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Abstract

We present a new recursive method for division with remainder of integers.

Its running time is 2K(n)+O(n log n) for division of a 2n-digit number by an

n-digit number where K(n) is the Karatsuba multiplication time. It pays in

practice for numbers with 860 bits or more. Then we show how we can lower

this bound to 3=2K(n)+O(n log n) if we are not interested in the remainder.

As an application of division with remainder we show how to speedup modular

multiplication. We also give practical results of an implementation that allow

us to say that we have the fastest integer division on a SPARC architecture

compared to all other integer packages we know of.
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1 Introduction

Multiprecision arithmetic is the art of computing with numbers that are larger than one ma-

chine word. It is an important subject in many domains of computer science, e.g. cryptogra-

phy and computer algebra. Addition, subtraction, multiplication, and division of arbitrarily

large numbers lie at the very heart of all computations involved in the algorithms used in

these domains. For many practical applications it su�ces to implement the classical school

algorithms for basic arithmetic. However, if the numbers become su�ciently large, say about

200 decimal digits, it pays well to use more sophisticated algorithms, like for example Karat-

suba's famous method for multiplication [10], which lowers the asymptotic running time of

�(n

2

) for multiplying two n-digit numbers by ordinary school multiplication to O(n

log 3

).

We show in this paper how we can lower the �(n

2

) bound for school division of a 2n-digit

number by an n-digit number to twice the time it takes to multiply two n-digit numbers with

Karatsuba's method. Then we expand this method to a fast algorithm for dividing arbitrary

integers. Our algorithm performs very well in practice and yields a speedup of more than

20% with numbers in the typical cryptographic range of 1024{2048 bits. The LEDA library

[7] will soon ship with this algorithm implemented into its integer class for arbitrarily large

integers. Then we show how we can lower this bound even further to 3=2K(n) + O(n log n)

if we are not interested in the remainder. We argue why one should use our method as the

division method of choice in the cryptographic range. As an application of division with

remainder we show how to speedup modular multiplication. This is the basis step of modular

exponentiation, a method widely used in public key cryptosystems. We also give practical

results of an implementation. By comparing it to other public domain packages we can say

that we have the fastest integer division on a SPARC architecture compared to all other

integer packages we know of.

In general, integers of arbitrary length are represented internally by combining several

integers into one large vector, just as (in C notation) a long may consist of two consecutive

shorts on the underlying machine. All algorithms on large integers can then be performed

on these vectors. So let us introduce some important terms for this situation. A digit is

the largest integer unit that can be handled directly by our machine's hardware. So, in C

notation, a digit is an unsigned long int. At the time of this writing, it is best to have

a 32-bit integer in mind when speaking of a digit. Now with � � 1 de�ned as the maximal

value of a digit, � is the base of our number system. This means that the n-digit vector

[a

n�1

; a

1

; : : : ; a

0

]

�

represents the n-digit number A = a

n�1

�

n�1

+ : : :+ a

1

�+ a

0

with respect

to the base �. We will omit � in this notation if the base results from the context.

� is machine dependent and has grown successively in the last 30 years from 2

8

over 2

16

to

2

32

, and will be 2

64

on all fast machines in the near future. With the assumption that � will

always be a power of two,  :=

p

� is a number with half as many bits as � and will be called

the halfbase. By a halfdigit we mean a digit whose most signi�cant half is zero, or in other

words, a digit that is less than . A number A is said to normalized if its most signi�cant

digit a

n�1

is greater or equal than �=2, i.e., if it has a leading 1 in its binary representation.

If X = [x

n�1

; : : : ; x

0

] and Y = [y

m�1

; : : : ; y

0

] we denote with [X;Y ] the composition of X and

Y , i.e., the n +m-digit number [x

n�1

; : : : ; x

0

; y

m�1

; : : : ; y

0

]. Let K(n) := c

K

� n

log 3

denote

the Karatsuba multiplication time for some convenient constant c

K

.
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2 Division with remainder

In this section we deal with the problem to �nd for non-negative integers A and B a rep-

resentation A = Q � B + R with the (integral) quotient Q = bA=Bc and remainder R with

0 � R < B.

2.1 Dividing two digits by one digit

The well known school method for dividing integer numbers uses as basic step the division

of a two digit number by a one digit number to make a guess about the next digit of the

quotient [5]. In elementary school we all have learned how to carry out this computation:

we just invert the one-by-one multiplication table which we know by heart. In multiprecision

arithmetic we are faced with the same problem, except that now our digits may be much

larger so that a pre-built table were extremely large. Now, for example, how do we divide a

64-bit integer by a 32-bit integer on a 32-bit machine?

Suppose our machine has no built-in oating point arithmetic so that we cannot use

tricks like computing a oating point approximation of the quotient and doing necessary

adjustings to compute the desired result. Suppose further that the machine has no built-in

integer division instruction and/or that we want to write portable C/C++ code so that we

cannot use machine instructions (like UDIV on a SPARC Ultra) that are explicitly designed

for this task. Then we need a function DivTwoDigitsByOne based on C/C++'s internal

unsigned int arithmetic. You may wonder why we begin with such a basic problem but as

you will soon see its solution will expand to a fast recursive algorithm for dividing arbitrary

integers. The main idea is to reduce the division of two digits by one digit (which cannot

be carried out by the machine or the high level language) to several divisions of a digit by a

halfdigit, simulating school division.

For this we partition the dividend A into four halfdigits A = [a

1

; a

2

; a

3

; a

4

] and the divisor

B into two halfdigits B = [b

1

; b

2

] (see Figure 1). Note that our machine is able to divide two

halfdigits by one halfdigit internally. Then we do ordinary school division with these parts.

This means that we use the parts [a

1

; a

2

; a

3

] and [b

1

; b

2

] to determine the �rst digit q

1

of

the quotient (note that q

1

does not depend on a

4

, see Lemma 1). This is done by dividing

[a

1

; a

2

] by b

1

, getting a candidate bq

1

for q

1

which is at most 2 too large (see Lemma 2) and

multiplying bq

1

back with b

1

and b

2

, subtracting it from [a

1

; a

2

; a

3

] and testing whether we

have now a nonnegative remainder R = [r

1

; r

2

]. If not so, we decrement bq

1

by one, increment

R by B and test again. This test may fail now only once more, so that eventually we have to

adjust bq

1

and R a second time. Then we have found q

1

= bq

1

. Let us combine this process of

�nding the �rst digit of the quotient consisting of a division followed by a backmultiplication,

some comparisons and adjustings into the subroutine DivThreeHalvesByTwo. It combines

exactly the steps we make in school division to compute the �rst digit of the quotient.

Then like in school division we continue with the intermediate remainder R = [r

1

; r

2

] and

a

4

to compute the second digit q

2

of the quotient and the overall remainder S = [s

1

; s

2

] by

applying DivThreeHalvesByTwo a second time.

DivTwoDigitsByOne has two preconditions. The quotient Q has to �t into one digit. B

has to be normalized, i.e., it must be greater or equal than �=2 (this amounts to say that it

has a leading 1 in its binary representation; if this is not the case we can shift B and A to

the left). This guarantees that bq

1

is at most 2 too large (see Lemma 2).

Under these preconditions the pseudo-code looks like this. Capital letters stand for digits,
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small letters for halfdigits.

function DivTwoDigitsByOne(digit AH, digit AL, digit B)

{

(1) Let [a1,a2]=AH, [a3,a4]=AL, and [b1,b2]=B;

(2) [q1,R]=DivThreeHalvesByTwo(a1,a2,a3,b1,b2);

(3) Let [r1,r2]=R;

(4) [q2,S]=DivThreeHalvesByTwo(r1,r2,a4,b1,b2);

(5) Return the quotient Q=[q1,q2] and the remainder S;

}

All computations are carried out in

function DivThreeHalvesByTwo(digit a1,a2,a3,b1,b2)

{

(6) Divide q = [a1,a2]/b1;

(7) Let c=[a1,a2]-q*b1;

(8) D = q*b2;

(9) Let R:=[r1,r2]=[c,a3]-D

(10) if (R<0) { // q is too large by at least one

(11) q--;

(12) R+=B;

(13) if (R<0) { // q is still too large

(14) q--;

(15) R+=B; // now R is correct

(16) }

(17) }

(18) Return the quotient q and the remainder R;

}

b1q1

q1

b2

r1

a4r2

q2

q2

s1

s2

yields

S

yields

a1

a2 a3 b1

b2

q1

q2

A

QB

/

=

b2

b1

a4

subtracting

subtracting

Figure 1: DivTwoDigitsByOne is a school division on halfdigits

The test in line (10) is actually the test whether [c; a

3

] is less than D because digits are never

negative. If we look closely at this function, we see that all computations can be carried out
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with single digits unless q in line (6) does not �t into a halfdigit, which is the case if and

only if a

1

= b

1

, a case that may well occur (q will then be �=2 or �=2 + 1). In this case we

need a special function DivThreeHalvesByTwoSpecial whose structure is so similar to that

of DivThreeHalvesByTwo that we do not give the code here.

We will prove the correctness of our code in more generality in the next section. DivTwoDigitsByOne

is just a toy for introducing the ideas of our recursive division. Moreover, it gives a �ne,

portable implementation of the basic case of division that has an acceptable performance.

2.2 Recursive division

Now we extend the method for dividing two digits by one to a recursive algorithm for dividing

a 2n-digit number by an n-digit number with a n-digit remainder. We will call this algorithm

D

2n=1n

. Under the assumption that n is even and large enough to bene�t from a recursion, we

again split A into four parts [A

1

; A

2

; A

3

; A

4

] of length n=2 each, and B into two parts [B

1

; B

2

].

First we compute the upper part Q

1

of the quotient bA=Bc using the parts A

1

; A

2

; A

3

of A

and the upper part B

1

of B by an appropriate algorithm called D

3n=2n

that recursively

calls D

2n=1n

and is basically an expansion of DivThreeHalvesByTwo.. Using the remainder

corresponding to Q

1

and the lowest part A

4

of A we then get similarly the lower part Q

2

of

the quotient by algorithm D

3n=2n

again.

Algorithm 1. (D

2n=1n

)

Let A and B be nonnegative integers, and let A < �

n

B and �

n

=2 � B < �

n

. Algorithm

D

2n=1n

computes the quotient Q = bA=Bc with remainder R = A�Q � B.

1. If n is odd or smaller than some convenient constant, compute Q and R by school

division and return.

2. Split A into four parts A = [A

1

; : : : ; A

4

] with A

i

< �

n=2

. Split B into two parts

B = [B

1

; B

2

] with B

i

< �

n=2

.

3. Compute the high part Q

1

of bA=Bc as Q

1

= b[A

1

; A

2

; A

3

]=[B

1

; B

2

]c with remainder

R

1

= [R

1;1

; R

1;2

], using algorithm D

3n=2n

.

4. Compute the low part Q

2

of bA=Bc as Q

2

= b[R

1;1

; R

1;2

; A

4

]=[B

1

; B

2

]c with remainder

R, using algorithm D

3n=2n

.

5. Return Q = [Q

1

; Q

2

] and R.

Now let us argue why algorithm D

2n=1n

is correct (under the assumption that D

3n=2n

is

correct).

Lemma 1. Let for k 2 N and B > 0, A

1

� 0

A = A

1

�

k

+A

r

; 0 � A

r

< �

k

:

Then for Q = bA=Bc and Q

1

= bA

1

=Bc we have

Q = Q

1

�

k

+Q

r

; 0 � Q

r

< �

k

:

Moreover with R

1

:= A

1

�Q

1

B, we have

Q

r

= b(R

1

�

k

+A

r

)=Bc

4



and

A�BQ = R

1

�

k

+A

r

�Q

r

B:

Informally this says that if B is any number greater than 0 and A any number, then

by dividing all but the last k digits of A by B we already get all but the last k digits

of the quotient. (We use the lemma in Algorithm D

2n=1n

with k = n=2 and A

r

= A

4

,

A

1

= [A

1

; A

2

; A

3

] and B

r

= B

2

.)

In particular, Lemma 1 shows that in algorithm D

2n=1n

the value Q

1

does not depend

on A

4

and hence our way of calling D

3n=2n

is correct. Moreover, the lemma says that it

is correct to go on with the remainder R

1

with which we are left after determining Q

1

in

order to compute Q

2

by applying D

3n=2n

a second time to [R

1

; A

4

] and B and that the overall

remainder will be the remainder we get out of the second division. This proves the correctness

of algorithm D

2n=1n

.

Proof of Lemma 1: Since R

1

< B and A

r

< �

k

we also have R

1

�

k

+A

r

< �

k

B. Now

A� (1 +Q

1

)�

k

B = (A

1

�Q

1

B)�

k

+A

r

�B�

k

= R

1

�

k

+A

r

�B�

k

< B�

k

�B�

k

= 0

implies that Q < (1+Q

1

)�

k

. This shows that Q

r

< �

k

. Moreover, for Q

0

r

= b(R

1

�

k

+A

r

)=Bc

and Q

0

= Q

1

�

k

+Q

0

r

we have

A�BQ

0

= A

1

�

k

+A

r

�BQ

1

�

k

�BQ

0

r

= (A

1

�BQ

1

)�

k

+A

r

�BQ

0

r

= R

1

�

k

+A

r

�BQ

0

r

; (1)

which is a number from [0; B � 1]. This shows that Q = Q

0

and hence Q

r

= Q

0

r

. Equation 1

completes the proof of our lemma.

Now we come to algorithm D

3n=2n

. Our goal is to divide a 3n-digit number A by a

2n-digit number B computing an n-digit remainder R. The idea is to truncate A to 2n

digits and to truncate B to n digits and to compute the quotient

b

Q of the truncated A and

B using algorithm D

2n=1n

. As we will soon see,

b

Q is a good approximation of the exact

quotient Q and not smaller than Q. Computing the remainder

b

R = A � B

b

Q requires a

multiplication on n-digit numbers, for which we will use Karatsuba's method. This use of

Karatsuba multiplication is exactly the reason why we can expect a speed-up of D

2n=1n

over

school division. Karatsuba's method is particularly convenient because it also divides its

input into two halves.

Algorithm 2. (D

3n=2n

)

Let A and B be nonnegative integers, and let A < �

n

B and �

2n

=2 � B < �

2n

. Algorithm

D

3n=2n

computes the quotient Q = bA=Bc with remainder R = A�Q � B.

1. Split A into three parts A = [A

1

; A

2

; A

3

] with A

i

< �

n

.

2. Split B into two parts B = [B

1

; B

2

] with B

i

< �

n

.

3. Distinguish the cases A

1

< B

1

or A

1

� B

1

.

5



(a) If A

1

< B

1

, compute

b

Q = b[A

1

; A

2

]=B

1

c with remainder R

1

using algorithm

D

2n=1n

.

(b) If A

1

� B

1

, set

b

Q = �

n

�1 and set R

1

= [A

1

; A

2

]� [B

1

; 0]+ [0; B

1

] (= [A

1

; A

2

]�

b

QB

1

).

4. Compute D =

b

Q � B

2

using Karatsuba multiplication.

5. Compute

b

R = R

1

�

n

+A

4

�D.

6. As long as

b

R < 0, repeat

(a)

b

R =

b

R+B

(b)

b

Q =

b

Q� 1.

7. Return R =

b

R, Q =

b

Q.

Now why is this algorithm correct? To answer this we use the following lemma.

Lemma 2. Let for k; l; A

1

; A

r

; B

1

; B

r

2 N

A = A

1

�

k

+A

r

; 0 � A < �

l

B ; 0 � A

r

< �

k

B = B

1

�

k

+B

r

; �

l

=2 � B

1

< �

l

; 0 � B

r

< �

k

:

Note that our assumptions guarantee that A=B < �

l

and B is normalized. Then for Q =

bA=Bc and

b

Q = bA

1

=B

1

c we have

Q �

b

Q � Q+ 2:

Moreover, if Q < �

l

=2 we have the sharper estimate Q �

b

Q � Q+ 1.

Informally this says that if A is any number, B is any normalized number with l+k digits

and the quotient A=B �ts into l digits we can make a good guess about this quotient if we

just divide all but the last k digits of A by the �rst l digits of B.

We apply the lemma with k = l = n. The lemma's bound for

b

Q applies immediately

for the more likely case of A

1

< B

1

in algorithm D

3n=2n

. In the special case of A

1

� B

1

,

our choice of

b

Q = �

n

� 1 is even smaller than the choice of

b

Q in the lemma, but on the

other hand �

n

� 1 is certainly no less than the exact value of Q. Hence the lemma's bound

applies in the special case too. Note that we always maintain the invariant in our algorithm

that

b

R = A � B

b

Q. We conclude that the body of the loop in step 6 of algorithm D

3n=2n

is

processed at most twice. Since the initial value of

b

Q is no less than the exact Q, the initial

value of

b

R is no bigger than B, which shows that at the end of step 6 we must have

b

R = R

and consequently

b

Q = Q. This shows the correctness of algorithm D

3n=2n

.

Proof of Lemma 2: Dividing A

1

by B

1

yields a representation A

1

= B

1

b

Q + R

1

. Now let

us consider R(

b

Q) = A�B

b

Q:

R(

b

Q) = A�B

b

Q = A

1

�

k

+A

r

� (B

1

�

k

+B

r

)

b

Q

= (A

1

�B

1

b

Q)�

k

+A

r

�B

r

b

Q

= R

1

�

k

+A

r

�B

r

b

Q: (2)

6



Since R

1

< B

1

and A

r

< �

k

we also have R

1

�

k

+ A

r

< R

1

�

k

+ �

k

= (R

1

+ 1)�

k

� B

1

�

k

.

Hence

R(

b

Q) � R

1

�

k

+A

r

by equation 2 since B

r

b

Q � 0

< B

1

�

k

see above

� B;

which implies Q �

b

Q. For the lower bound of R(

b

Q) we need the following fact.

Claim 1.

b

Q � �

l

+ 1:

Proof: The estimate

A

1

�

k

= A�A

r

< B�

l

�A

r

by our assumption on A

= (B

1

�

k

+B

r

)�

l

�A

r

< (B

1

+ 1)�

l

�

k

because B

r

< �

k

and A

r

� 0

shows by canceling out �

k

that A

1

�B

1

�

l

< �

l

. By this we get

A

1

� (�

l

+ 2)B

1

= (A

1

� �

l

B

1

)� 2B

1

< �

l

� 2B

1

� 0

by our assumption on B

1

, which shows that in fact

b

Q < �

l

+ 2. Now we proceed with the

proof of our lemma. Using Claim 1 we �nd

A�B(

b

Q� 2) = 2B +R(

b

Q)

= 2B + (R

1

�

k

+A

r

)�B

r

b

Q by equation 2

� 2(B

1

�

k

+B

r

)�B

r

b

Q since R

1

�

k

+A

r

� 0

= 2B

1

�

k

�B

r

(

b

Q� 2)

> �

k+l

� �

k

�

l

by claim 1 and our assumption on B

1

= 0:

This implies

b

Q� 2 � Q. Similarly, for Q < �

l

=2 we have

A�B(

b

Q� 1) � (B

1

�

k

+B

r

)�B

r

b

Q

= B

1

�

k

�B

r

(

b

Q� 1)

� �

l

=2 � �

k

�B

r

(Q+ 1) ; since

b

Q � Q+ 2

> �

k+l

=2� �

k+l

=2 ; since Q+ 1 � �

l

=2

= 0:

This implies

b

Q� 1 � Q, completing the proof of our lemma.

We implement algorithm D

2n=1n

by the procedure RecursiveDivision. This procedure

has the same structure as DivTwoDigitsByOne except that it works on large numbers instead

of single digits. So it uses a subroutine DivThreeLongHalvesByTwo implementing algorithm

D

3n=2n

to compute the upper and lower parts Q

1

, Q

2

of the quotient which consist now of

n=2 digits each. If n is odd or less than some constant DIV_LIMIT we are in the base case

of the recursion in which we switch back to ordinary school division (although we could also

run down the whole recursion tree until we are left with 2 digits to be divided by 1 digit, a

�ne task for DivTwoDigitsByOne).

We have two preconditions for this recursion to work. B has to be normalized and the

quotient Q must �t into n digits. Then the pseudo-code looks like this.

7



function RecursiveDivision(digit_array A,digit_array B, integer n)

{

(19) if (n is odd or n <= DIV_LIMIT)

(20) SchoolDivision(A,B,Q,S); // base of the recursion

(21) else {

(22) Let [A1,A2,A3,A4]=A and [B1,B2]=B;

(23) [Q1,R]=DivThreeLongHalvesByTwo(A1,A2,A3,B1,B2,n/2);

(24) Let [R1,R2]=R;

(25) [Q2,S]=DivThreeLongHalvesByTwo(R1,R2,A4,B1,B2,n/2);

(26) }

(27) Return the quotient Q=[Q1,Q2] and the remainder S;

}

Procedure DivThreeLongHalvesByTwo has a similar structure as DivThreeHalvesByTwo,

except that lines (6) and (7) now become

(6') [Q,C]=RecursiveDivision([A1,A2],B1) ;

Moreover, we have to handle the case of A

1

= B

1

separately.

Let us now analyze the running time of algorithmD

2n=1n

and procedure RecursiveDivision,

respectively. Let M(n) denote the time it takes to multiply two n-digit numbers and D(n)

the time it takes to divide a 2n-digit number by an n-digit number. The splitting operations

in lines (22) and (24) are done in O(n) (or even in time O(1) if we use clever pointer arith-

metic and temporary space management). DivThreeLongHalvesByTwo makes a recursive

call in line (6') which takes D(n=2). The backmultiplication Q �B

2

in line (8) takes M(n=2).

The remaining additions and subtractions take O(n). Let c

r

be a convenient constant so

that the overall time for all splitting operations, additions, and subtractions is less than c

r

n.

DivThreeLongHalvesByTwo is called twice, so we have the recursion

D(n) � 2D(n=2) + 2M(n=2) + c

r

n

� 2[2D(n=4) + 2M(n=4) + c

r

n=2)] + 2M(n=2) + c

r

n

= 4D(n=4) + 4M(n=4) + 2M(n=2) + 2c

r

n=2 + c

r

n

� : : :

� 2

log n

D(1) +

log n

X

i=1

2

i

M(n=2

i

) +

logn

X

i=1

c

r

n

= O(n) +

log n

X

i=1

2

i

M(n=2

i

) +O(n log n)

At this point we see how the running time of our method depends on the multiplication

method we use. If we use ordinary school method, we have M(n) = n

2

and D(n) will be

n

2

+O(n log n), which is even a little bit worse than school division.

If we use Karatsuba's method with M(n) = K(n) = c

K

� n

log 3

, the above sum has the

upper bound 2K(n) + O(n log n) because in this case K(n=2

i

) = K(n)=3

i

. The use of even

faster multiplication methods is discussed in section 4.

We summarize our result in the following
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Theorem 1. A 2n-digit number can be divided by an n-digit number (including the compu-

tation of the remainder) with 2K(n) + O(n log n) steps if the quotient �ts into n digits and

the divisor is normalized.

Note that, as in school division, the only basic divisions of two digits by one that are really

carried out are divisions by the most signi�cant digit of B. Further note that the constant 2

is just an upper bound for the sum

P

log n

i=1

(2=3)

i

. We shall see in the experiments that the

di�erence is noticeable.

The idea behind our recursive divisionD

2n=1n

is not completely new. Jebelean [4] proposes

an algorithm that also splits the division into computing �rst the upper part and then the

lower part of the quotient, by two recursions. However it is based on a probabilistic technique

that yields correct results only with high probability. Jebelean claims that his algorithm has

average running time 2K(n) like ours. However, in the worst case, Jebelean's algorithm

resorts to school division which makes the running time quadratic.

2.3 Division of arbitrary integers

Now that we have seen how we can divide a 2n-digit number by an n-digit number we still

have to solve the problem how to divide an arbitrary r-digit number A by an arbitrary s-digit

number B.

The main idea is to split up A into parts which are as long as B and to view these

parts as (very large) digits. Then we can conceptually apply an ordinary school division

to these large digits in which the base task of dividing two digits by one is carried out by

RecursiveDivision. The divisor for RecursiveDivision is always B and the dividend is

always the composition of the current remainder and the next digit of A. Figure 2 illustrates

the method.

First we conceptually divideB intom so called \division blocks" of DIV_LIMIT digits each.

We computem as the minimal 2

k

that is greater or equal than the number of division blocks of

B. In other words, k will be the depth of the recursion applied to B in RecursiveDivision.

We have to extend B to a number that has m�DIV_LIMIT digits. Note that the topmost

recursive call will work no matter how big DIV_LIMIT actually is, i.e., we can try to minimize

the number of digits in each division block (at least conceptually) as long as the overall

number of digits of the m division blocks is greater or equal than the number of digits of

B. This trick will minimize the number of 0s we waste when extending B and leave us with

smaller numbers in the base case of the recursion; our tests have indicated that we gain a

speedup of 25% in running time. So we compute n = m � j with j minimal such that n is

greater or equal than s. Then we extend B from the right to n digits. B has to be shifted

bitwise again for normalization until its most signi�cant digit ful�lls b

n�1

� �=2. Note that

A has also to be extended and shifted by the same amount.

Then we conceptually divide A into t division blocks of length n each. The division we

will carry out will then conceptually be a school division of a t-block number by a 1-block

number (here the term \block" stands for a very large block of digits, namely for n digits).

This is a particularly simple type of school division since the divisor consists of only one

block, which now plays the role of a single digit. No backmultiplication is needed, so school

division becomes a linear time algorithm in the number of blocks.

Algorithm 3. (D

r=s

)

Let A and B be nonnegative integers such that A < �

r

and B < �

s

. Algorithm D

r=s

computes

9



s

t � n

n

n = m � j

j

r

A B

Figure 2: FastDivision is a t-by-1 division on large digit blocks. B is extended from s to n

digits. Then A is extended to a multiple of n digits.

the quotient Q = bA=Bc with remainder R = A�Q �B.

1. Set m = minf2

k

j2

k

� DIV LIMIT > sg.

2. Set j = ds=me and n = j �m.

3. Set � = maxf� j2

�

�B < �

n

g.

4. (a) Set B = B � 2

�

to normalize B.

(b) Set A = A � 2

�

to shift A by the same amount as B.

5. Set t = minfl � 2jA < �

l�n

=2g.

6. Split A conceptually into t blocks [A

t�1

; : : : ; A

0

]

�

n

= A. Note that the leftmost bit of

A

t�1

is 0 by our choice of t.

7. Set Z

t�2

= [A

t�1

; A

t�2

].

8. For i from t� 2 downto 0 do

(a) Using algorithm D

2n=1n

compute Q

i

, R

i

such that Z

i

= BQ

i

+R

i

.

(b) If i > 0, set Z

i�1

= [R

i

; A

i�1

].

9. Return Q = [Q

t�2

; : : : ; Q

0

] and R = R

0

� 2

��

.

We prove now that algorithm D

r=s

is correct. The number Z

t�2

with which we start

the computation is bounded by �

2n

=2 and hence that precondition of algorithm D

2n=1n

is

ful�lled that ensures that the quotient is less than �

n

. In the loop over the index i, the same

precondition is always ful�lled because the remainders that we propagate are all smaller than

B. Repeated application of Lemma 1 show that our way of successively computing the parts

Q

t�2

; : : : ; Q

0

of Q and propagating the remainders is correct and that in the end we will

get the overall division remainder (left-shifted by 2

�

). This shows that algorithm D

2n=1n

computes the correct values of Q and R.

Let us analyze the running time. How many iterations do we have?

Claim 2. We have t � maxf2; d(r + 1)=seg in algorithm D

r=s

.

Proof: We may assume that the highest digit b

s�1

of B is nonzero. Then our choice of

t ensures t � d(r + n � s + 1)=ne because, after shifting, A < �

r+n�s+1

=2. If r � s+ 1, we

10



clearly have t = 2. Otherwise, we consider the estimate (u+ x)=(v + x) � u=v which is true

for 0 < v � u; x � 0. Using this with u = r + 1, v = s, x = n� s we get

r + n� s+ 1

n

=

(r + 1) + (n� s)

s+ (n� s)

�

r + 1

s

;

showing our claim by rounding up to the next integer.

Algorithm D

2n=1n

is executed t�1 times and, because n � 2�s, every execution takes time

D(n) � D(2s) � K(2s) + O(2s log 2s). With K(s) = c

K

� s

log 3

we conclude that the overall

running time is O(r=s � (K(s) + O(s log s))) = O(rs

log(3)�1

+ r log s) which is a remarkable

asymptotic improvement over the �(rs) time bound for ordinary school division. Let us

summarize this result in the following

Theorem 2. An s-digit number can be divided by an r-digit number (including the compu-

tation of the remainder) with O(rs

log(3)�1

+ r log s) steps.

3 Division without remainder

In this section we discuss divisions without remainder. The problem here is to compute only

the quotient Q = bA=Bc of A and B but not the remainder R = A � QB. Of course, our

hope is that Q alone can be computed faster than Q and R together. It will turn out that we

can improve the algorithm for recursive division from the last section such that it computes

quotients without remainder in average time 3=2K(n) + O(n log n). However, in the worst

case, namely if the remainder is small, the running time may become 5=2K(n) +O(n logn).

One important application of division without remainder is the computation of roots using

Newton iteration. For the exact computation of the signs of arithmetic expressions involving

roots, these roots may have to be computed up to very high precision, see [2]. Hence a

subquadratic method for division is a must for this application.

3.1 Procedure D

�

Our new procedure for computing divisions without remainder has three phases. The �rst

phase, called D

�

, is very similar to the procedure D

2n=1n

which we henceforth denote by

D

+

for simplicity. The basic idea is to omit the computation of the overall remainder in the

second recursion. Look at Figure 3 for reference.

Algorithm 4. (D

�

) Procedure D

�

:

Let A and B be the divisor and the dividend, and let A < �

n

B and �

n

=2 � B < �

n

. Procedure

D

�

computes an approximation

b

Q of the quotient bA=Bc.

1. If n is odd or too small, compute

b

Q = bA=Bc by school division.

2. Split A into four parts A = [A

1

; : : : ; A

4

] with A

i

< �

n=2

. Split B into two parts

B = [B

1

; B

2

] with B

i

< �

n=2

.

3. Compute the high part Q

1

of bA=Bc as Q

1

= b[A

1

; A

2

; A

3

]=[B

1

; B

2

]c with remainder

R

1

= [R

1;1

; R

1;2

], using algorithm D

3n=2n

.

4. Compute an approximation

b

Q

2

of the low part Q

2

of bA=Bc: Recursively set

b

Q

2

to the

result of algorithm D

�

for the division bR

1

=B

1

c.

11



5. Concatenate Q

1

and

b

Q

2

to the approximate quotient

b

Q.

Steps 1, 2, 3 and 5 are identical for D

�

and D

+

. Note that in step 3 of D

�

we need

the full temporary remainder R

1

to proceed with the computation of

b

Q

2

. Here we call D

+

.

Later, in step 4 of D

�

, we do not compute the remainder. Instead, we recursively call

D

�

to �nd an approximation

b

Q

2

of the lower division part Q

2

. Compare this to procedure

D

+

= D

2n=1n

where in the second call of D

3n=2n

we do the same recursive division of R

1

by B

1

, but using D

+

, giving a candidate

b

Q

2

for Q

2

that might be too large by at most

2. Another multiplication of

b

Q

2

by B

2

is needed in step 4 of algorithm D

3n=2n

to �nd the

corrected quotient Q

2

and the division remainder. The basic di�erence between D

+

and D

�

is that this last multiplication step is omitted in D

�

and hence

b

Q

2

remains uncorrected. Of

course, the result

b

Q = [Q

1

;

b

Q

2

] is in general not equal to the exact result Q. As the following

lemma shows, the error of

b

Q is not too large.

Lemma 3. Q �

b

Q � Q+ 2 log(n).

Proof: Our argumentation is based on the observation that procedure D

�

is called

exactly once for each depth of the recursion. Let

b

Q

i

be the approximate quotient computed

by D

�

at recursion depth i. Let Q

i

be the exact quotient that

b

Q

i

approximates. If we are

in the bottom of the recursion, i.e. i = log n, we have

b

Q

i

= Q

i

since we use here school

division. Inductively, suppose that for an arbitrary depth i the computed quotient

b

Q

i

is

no less than the exact Q

i

and no more than 2(log(n) � i) too large. At recursion depth

i � 1,

b

Q

i�1

is computed as the concatenation

b

Q

i�1

= [Q

1;i

;

b

Q

i

] of its exact upper half Q

1;i

and its inexact lower half

b

Q

i

. From the analysis of procedure D

+

we already know that

[Q

1;i

; Q

i

] is larger than Q

i�1

by at most 2, hence by induction hypothesis

b

Q

i�1

is no more

than 2+ 2(log(n)� i) = 2(log(n)� (i� 1)) too large. Figure 3 illustrates the situation. This

proves the lemma.

D+ D-

D-D+

2log(n)

2(log(n)-1)

Error:

D-D+

School 0

2

Q

Figure 3: The error of

b

Q as computed by D

�

Lemma 4. For n = 2

k

, the running time of D

�

is at most 3=2K(n) +O(n log n).

Proof: We denote the running time of algorithm D

�

for an instance of size n by D

�

(n).

Similarly, we denote the running time of algorithm D

+

by D

+

(n). Remember that D

+

(n) =

2K(n). To compute D

�

(n), we call once D

+

(n=2), do one Karatsuba multiplication on

12



integers with n=2 digits, and do one recursive call to D

�

(n=2). All other operations have

cost O(n). Hence we have the recursion

D

�

(n) = D

+

(n=2) +K(n=2) +D

�

(n=2) +O(n)

= 3K(n=2) +O(n logn) +D

�

(n=2) +O(n)

= K(n) +D

�

(n=2) +O(n log n)

� K(n) +D

�

(n=2) + c � n log n;

where in the last equation we used K(n=2) = 1=3K(n). Solving the recursion we get

D

�

(n) �

k

X

i=0

K(n=2

i

) +D

�

(1) +

k

X

i=0

c � (n=2

i

) log(n=2

i

)

�

k

X

i=0

K(n=2

i

) +O(1) + 2c � n log n

=

k

X

i=0

K(n)=3

i

+O(n logn)

� K(n)

1

X

i=0

1=3

i

+O(n log n)

= 3=2K(n) +O(n log n):

3.2 Division without remainder: General outline

Because in general D

�

does not give us the exact division result, further correction steps are

required to adjust

b

Q until we are left with the correct Q. The following lemma shows how

we can do this. Let

e

Q now be any approximate quotient of A and B.

1. R(

e

Q;A;B) := A�B

e

Q is the remainder that corresponds to an approximate quotient

e

Q

of A and B. In the special case of

e

Q = bA=Bc, it is the ordinary division remainder. If

the division operands A and B are obvious from the context, we write R(

e

Q) for short.

Moreover, we write R instead of R(bA=Bc).

2. �(

e

Q;A;B) := bA=Bc �

e

Q. Again, if A and B are obvious from the context we write

�(

e

Q) for short.

The following lemma states some useful relations between these quantities.

Lemma 5. For any integral nonnegative A, B,

e

Q we have

1. �(

e

Q;A;B) = bR(

e

Q;A;B)=Bc

2. R(bA=Bc; A;B) = R(�(

e

Q;A;B); R(

e

Q;A;B); B)

3. jR(

e

Q;A;B)j < (1 + j�(

e

Q;A;B)j)B.

Proof: The quantity q = �(

e

Q;A;B) satis�es

R(q;R(

e

Q;A;B); B) = R(

e

Q;A;B)� �(

e

Q;A;B)B

= (A�B

e

Q)� (bA=Bc �

e

Q)B

= A� bA=BcB (3)

13



which is equal to R(bA=Bc; A;B) and hence is contained in the interval [0; : : : ; B�1]. Because

bR(

e

Q;A;B)=Bc is the only integer with this property, the �rst two parts of our lemma follow.

The third part follows by using Equation 3 again:

jR(

e

Q;A;B)j � jR(

e

Q;A;B)� �(

e

Q;A;B)Bj+ j�(

e

Q;A;B)jB

= jA� bA=BcBj+ j�(

e

Q;A;B)jB

< (1 + j�(

e

Q;A;B)j)B:

Lemma 5 can be applied as follows. Suppose that we want to compute the quotient Q =

bA=Bc but we only know an approximation

b

Q of Q and its remainder R(

b

Q;A;B), which is

bounded by (1 + j�(

b

Q;A;B)j)B according to lemma. If �(

b

Q;A;B) is not too large, say if it

is bounded by a constant, then we can compute the quotient �(

b

Q;A;B) = bR(

b

Q;A;B)=Bc

by ordinary school division. By the second part of the lemma, the remainder of this division

is the wanted R(bA=Bc; A;B). If B has at most n digits, the school division takes only time

O(n) because all we have to do is to compute a (bounded) number of bits and each iteration

takes time O(n).

With this lemma at hands our algorithm for division without remainder has the following

outline.

Algorithm 5. Division without remainder (Outline): Let A and B be as in Algorithm

4. Proceed in three phases.

1. Call D

�

to compute an approximation

b

Q of the exact quotient Q = bA=Bc.

2. Try to compute �(

b

Q) = Q�

b

Q in linear time. This phase may fail with a small proba-

bility.

3. If phase 2 fails, compute the remainder R(

b

Q) = A�B �

b

Q, using Karatsuba multiplica-

tion. Then compute �(

b

Q) = bR(

b

Q)=Bc using school division.

4. Set Q =

b

Q+ �(

b

Q).

We describe the simpler phase 3 �rst. This is the bad case but as we will see it will occur

only with a very small probability.

Lemma 6. Phase 3 has running time K(n) +O(n log log n).

Proof: The Karatsuba multiplication in phase 3 takes time K(n). By Lemma 5 we know

that in fact �(

b

Q) = Q �

b

Q = bR(

b

Q)=Bc and by Lemma 3 we know that this quotient is

bounded by 2 log(n). Hence �(

b

Q) �ts into one digit for all practical values of � and of n.

Under the assumption of 2 log n < �, we can compute bR(

b

Q)=Bc in linear time by school

division. In general, �(

b

Q) has size O(log log n) and the division takes time O(n log log n).

3.3 Probabilistic quotient correction: The algorithm

In this section we explain the algorithm that implements phase 2 of Algorithm 5. Henceforth

we make two (realistic) assumptions on out machine and the numbers with which we compute.

Assumption 1. 1. The digit length � is at least 2

32

.

2. The number of digits is bounded by n < �=2.
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Assumption 1.2 is justi�ed because already for n > 2

20

it is better to use Newton's method

in combination with a FFT type multiplication, see section 4. Assumption 1.1 implies that the

following procedure does not work for 8 bit or 16 bit systems. Straightforward modi�cations

are required.

Phase 2 basically does the same job as phase 3, but it avoids the expensive back{

multiplication B �

b

Q. Instead, here we only approximate this product. For technical reasons

that will become clear later, we choose Q

0

:= max (0;

b

Q � 2 log n) for the backmultiplication

and approximate the product P = B � Q

0

. This gives us upper and lower bounds for the

remainder R(Q

0

) = A�Q

0

�B, which in turn give us upper and lower bounds �

l

� �(Q

0

) � �

h

for the desired quantity �(Q

0

) = bA=Bc � Q

0

. Our approximations will be good enough to

guarantee �

h

� �

l

� 1. Phase 2 is successful if and only if �

h

= �

l

. As we will prove, the event

�

h

6= �

l

that causes phase 2 to fail is very unlikely. We start now with the details of phase 2.

With respect to the base �, the numbers A, B and Q

0

read as

A =

2n�1

X

i=0

a

i

�

i

; B =

n�1

X

i=0

b

i

�

i

; Q

0

=

n�1

X

i=0

q

0

i

�

i

In the school multiplication of B and Q

0

, there are n

2

products of digits b

i

q

0

j

. We group these

products by the sum of the exponents i+ j. For 0 � k < 2n� 1 we set

w

k

=

X

i+j=k

b

i

q

0

j

�

k

:

It is easy to see that P = Q

0

� B is the sum of the w

k

, i.e., P =

P

2n�2

k=0

w

k

. The next lemma

shows that the parts w

0

; : : : ; w

n�4

only contribute a small amount to P , hence we will not

compute them. Recall that we want to perform phase 2 in linear time.

Lemma 7. For any l with 0 � l < 2l,

l�1

X

k=0

w

k

< 2n � �

l+1

:

Proof:

l�1

X

k=0

w

k

�

l�1

X

k=0

(k + 1)�

k+2

� l � �

2

�

l�1

X

k=0

�

k

= l �

�

2

� � 1

� (�

l

� 1) < l � 2� � �

l

:

We now apply the previous lemma with l = n� 3, which gives the bound

n�4

X

k=0

w

k

< 2(n� 3)�

n�2

< �

n�1

(4)

because of assumption 1.2. If we omit in P the terms w

0

; : : : ; w

n�4

, we get an approximation

P

0

:=

P

2n�2

k=n�3

w

k

of P . Remember that we chose Q

0

as the maximum of 0 and

b

Q� 2 log n.

We show now that P

0

� A. For Q

0

= 0 we have P = P

0

= 0 and so our statement is clear.

Otherwise we have by Lemma 3

0 � P

0

� P = (

b

Q� 2 log n)B � QB � A:
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This implies that the approximate remainder R

0

(Q

0

) := A � P

0

is nonnegative. Equation 4

gives us an inclusion for R(Q

0

) in terms of R

0

(Q

0

):

R

0

(Q

0

) � R(Q

0

) � R

0

(Q

0

) + 2(n� 3)�

n�2

< R

0

(Q

0

) + �

n�1

: (5)

To simplify the computations, we only use the highest two digits r

0

= [r

0

n

; r

0

n�1

] of R

0

(Q

0

) in

the following. The situation is illustrated by Figure 4. Truncating the last n� 1 digits of

a

0

A

P

0

R

0

= A� P

0

w

n

w

n�1

w

n�2

w

n�3

r

0

a

n+1

a

n�1

a

n

a

n�2

a

n�3

Figure 4: We compute only the dark shaded region of P

0

because the light shaded region

is equal to the corresponding region of A and the unshaded region is too small

anyway. From the di�erence R

0

= A � P

0

we truncate the last n� 1 digits; the

remaining two digits form r

0

.

R

0

(Q

0

) causes an error of at most �

n�1

, hence

r

0

�

n�1

� R

0

(Q

0

) � (r

0

+ 1)�

n�1

:

Together with Equation 5 this implies another inclusion for R(Q

0

) that involves only r

0

:

r

0

�

n�1

� R(Q

0

) � (r

0

+ 2)�

n�1

: (6)

There is a similar inclusion for the divisor B if we use only the highest digit b

n�1

of B:

b

n�1

�

n�1

� B � (b

n�1

+ 1)�

n�1

:

Putting the last two inclusions together we obtain

r

0

b

n�1

+ 1

�

R(Q

0

)

B

�

r

0

+ 2

b

n�1

:

Remember that we want to compute the quantity �(Q

0

) = Q � Q

0

, which is bR(Q

0

)=Bc by

Lemma 5. Rounding down to the next integer in the last estimate we �nally get

�

l

:= b

r

0

b

n�1

+ 1

c � �(Q

0

) � b

r

0

+ 2

b

n�1

c =: �

h

: (7)

If the lower bound �

l

is equal to the upper bound �

h

, then �

l

= �

h

= �(Q

0

) and we are done.

Otherwise we declare phase 2 as failed.
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Lemma 8. The quantities �

h

and �

l

can be computed in linear time from Q

0

.

Proof: We need to compute r

0

. Because of our assumptions � � 2

32

and n < �=2, we

have

�(Q

0

) � 2 log(n) � 64: (8)

By Lemma 5, R

0

(Q

0

) is bounded by

R

0

(Q

0

) � R(Q

0

) < j1 + �(Q

0

)jB � 65 � �

n

< �

n+1

:

Hence, setting M = �

n+1

we have R

0

(Q

0

) = R

0

(Q

0

) mod M and therefore

R

0

(Q

0

) =

 

n

X

i=0

a

i

�

i

�

n

X

i=n�3

w

k

!

mod M:

This means that the parts w

n+1

; w

n+3

; : : : ; w

2n�2

need not be computed because they vanish

in the reduction modulo M . Therefore only the 4 quantities w

n�3

; : : : ; w

n

remain to be

computed. Every term w

k

takes k+1 digit multiplications. All other operations are done in

constant time. This proves our lemma.

We summarize the discussion in the following algorithm.

Algorithm 6. (Probabilistic quotient correction) Let A, B be as in algorithm D

�

and let

b

Q

be the approximate quotient of A and B as computed by algorithm D

�

. Either the algorithm

returns Q = bA=Bc or it declares the computation as failed.

1. Set Q

0

= maxf0;

b

Q � 2 log ng.

2. Set R

0

(Q

0

) =

P

n

i=0

a

i

�

P

n

i=n�3

w

k

.

3. Set r

0

= bR

0

(Q

0

) � �

�(n�1)

c and b

n�1

= bB � �

�(n�1)

c.

4. Set �

h

= b(r

0

+ 2)=b

n�1

c and �

l

= br

0

=(b

n�1

+ 1)c.

5. If �

h

= �

l

return Q = Q

0

+ �

h

, otherwise declare the computation as failed.

Our algorithmic description of phase 2 is now complete. What remains is to give a good

estimate for the probability of failure to show the power of the method.

3.4 Probabilistic quotient correction: The analysis

Lemma 9. We suppose that for every �xed divisor B every possible dividend A is equally

likely. Then the probability for the case �

l

< �

h

is bounded by

prob(�

l

< �

h

) � 2

�23

:

Proof: We split the proof of our lemma into several claims. The key quantity in our

proof is r

n�1

, the highest digit of the exact remainder R of the division bA=Bc. Since R < B

we have 0 � r

n�1

� b

n�1

.

Claim 3. Every value 0 � r

n�1

< b

n�1

is equally likely for r

n�1

. Only the value r

n�1

= b

n�1

is less likely than the others. In particular, each value r

n�1

2 [0; : : : ; b

n�1

�1] has a probability

p with p < 1=b

n�1

.
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Proof of claim: Recall that we assumed 0 < B < �

n

and 0 � A < �

n

B. For every

possible remainder R, 0 � R < B there are exactly �

n

values of A that generate this R, one

for each quotient Q, 0 � Q < �

n

. Hence every remainder R is equally likely. Furthermore,

to every 0 � r

n�1

< b

n�1

correspond exactly �

n�1

possible values of R having �rst digit

r

n�1

, namely all R = r

n�1

�

n�1

+ z with 0 � z < �

n�1

. Only for r

n�1

= b

n�1

there are less

remainders that generate the �rst digit b

n�1

. These are of the form R = b

n�1

�

n�1

+ z with

R+ z < B, which is equivalent to

R� r

n�1

�

n�1

= z <

n�2

X

i=0

b

i

�

i

< �

n�1

:

Hence in this case there are less than �

n�1

possible values for z and, consequently, for R.

Moreover, since the values r

n�1

< b

n�1

are all equally likely we have

1 >

b

n�1

�1

X

x=0

p(r

n�1

= x) = p � b

n�1

:

which implies the desired bound on p. This proves our claim.

Claim 4. �

h

� �

l

2 f0; 1g.

Proof of claim: We set

r

+

:= (r

0

+ 2)� �

l

b

n�1

= Q(�

l

; r

0

+ 2; b

n�1

)

r

�

:= r

0

� �

l

(b

n�1

+ 1) = Q(�

l

; r

0

; b

n�1

+ 1):

Clearly, we have r

+

� r

�

= 2 + �

l

� 2 + �(Q

0

). Furthermore, since r

+

= Q(�

l

; r

0

+ 2; b

n�1

) it

follows by lemma 5 that

br

+

=b

n�1

c = �

h

� �

l

: (9)

Since �

l

= br

0

=(b

n�1

+ 1)c we have r

�

= Q(�

l

; r

0

; b

n�1

+ 1) 2 [0; : : : ; b

n+1

]. Together with

Equation 8 and the assumption b

n�1

� �=2 � 2

31

, this gives

r

+

� r

�

+ (2 + �(Q

0

)) � b

n�1

+ (2 + �(Q

0

)) � b

n�1

+ 66 < 2b

n�1

:

In view of Equation 9, this implies that �

h

� �

l

< 2, proving our claim.

Claim 5. If �(Q

0

) = �

l

< �

h

, then r

�

� r

n�1

� r

+

.

Proof of claim: The two estimates

r

�

�

n�1

= (r

0

� �

l

(b

n�1

+ 1))�

n�1

by de�nition of r

�

� R(Q

0

)� �

l

(b

n�1

+ 1)�

n�1

by left part of equation 6

� R(Q

0

)� �

l

B

and

r

+

�

n�1

= (r

0

+ 2� �

l

b

n�1

)�

n�1

by de�nition of r

+

� R(Q

0

)� �

l

b

n�1

�

n�1

by right part of equation 6

� R(Q

0

)� �

l

B

give us an upper bound and a lower bound on R(Q

0

)� �

l

B. Writing the estimates together

into one, we get

r

�

�

n�1

� R(Q

0

)� �

l

B � r

+

�

n�1

: (10)
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Because �

l

= �(Q

0

), we have R = R(Q

0

) � �(Q

0

)B = R(Q

0

) � �

l

B and so Equation 10 reads

r

�

�

n�1

� R � r

+

�

n�1

. Our claim follows by dividing this equation by �

n�1

, because

bR=�

n�1

c = r

n�1

.

Claim 6. If �

l

< �(Q

0

) = �

h

, r

�

� 1 � r

n�1

+ b

n�1

� r

+

.

Proof of claim: Because �

l

= �(Q

0

)� 1, we have

R(Q

0

)� �

l

B = R(Q

0

)� �(Q

0

)B +B = R(Q) +B:

Equation 10 reads now r

�

�

n�1

� R+ B � r

+

�

n�1

: Again we divide this equation by �

n�1

.

Because

b(R +B)=�

n�1

c � bR=�

n�1

c+ bB=�

n�1

c = r

n�1

+ b

n�1

;

the upper bound of our claim follows. Similarly, the lower bound follows because

b(R+B)=�

n�1

c � bR=�

n�1

c+ bB=�

n�1

c+ 1 = r

n�1

+ b

n�1

+ 1:

Claim 7. �

l

< �

h

is only possible if either

1. �(Q

0

) = �

h

and 0 � r

n�1

� 2 + �(Q

0

)

2. �(Q

0

) = �

l

and b

n�1

� (2 + �(Q

0

)) � r

n�1

� b

n�1

.

Proof of claim: First note that because �

l

< �

h

we have r

+

� b

n�1

. This follows by the

representation of r

+

as r

+

= Q(�

l

; r

0

+ 2; b

n�1

). If �(Q

0

) = �

l

, it follows by Claim 5 that

r

n�1

� r

�

� r

+

� (2 + �(Q

0

)) � b

n�1

� (2 + �(Q

0

))

as desired. Next, if �(Q

0

) = �

h

= �

l

+ 1 it follows by Claim 6 that

r

n�1

+ b

n�1

� r

+

� r

�

+ (2 + �(Q

0

)) � b

n�1

+ (2 + �(Q

0

)):

From this we get r

n�1

� 2 + �(Q

0

).

Claim 8. Claims 7 and 3 prove Lemma 9.

Proof of claim and lemma: Of all 1 + b

n�1

possible values of r

n�1

, only 2�(Q

0

) + 6 �

2 � 66 + 6 < 2

8

values cause phase 2 to fail by Claim 7. By Claim 3, the probability for each

value is at most 1=b

n�1

. Hence we �nd that

prob(�

l

< �

h

) � 2

8

=b

n�1

� 2

8

=2

31

= 2

�23

:

This concludes the proof of Lemma 9.

4 Other division methods

In this section we look at other subquadratic methods for division that might be applicable

for large numbers in practice. Neglecting the Fast Fourier Transformation because of its huge

constant overhead we consider Karatsuba's method as the fastest multiplication in practice

for numbers with reasonable length. With this assumption we develop another fast algorithm

for division by combining three well known methods (Barrett's method and inverses computed

by Newtonian iteration combined with Karatsuba multiplication) and argue that recursive

division is still superior even if we assume that an actual implementation of the combined

methods uses all known tricks and shortcuts. So to speak, we take the best ingredients known

so far to make a mix of algorithms for division.
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4.1 Barrett's method

Barrett's method is known in applied cryptography as an algorithm for modular reduction.

Here the goal is to reduce a number A modulo another numberM , which means that only the

remainder of the quotient bA=Mc is important but not the quotient itself. As it turns out,

modular reduction is no easier than division with remainder. However, Barrett's method

pro�ts much from the fact that in some applications many modular reductions are done

modulo the same number, in which case it is advisable to precompute the (shifted) inverse of

M up to a certain precision. Let us sketch Barrett's algorithm as found in [3] in our notation.

Algorithm 7. (Barrett division) Let A and M be nonnegative integers such that �

n�1

�

M < �

n

and A < �

2n

. The algorithm returns the quotient Q = bA=Mc with remainder R.

1. Precompute the shifted inverse of M as � = b�

2n

=Mc < �

n+1

.

2. Set A

1

= bA � �

�(n�1)

c.

3. Set

b

Q = bA

1

� � � �

�(n+1)

c.

4. Set R(

b

Q) = A�M �

b

Q.

5. Compute �(

b

Q) = bR(

b

Q)=Mc by school division and the overall remainder R = R(

b

Q)�

M�(

b

Q).

6. Return R and Q =

b

Q+ �(

b

Q).

This formulation of Barrett's algorithm requires a few explanations. First, the precompu-

tation of � is not strictly a part of the algorithm; we will discuss this step in the next section.

Next, if we omitted the downwards-rounding in steps 1{3 and computed every operation

exactly, the resulting quotient would be exact. We omit the error analysis here; details can

be found in [1]. It su�ces to know that only the least signi�cant digit of

b

Q is not exact, so

we �nd that �(

b

Q) is computable in linear time by school division, see Lemma 5.

The running time of Barrett's algorithm depends on the chosen multiplication method.

There are only two multiplications that are not mere digit{shifts, namely the computation

of A

1

� � in step 3 and the computation of M �

b

Q in step 4. All operations beside the

precomputation of � can be done in linear time. We conclude that Barrett's algorithm has

running time 2M(n). Used with Karatsuba multiplication, Barrett's algorithm has the same

running time as D

2n=1n

. In other words, Barrett's algorithm is asymptotically no faster than

our recursive division even if the precomputation of the divisor's inverse is neglected. This

statement is true even if special versions of Karatsuba multiplication are used that are �ne-

tuned for the particular situation inside Barrett's algorithm. The key for the speed-up of

the multiplication in step 3 is that here we only need the n+ 1 most signi�cant digits of the

result. Similarly, in step 4 we only need (roughly) the n + 1 least signi�cant digits of the

result M �

b

Q, because the higher n + 1 digits are known to be equal to those of A by the

error analysis. Unfortunately, the advantage we get from using these special multiplication

routines over normal Karatsuba tends to zero as n increases; for details see [6].

It should be remarked that in cryptography Barrett's algorithm is currently used with

special versions of school multiplication. Then the number of digit multiplications for both

products in Barrett's algorithm together is n

2

+ O(n), the same number of steps that are

needed for one ordinary school multiplication of n-digit numbers. This classical implementa-

tion of Barrett's algorithm is about as fast as school division, but it avoids division operations

altogether [8].
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4.2 Inverses by Newtonian iteration

Given a real number v 2 (1=2; 1] and an appropriate start value for x, the iteration

x 2 � x� v � x

2

converges to the inverse 1=v. Knuth [5] describes an implementation of this iteration that

can be easily adapted to compute the integral shifted inverse b�

k

=vc for any value of k.

Note however that the inverse here is not computed with exact rounding to the next smaller

integer; the algorithm only guarantees a precision of k digits for its result. Knuth's imple-

mentation is made e�cient by starting with a small precision of x and doubling the precision

after each iteration. It can be shown that the time to �nd n digits of 1=v by this method

using Karatsuba multiplication is 2K(n). This is still not the best one can do; half of the

multiplications actually compute squares, which is considerably simpler than performing or-

dinary multiplications. Seeking for the best performance one can implement the squaring

by a straightforward variant of Karatsuba multiplication, whose running time we denote by

K

sq

(n). One should expect 1=2K(n) < K

sq

(n) < K(n) in practice. There are more tricks

one could use to speed up the computation, too di�cult for us to describe in this paper.

However, the running time of the last step of the above iteration is certainly a lower bound

for the running time of any implementation that uses this iteration. The cost for the last

iteration step is K(n)+K

sq

(n=2), since the old iteration value x that we square has only n=2

digits. Together with our analysis of Barrett's algorithm from the last section we consider

3K(n) +K

sq

(n=2) as a lower bound for the running time of Barrett division, including the

time for computing the inverse by Newtonian iteration. This shows that the recursive division

algorithm D

2n=1n

is clearly superior. Only for applications where the cost for the inversion

is negligible, both methods of division are about equally fast.

4.3 The fastest known method

If we use the fastest known multiplication method by Sch�onhage and Strassen, which has an

asymptotic running time of O(n logn log log n), the sum for the running time of Algorithm

D

2n=1n

evaluates to O(n log

2

n log log n). This is not the fastest known division time (which

is achieved by combining Sch�onhage's method with Newtonian iteration, yielding a running

time asymptotically equal to the multiplication time, see [5]). Unfortunately this result only

pays for huge numbers because the constants involved in this methods are very large.

5 Concrete running times

Our testing environment was a SPARC Ultra-1. On this machine we have � = 2

32

, so a digit

length of y corresponds to a decimal number with y �32=log

2

10 � 9:63 �y digits. We have used

and modi�ed LEDAs integer class for our experiments. During the implementation phase

we substantially speeded up this integer library. At the time of this writing we know of no

other integer package faster than ours on a SPARC architecture. The code including complete

documentation is found in [9]. Basically we have two versions of our library. One version

uses only portable C/C++ code whereas the other version has a few additional hand-tuned

assembler routines for the innermost arithmetic loops .
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5.1 Portable C/C++ code

Figures 5, 6, 7, 8, and 9 show experimental running times measured with portable C/C++

code. The tests consisted of dividing a 2n-digit number by an n-digit number 1000 times.

From Figure 5 we see that the break-even point is about 26 digits, i.e., FastDivision pays

for numbers with more than 250 decimal digits or 832 bits. Figure 6 shows the speedup we

gain as the numbers get larger and larger. Figure 7 shows the running times for multiplying

two n-digit numbers with Karatsuba's method compared to FastDivision. Figure 9 shows

the quotient of the running times of Figure 7. It con�rms the theoretical running time of

2K(n)+O(n logn) for FastDivision. Figure 8 shows how the running time of FastDivision

varies with di�erent lengths of the two input numbers.
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Figure 5: Comparing FastDivision to School Division in a small range

5.2 Hand-coded assembler routines

Using handwritten assembler code for the innermost loops lowers the running times signif-

icantly, but also moves up the break-even point of FastDivision with respect to school

division to about 64 digits. In this context it is more useful to compare FastDivision to

other integer packages. These other packages were CLN [12]), libI [11], and LIP [13] available

to us in the LiDIA library [15]. Figure 10 shows that for numbers less than 100 machine

digits there is no signi�cant di�erence in the running times compared to CLN (which is the

fastest public domain library for integer arithmetic beside ours at the time of this writing).

These �gures show the average running time per division. However, Figure 11 shows that we

are much faster as the digits become larger. We expect that we can lower our running times

even more if we have more time to �ne-tune our assembler code.

5.3 Fast modular multiplication

The e�ectiveness of public key cryptosystems depends heavily on the ability to quickly eval-

uate expressions of the form x

e

mod m, where x is the message to be encrypted or decrypted
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Figure 6: Comparing FastDivision to School Division in a big range
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Figure 7: Comparing FastDivison with Karatsuba multiplication
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Varying the sizes of A and B

"Surfacetest.dat" using 2:1:3
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and the pair (e;m) is the key. The basis of these modular exponentiation algorithms is the

computation of the expression x � y mod m, where x, y, and m are n-digit numbers.

There are three methods in use for this modular multiplication, ordinary school method

(which multiplies x and y as integers and performs an integer division afterwards), Mont-

gomery multiplication, and Barrett reduction (see [8] and section 4). They all need O(n

2

)

operations on single digits and perform equally well in concrete implementations [8]. The

exact numbers of steps of the school method is 2n

2

+ O(n). It is easy to write a function

FastModMult that performs this task asymptotically faster by computing x�y with Karatsuba

multiplication and reducing modulo m by FastDivision afterwards.

Theorem 3. The expression x � y mod m where x, y, and m are n-digit numbers can be

computed in 3K(n) +O(n logn) steps.

Figure 12 shows experimental running times measured with portable C/C++ code. The

break-even point is about 30 digits or 960 bits, so we are well in the cryptographic range.

This can be used to substantially speedup public key cryptosystems in the near future when

secure cryptosystems are assumed to have 1024 bits as their minimal key length.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

se
cs

 p
er

 it
er

at
io

n

number length

School
Fast

Figure 12: Comparing school modular multiplication with fast modular multiplication

6 Conclusion

We have presented a new recursive division algorithm that takes the time of about two Karat-

suba multiplications. It is clearly superior in practice to all other known methods for numbers

with reasonable length. The algorithm has already been implemented and performs very well

in practice. It can be used to signi�cantly speed up the time for modular exponentiation,

which is the most important operation in current crypto-systems. We have shown further

that it is possible to save the time of half a Karatsuba multiplication on the average if the

computation of the division remainder is not required.
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