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Abstract

We study two notions of negative inuence namely negative regression and

negative association. We show that if a set of symmetric binary random

variables are negatively regressed then they are necessarily negatively asso-

ciated. The proof uses a lemma that is of independent interest and shows

that every binary symmetric distribution has a variable of \positive inu-

ence". We also show that in general the notion of negative regression is

di�erent from that of negative association.
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1 Introduction

We discuss and compare two strong notions of negative dependence amongst

random variables. Intuitively, a set of random variables is negatively dependent

if they have the following property: if one subset of variables is \high" then

other disjoint subsets are \low". The notion of negative dependence amongst

random variables is important and useful in probabilistic analysis for a variety of

reasons. For example, for purposes of stochastic bounds on the sum of variables,

one can treat variables that are strongly negatively dependent as if they were

independent; so, one can use tools like the Cherno�-Hoe�ding bounds which are

normally available only for independent variables. This allows simpler analysis

for many probabilistic processes and algorithms. For some applications and

examples, see [5].

Let X

1

; : : : ; X

n

be a set of random variables and let I and J be disjoint

subsets of [n]. One can formalize the intuitive notion of negative dependence,

X

i

; i 2 I are high $ X

j

; j 2 J are low; (1.1)

in many ways. One of the simplest notions of negative dependence is nega-

tive correlation: E[

Q

i

X

i

] �

Q

i

E[X

i

]. Unfortunately, this notion is too weak

for many applications. We next provide the de�nitions for two strong natural

notions of negative dependence: negative regression and negative association.

1

De�nition 1 (Negative Regression and Association) Random variables

X

1

; : : : ; X

n

satisfy:

(�R) the negative regression condition if

E[f(X

i

; i 2 I) j X

j

= t

j

; j 2 J ];

is non{increasing in each t

j

; j 2 J for any disjoint I; J � [n] and any

non{decreasing function f .

(�A) the negative association condition if for every two disjoint index sets,

I; J � [n],

E[f(X

i

; i 2 I)g(X

j

; j 2 J)] � E[f(X

i

; i 2 I)]E[g(X

j

; j 2 J)]

for all functions f : R

jIj

! R and g : R

jJj

! R that are both non{decreasing

or both non{increasing [7].

Some other notions of negative dependence and some previous work on neg-

ative dependence can be found in [1, 8]. There are corresponding notions of

positive regression and association. It is easy to show that positive regression

implies positive association [6, Proposition 5.18]. However, the proof cannot be

modi�ed in a straight{forward way to show that negative regression implies neg-

ative association. In fact, the relationship between various notions of negative

dependence is not entirely clear.

We present results pertaining to the relationship between negative regression

and negative association. In x 2, we prove that for symmetric binary random

1

We deal exclusively with �nite-valued, discrete random variables. We shall assume that

whenever we have conditional expectations or probabilities, the conditioning event is non{null.
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variables, negative regression implies negative association thus establishing that

the notion of negative regression is at least as strong as the notion of negative

association for an important and frequently occuring class of distributions. In

x 3, we give a counter{example to show that the two notions are not the same,

in particular, that negative association does not imply negative regression in

general. The same example shows also that negative regression, while seem-

ingly a more attractive condition for negative dependence, does not share some

nice robustness properties of negative association. In x 4, we state some open

problems with some conjectures.

2 Binary Symmetric Variables

A special family of distributions are the symmetric or exchangeable distributions

[9, Ch. 15].

De�nition 2 (Symmetric Random Variables) Random variables

X

1

; : : : ; X

n

are called symmetric or exchangeable if for every permutation

� : [n]! [n], and for all a

1

; : : : ; a

n

2 R,

Pr[X

1

= a

1

; : : : ; X

n

= a

n

] = Pr[X

1

= a

�(1)

; : : : ; X

n

= a

�(n)

]:

Example 3 (Fermi{Dirac Statistics) Fermi{Dirac statistics are used in quan-

tum statistical physics to describe the behaviour of an ensemble of particles dis-

tributed in a state space obeying the Pauli{exclusion principle. One can model

this as an experiment where m balls are thrown into n (m � n) bins with each

bin containing at most one ball, and each distribution of balls among the bins

is equally likely to occur. The occupancy numbers, B

i

; i 2 [n] are 0=1 variables

indicating if the corresponding bins are occupied. For m

i

2 f0; 1g, i 2 [n], with

P

i

m

i

= m,

Pr(B

1

= m

1

; : : : ; B

n

= m

n

) =

�

n

m

�

�1

:

Then B

0

i

s are symmetric random variables.

2.1 Positive Inuence

We shall establish that for Binary Symmetric Random Variables, negative re-

gression implies negative association. The proof is provided in the next subsec-

tion and, somewhat surprisingly, makes critical use of a lemma about \positive

inuence" that is of independent interest. The lemma shows that for every bi-

nary symmeric distribution and for every non-decreasing real-valued function

there is a variable that has a positive inuence on the function. Intuitively, a

variable has a positive inuence on a function if one expects the value of the

function to increase if the value of the variable is increased, assuming that the

other variables are chosen at random. To be more precise, we de�ne positive

inuence as follows:

De�nition 4 (Positive Inuence) Let X

1

: : : X

n

be real-valued random vari-

ables and  be any probability distribution on X

1

: : : X

n

. Let f be any real-valued

function of X

1

: : : X

n

. We say that X

j

is a positive inuence variable for

hf;  i if E

 

[f(X

1

; : : : X

n

)jX

j

= t] is a non-decreasing function of t.
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Notions of inuence of variables on functions have been de�ned and used

before. In particular, it is instructive to compare our de�nition of positive

inuence with that of inuence in Bourgain et al [2].

For simpli�cation of notation, when it is clear what distribution we are

talking about or we are talking about an arbitrary �xed distribution, we will

often omit  from the subscript in the expectation. Also, note that for binary

random variables, X

j

is a variable of positive inuence for hf;  i i�

E

 

[f(X

1

; : : : X

n

) j X

j

= 0] � E

 

[f(X

1

; : : : X

n

) j X

j

= 1].

A very natural question is: for which function-distribution pairs (f;  ) do

variables of positive inuence exist? Below, we show that for every binary

symmetric distribution  and for every non-decreasing real-valued function f

there exists a variable with positive inuence. This is su�cient for proving our

main theorem. For further results on positive inuence see [3] where amongst

other results it is proved that for every symmetric non-decreasing function and

every binary distribution there is a variable of positive inuence.

Lemma 5 (Positive Inuence Lemma: Symmetric Distributions) Let

X

1

; : : : ; X

n

be symmetric binary random variables. Let f be any non{decreasing

function of X

1

; : : : ; X

n

. Then there is a positive inuence variable for f , that

is there exists an i 2 [n] such that

F

i

(0) := E[f(X

1

; : : : ; X

n

) j X

i

= 0] � E[f(X

1

; : : : ; X

n

) j X

i

= 1] =: F

i

(1):

Proof. Set F (t) :=

P

i

F

i

(t); then it su�ces to prove that F (0) � F (1), since

F (1)� F (0) =

P

i

(F

i

(1)� F

i

(0)).

We shall use some notation to make the proof more compact. For â =

(a

1

; : : : a

n

) 2 f0; 1g

n

, let �(

^

X = â) denote Pr(X

1

= a

1

; : : : ; X

n

= a

n

). Also, we

shall identify a set with its characteristic vector i.e. we shall use subsets S of [n]

interchangably with the binary vector (�

S

(1); : : : �

S

(n)). Hence, for example,

for any subset S of [n], f(S) stands for f(�

S

(1); : : : �

S

(n)). Moreover �(S) will

stand for �(

^

X = S).

Let p

0

:= Pr[X

i

= 0]. Note that Pr[X

i

= 0] is same for each X

i

as the

variables are symmetric.

Now,

F (0) =

X

i

F

i

(0)

=

X

i

E[f(X

1

; : : : ; X

n

) j X

i

= 0]

=

X

i

X

â2f0;1g

n

f(â)�(

^

X = â j X

i

= 0)

=

X

i

X

â

a

i

=0

f(â)�(

^

X = â)=p

0

=

X

i

X

i 62S

f(S)�(S)=p

0

Noting that p

0

=

P

i 62S

�(S) we can continue,
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F (0) = n

P

i

P

i 62S

f(S)�(S)

P

i

P

i 62S

�(S)

= n

P

S

P

i 62S

f(S)�(S)

P

S

P

i 62S

�(S)

= n

P

S

f(S)�(S)

P

i 62S

1

P

S

�(S)

P

i 62S

1

= n

P

S

f(S)�(S)(n� jSj)

P

S

�(S)(n� jSj)

Similarly,

F (1) = n

P

S

f(S)�(S)jSj

P

S

�(S)jSj

:

Thus we need to show that

P

S

f(S)�(S)(n� jSj)

P

S

�(S)(n� jSj)

�

P

S

f(S)�(S)jSj

P

S

�(S)jSj

: (2.2)

We now use the fact that the variables are symmetric. So �(S) dependes

only on jSj and we may denote it by �

jSj

. Also, let f

t

:=

P

jSj=t

f(S). Then,

X

S

f(S)�(S)(n� jSj) =

n

X

t=0

X

jSj=t

f(S)�(S)(n� jSj)

=

X

t

X

jSj=t

f(S)(n� t)�

t

=

X

t

(n� t)�

t

X

jSj=t

f(S)

=

X

t

f

t

(n� t)�

t

(2.3)

Similarly, we compute:

X

S

�(S)(n� jSj) =

X

t

�

n

t

�

(n� t)�

t

: (2.4)

X

S

f(S)�(S)jSj =

X

t

f

t

t�

t

(2.5)

X

S

�(S)jSj =

X

t

�

n

t

�

t�

t

: (2.6)

Plugging (2.3) through (2.6) into (2.2), we need to prove:

P

t

f

t

(n� t)�

t

P

t

�

n

t

�

(n� t)�

t

�

P

t

f

t

t�

t

P

t

�

n

t

�

t�

t

:

Let f(t) := f

t

=

�

n

t

�

. f(t) is easily seen to be non{decreasing by an averaging

argument. Furthermore, let �

1

(t) :=

�

n

t

�

(n� t)�

t

and �

2

(t) :=

�

n

t

�

t�

t

.
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It is easy to con�rm that if a � b then

�

1

(b)

�

1

(a)

�

�

2

(b)

�

2

(a)

. The desired result

follows from an application of the one{dimensional version of Holley's generali-

sation of the FKG inequality (Theorem 6) to the function f and the measures

�

1

; �

2

. 2

Theorem 6 (One Dimensional Holley Inequality) Let �

1

and �

2

be two

measures on the real line such that

�

1

(b)

�

1

(a)

�

�

2

(b)

�

2

(a)

if a � b. Then for any non{

decreasing f ,

P

t

f(t)�

1

(t)

P

t

�

1

(t)

�

P

t

f(t)�

2

(t)

P

t

�

2

(t)

:

Interestingly enough, it is not clear if the symmetry of the distribution is

really necessary for a positive inuence variable to exist.

2.2 The Main Theorem

Now, we are ready to prove our main theorem.

Theorem 7 For symmetric binary random variables, the regression condition

(�R) implies the association condition (�A).

Proof. We shall prove the result by induction on the number of variables,

n. The result is trivially true for n = 1. Now let 1 � k < n and let

f(X

1

; : : : X

k

); g(X

k+1

: : :X

n

) be any two non-decreasing functions. We shall

show that, E[fg] � E[f ]E[g].

By the Positive Inuence Lemma 5, it follows that there exists an i � k such

that E[f(X

1

; : : : X

k

)jX

i

= t] is non-decreasing in t. Without loss of generality

assume that i = 1. Then,

E[f(X

1

: : : X

k

)g(X

k+1

: : : X

n

)] =

X

a=0;1

E[f(X

1

: : : X

k

)g(X

k+1

: : : X

n

)jX

1

= a]Pr[X

1

= a]: (2.7)

Since X

1

: : : X

n

are symmetric random variables, �xing X

1

= 0 or X

1

= 1

gives rise also to symmetric distributions (possibly di�erent in the two cases)

on X

2

; : : : ; X

n

. Moreover, by the de�nition of (�R), each of these individually

satis�es (�R). Hence, by induction, we can continue from (2.7),

E[f(X

1

: : :X

k

)g(X

k+1

: : :X

n

)] �

X

a=0;1

E[f(X

1

: : : X

k

)jX

1

= a]E[g(X

k+1

: : : X

n

)jX

1

= a]Pr[X

1

= a]

=

X

a=0;1

f

1

(a)g

1

(a)�(a); (2.8)

where we put:

f

1

(a) = E[f(X

1

: : : X

k

)jX

1

= a]; g

1

(a) = E[g(X

k+1

: : : X

n

)jX

1

= a];

and

�(a) = Pr[X

1

= a]:

5



Then, f

1

is monotone non-decreasing by choice from the Positive Inuence

Lemma, g

1

is monotone non-increasing by the de�nition of (�R). Applying the

(one{dimensional) Chebyshev{FKG{Harris inequality for the second inequality

below, we get, continuing from (2.8),

E[f(X

1

: : : X

k

)g(X

k+1

: : : X

n

)] �

X

a=0;1

f

1

(a)g

1

(a)�(a)

�

X

a=0;1

f

1

(a)�(a):

X

a=0;1

g

1

(a)�(a)

= E[f(X

1

: : :X

k

)]E[g(X

k+1

: : : X

n

)]:

2

It is worth noting that the inductive proof would essentially go through

for any class of distributions for which one could establish a positive inuence

lemma for non-decreasing functions. One would like to conjecture that this is

true for all distributions but it is shown to be false in [3].

Application 8 It is easy to show that the variables in Fermi-Dirac distribution

are negatively regressed. From the theorem it follows that they are negatively

associated. This is shown via another elegant method in [4].

3 (�A) is di�erent from (�R)

In this section, we construct a distribution on four random variables that will

show that (�A) is di�erent from (�R). Moreover, it shows that (�R) does not

possess many nice properties that (�A) has.

Consider any distribution on four discrete �nite-valued random variables

X

1

; X

2

; Y

1

; Y

2

that satis�es the following conditions:

� X

1

; X

2

are independent of Y

1

; Y

2

; X

1

is independent of X

2

.

� X

1

; X

2

2 f0; 1; 2g.

� Y

1

; Y

2

2 f0; 1g and Y

1

+ Y

2

= 1.

� All marginal probabilities are non{zero.

� The marginal distribution of X

2

satis�es the following strict log{convexity

condition:

Pr[X

2

= 1]

2

< Pr[X

2

= 0]Pr[X

2

= 2]: (3.9)

Clearly, it is possible to construct such distributions onX

1

; X

2

; Y

1

; Y

2

. More-

over, it is easy to see that for any such distribution X

1

; X

2

; Y

1

; Y

2

are negatively

associated.

Now, let Z

1

= X

1

+ Y

1

and Z

2

= X

2

+ Y

2

. Then Z

1

; Z

2

are negatively

associated. Below we show that Z

1

; Z

2

are not negatively regressed.

Proposition 9 Z

1

; Z

2

do not satisfy (�R).

6



Proof. Consider the non{decreasing function f(Z

1

) = [Z

1

� 3]. We compute,

E[f(Z

1

)jZ

2

= 1] = Pr[Z

1

� 3jZ

2

= 1]

= Pr[Z

1

= 3jZ

2

= 1]; since Z

1

= X

1

+ Y

1

� 3

= Pr[Z

1

= 3; Z

2

= 1]=Pr[Z

2

= 1]

= Pr[X

1

+ Y

1

= 3; X

2

+ Y

2

= 1]=Pr[Z

2

= 1]

= Pr[X

1

= 2; Y

1

= 1; X

2

+ Y

2

= 1]=Pr[Z

2

= 1]

since X

1

+ Y

1

= 3 i� X

1

= 2; Y

1

= 1

= Pr[X

1

= 2; Y

1

= 1; X

2

= 1]=Pr[Z

2

= 1]

since Y

1

= 1$ Y

2

= 0

Since X

1

; X

2

and Y

1

are independent we get,

E[f(Z

1

)jZ

2

= 1] = Pr[X

1

= 2]Pr[Y

1

= 1]Pr[X

2

= 1]=Pr[Z

2

= 1]: (3.10)

Similarly, we have

E[f(Z

1

)jZ

2

= 2] = Pr[X

1

= 2]Pr[Y

1

= 1]Pr[X

2

= 2]=Pr[Z

2

= 2]: (3.11)

Thus, comparing (3.10) and (3.11), the negative regression condition fails if

all marginal probabilities are non{zero and,

Pr[Z

2

= 1]

Pr[X

2

= 1]

>

Pr[Z

2

= 2]

Pr[X

2

= 2]

: (3.12)

Now, we have,

Pr[Z

2

= 1]

Pr[X

2

= 1]

= Pr[Z

2

= 1 j X

2

= 1] + Pr[Z

2

= 1 j X

2

= 0]

Pr[X

2

= 0]

Pr[X

2

= 1]

= Pr[Y

2

= 0 j X

2

= 1] + Pr[Y

2

= 1 j X

2

= 0]

Pr[X

2

= 0]

Pr[X

2

= 1]

= Pr[Y

2

= 0] + Pr[Y

2

= 1]

Pr[X

2

= 0]

Pr[X

2

= 1]

: (3.13)

Similarly,

Pr[Z

2

= 2]

Pr[X

2

= 2]

= Pr[Y

2

= 0] + Pr[Y

2

= 1]

Pr[X

2

= 1]

Pr[X

2

= 2]

(3.14)

From (3.12) through (3.14), the negative regression condition fails if (3.9) holds.

2

A number of consequences follow:

Corollary 10 The negative association condition (�A) does not imply the neg-

ative regression condition (�R) (even for two 4-valued variables).

Corollary 11 Sums of disjoint sets of variables that satisfy (�R) do not nec-

essarily satisfy (�R).

Remark 12 In contrast, the negative association property is preserved if we

take arbitrary non{decreasing functions of disjoint sets of variables. This is

the main reason that makes negative association much easier to work with in

applications such as the one in the next remark.
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Application 13 (Balls and Bins) Consider the classical balls and bins expe-

rimant: m balls are thrown independently (but not necessarily uniformly) into

n bins, and we focus on the occupancy numbers B

1

; : : : ; B

n

of the number of

balls in each bin. It is intuitively obvious that these variables are negatively

dependent. To make this precise, one can ask: which of the notions of negative

dependence listed above obtain in this example?

The property of (�A) mentioned above can be exploited to yield a short

proof that the variables are negatively associated. For this, it is expedient to

introduce the indicator variables B

i;k

for i 2 [n]; k 2 [m]:

B

i;k

:=

�

1; if ball k goes into bin i;

0; otherwise.

It is quite easy to show that the variables (B

i;k

; i 2 [n]; k 2 [m] satisfy (�A) as

well as (�R). Now, since B

i

=

P

k

B

i;k

; i 2 [n] are non{decreasing functions of

disjoint variables, we conclude immediately that B

1

; : : : ; B

n

satisfy (�A).

Unfortunately, one cannot do the same for negative regression, since Propo-

sition 9 shows that even sums do not preserve the (�R) property.

Another possible approach that suggests itself is to proceed by induction on

the set of balls. Let B

K

i

; i 2 [n] denote the occupancy numbers corresponding

to the restricted experiment with the balls labelled by the index set K � [m].

Note that for k 62 K, and i 2 [n],

B

K[fkg

i

= B

K

i

+B

i;k

:

Suppose by induction that B

K

i

; i 2 [n] satisfy (�R). Then so would B

K[fkg

i

; i 2

[n] if the following plausible{sounding assertion was true: Let X

1

; : : : ; X

n

satisfy

(�R) and let Y

1

; : : : ; Y

n

be 0=1 variables with

P

i

Y

i

= 1. Then Z

1

:= X

1

+

Y

1

; : : : ; Z

n

:= X

n

+ Y

n

also satisfy (�R). Unfortunately, this assertion is also

false in general as shown in Proposition 9.

Remark 14 It is shown in [5] that the B

i

's are indeed negatively regressed but

the proof is quite involved.

4 Conclusion, Open Problems and Conjectures

The goal of this research is to understand the relationship between (�A) and

(�R), two strong notions of negative dependence. We have taken a step forward

by showing that in the special, useful case of symmetric binary distributions,

(�R) implies (�A) and that in general the two notions are di�erent. Many

open problems remain.

� The most interesting open problem is: does (�R) imply (�A) in general?

� An interesting sub-problem is: does (�R) imply (�A) for binary (not

necessarily symmetric) random variables?

We conjecture that the answer to both these problems is yes. For the latter case,

we even conjecture that the Positive Inuence Lemma is true. Unfortunately

however, one can construct an example to show that the averaging argument

we gave above is not going to prove it.
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� Another, interesting open problem is the reverse direction: does (�A)

imply (�R) for binary random variables (with and/or without the as-

sumption of symmetry)?
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