
'$�

�

'$

�


��

I N F O R M A T I K


 	

� �

On Wallace's Method for the

Generation of Normal Variates

Christine R�ub

MPI{I{98{1{020 September 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany





Author's Address

Max-Planck-Institut f�ur Informatik Im Stadtwald D-66123 Saarbr�ucken

email: rueb@mpi-sb.mpg.de

Acknowledgements

Supported by the Deutsche Forschungsgemeinschaft, Research{Cluster \Ef-

�cient Algorithms for Discrete Problems and their Applications, grant LE

952/1{2.



Abstract

A method proposed by Wallace for the generation of normal random variates

is examined. His method works by transforming a pool of numbers from

the normal distribution into a new pool of number. This is in contrast to

almost all other known methods that transform one or more variates from the

uniform distribution into one or more variates from the normal distribution.

Unfortunately, a direct implementation of Wallace's method has a serious


aw: if consecutive numbers produced by this method are added, the resulting

variate, which should also be normally distributed, will show a signi�cant

deviation from the expected behavior. Wallace's method is analyzed with

respect to this de�ciency and simple modi�cations are proposed that lead

to variates of better quality. It is argued that more randomness (that is,

more uniform random numbers) is needed in the transformation process to

improve the quality of the numbers generated. However, an implementation

of the modi�ed method has still small deviations from the expected behavior

and its running time is much higher than that of the original.

Keywords

Random number generators, Normal distribution, Gaussian distribution



1 Introduction

In [8] Wallace introduced a novel method of generating pseudo{random numbers from the

unit{normal and the unit{exponential distribution. His algorithms work by transforming a

pool of numbers from the desired distribution into a new pool of numbers. This is in contrast

to almost all other known methods that transform one or more variates from the uniform

distribution into one or more variates from the target distribution. (For a description of

several of these methods see [3] or [6]). Since Wallace's algorithms work directly on variates

with the desired distribution they are very fast { speci�cally, their speed is comparable to the

speed of random number generators for the uniform distribution.

Wallace also reports on the outcome of empirical tests performed with a speci�c imple-

mentation for the normal distribution [7]. This program passed all of the tests used. However,

all of these tests were for single numbers produced by the generator. If v successive numbers

from the generator for the normal distribution are added, we expect to obtain a normal variate

with variance v. Unfortunately, this is not the case here: in many cases the variance of the

numbers produced is much too small. In this paper we present test results that demonstrate

this de�ciency and analyze its cause. We also propose modi�cations of Wallace's method that

lessen this de�ciency. Unfortunately, there are still small but measurable deviations from the

expected behavior that seem to be di�cult to get rid of. Additionally, the proposed changes

lead to a much reduced speed and lessen one of the big advantages of this method.

One might argue that there is no need to add up several normal variates, since the resulting

sum is a normal variate with a larger variance, which could as well have been obtained from a

single N(0; 1){variate by scaling (N(e; v) stands for the normal distribution with expectation

e and variance v). However, many applications are such that, although random variates are

not added explicitly, sums of variates are implicitly formed in the course of time. In fact, the

de�ciency became apparent to us while checking the result of a molecular dynamics simulation

of a synthetic polymer [5], where such implicit summing occurs in the simulation of a random

walk taken by a gas atom.

This paper is organized as follows: Section 2 describes Wallace's method for the generation

of normal variates and Section 3 presents test results for an implementation of this method

provided by Wallace. Section 4 analyzes Wallace's method with respect to this de�ciency

and proposes modi�cations to lessen the de�ciency. Section 5 brie
y discusses two similar

algorithms and Section 6 draws some conclusions.

2 Wallace's method for the normal distribution

In the following we describe Wallace's method for the generation of N(0; 1){variates [8]. It is

based on the following facts.

Let x

1

; :::; x

k

be k independent N(0; 1){variates and let �

1

; ::; �

k

be real numbers. Then

y =

P

k

i=1

�

i

x

i

is N(0; �

2

){distributed where �

2

=

P

k

i=1

�

2

i

. Thus, if

P

k

i=1

�

2

i

= 1, y is

N(0; 1){distributed.

Let x

1

; :::; x

k

, and y be de�ned as above and let z =

P

k

i=1




i

x

i

where 


1

; :::; 


k

are real

numbers. Then y and z are normal distributed with expectation 0. We have Exp(yz) =

Exp(

P

k

i=1

�

i

x

i

P

k

i=1




i

x

i

) = Exp(

P

k

i=1

�

i




i

x

2

i

) +

P

i 6=j

(�

i




j

Exp(x

i

x

j

)) = Exp(

P

k

i=1

�

i




i

x

2

i

)

since the x

i

's are independent. Thus Exp(yz) = 0 = Exp(y)Exp(z), which means that y and

z are independent, if

P

k

i=1

�

i




i

= 0. This implies that we can take a vector X = (x

1

; :::; x

k

)

1



of k independent N(0; 1){distributed variates, multiply it from the left by an orthonormal

matrix B, and obtain thus a vector Y = (y

1

; :::; y

k

) of k independent N(0; 1){distributed

variates. Note that the y

i

's are not independent from the x

i

's since it can be shown that

P

k

i=1

x

2

i

=

P

k

i=1

y

2

i

.

Wallace's method starts by generating a pool of N = kn normal variates using a conven-

tional method like the Box{Muller method (see, e.g., [3] or [6]). The numbers in this pool

are normalized such that the sum of their squares is N . In one pass these N numbers are

transformed into N new numbers. This is done by taking k old numbers at a time, treating

them as a k{vector X and forming k new variates by computing Y

T

= BX

T

where B is an

orthonormal k � k matrix. Each old pool value is used exactly once. It can be shown that

this transformation preserves the sum of squares.

Since the sum of the squares of N N(0; 1){variates is chi{squared distributed with N

degrees of freedom (for short, �

2

N

distributed), preserving the sum of squares would obviously

be a defect of the generator. Thus, for each pass, a variate � from the �

2

N

distribution

is generated and each number generated in the pass is multiplied by (�=N)

0:5

before it is

returned to the user.

To make sure that the numbers in the old pool are mixed, the order in which the elements

are treated is somewhat randomized. Also, the orthonormal matrix used in a pass is chosen

randomly out of a small set of matrices that allow for a fast computation of the new variates.

Thus, in this method, uniform random numbers are used to generate the initial pool

of normal variates, to choose a matrix for each pass and to choose an order in which the

elements are treated. This is in contrast to conventional methods, which use at least one

uniform variate per normal variate, and allows for a very fast implementation.

We next describe the details of the implementation made available by Wallace [7], where

N = 1024, k = 4, and n = 256.

To generate a variate � from the �

2

1024

distribution, the following approximation is used.

Let y be N(0; 1) distributed. Then z = 0:5(C +Ay)

2

is approximately �

2

k

distributed, where

A = (1+ 1=(8k)) and C

2

= 2k�A

2

. The 1,024th element of the new pool is used for y. This

element is not returned to the user, but is used to generate the elements of the next pool.

The procedure is implemented in{place, that is, there is only one array of size 1,024 for

the old and the new pool. Four types of scanning patterns are used to mix the values in

the old pool. In Type 1 the �rst half of the pool is treated as a 4 � 128 matrix stored in

row major order and the second half as a 4 � 128 matrix stored in column major order (a

matrix is stored in row (column) major order if the rows (columns, respectively) are stored

one after the other, starting from the top (left, respectively) of the matrix). Depending on

which matrix is used in a pass, one of the rows of the �rst matrix will be read from right to

left. The columns of these matrices are the vectors that are multiplied by the transformation

matrix B. In each step, one column of the �rst matrix and one column of the second matrix

are used to generate eight new variates. The four variates generated by the column of the

�rst matrix are stored at the positions of the column of the second matrix and vice versa.

The order in which the columns of the second matrix are picked is randomized; before the

pass, a start column and an odd increment are picked at random and determine the order.

The columns of the �rst matrix are used consecutively.

The Type 2 scanning pattern is similar to the Type 1 pattern, except that the �rst

(second) half of the array is now treated in the way the second (�rst, respectively) half of the

array is treated with the Type 1 pattern.

2



For the Type 3 and the Type 4 scanning pattern, the array is divided into odd and even

indexed positions. In Type 3 the even (odd) indexed elements play the role the �rst (second,

respectively) half of the array plays in Type 1, and in Type 4 it is the other way round. The

four scanning types are used circularly.

The transformation matrices come in pairs. A transformation matrix B

1

(B

2

) is applied

to the columns of the above mentioned �rst (second, respectively) matrix. For each pass, one

of the following four matrix pairs is selected at random.

B

1

1

=

1

2

2

6

6

6

4

1 �1 1 1

�1 1 1 1

�1 �1 �1 1

�1 �1 1 �1

3

7

7

7

5

B

2

1

=

1

2

2

6

6

6

4

�1 �1 �1 1

�1 1 1 1

�1 1 �1 �1

1 1 �1 1

3

7

7

7

5

B

1

2

=

1

2

2

6

6

6

4

1 1 1 �1

�1 �1 1 �1

�1 1 �1 �1

�1 1 1 1

3

7

7

7

5

B

2

2

=

1

2

2

6

6

6

4

1 1 �1 1

�1 �1 �1 1

1 �1 1 1

1 �1 �1 �1

3

7

7

7

5

B

1

3

=

1

2

2

6

6

6

4

�1 �1 1 �1

1 1 1 �1

1 �1 �1 �1

1 �1 1 1

3

7

7

7

5

B

2

3

=

1

2

2

6

6

6

4

1 1 �1 1

1 �1 �1 �1

1 1 1 �1

�1 1 �1 �1

3

7

7

7

5

B

1

4

=

1

2

2

6

6

6

4

�1 1 �1 �1

1 �1 �1 �1

1 1 1 �1

1 1 �1 1

3

7

7

7

5

B

2

4

=

1

2

2

6

6

6

4

�1 1 �1 �1

�1 1 1 1

1 1 1 �1

�1 �1 1 �1

3

7

7

7

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

rank

’variance_50000_1’
x/20

Figure 1: 20 tests for the variance of 50,000 numbers

3



3 Some Test Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

rank

’variance_50000_400’
x/20

Figure 2: 20 tests for the variance of 50,000 sums of 400 numbers

We have performed a variance test for the numbers generated by this program as well as

for sums of generated numbers. This test inputs m supposedly independent random variates

from a common normal distribution N(0; �

2

) and computes S =

P

m

i=1

X

2

i

=�

2

. The test

outputs the tail probability Pr(T � S), where T is �

2

{distributed with m degrees of freedom.

Since for any continuous random variable X with distribution function F the random variable

F (X) is uniformly distributed in [0; 1], the same applies for the output of our variance test

if the assumption about the input numbers is correct. Figures 1 and 2 show the outcome

of 20 runs of this test for 50,000 variates each; for the �rst test each such variate is one

produced byWallace's generator, and for the second test, it is the sum of 400 variates produced

consecutively by the generator. In both cases, the probabilities are sorted and plotted against

their rank. A comparison with the (ideal) line with slope 1=20 shows that the probabilities

in Figure 2 are much too large, indicating that the sample variances are too small. The test

results in Figure 1 are not signi�cant.

The strength of this e�ect depends on the number of variates summed. It can become

very strong if a few numbers at the beginning are discarded. If, e.g., the �rst 128 generated

numbers are discarded and after this 1,023 consecutive numbers are summed, a �gure would

only show a straight line at 1. (Remember that the 1,024th number of each pool is not

returned to the user.) We performed the variance test for this case 1,000 times for 50,000

(sums of 1,023) variates each and the smallest outcome of the test was larger than 0:999999.

Figure 3 shows the outcome of the variance test for one seed value if the number of discarded

variates ranges from 0 to 1,023. Again, 50,000 times 1,023 numbers were added. This �gure

is typical in that there are always values close to 1 with an o�set of 128 and values close to 0

with an o�set of 640.

4



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

pr
ob

ab
ili

ty

rank

’var_offset_50000’

Figure 3: Outcome of the variance test for all o�sets for one seed value. For each run 50,000

sums of 1023 variates were used.

4 The De�ciencies

We have seen above that adding consecutive numbers generated by the algorithm leads to a

variance that is much too low. We will not analyze the algorithm in detail since this seems

to be di�cult to achieve, but we are going to use this example to point out possible causes

of problems in an implementation of Wallace's method. For now we ignore the normalization

which in itself causes some (smaller) problems. This means that we assume that the 1,024th

element is returned to the user and that the proper behavior of the sum of squares is somehow

guaranteed.

The algorithm works by computing B(a; b; c; d)

T

= (a

0

; b

0

; c

0

; d

0

)

T

where B is an orthonor-

mal matrix. Since B is orthonormal, a

0

, b

0

, c

0

, and d

0

will be N(0; 1){distributed and inde-

pendent given that a, b, c, and d are independent N(0; 1) variates. However, the new values

and the old values are not independent.

Suppose that an algorithm adds a

0

, a, b, c, and d. Then S = a

0

+ a+ b+ c+ d should be

N(0; 5){distributed. Let us assume that a, b, c, and d are independent and in fact N(0; 1){

distributed (without this assumption it is di�cult to prove anything). Since a

0

= �

11

a +

�

12

b+�

13

c+�

14

d and Exp(�

ij

) = 1=4

P

4

i=1

�

k

ij

where �

k

ij

is an entry of the kth transformation

matrix, we have

Exp(S) =

1

4

4

X

k=1

(1 + �

k

11

)Exp(a) + (1 + �

k

12

)Exp(b) + (1 + �

k

13

)Exp(c) + (1 + �

k

14

)Exp(d):

Since the old values are N(0; 1){distributed,

Exp(S) = 0:

Let us now examine the variance of S. Since the old values are independent and N(0; 1){

distributed,

5



Exp(S

2

) =

1

4

4

X

k=1

�

(1 + �

k

11

)

2

Exp(a

2

) + (1 + �

k

12

)

2

Exp(b

2

) + (1 + �

k

13

)

2

Exp(c

2

)

+(1 + �

k

14

)

2

Exp(d

2

)

�

=

1

4

4

X

k=1

�

(1 + �

k

11

)

2

+ (1 + �

k

12

)

2

+ (1 + �

k

13

)

2

+ (1 + �

k

14

)

2

�

=

1

4

4

X

k=1

�

4 + (�

k

11

)

2

+ (�

k

12

)

2

+ (�

k

13

)

2

+ (�

k

14

)

2

+ 2�

k

11

+ 2�

k

12

+ 2�

k

13

+ 2�

k

14

�

:

Since the B's are orthonormal, we arrive at

Exp(S

2

) = 5 +

1

4

4

X

k=1

�

2�

k

11

+ 2�

k

12

+ 2�

k

13

+ 2�

k

14

�

: (1)

From this follows that

4

X

i=1

�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

= 0;

since S has to be N(0; 5){distributed. That means that the entries of the �rst rows of all

matrices, summed over all matrices used, must cancel out. The same condition holds for any

row or column of the matrices used if the appropriate values are added. The condition for

the columns follows since B

�1

= B

T

for an orthonormal matrix B and we could, say, add a

and a

0

, b

0

, c

0

, and d

0

.

We can derive even more severe restrictions than this. Assume that we add a and a

0

into

S. Then we get for the variance

Exp(S

2

) =

1

4

4

X

k=1

�

(1 + �

k

11

)

2

+ (�

k

12

)

2

+ (�

k

13

)

2

+ (�

k

14

)

2

�

= 2 +

1

4

4

X

k=1

2�

k

11

which means that

4

X

k=1

�

k

11

= 0

must hold. We can argue similarly for all other entries of the transformation matrices.

Let us now see what happens in the case of the tested algorithm. First observe that we

have to treat the B

1

's and B

2

's separately since they are applied in di�erent ways. We can

observe that in the B

2

's, the third rows and the third columns add up to +1, i.e., the entries

corresponding to the new c's and the old c's, respectively, add up to 1. Likewise, in the B

2

's

the rows and columns corresponding to the new and old d's add up to �1 and in the B

1

's the

old and new c's, the new d's and the old b's are a�ected.

If we also take the four scanning types into account, it is easy to devise a test that the

generator will fail. Consider, e.g., scanning type 1. If scanning type 1 is used, the elements

of two pools will be used in the following way. Each pool is stored as an array of length

6



1,024. The �rst (second) half of this array is interpreted as a 4 by 128 matrix stored in row

(column, respectively) major order. We divide the entries of the two matrices into four classes

denoted by A, B, C, and D. A (B, C, D) contains all entries in the �rst (second, third, fourth,

respectively) row of one of the matrices. That is, we denote the role an element will play

when the transformation matrices are applied. The letters in the �gure below indicate to

which classes the numbers in the pool belong if the �rst scanning pattern is used. Note that

the old as well as the new pool is used in this way.

128

z }| {

A ::: A

128

z }| {

B ::: B

128

z }| {

C ::: C

128

z }| {

D ::: D

128�4

z }| {

A B C D A B C D :::

The numbers in the �rst half of the new pool are generated by applying the B

2

s. Also,

the entries in the last rows of the B

2

s add up to �1. Thus, it follows from Equation (1) and

the following discussion that we will get a variable with too small a variance if we add the

numbers from the second half of the old pool to the fourth row (of 128 numbers) of the new

pool.

In our variance test, none of the scanning types used in the algorithm directly leads to

summing the problematic values (in fact, a

0

+ b

0

+ c

0

+ d

0

+ a + b + c + d will have the

correct variance). However, the four scanning types together seem to be able to concentrate

numbers that are computed from these problematic values into the �rst 128 elements of the

new matrices (the speci�c, deterministic order in which the scanning types are used does

not seem to play a crucial role; randomizing this order does not help). The choice of the

set of orthonormal matrices together with the simple scanning pattern causes the problem;

the randomization of the order in which the rows of the second matrix are used makes no

di�erence.

Note that the condition that the entries cancel out if summed over all matrices has to

hold for all rows and all columns if such a simple scanning pattern is used: an application

might just use the generated numbers in a way that the di�erence in variance shows up.

Three possible ways to take care of this problem spring to mind. One is to choose matrices

that con�rm to the above stated condition, a second one is to use only variates of every second

pool, and a third one is to totally randomize the order in which the elements of the pools are

treated.

The second method could be thought of as taking care of other dependencies between

the old pool elements and the new pool elements as well. However, it does not work. We

have tested versions where up to three pools of numbers were discarded, but none of them

passed the variance test. Figure 4 shows results from variance tests where one, two, or three

consecutive pools from the generator are skipped. Again, the �rst 128 numbers generated

were discarded and then 1,023 consecutive numbers were added to generate one number with

variance 1,023.

The cheapest method (with respect to the running time) of the three above uses matrices

that have the above required property. We tried this approach with the following pairs of

matrices. The �rst (third) pair of matrices is just the �rst (third, respectively) pair of matrices

suggested by Wallace. The second (fourth) pair was obtained by replacing each entry r in the

�rst (third, respectively) matrix by �r. These matrices ful�ll all conditions derived above to

ensure the correct variances. Additionally, the order in which the scanning patterns are used

was randomized.

7



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty

rank

’original_skip1’
’original_skip2’
’original_skip3’

x/20

Figure 4: The e�ect of omitting pools. The results of 20 runs of the variance test are shown

where between one (skip1) and three (skip3) consecutive pools are skipped. For each run, the

�rst 128 numbers were discarded and after this 50,000 times 1,023 consecutive numbers were

added.

B

1

1

=

1

2

2

6

6

6

4

1 �1 1 1

�1 1 1 1

�1 �1 �1 1

�1 �1 1 �1

3

7

7

7

5

B

2

1

=

1

2

2

6

6

6

4

�1 �1 �1 1

�1 1 1 1

�1 1 �1 �1

1 1 �1 1

3

7

7

7

5

B

1

2

=

1

2

2

6

6

6

4

�1 1 �1 �1

1 �1 �1 �1

1 1 1 �1

1 1 �1 1

3

7

7

7

5

B

2

2

=

1

2

2

6

6

6

4

1 1 1 �1

1 �1 �1 �1

1 �1 1 1

�1 �1 1 �1

3

7

7

7

5

B

1

3

=

1

2

2

6

6

6

4

�1 �1 1 �1

1 1 1 �1

1 �1 �1 �1

1 �1 1 1

3

7

7

7

5

B

2

3

=

1

2

2

6

6

6

4

1 1 �1 1

1 �1 �1 �1

1 1 1 �1

�1 1 �1 �1

3

7

7

7

5

B

1

4

=

1

2

2

6

6

6

4

1 1 �1 1

�1 �1 �1 1

�1 1 1 1

�1 1 �1 �1

3

7

7

7

5

B

2

4

=

1

2

2

6

6

6

4

�1 �1 1 �1

�1 1 1 1

�1 �1 �1 1

1 �1 1 1

3

7

7

7

5

With these matrices, the generator showed an acceptable behavior in the variance test.

Unfortunately, this is not true for the fourth moments of summed variates. This can be

explained as follows.

Consider the �rst scanning pattern and assume we add the second half of the old pool

8



and the �rst 128 values of the new pool into S. Assume further that the values in the

old pool are independent and N(0; 1){distributed and that the transformation matrix B

used in this step is �xed. Then S is normally distributed with expectation 0 and variance

128((1+�

11

)

2

+(1+�

12

)

2

+(1+�

13

)

2

+(1+�

14

)

2

). However, if we choose the transformation

matrix randomly from of a set of matrices, S is not normally distributed. To see this, consider,

e.g., the fourth moment of S. Remember that Exp(X

4

) = 3 if X is N(0; 1){distributed. We

get

Exp(S

4

) =

1

4

4

X

k=1

3 � 128

2

�

(1 + �

k

11

)

2

+ (1 + �

k

12

)

2

+ (1 + �

k

13

)

2

+ (1 + �

k

14

)

2

�

2

where �

k

ij

is an entry of the kth matrix. In the case of the matrices used here we get

Exp(S

4

) =

1

2

� 3 � 128

2

(3

2

+ 7

2

) = 3 � 128

2

� 29

instead of the required 3 � 128

2

� 25. Note that the variance of S has the correct value.

As was the case for the variance, we can derive conditions on the transformation matrices

that ensure that the fourth moment will have the correct value in this case. Since the trans-

formation matrices are orthonormal and row entries have to cancel out to ensure the correct

variance we obtain

Exp(S

4

) =

1

4

4

X

i=1

3 � 128

2

�

5 + 2(�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

)

�

2

=

1

4

4

X

i=1

3 � 128

2

�

25 + 20(�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

) + 4

�

�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

�

2

�

= 3 � 128

2

 

25 +

1

4

4

X

i=1

4

�

�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

�

2

!

:

This means we get the condition

1

4

4

X

i=1

�

�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

�

2

= 0

which can only be achieved if

�

i

11

+ �

i

12

+ �

i

13

+ �

i

14

= 0

for every matrix B

i

. We can derive even more severe restrictions than this. Consider again

the �rst scanning pattern and assume that we add the a's of the second half of the old pool

and the a's of the �rst half of the new pool into S. We know already that

P

4

k=1

�

k

11

= 0 has

to hold to ensure the correct variance for S.

On the other hand,

Exp(S

4

) =

1

4

4

X

i=1

3 � 128

2

�

(1 + �

i

11

)

2

+ (�

i

12

)

2

+ (�

i

13

)

2

+ (�

i

14

)

2

�

2

9



=

1

4

4

X

i=1

3 � 128

2

�

2 + 2�

i

11

�

2

= 3 � 128

2

 

4 +

1

4

4

X

i=1

4

�

�

i

11

�

2

!

which implies that �

i

11

= 0 has to hold for every matrix B

i

. Since we can derive the same

requirement for each entry of the transformation matrix, we will arrive at the 0 matrix.

Clearly this is not a possible choice.

The above discussion shows that it is not possible to achieve the correct distribution for

arbitrary sums of generated variates if simple scanning types are used and the transformation

matrices are �xed in each pass. Depending on the number of scanning types used, we can

expect deviations in the moments of several per cent. Let us now turn to a version where the

order in which the elements of the old pool and the new pool are treated is totally randomized.

We will see that this helps to lessen the de�ciencies described above; however, they will not

vanish totally. Note that it is not possible to randomize only the order in which the elements

of one pool are treated: if only for one pool the order is randomized, we can add all numbers

from this pool and speci�c numbers from the non{randomized pool and will again obtain a

variate with a fourth moment that is too large.

Let us �rst consider the case in which we add x and x

0

into S where x

0

has been computed

using x from the old pool. If we choose the matrices such that S has the correct variance,

Exp(S

4

) will be too large if not �

i

jj

= 0 for each matrix B

i

and 1 � j � 4. However, it will

not often happen that we add x and x

0

and nothing else: if we, e.g., add one value from a �xed

position in the old pool and one value from a �xed position in the new pool, we will only get

matching values in about 1=n of all cases. Since the deviation for one pair of matching values

is not very large (with the matrices used here it is 25%), we will get a very small deviation

overall (in our case, where n = 256, the deviation will be less than 0:1%).

Let us next assume that we add p = p

1

+ p

2

numbers into S, where p

1

(p

2

) numbers come

from �xed positions of the old (new, respectively) pool. Assume further that the matrix B

used for the transformation is �xed. Unlike the case in which we use a �xed scanning pattern,

S will not be normally distributed: here we have to average over all possible ways the p

2

new

pool values depend on the p

1

old pools values. On the other hand, the deviation from the

expected moments can be quite small since not all of the p

2

new pool values depend on the

old p

1

pool values and since deviations can cancel out. For ease of explanation, consider the

case where S consists of p=2 pairs (x

i

; y

i

) where y

i

has been computed using x

i

and no other

number used or created in that step is present in S. Let �

i

be the matrix entry of B used to

compute y

i

from x

i

. Then the k-th moments of S will contain entries of the form

Exp

0

B

@

0

@

p=2

X

j=1

(1 + �

j

)

2

1

A

k

1

C

A

= Exp

0

B

@

0

@

p=2 +

p=2

X

j=1

2�

j

+ (�

j

)

2

1

A

k

1

C

A

where the expectation is taken over all possible ways to choose the �

j

. This value should be

close to p

k

. If the absolute values of the matrix entries are all identical, as is the case with

the matrices used here, and since the matrices are orthonormal, this leads to

10



Exp

0

B

@

0

@

p+

p=2

X

j=1

2�

j

1

A

k

1

C

A

:

If for each entry with value z in B there is an entry with value �z and the �

j

are chosen

at random, they can cancel each other mostly out and the probability that we get a large

deviation from p

k

is small. This also means that for each value p + x there is a value p � x

that occurs with the same probability. Altogether this means that there will be deviations

from the correct moments; however, the deviations will be small.

Thus the transformation matrices used in Wallace's program will produce variates where

the deviation from the expected moments is small if the order in which the pool elements are

treated is totally randomized. The deviation from the expected values is inversely proportional

to the size of the pool used and can thus be further reduced by making the pool larger. The

reason the randomization helps is that we average over all entries of the transformation

matrices. Another modi�cation that might work is to choose a transformation matrix at

random whenever one is needed. In the implementation considered here, this would reduce

the number of random choices by a factor of four.

Finally we consider the normalization procedure. Remember that the 1,024th element of

the pool is not returned to the user but used to normalize all other elements of this pool. Let

z be this element. Then all 1,023 other elements of this pool are multiplied by c

1

(c

2

+ Gz)

where c

1

� 0:0221, c

2

� 45:239, and G is the normalization factor used for the old pass. This

method leads to too high moments for elements of the new pool that are computed using z.

The error produced here is very small; however, to improve the quality, it would be better to

generate a normal variate with a traditional method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

pr
ob

ab
ili

ty

rank

’b2’
x/500

Figure 5: Test results of 500 runs of a b

2

test for 50,000 generated numbers each

At the end of this section we include some tests that even the randomized version of the

algorithm failed. Figure 5 shows the result of 500 runs of a test for the standardized fourth

moment (b

2

test), each for 50,000 single numbers created by the generator. For these tests

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

pr
ob

ab
ili

ty

rank

’b2_skip’
x/2000

Figure 6: Test results of 2,000 runs of a b

2

test for 50,000 generated numbers each where

every second pool was skipped

we used the Anscombe and Glynn approximation, see, e.g., [2]. We can see that the curve

produced has an S shape instead of being approximately linear. The values shown in Figure 5

are signi�cant at the 0.5% level if an Anderson Darling test [2] is used.

Figure 6 shows similar results for the case where only the variates from every second pool

were used; here 2,000 runs were used. As we have seen before, omitting whole pools does not

seem to change the behavior of the generator much. Note that we get very similar results for

the original implementation without randomization. Again, the values shown are signi�cant

at the 0.5% level.

We also conducted tests for sums of two generated numbers from di�erent pools. More

precisely, we summed the ith number of a pool and the ith number of the following pool to

obtain normal variates with variance two. Figure 7 shows the result of the b

2

test for this

case. Here we used 10,000,000 numbers for each test run. As we can see, the fourth moment

is too small. The deviation here is about 0:1%. This is the same order as predicted above;

however, the deviation is in the other direction. At the moment it is not clear why this is the

case. Figure 7 also shows results of the b

2

test for sums of four numbers where two numbers

are from one pool and two numbers are from the following pool. As one can see, the fourth

moment is still too small, but the deviation is smaller. As we add more numbers according

to a similar rule, the deviation becomes even smaller.

5 Related algorithms

In this section we brie
y discuss two variants of Wallace's algorithm that have been proposed

recently. Note that we did not implement and test these algorithms but base our comments

on the theory developed in Section 4.

In [1] Brent suggested a modi�cation of Wallace's algorithm and in [4] Fern�andez and

Rivero proposed an algorithm based on similar ideas. Both of these algorithms work by using

12



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty

rank

’sum2’
’sum4’

x/100

Figure 7: Test results of 100 runs of a b

2

test for 10,000,000 sums of numbers. The upper

curve (sum2) is for the sum of two numbers and the lower curve (sum4) is for the sum of four

numbers.

2� 2 transformation matrices of the form

 

cos� sin�

� sin� cos�

!

;

and [1] imposes the restriction that �=6 � j�j � �=3 or 2�=3 � j�j � 5�=6.

The details of Brent's modi�cations are as follows. The size of the pool is a power of 2

and at least 512. Let the old pool consist of x

0

; ::; x

n�1

and y

0

; :::; y

n�1

. Then the new pool

consists of pairs (x

0

i

; y

0

i

) where

 

x

0

j

y

0

j

!

= A

j

 

x

�j+
 mod n

y

�j+� mod n

!

;

A

j

is of the form given above, and �, �, 
, and � are chosen randomly in a way to ensure that

each x

i

and each y

i

is used exactly once. The transformation matrices are not �xed during

a pass, but a random � is picked at the beginning of each inner loop (whose length is not

speci�ed) and used to compute the transformation matrix for this loop.

Since the x's and the y's are stored in �xed places in the pools, it is easy to add, say, all

x's from the old pool and all x's from the new pool into a number S. Because of the choice of

the transformation matrices (the expected value of each entry is 0), the expectation and the

variance of S will have the correct value. However, this is not the case for the fourth moment

of S. Assume for the moment that a single transformation matrix is used for one pass. Then

Exp(S

4

) will be about 26% too large (the calculations are similar to those in Section 4). Since

actually the transformation matrix is changed more often, the deviation will be smaller and

can be expected to be about 26=x% where x is the number of transformation matrices used

in one pass.

13



The algorithm in [4] was developed independently and the numbers in the pool are treated

di�erently. In one pass, the pool is parsed from start to end. Denote the elements of the pool

by P

1

; :::; P

N

. In the ith step, P

i

plays the role of x. An index j 6= i is picked at random and

P

j

plays the role of y. Then a transformation matrix is applied to x and y, and the two new

values are output and stored as P

i

and P

j

. In each step, the transformation matrix is chosen

randomly from a precomputed set of matrices (the use of 16 di�erent, randomly generated,

matrices is suggested). Thus, in this algorithm two additional uniform variates are used per

two normal variates.

In [4] it is also argued that the deviation from the expected behavior is of the order of

1=N where N is the size of the pool. Thus, for the suggested N =1,024, the deviation would

be about 0:1%. However, the analysis does not seem to cover all cases.

Consider, e.g., the case where only every second number produced is used and where 2N

of these are added up into S. By picking only every second number we make sure that we

only use x's. Also, we can expect that for about half of the numbers, the number that has

been used as x in its production is also present. One of these pairs contributes

(1 + cos�)

2

+ (sin�)

2

= 2+ 2 cos�

to the variance of S, where � is one of, say, r randomly chosen values between 0 and 2�.

Denote these values by �

1

; :::;�

r

. Since Exp(cos

2

�) = � if � is chosen uniformly between 0

and 2�, we have

SD

 

r

X

i=1

cos (�

i

)

!

=

p

�r;

where SD denotes the standard deviation. Thus we can expect a deviation of the variance of

S from the correct value of the order of 1=

p

r. The magnitude and direction of this deviation

depends on the choice of random matrices made initially. Summarizing, many more randomly

chosen matrices have to be used or the matrices have to be chosen more carefully.

6 Conclusions

We have seen that Wallace's method, when used with simple scanning patterns and with a

�xed transformation matrix in a pass, will not produce adequate normal variates and that for

sums of variates the deviation from the expected moments can be quite large. This de�ciencies

can be lessened by randomizing the order in which the pool elements are treated or, perhaps,

by choosing a transformation matrix at random for each tuple of numbers generated. Thus,

to increase the quality of the output, more uniform numbers are needed which increases the

running time of the algorithms considerably. However, there will still be small deviations

for certain sums of variates. These deviations can be made smaller by increasing the size of

the pool which might again reduce the speed of the algorithm. It also seems to be the case

that these de�ciencies cannot be overcome by omitting (a small number of) whole pools of

generated numbers.

In a case where the speed of the proposed method is most important, namely, if many

normal variates are needed in an application, these de�ciencies are most serious. Thus, we

feel that at the moment Wallace's method cannot be recommended for use in applications

where a high quality of normal variates is required.

14



Addendum

In the mean time, Wallace has proposed a modi�cation of his algorithm (see ftp.cs.monash.edu.au

in directory pub/csw) that needs only a few additional uniform variates per pass, is only

slightly slower than the original version and seems to have the same quality as the version

where the elements of the pool are treated in a totally randomized order. Thus, this version

avoids the \big" deviations reported above, but smaller deviations from the expected behavior

are still observable.

References

[1] R. P. Brent. A fast vectorised implementation of Wallace's normal random number gener-

ator. Technical Report TR-CS-97-07, Department of Computer Science, The Australian

National University, Canberra 0200 ACT, Australia, Apr. 1997.

[2] R. B. D'Agostino and M. A. Stephens. Goodness{of{�t techniques. Marcel Dekker, 1986.

[3] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[4] J. F. Fern�andez and J. Rivero. Fast algorithms for random numbers with exponential and

normal distributions. Computers in Physics, 10(1), Jan/Feb 1996.

[5] B. Jung, H. Lenhof, P. M�uller, and C. R�ub. Langevin dynamics simulations of macro-

molecules on parallel computers. Macromol. Theory Simul., pages 507{521, 1997.

[6] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.

Second Edition, Addison-Wesley, Reading, 1981.

[7] C. S. Wallace. Source �les are available by anonymous ftp at ftp.cs.monash.edu.au in

directory pub/csw.

[8] C. S. Wallace. Fast pseudorandom generators for normal and exponential variates. ACM

Transactions on Mathematical Software, 22(1):119{127, Mar. 1996.

15



���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the Max-Planck-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most

of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any

questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which

are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-98-2-012 G. Delzanno, A. Podelski Model Checking In�nite-state Systems in CLP

MPI-I-98-2-011 A. Degtyarev, A. Voronkov Equality Reasoning in Sequent-Based Calculi

MPI-I-98-2-010 S. Ramangalahy Strategies for Conformance Testing

MPI-I-98-2-009 S. Vorobyov The Undecidability of the First-Order Theories of One

Step Rewriting in Linear Canonical Systems

MPI-I-98-2-008 S. Vorobyov AE-Equational theory of context uni�cation is

Co-RE-Hard

MPI-I-98-2-007 S. Vorobyov The Most Nonelementary Theory (A Direct Lower

Bound Proof)

MPI-I-98-2-006 P. Blackburn, M. Tzakova Hybrid Languages and Temporal Logic

MPI-I-98-2-005 M. Veanes The Relation Between Second-Order Uni�cation and

Simultaneous Rigid E-Uni�cation

MPI-I-98-2-004 S. Vorobyov Satis�ability of Functional+Record Subtype

Constraints is NP-Hard

MPI-I-98-2-003 R.A. Schmidt E-Uni�cation for Subsystems of S4

MPI-I-98-1-019 2nd Workshop on Algorithm Engineering WAE '98 -

Proceedings

MPI-I-98-1-018 D. Dubhashi, D. Ranjan On Positive In
uence and Negative Dependence

MPI-I-98-1-017 A. Crauser, P. Ferragina, K. Mehlhorn,

U. Meyer, E. Ramos

Randomized External-Memory Algorithms for Some

Geometric Problems

MPI-I-98-1-016 P. Krysta, K. Lory�s New Approximation Algorithms for the Achromatic

Number

MPI-I-98-1-015 M.R. Henzinger, S. Leonardi Scheduling Multicasts on Unit-Capacity Trees and

Meshes

MPI-I-98-1-014 U. Meyer, J.F. Sibeyn Time-Independent Gossiping on Full-Port Tori

MPI-I-98-1-013 G.W. Klau, P. Mutzel Quasi-Orthogonal Drawing of Planar Graphs

MPI-I-98-1-012 S. Mahajan, E.A. Ramos,

K.V. Subrahmanyam

Solving some discrepancy problems in NC*

MPI-I-98-1-011 G.N. Frederickson, R. Solis-Oba Robustness analysis in combinatorial optimization

MPI-I-98-1-010 R. Solis-Oba 2-Approximation algorithm for �nding a spanning tree

with maximum number of leaves

MPI-I-98-1-009 D. Frigioni, A. Marchetti-Spaccamela,

U. Nanni

Fully dynamic shortest paths and negative cycle

detection on diagraphs with Arbitrary Arc Weights

MPI-I-98-1-008 M. J�unger, S. Leipert, P. Mutzel A Note on Computing a Maximal Planar Subgraph

using PQ-Trees



MPI-I-98-1-007 A. Fabri, G. Giezeman, L. Kettner,

S. Schirra, S. Sch'onherr

On the Design of CGAL, the Computational Geometry

Algorithms Library

MPI-I-98-1-006 K. Jansen A new characterization for parity graphs and a coloring

problem with costs

MPI-I-98-1-005 K. Jansen The mutual exclusion scheduling problem for

permutation and comparability graphs

MPI-I-98-1-004 S. Schirra Robustness and Precision Issues in Geometric

Computation

MPI-I-98-1-003 S. Schirra Parameterized Implementations of Classical Planar

Convex Hull Algorithms and Extreme Point

Compuations

MPI-I-98-1-002 G.S. Brodal, M.C. Pinotti Comparator Networks for Binary Heap Construction

MPI-I-98-1-001 T. Hagerup Simpler and Faster Static AC

0

Dictionaries

MPI-I-97-2-012 L. Bachmair, H. Ganzinger, A. Voronkov Elimination of Equality via Transformation with

Ordering Constraints

MPI-I-97-2-011 L. Bachmair, H. Ganzinger Strict Basic Superposition and Chaining

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with

Complex Values

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite Domain

Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set constraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-97-1-028 M. Lermen, K. Reinert The Practical Use of the A

�

Algorithm for Exact

Multiple Sequence Alignment

MPI-I-97-1-027 N. Garg, G. Konjevod, R. Ravi A polylogarithmic approximation algorithm for group

Steiner tree problem

MPI-I-97-1-026 A. Fiat, S. Leonardi On-line Network Routing - A Survey

MPI-I-97-1-025 N. Garg, J. K�onemann Faster and Simpler Algorithms for Multicommodity

Flow and other Fractional Packing Problems

MPI-I-97-1-024 S. Albers, N. Garg, S. Leonardi Minimizing Stall Time in Single and Parallel Disk

Systems

MPI-I-97-1-023 S.A. Leonardi, A.P. Marchetti-Spaccamela Randomized on-line call control revisited

MPI-I-97-1-022 E. Althaus, K. Mehlhorn Maximum Network Flow with Floating Point

Arithmetic

MPI-I-97-1-021 J.F. Sibeyn From Parallel to External List Ranking

MPI-I-97-1-020 G.S. Brodal Finger Search Trees with Constant Insertion Time

MPI-I-97-1-019 D. Alberts, C. Gutwenger, P. Mutzel,

S. N�aher

AGD-Library: A Library of Algorithms for Graph

Drawing

MPI-I-97-1-018 R. Fleischer On the Bahncard Problem

MPI-I-97-1-017 S. Albers, M.R. Henzinger Exploring Unknown Environments

MPI-I-97-1-016 M. Thorup Faster deterministic sorting and priority queues in

linear space

MPI-I-97-1-015 M. J�unger, S. Leipert, P. Mutzel Pitfalls of using PQ{Trees in automatic graph drawing


