASAR�E and BLAST�

�

The �ltration overhead increases with the block size� for larger block sizes the portion of
the database passed to the alignment step grows� Since for each interesting block all sequences
covering that block are searched in the alignment phase	 the total amount of sequences pro�
cessed in this phase grows roughly linearly with the block size� In contrast to this	 the time
required to �lter the database is reduced due to the smaller number of counters that have
to be incremented in this phase and to the reduced size of the block counter array� It seems
surprising that the time required for the alignment phase does not grow proportionally to the
�ltration overhead� This is caused by the overhead of calling the alignment algorithm and
the �xed number of matches that are found in the alignment phase which are independent of
the chosen block size�

It should be pointed out that the �ltration step is extremely fast and accounts for less
than one third of the total running time �for a block size of ����bps�� Thus	 the speed of
QUASAR would bene�t most from improvements in the alignment phase� We therefore plan
to improve the interface between the �ltration and alignment step� The curve also shows that
the optimal block size lies between
��� and ���� bps�

� Discussion

The work presented here arose from a collaboration concerning the clustering	 assembly	 and
analysis of EST sequences� Our focus on near�perfect matching of many queries stems from
the interest in this problem� Correspondingly	 it is not our intention to produce a substitute
for BLAST or other current database searching methods� Our approach is intended as a
complement to existing methods for applications where high similarity is expected and where
many searches are performed together�

Our results show that our new approach is more than a magnitude faster than BLAST
in identifying strongly similar sequences� In the case of an all�against�all comparison	 where
the running time is proportional to the squared number of sequences in the database	 such
an improvement leads to a substantial increase in overall performance� Similarly	 one can
envisage that a heavily used Web service might take advantage of the speed o�ered by our
approach by collecting queries for a few seconds and then processing them as a group�

The good running times of QUASAR are due to the use of the precomputed su�x ar�
ray� However	 the algorithm to compute the su�x array	 although of complexity O�n log�n��	
requires large amounts of internal memory and takes rather long in absolute time� Further�
more	 for large data sets internal memory is likely to be insu�cient for the construction and
secondary memory versions are required to keep its run time within reasonable limits� This
is an area of future research�

In further ongoing work we are studying in more depth the dependence of the running
times of QUASAR on the size of the hit lists and the size of the database� We are working on
the parallelization of our algorithm and investigating possibilities to improve the sensitivity�
We are currently applying QUASAR to run all�against�all comparisons of human ESTs	 mouse
ESTs	 and Arabidopsis ESTs� Based on this output	 mouse ESTs have already been clustered	
assembled	 and representative clones have been selected for design of expression arrays� The
details of this work will be described in a forthcoming paper�

�

References

AGM���� S�F� Altschul	 W� Gish	 W� Miller	 E�W� Myers	 and D�J� Lipman� Basic local
alignment search tool� Journal of Molecular Biology	 �
�����"�
�	
����

AMS���� S�F� Altschul	 T�L� Madden	 A�A� Scha�er	 J� Zhang	 Z� Zhang	 W� Miller	 and
D�J� Lipman� Gapped Blast and Psi�Blast� a new generation of protein database
search programs� Nucleic Acids Res�	 �������"����	
����

CR��a� A� Califano and I� Rigoutsos� FLASH� A fast look�up algorithm for string homol�
ogy� In L� Hunter	 D� Searls	 and J� Shavlik	 editors	 Proc� of the �st International
Conf� on Intelligent Systems for Molecular Biology	 pages ��"��	
����

CR��b� A� Califano and I� Rigoutsos� FLASH� A fast look�up algorithm for string ho�
mology� In Proc� IEEE Conf� Computer Vision and Pattern Recognition�	 pages
���"���	
����

Doo��� R�F� Doolittle� What we have learned and will learn from sequence databases	
pages �
"�
� Addison�Wesley	
����

HBD��� W� Hide	 J� Burke	 and D�B� Davison� Biological evaluation of d�	 an algorithm
for high�performance sequence comparison� J� Comp� Biol�	
�
��"�
�	
����

Heu��� K� Heumann� Biologische Sequenzdatenanalyse gro�er Datens	atze basierend auf

Positionsbaumvarianten� PhD thesis	
����

JU�
� P� Jokinen and E� Ukkonen� Two algorithms for approximate string matching
in static texts� In Proc� of the �
th Symposium on Mathematical Foundations

of Computer Science	 volume ��� of Lecture Notes in Computer Science	 pages
���"���	
��
�

Knu�
� D�E� Knuth� The Art of Computer Programming �Volume III�
 Sorting and

Searching� Addison�Wesley	
��
�

KV��� A� Krause and M� Vingron� A set�theoretic approach to database searching and
clustering� Bioinformatics	
�����"���	
����

Mar��� H�M� Martinez� An e�cient method for �nding repeats in molecular sequences�
Nucleic Acids Research	

�
�������"����	
����

McC��� E� McCreight� A space�economical su�x tree construction algorithm� Journal of
the Association of Computing Machinery	 ���������"���	
����

MH��� H�W� Mewes and K� Heumann� Genome analysis� Pattern search in biological
macromolecules� In Combinatorial Pattern Matching	 volume ��� of Lecture Notes
in Computer Science	 pages ��
"���	
����

MM��� U� Manber and G�W� Myers� Su�x Arrays� A New Method for On�Line String
Searches� In Proc� of the �rst annual ACM�SIAM Symposium on Discrete Algo�

rithms	 pages �
�"���	
����

MW��� U� Manber and S� Wu� GLIMPSE� A tool to search through entire �le systems�
In USENIX Association	 editor	 Proc� of the Winter ���� USENIX Conference	
pages ��"��	
����

Mye��� E�W� Myers� Algorithmic advances for searching biosequence databases� In
S#andor Suhai	 editor	 Computational Methods in Genome Research	 pages
�
"

��� Plenum Press	 New York	
����

Mye��� E�W� Myers� A sublinear algorithm for approximate keyword searching� Algorith�
mica	
����������"���	
����

OM��� O� Owolabi and D�R� McGregor� Fast approximate string matching� Software

Practice and Experience	
��������"���	
����

PL��� W�R� Pearson and D�J� Lipman� Improved tools for biological sequence compari�
son� PNAS	 �������"����	
����

PW��� P�A� Pevzner and M�S� Waterman� A fast �ltration algorithm for the substring
matching problem� In A� Apostolico	 M� Crochemore	 Z� Galil	 and U� Manber	
editors	 Combinatorial Pattern Matching� �th Annual Symposium	 volume ��� of
Lecture Notes in Computer Science	 pages
��"�
�	
����

RW��� C� Ruemmler and J� Wilkes� An introduction to disk drive modeling� IEEE

Computer	 pages
�"��	
����

SW�
� T�F� Smith and M�S� Waterman� Identi�cation of common molecular subse�
quences� Journal of Molecular Biology	
���
��"
��	
��
�

VAS���� J�C� Venter	 M�D� Adams	 G�G� Sutton	 A�R� Kerlavage	 H�O� Smith	 and M�
Hunkapillar� Shotgun sequencing of the human genome� Science	 ����
���"
���	

����

Wal��� M�M� Waldrop� On�line archives let biologists interrogate the genome� Science	
����
���"
���	
����

	
�
�

	
 k

I N F O R M A T I K

Below you
nd a list of the most recent technical reports of the Max�Planck�Institut f�ur Informatik	 They
are available by anonymous ftp from ftp�mpi�sb�mpg�de under the directory pub�papers�reports	 Most
of the reports are also accessible via WWW using the URL http���www�mpi�sb�mpg�de	 If you have any
questions concerning ftp or WWW access� please contact reports�mpi�sb�mpg�de	 Paper copies �which
are not necessarily free of charge� can be ordered either by regular mail or by e�mail at the address below	

Max�Planck�Institut f�ur Informatik
Library
attn	 Birgit Hofmann
Im Stadtwald
D������ Saarbr�ucken
GERMANY
e�mail� library�mpi�sb�mpg�de

MPI�I��	���
�� M� Tzakova
 P� Blackburn Hybridizing Concept Languages

MPI�I��	���
�� G� Delzanno
 A� Podelski Model Checking In�nite�state Systems in CLP

MPI�I��	���
�� A� Degtyarev
 A� Voronkov Equality Reasoning in Sequent�Based Calculi

MPI�I��	���
�
 S� Ramangalahy Strategies for Conformance Testing

MPI�I��	���

� S� Vorobyov The Undecidability of the First�Order Theories of One
Step Rewriting in Linear Canonical Systems

MPI�I��	���

	 S� Vorobyov AE�Equational theory of context uni�cation is
Co�RE�Hard

MPI�I��	���

� S� Vorobyov The Most Nonelementary Theory �A Direct Lower
Bound Proof�

MPI�I��	���

� P� Blackburn
 M� Tzakova Hybrid Languages and Temporal Logic

MPI�I��	���

� M� Veanes The Relation Between Second�Order Uni�cation and
Simultaneous Rigid E�Uni�cation

MPI�I��	���

� S� Vorobyov Satis�ability of Functional�Record Subtype
Constraints is NP�Hard

MPI�I��	���

� R�A� Schmidt E�Uni�cation for Subsystems of S�

MPI�I��	���
�� Rational Points on Circles

MPI�I��	���
�� C� Burnikel
 J� Ziegler Fast Recursive Division

MPI�I��	���
�� S� Albers
 G� Schmidt Scheduling with Unexpected Machine Breakdowns

MPI�I��	���
�
 C� R�ub On Wallace�s Method for the Generation of Normal
Variates

MPI�I��	���
�� �nd Workshop on Algorithm Engineering WAE ��	 �
Proceedings

MPI�I��	���
�	 D� Dubhashi
 D� Ranjan On Positive In�uence and Negative Dependence

MPI�I��	���
�� A� Crauser
 P� Ferragina
 K� Mehlhorn

U� Meyer
 E� Ramos

Randomized External�Memory Algorithms for Some
Geometric Problems

MPI�I��	���
�� P� Krysta
 K� Lory�s New Approximation Algorithms for the Achromatic
Number

MPI�I��	���
�� M�R� Henzinger
 S� Leonardi Scheduling Multicasts on Unit�Capacity Trees and
Meshes

MPI�I��	���
�� U� Meyer
 J�F� Sibeyn Time�Independent Gossiping on Full�Port Tori

MPI�I��	���
�� G�W� Klau
 P� Mutzel Quasi�Orthogonal Drawing of Planar Graphs

MPI�I��	���
�� S� Mahajan
 E�A� Ramos

K�V� Subrahmanyam

Solving some discrepancy problems in NC�

MPI�I��	���
�� G�N� Frederickson
 R� Solis�Oba Robustness analysis in combinatorial optimization

MPI�I��	���
�
 R� Solis�Oba ��Approximation algorithm for �nding a spanning tree
with maximum number of leaves

MPI�I��	���

� D� Frigioni
 A� Marchetti�Spaccamela

U� Nanni

Fully dynamic shortest paths and negative cycle
detection on diagraphs with Arbitrary Arc Weights

MPI�I��	���

	 M� J�unger
 S� Leipert
 P� Mutzel A Note on Computing a Maximal Planar Subgraph
using PQ�Trees

MPI�I��	���

� A� Fabri
 G� Giezeman
 L� Kettner

S� Schirra
 S� Sch�onherr

On the Design of CGAL
 the Computational Geometry
Algorithms Library

MPI�I��	���

� K� Jansen A new characterization for parity graphs and a coloring
problem with costs

MPI�I��	���

� K� Jansen The mutual exclusion scheduling problem for
permutation and comparability graphs

MPI�I��	���

� S� Schirra Robustness and Precision Issues in Geometric
Computation

MPI�I��	���

� S� Schirra Parameterized Implementations of Classical Planar
Convex Hull Algorithms and Extreme Point
Compuations

MPI�I��	���

� G�S� Brodal
 M�C� Pinotti Comparator Networks for Binary Heap Construction

MPI�I��	���

� T� Hagerup Simpler and Faster Static AC� Dictionaries

MPI�I������
�� L� Bachmair
 H� Ganzinger
 A� Voronkov Elimination of Equality via Transformation with
Ordering Constraints

MPI�I������
�� L� Bachmair
 H� Ganzinger Strict Basic Superposition and Chaining

MPI�I������
�
 S� Vorobyov
 A� Voronkov Complexity of Nonrecursive Logic Programs with
Complex Values

MPI�I������

� A� Bockmayr
 F� Eisenbrand On the Chv�atal Rank of Polytopes in the
�� Cube

MPI�I������

	 A� Bockmayr
 T� Kasper A Unifying Framework for Integer and Finite Domain
Constraint Programming

MPI�I������

� P� Blackburn
 M� Tzakova Two Hybrid Logics

MPI�I������

� S� Vorobyov Third�order matching in ���Curry is undecidable

MPI�I������

� L� Bachmair
 H� Ganzinger A Theory of Resolution

MPI�I������

� W� Charatonik
 A� Podelski Solving set constraints for greatest models

MPI�I������

� U� Hustadt
 R�A� Schmidt On evaluating decision procedures for modal logic

MPI�I������

� R�A� Schmidt Resolution is a decision procedure for many
propositional modal logics

MPI�I������

� D�A� Basin
 S� Matthews
 L� Vigan�o Labelled modal logics� quanti�ers

MPI�I������
�	 M� Lermen
 K� Reinert The Practical Use of the A� Algorithm for Exact
Multiple Sequence Alignment

MPI�I������
�� N� Garg
 G� Konjevod
 R� Ravi A polylogarithmic approximation algorithm for group
Steiner tree problem

MPI�I������
�� A� Fiat
 S� Leonardi On�line Network Routing � A Survey

MPI�I������
�� N� Garg
 J� K�onemann Faster and Simpler Algorithms for Multicommodity
Flow and other Fractional Packing Problems

MPI�I������
�� S� Albers
 N� Garg
 S� Leonardi Minimizing Stall Time in Single and Parallel Disk
Systems

MPI�I������
�� S�A� Leonardi
 A�P� Marchetti�Spaccamela Randomized on�line call control revisited

MPI�I������
�� E� Althaus
 K� Mehlhorn Maximum Network Flow with Floating Point
Arithmetic

MPI�I������
�� J�F� Sibeyn From Parallel to External List Ranking

MPI�I������
�
 G�S� Brodal Finger Search Trees with Constant Insertion Time

