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Abstract

We show that the well-known random incremental construction of Clarkson and Shor [14]

can be adapted via gradations to provide e�cient external-memory algorithms for some geo-

metric problems. In particular, as the main result, we obtain an optimal randomized algorithm

for the problem of computing the trapezoidal decomposition determined by a set of N line seg-

ments in the plane with K pairwise intersections, that requires �(

N

B

log

M=B

N

B

+

K

B

) expected

disk accesses, where M is the size of the available internal memory and B is the size of the

block transfer. The approach is su�ciently general to obtain algorithms also for the problems

of 3-d half-space intersections, 2-d and 3-d convex hulls, 2-d abstract Voronoi diagrams and

batched planar point location, which require an optimal expected number of disk accesses and

are simpler than the ones previously known. The results extend to an external-memory model

with multiple disks. Additionally, under reasonable conditions on the parameters N;M;B,

these results can be notably simpli�ed originating practical algorithms which still achieve

optimal expected bounds.



1 Introduction

There is a growing interest in algorithms working on sets of data that are too large to be �t in

the internal memory of computers, and that consequently need to perform input/output accesses

to external storage devices, like disks and CD-ROMs (see e.g. [4, 11, 19, 21, 29, 37]). These

devices are roughly 10

6

times slower than internal memory in terms of access time. In many

applications, this disparity has given rise to an input/output (or I/O) bottleneck, in which the

time spent on moving data between internal and external memory dominates the overall execution

time [20]. Such an I/O bottleneck is increasing in signi�cance since the gap between the speed

of (mechanical) disks versus (electronic) internal memories is growing, especially with the use of

parallel computers [30]. Therefore, it is more than ever urgent to minimize the I/O communication

in large-scale applications.

Computer graphics [33] as well as Geographic Information Systems [16, 23] are nowadays a rich

source of large-scale computational problems. Here we need to design appropriate external-

memory techniques and data structures that e�ciently cope with the enormous amount of spatial

data which are searched, stored and manipulated. In these applications, most of the subprob-

lems require the processing of geometric primitives, so that the research on large-scale geometric

algorithms is important and challenging.

Problems. A �rst goal of our paper is the design of an I/O-e�cient algorithm for the segment

intersections problem which consists of computing the arrangement of a set of N line segments in

the plane with K pairwise intersections in an output sensitive manner. Computing the intersec-

tions I/O-optimally has been posed as an open problem in [5]. A second goal is to investigate the

applicability of random sampling to the design of e�cient geometric algorithms in the external-

memory setting, and to develop a general randomized approach suitable to solve I/O-e�ciently

not only the segment intersections problem, but also several others geometric problems like convex

hulls, Voronoi diagrams, batched planar point location.

We study these problems in the external-memory model , introduced in [37]. Here a computer

consists of a processing unit, an internal memory of size M and an (unbounded) external memory

partitioned into blocks of size B, B �M . Each access to the external memory transfers from/to

the internal memory one block of B items, e.g., integers, pointers, characters. The goal is to design

algorithms which take advantage of the block transfer and thus exhibit locality of reference. The

complexity of an algorithm is then evaluated in this model by providing asymptotical bounds for

the total number of disk accesses (I/Os) performed by the various operations, and for the number

of internal operations executed (CPU time). For the sake of presentation we adopt the notation

n = N=B, m =M=B, k = K=B.

Previous Work. Several (internal memory) algorithms for the segment intersections problem

are known that execute an optimal number of (internal) operations O(N logN+K), both sequen-

tial (deterministic [9] and randomized [14, 26]) and parallel (deterministic [2] and randomized [13]).

In the external-memory model, however, no I/O-optimal solution is known and the best algorithm

has been devised by Arge et al. [5]. It is deterministic, involved, requires O((n+ k) log

m

n) I/Os,

which is non-optimal, and computes the arrangement only for the case k = 0 (i.e., no crossings).

Goodrich et al. [21] and Arge et al [5] presented some external-memory techniques that solve I/O-

optimally other geometric problems. In particular, 2-d and 3-d convex hulls (using O(n log

m

n)

I/O operations), and the batched planar point location (using O((n+ k) log

m

n) I/O operations

where now K is the number of queries). However, the resulting algorithms are complicated and

require the use of several non-trivial I/O-optimal subroutines to solve some speci�c subproblems
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like 3-d maxima and 2-d convex hull. Furthermore, the approaches are not easily extensible to

other geometric problems, like the segment intersections problem in which we are interested.

Recent results [11, 35, 17] have shown a close relationship between parallel algorithms and

external-memory algorithms, so that it is natural to look at the work on parallel geometric so-

lutions to see if some of those results can be adapted to work e�ciently in the external-memory

model. The parallel algorithms cited above for the segment intersections problem are based on

random sampling (the one in [2] is obtained via derandomization), and follow a divide-and-conquer

approach (originated in [14]) in which a random sample is used to divide the problem into sub-

problems that are then solved independently. The main di�culty which arises with this approach

is the need to bound the total size of the subproblems; as a result, some problem-dependent

tricks are usually needed to achieve optimal results|like �ltering [32] (also called pruning) and

vertex-accounting [8]. The necessity of bounding the subproblems size was overcome in [13] by

limiting the divide-and-conquer approach to only one level of recursion and using suboptimal

algorithms for the induced subproblems. Among these parallel approaches, only the algorithm

in [32] has been adapted so far to work in external memory by Goodrich et al. [21] thus achieving

I/O-optimal solutions for the 3-d halfspace intersection problem (hence for 3-d convex hull and

2-d Euclidean Voronoi diagrams, see comments above).

Another approach based on random sampling is the random incremental construction, RIC (also

originated in [14]). This approach adds the objects (e.g. segments) one at time, S

i

= S

i�1

[ fsg,

with the choice made at random, and updates the arrangement T (S

i

) at each step accordingly.

Although the RIC approach does not have the problem of controlling the total size of the sub-

problems, it is inherently sequential in its original formulation. However, there is a natural way to

parallelize it using a gradation, that is, a geometrically growing random sequence of subsets of the

input objects, ; = S

0

� � � � � S

l

= S. In this case, T (S

i

) is constructed from T (S

i�1

) by adding

the objects belonging to S

i

� S

i�1

. Gradations have been mostly used to build data structures,

as in the work of Mulmuley [27] and Mulmuley and Sen [28] (in fact, each level of the gradation is

constructed from scratch using a regular RIC algorithm). Chazelle [8] and Br�onnimann et al. [7]

used a gradation approach as an intermediate step to derandomize the incremental construction

of convex hulls, and this was followed by Amato et al. [2] to devise a parallel algorithm. The RIC

approach with gradations has not received much attention otherwise, perhaps because sequen-

tially it provides no advantage over the standard RIC algorithms, and in parallel it gives only

expected bounds while there the emphasis is most often on high probability bounds.

Our Results. We show that the RIC approach can be adapted via gradations to provide a

randomized incremental technique for external memory that results in expected I/O optimal

algorithms for several geometric problems. The algorithms are also optimal in the expected

number of internal operations performed (CPU time). By a suitable choice of the parameters of the

gradation, the incremental step from T (S

i�1

) to T (S

i

) can be performed by using e�cient internal

memory algorithms together with simple I/O e�cient procedures|like straightforward movement

of data in blocks or, in the most sophisticated case, external-memory sorting routines [29, 37].

As the main result, we obtain an I/O-optimal randomized algorithm for the segment intersections

problem that requires O(n log

m

n+ k) expected I/Os. Since the algorithm necessarily computes

the pairwise intersections among the input segments, this settles a question posed in [5]. The

algorithm can also be adapted to handle degeneracies (particularly, to achieve output sensitivity

with respect to the number of actual intersection points, not of pairwise intersections).

Our technique allows also to design algorithms with optimal expected I/O-bounds for the problems

of 2-d and 3-d convex hulls, 2-d abstract Voronoi diagrams and batched point location in a planar
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subdivision. Although I/O-optimal algorithms for these problems are already known (but for 2-d

Voronoi diagrams, only in the Euclidean case), our RIC approach via gradations represents a

uniform and simpler solution to all of them.

1

Our algorithms apply to all values of the model parameters B and M , and problem size N . The

more involved technicalities used in our algorithms are only needed to cope with extreme values

of M , N and B, e.g., B > M= log

2

M and log n > (MB)

1=4

. For practical values of N , M and B,

we show how to simplify the proposed algorithms in order to achieve an implementation requiring

only modules that are, for example, available in LEDA ([25]), TPIE([36]), and LEDA-SM ([15]),

like optimal internal memory algorithms for trapezoidal decompositions, point location in trape-

zoidal decompositions, topological sorting of graphs, and optimal external-memory algorithms for

building, scanning, and sorting lists of constant-sized items.

Finally, our results also extend to the external-memory model with D parallel disks, in which an

I/O-operation can transfer D disk blocks simultaneously, one from/to each disk. It seems likely

that the approach is also e�cient for a model with multiple CPU's and multiple disks, as the ones

described in [17, 37].

Basic Preliminaries. The RIC approach is valid with great generality within the framework of

con�guration spaces [14, 27]. However, for the sake of simplicity, the presentation in Sections 2|

5 is restricted to the segment intersections, that is, computing the trapezoidal decomposition of

the arrangement of a set S of N segments with a set K(S) of pairwise intersection points. Let

K = K(S) = jK(S)j. This decomposition is obtained by extending vertically each segment

endpoint, and each intersection point between segments, upward and downward until it hits

another segment; the trapezoids are the resulting connected regions of the plane. Given a subset

R � S of segments (objects), the set of resulting trapezoids (cells) is denoted by T (R). For

Figure 1: Trapezoidal decomposition

� 2 T (R), S

�

denotes the set of segments in S that intersect the interior of �, and is called

the conict list. Let N

�

= jS

�

j. A p-sample R from S is obtained by choosing every s 2 S

into R independently with probability p.

2

Note that the size of T (S) is f(S) = jSj + K(S)

(for simplicity of exposition, throughout the paper we ignore multiplicative constants if that only

a�ects the multiplicative factor in the �nal bounds) and similarly for a p-sample R the expected

size of T (R) is f(p; S) = pjSj+ p

2

K(S). There are two main properties of this sampling process

that are relevant for the analysis of the algorithms [14, 12, 27]. First, the average conict list size

1

The external-memory RIC approach also extends to other higher dimensional problems like convex hulls, hy-

perplane arrangements, etc.. However, in these cases, the need for a sorting step leads to algorithms with I/O

bounds which are suboptimal by a factor O(log

m

n). For simplicity of exposition and importance/applicability of

achieved results, we prefer to limit our presentation to the lower dimensional problems.

2

The sampling result in Appendix A.2, as well the complexity of our algorithms, also hold in the sampling model

where a subset R of size r = pN is chosen at random among all subsets of that size.

3



is at most 1=p. More precisely, for a constant C > 0:

3

E

2

4

X

�2T (R)

N

�

3

5

� C

f(p; S)

p

: (1)

Second, the deviation of the conict list size is O(log s) with high probability. More precisely, for

s � pN , given c > 0 there is C > 0, such that with probability at least 1� 1=s

c

:

max

�2T (R)

N

�

� C

log s

p

: (2)

The size function f(p; S) = pjSj+ p

2

K(S) is also valid for the other problems we will investigate,

by setting K(S) = 0. Though somewhat greater generality is possible, the �nal analysis that we

present in Appendix B is restricted to this function. For the optimal algorithms under general

conditions, the concept of a (1=r)-cutting for S is also needed [10, 24]:

4

A decomposition of the

underlying space into a set T of disjoint cells such that max

�2T

N

�

� N=r. In particular, the

following fact is used (see Appendix A.3 for its proof and more details):

Fact 1.1 There is a randomized algorithm that, given a set S of N objects, constructs a (1=r)-

cutting for S of size O(r

c

), requiring O(r

c

N) expected operations, where c is a small constant

depending on the problem.

Contents. In Sections 2 and 3 we present the RIC approach via gradations and its implementa-

tion in the external memory model, using the segment intersections problem as a concrete example.

In Section 4, we provide further algorithmic details for the segment intersections algorithm. In

Section 5 we describe simpler algorithms under certain practical restrictions. In Section 6, we

describe the changes needed to include other applications and describe three of them. In the

last section, we indicate the extension to multiple disks. In the Appendix, we state some addi-

tional facts on sampling in con�guration spaces, provide the analysis for the RIC approach via

gradations, and we indicate how to handle degeneracies in the segment intersections problem.

2 RIC via Gradations

For the sake of simplicity, we present the RIC approach via gradations using the segment intersec-

tions problem as a concrete example. The extension to other problems will be clear throughout

the paper, except for some problem dependent details that will be carefully discussed in Section 6.

To facilitate the presentation we use the following additional notation: Given a set of objects X

and a set of cells T , we write T [X] to denote the set of conict lists X

�

for � 2 T , and write

jT [X]j to denote

P

�2T

jX

�

j.

3

This assumes f(p=2; S) = O(f(p; S)) which holds for all of our applications. A more general version is actually

needed in the analysis and reviewed in the Appendix A.2.

4

As shown in Sections 5.1 and 5.2, by means of the high probability bound in Eqn. (2), we can avoid the use of

cuttings for a large, and practically reasonable, range of values of the parameters N;B;M . In these cases, we can

obtain considerably simpler (practical) algorithms that still achieve optimal expected bounds. Thus, cuttings are a

useful tool only for our theoretical results.
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2.1 Gradation

The algorithm is a variant of the RIC approach [14] and follows [8, 7]. Given parameters � and

�

0

, it chooses a sequence of subsets of S, called a gradation:

; = S

0

� S

1

� : : : � S

l�1

� S

l

= S

where S

i�1

is a (1=�)-sample from S

i

for i < l and S

l�1

is a (1=�

0

)-sample from S

l

= S.

5

Then,

it iteratively constructs the decomposition T (S

i

), for all i, 1 � i � l. At the beginning of the

i-th round, the decomposition T

i�1

= T (S

i�1

) and its conict lists T

i�1

[S] are available (initially,

S

0

= ; and thus T

0

consists of a single \unbounded" cell having the whole S as conict list), then

the algorithm constructs the new decomposition T

i

= T (S

i

) by using T

i�1

and T

i�1

[S]. We refer

to the l-th round as the last round, and to all the others as early rounds. Let R

i

be S

i

� S

i�1

,

the set of objects added in the i-th round, and for each cell � 2 T

i�1

, let R

i;�

be the subset of the

objects in R

i

which are conicting with �. Because of the random sampling, the sets R

i;�

will be

well balanced on the average. More precisely, in each early round, the average is at most �, and

in the last round the average is at most �

0

(recall Eqn. (1)).

2.2 A Round

The i-th round computes T

i

and T

i

[S] in three steps:

1. Intermediate decomposition: For each � 2 T

i�1

, identify R

i;�

by scanning S

�

and taking

from it the segments which belong to R

i

. Then compute the restriction of T (R

i;�

) to �,

denoted T

�

. This results in an intermediate decomposition T

I

i

=

S

�2T

i�1

T

�

.

2. Intermediate conict lists: For each � 2 T

i�1

, compute the conict lists T

�

[S] by taking each

s 2 S

�

at a time and, after an initial search in T

�

that locates an endpoint of s, determine

the conicts of s with the cells in T

�

by appropriately walking through it. These are the

intermediate conict lists T

I

i

[S].

3. Clean-up: Obtain T

i

and its conict lists T

i

[S] from the intermediate decomposition T

I

i

and

its conict lists T

I

i

[S]. Observe that � 2 T

i

can be chopped into pieces � \ �, for � 2 T

i�1

.

So we need to stitch together � from its pieces � \ � and also build its conict list from the

conict lists of its pieces.

Figure 2: A chopped trapezoid

5

The need for two parameters will become clear when discussing the external-memory implementation.
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Remarks. (1) In Step 1, if jR

i;�

j is O(1) then a nonoptimal polynomial algorithm su�ces. In

our external-memory implementation, jR

i;�

j is relatively large and hence, we will require the use

of an optimal (internal memory) algorithm. (2) In Step 2, it is not true for all applications of

our method that T

�

consists of cells � \ � for � 2 T (R

i;�

); rather the decomposition is rede�ned

within �. As a result, in Step 3 it is not always the case that � is obtained by stitching an

example is given Section 6.1. (3) In Step 3, we need to recover T (S

i

) so that we can apply the

sampling results for S

i

with respect to S. If the clean-up is not performed, then we can only use

the sampling results locally in each cell for S

i

with respect to S

i�1

and we can not longer prove

that the approach results in an optimal algorithm.

Analysis of internal running time. For simplicity, here as well as in later analysis, we ignore

multiplicative constants in the bounds. The steps are implemented so that: (i) in Step 1, an

optimal algorithm is used which requires t

0

(X) = jXj log jXj +K(X) operations; (ii) in Step 2,

the initial search is executed in O(log jR

i;�

j) operations by means of planar point location, and the

walk to determine the conicts is executed using an expected number of operations proportional

to the number of retrieved conicts (this is well-known [26]: the next trapezoid in the walk is

determined by checking all the neighbors of the current trapezoid; the analysis at the end of

Appendix C shows that the cost of this is as claimed); and �nally (iii) Step 3 is executed in

a number of operations which is proportional to the total size of the intermediate conict lists

T

I

i

[S], and to the total size of the resulting conict lists T

i

[S]. Consequently, the total number of

operations required in the i-th round is

X

�2T

i�1

0

@

K(R

i;�

) +N

�

log jR

i;�

j+

X

�2T

�

N

�

1

A

: (3)

The last round is simpler in that Step 2 is not needed at all, and in Step 3 no conict lists are

computed. In the expression above for the cost, only the �rst two terms are needed (note that

R

l;�

= S

�

). In Appendix B, the expectation of Eqn. (3) is evaluated, and adding over all the

rounds the following is shown.

Theorem 2.1 The RIC approach via gradations solves the segment intersections problem using

an optimal expected number of operations O(N logN +K).

3 The Algorithm for External Memory

We now present an I/O-e�cient implementation of the previous algorithm (recall the notation

m = M=B, n = N=B and k = K=B). First, as a technical point, we assume that the gradation

is constructed before the algorithm starts, so that for each object s 2 S there is an associated

tag that indicates the round in which s is inserted. The tag is carried by each copy of s (in each

conict list) so that, in the i-th round, the sets R

i;�

can be easily determined by scanning the

conict lists S

�

. This is important in an e�cient external memory implementation where we

cannot assume random access to data.

The choice of parameters � and �

0

is done as follows: � = m

1=2

and �

0

= maxfB;M

1=2

g.

Therefore, the expected number of levels in the gradation is l = O(log

�

(N=�

0

)) = O(log

m

n).

6

.

The main observations that lead to an I/O e�cient implementation are:

6

This also holds with high probability 1� 1=n

c

, since n(1=�)

(c+1) log

�

n

= 1=n

c

, for a proper constant c > 0.
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(i) The choice of �

0

implies that f(1=�

0

; S) = O(f(S)=B). As a result, in each early i-th round,

the algorithm does not need to handle T

i�1

in an I/O-e�cient manner: even incurring one

I/O per operation of the internal memory algorithm is acceptable. Only the last round must

handle T

l

in an I/O-e�cient manner, but then this is aided by the knowledge of T

l�1

.

(ii) The choice of � implies that in each early round the average size of T

�

is at most �

2

=M=B

(since the average size of R

i;�

is at most �). Therefore, ignoring deviations, T

�

can be

computed in internal memory and one block of memory allocated for each cell of T

�

, allowing

the conict lists to be written in an I/O-e�cient manner. Similarly, in the last round, the

choice of �

0

implies that, also ignoring deviations, the average size of R

l;�

= S

�

is at most

�

0

, for each � 2 T

l�1

. If B

2

�M then �

0

=M

1=2

and an optimal internal memory algorithm

can be used to construct T

�

, because the decomposition �ts in internal memory. If B

2

> M

then �

0

= B and T

�

can be larger than M , so that an I/O-optimal algorithm must be

devised to handle small inputs of size less than B.

To simplify the presentation, we describe the algorithm in two stages. First, we ignore the

deviations from the average values of jR

i;�

j and describe an algorithm that performs an optimal

number of I/Os. Speci�cally, we assume jR

i;�

j � � for i < l and jR

l;�

j � �

0

. Then, using a

re�nement approach of Chazelle and Friedman [10], we obtain an algorithm that works without

any assumptions on the R

i;�

's, at the cost of complicating the algorithm. In Section 5, we will

show that the original simpler but incomplete algorithm actually leads to a solution achieving

optimal I/O bounds under certain reasonable (i.e., practical) conditions on N , M and B.

3.1 Ignoring Deviations

We discuss the I/O operations needed to implement the basic algorithm of Section 2.2 in external

memory under the hypothesis that jR

i;�

j � � for i < l and jR

l;�

j � �

0

. We will refer later to

this algorithm as Algorithm I. The number of internal memory operations is the same as the one

analyzed in Theorem 2.1. As before, to simplify the equations, we ignore multiplicative constants.

3.1.1 The Early Rounds

We detail below the external-memory implementation of the three steps forming the i-th early

round in the basic algorithm.

Step 1. Each cell � 2 T

i�1

in turn, and its conict list S

�

, are loaded in internal memory so that

R

i;�

is determined by checking the tags and T

�

= T (R

i;�

) is computed. Since the size of T

�

is at

most �

2

� M=B, then T

�

can be constructed by an optimal internal-memory algorithm without

performing any I/Os. Thus, the number of I/Os required by this step is:

X

�2T

i�1

��

N

�

B

�

+

�

jR

i;�

j

B

�

+

�

jT

�

j

B

��

= O

 

jT

i�1

j+

jT

i�1

[S]j

B

+

jT

I

i

j

B

!

:

Step 2. By the hypothesis jT

�

j � �

2

= M=B, hence we can reserve in internal memory a bu�er

of size B for each cell � 2 T

�

. The conict lists T

�

[S], for � 2 T

i�1

, are computed by scanning

S

�

and walking through T

�

in internal memory. As a conict of s with some � is determined,

it is written into the bu�er associated with � . As a bu�er becomes full, it is written to external

memory. In this way, the number of I/Os is proportional to the size of the scanned and returned
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conict lists, divided by B. Therefore, the overall number of I/Os required by this step is:

X

�2T

i�1

�

N

�

B

�

+

X

�2T

i�1

X

�2T

�

�

N

�

B

�

�

jT

i�1

[S]j

B

+

jT

I

i

[S]j

B

+ jT

I

i

j+ jT

i�1

j = O

 

jT

I

i

[S]j

B

+ jT

I

i

j

!

:

Step 3. We have the intermediate decomposition T

I

i

and we need to determine the decomposition

T

i

. As noted earlier, a trapezoid � 2 T

i

may occur in T

I

i

chopped into pieces �\�, for � 2 T

i�1

. To

achieve optimal bounds, the stitching of pieces � \� has to be performed using a number of I/Os

proportional to the total number of blocks of size B required to hold the conict lists T

I

i

[S], and

the resulting conict lists T

i

[S]. Achieving this goal presents some di�culties because we cannot

a�ord to use sorting since this would lead to a suboptimal algorithm paying an extra-factor

log

m

n in the �nal I/O-complexity. Our approach is to �rst consider the partial ordering between

trapezoids induced by their vertical adjacencies; then, compute a linear order by topologically

sorting that partial order; and �nally, traverse the decomposition T

i�1

by following this linear

order. A di�culty is that we do not know how to topologically sort with a \linear" number of

I/Os, that is, jT

i�1

j=B. Fortunately, jT

i�1

j is \small" so that one can a�ord to use an optimal

internal-memory algorithm that even perform one I/O per internal memory operation. As T

i�1

is

traversed, the chopped trapezoids of T

i

are put together by maintaining a list of those that cross

the right vertical boundary of the trapezoid in T

i�1

currently considered. This list is matched to

the list of chopped trapezoids in T

i

that cross the left vertical boundary of the adjacent trapezoid

in T

i�1

when it comes under consideration. Further details are given in Section 4.1.

τ

τ

τ

1

2

5

τ

τ

τ

τ 3 τ

1

2

3

5

,

,

,

,

Figure 3: Trapezoids crossing a vertical edge

The conclusion is that Step 3 can be performed using a number of I/Os which is proportional to

the total number of blocks required to hold the conict lists T

I

i

[S] and the resulting conict lists

T

i

[S], plus the I/Os needed for the topological sort (i.e., jT

I

i

j):

X

�2T

i�1

X

�2T

�

�

N

�

B

�

+

X

�2T

i

�

N

�

B

�

�

jT

I

i

[S]j

B

+

jT

i

[S]j

B

+ jT

I

i

j+ jT

i

j = O

 

jT

I

i

[S]j

B

+ jT

I

i

j

!

:

Essentially, Steps 1{3 require an I/O-e�cient handling of the conict lists T

i�1

[S], T

I

i

[S]; in fact,

we devised external-memory algorithms that manage these lists by executing a number of I/Os

proportional to their sizes divided by the block size B. On the other hand, Steps 1{3 allow us

to handle in an I/O-ine�cient way the decompositions T

i�1

, T

I

i

and T

i

; in fact, we employed

ine�cient external-memory algorithms that manage those decompositions by executing a number

of I/Os which is proportional to their whole size.

3.1.2 The Last Round

The goal is now to compute the �nal decomposition T

l

= T (S) from T

l�1

in a reduced number of

I/Os. We recall that S

l�1

is a (1=�

0

)-sample from S, and we assumed that jR

l;�

j � �

0

. We need

8



an optimal algorithm that handles the small case, that is, it computes T (R

l;�

) for jR

l;�

j � �

0

�M

requiring t

1

(R

l;�

) = (N

�

=B) log

m

(N

�

=B)+K

�

=B I/Os, where N

�

= jR

l;�

j and K

�

= jK(R

l;�

)\�j

(that is, K

�

is the number of pairwise intersections of R

l;�

inside �). This is trivial if K

�

= 0

because we can use an internal-memory algorithm that requires linear space. But when this is

not the case T (R

l;�

) might not �t in internal memory at once and a proper optimal external-

memory algorithm is needed. The algorithm for such a \small case" can be obtained again using

sampling: Take a sample of size

p

M , compute its decomposition using an internal memory

algorithm, compute its conict lists, compute each of the resulting subproblems again in internal

memory, and �nally put together the result. Further details are given in Section 4.2 where it is

shown that the resulting algorithm requires t

1

(R

l;�

) expected I/Os (note that this expectation is

over the additional randomization required by this small case algorithm, not the randomization

introduced by the gradation). Thus, the last round consists of the following substeps:

l.1 For each trapezoid � 2 T

l�1

, compute its decomposition T

�

according to the segments

R

l;�

= S

�

using the small size case algorithm (Section 4.2), since N

�

� �

0

�M .

l.2 Obtain T (S) from the collection T

�

, for all � 2 T

l�1

.

As already pointed out, Step l.1 requires t

1

(R

l;�

) expected I/Os for each � 2 T

l�1

. Summing over

all the trapezoids in T

l�1

, and taking expectation, the expected number of I/Os isO(n log

m

n+k).

7

Finally, Step l.2 is indeed exactly the same as Step 3 of the i-th early round (above), with the

further simpli�cation that now there are no conict lists to merge. We therefore just need to

stitch appropriately the trapezoids in the collections T

�

's, for � 2 T

l�1

. Hence, the I/O-cost is

O(jT

I

l

j=B + jT

l�1

j).

We note that in the discussion above we ignored the deviations, so that we are actually assuming

that the internal memory can always accommodate R

i;�

, its decomposition and corresponding

bu�ers. In this situation (and proceeding with the same analysis adopted for the basic algorithm

in Appendix B), we can prove the following result:

Theorem 3.1 Let us assume that the internal memory can always accommodate R

i;�

, its de-

composition T

�

and the corresponding jT (R

i;�

)j bu�ers of size B. Then Algorithm I solves the

segment intersections problem using O(n log

m

n+k) expected I/Os, which is optimal.

The algorithm can be modi�ed to handle degeneracies and still achieve optimal complexity:

O(n log

m

n +i) where i = I=B and I is the number of intersection points (which can be much

smaller than the number of pairwise intersections). See Appendix C for details.

3.2 Handling Deviations

Now we show how to remove the assumptions made on jR

i;�

j, and cope with its deviation. We

will refer to this algorithm as Algorithm H. Speci�cally, this is achieved by using a re�nement

approach of Chazelle and Friedman [10, 24] (see Fact A.2 in Appendix A.3 for details). For i < l,

the idea is to use Fact 1.1 and hence construct a (1=t

�

)-cutting

^

T

�

for R

i;�

restricted to �, for

each � 2 T

i�1

, where t

�

= jR

i;�

j=� is called the excess of �. Since each cell � 2

^

T

�

satis�es the

desired constraint on the size of its conict list (i.e. � �), we can apply to it the Steps 1 and 2 of

the i-th round in Algorithm I. Then, to take care of the independent re�nement performed by the

cutting process on each cell � 2 T

i�1

, we perform two levels of clean-up; both levels are similar

7

Using Equation (5) in Appendix A.2 with g(x) = (x=B) log

m

(x=B).
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to Step 3 in Algorithm I. The �rst clean-up obtains T

�

and T

�

[S] from the T

�

's and T

�

[S]'s with

� 2

^

T

�

, and the second one obtains the �nal decomposition T

i

= T (S

i

) and its conict lists T

i

[S]

from T

I

i

and T

I

i

[S].

8

Similarly, for the last round.

Complete i-th round. The modi�ed algorithm for the i-th early round (i.e., i < l) is described

below. For simplicity of exposition, we also specify between square brackets the small changes

which are needed to get the modi�ed last round. Note that Step c.2.1 (and Step c.1 in the last

round) use an algorithm for the special case N �M which is described in Section 4.2.

c.1. For each � 2 T

i�1

, use Fact 1.1 to construct a (1=t

�

)-cutting

^

T

�

for R

i;�

restricted to �,

where t

�

= jR

i;�

j=�. Thus each � 2

^

T

�

satis�es the desired relation jR

i;�

j � �. Additionally,

compute the conict lists S

�

in

^

T

�

[S] by checking each s 2 S

�

versus each � 2

^

T

�

. This

computation allows also to determine the list R

i;�

. [In the last round, we have t

�

= jR

l;�

j=�

0

so that jR

l;�

j � �

0

.]

c.2. For each � 2 T

i�1

do the following:

c.2.1. For each � 2

^

T

�

, load R

i;�

in internal memory and compute T

�

= T (R

i;�

). [In the last

round, apply the small size case algorithm (see Section 3.1.2).]

c.2.2. For each � 2

^

T

�

, compute the conict lists T

�

[S], by scanning S

�

and walking in T

�

.

[In the last round, this step is not executed.]

c.2.3. Obtain T

�

= T (R

i;�

) and its conict lists T

�

[S] from the collection of T

�

's and their

conict lists T

�

[S], where � 2

^

T

�

. [In the last round, we just obtain T

�

.]

c.3. Obtain T

i

and its conict lists T

i

[S] from the intermediate decomposition T

I

i

and its conict

lists T

I

i

[S]. [In the last round, we just obtain T

l

= T (S).]

Steps c.2.1{c.2.3 are just like the corresponding Steps 1{3 of Algorithm I, and Step c.3 here is like

the corresponding Step 3 of Algorithm I. From Fact 1.1, the size of a (1=t

�

)-cutting for S

�

is O(t

c

�

)

and the expected number of required operations to construct it is O(t

c

�

N

�

). Consequently, it turns

out to be essential for the overall I/O-e�ciency of our complete algorithm that on the average t

c

�

behaves as a constant when multiplied by N

c

�

, by jR

i;�

j and by

P

�2T

�

N

�

. More precisely, the

following relations are proved in Appendix B.1 (here E

i

and E

i�1;i

denote expectations over the

random choices of S

i

, and of both S

i�1

; S

i

respectively, see Appendix B).

Lemma 3.2 The following relations hold for f(p; S) = pjSj+p

2

K(S) and positive constants c; e:

(i) E

i�1;i

h

P

�2T

i�1

t

c

�

N

e

�

i

�

1

q

e

i�1

f(q

i�1

; S).

(ii) E

i�1;i

h

P

�2T

i�1

t

c

�

jR

i;�

j

i

� �f(q

i�1

; S) for i < l and �

0

f(q

l�1

; S) for i = l.

(iii) E

i�1;i

h

P

�2T

i�1

t

c

�

P

�2T

�

N

�

i

�

1

q

i

f(q

i

; S)

8

In some other applications, e.g. 3-d halfspace intersection, the clean-up can be easily performed in one level.
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The important point is that the upper bounds on the right side of the inequalities are the same as

for the quantities on the left side without the t

�

factors. These relations allow us to prove that,

within a constant factor, the I/O cost of Algorithm H is the same as for Algorithm I. We verify

this for the i-th round as follows.

Step c.1: Following the proof of Fact 1.1 in Appendix B, the decomposition

^

T

�

and its conict

lists with R

i;�

can be computed in O(t

c

�

(jR

i;�

j=B +1)) expected I/Os. Lemma 3.2(ii) shows that

this I/O-bound is hidden by the overall cost of the algorithm. Lemma 3.2(i), with e = 1, shows

that we can also a�ord to compute the conict lists with S

�

by means of a brute-force approach.

Step c.2: Lemma 3.2(i-iii) shows that the I/O bounds obtained for Step 2 of Algorithm I also

apply to Steps c.2.1{c.2.3 of Algorithm H. For example, Lemma 3.2(iii) gives an upper bound

on the expected size of the conict lists S

�

, for � 2

^

T

�

, which is within a constant factor of the

expected size of the conict lists S

�

, for � 2 T

�

(note that

P

�2

^

T

�

N

�

� t

c

�

P

�2T

�

N

�

).

Step c.3: This is the same as Step 3 of Algorithm I, so its I/O-bound also applies here.

Theorem 3.3 Algorithm H solves the segment intersections problem using O(n log

m

n+ k) ex-

pected I/Os, which is optimal.

4 Details on the Segment Intersections Algorithm

In the previous section, some important details of the segment intersections algorithm were omit-

ted because they were too speci�c and distracting from the goal of presenting the main ideas

underlying our approach. In this section we provide those details; speci�cally, we discuss the

implementation of the clean-up step and the small-size case algorithm.

4.1 Clean-up Step

Let us assume that the graph G

i�1

describing the vertical adjacencies between the trapezoids of

T

i�1

is available (a node in G

i�1

corresponds to a trapezoid in T

i�1

and an arc in G

i�1

corresponds

to an adjacency through a vertical edge between two trapezoids in T

i�1

, see Fig. 4). Let us consider

an arc in G

i�1

directed according to the left to right ordering of the corresponding trapezoids.

This is an acyclic ordering, so we can choose a linear extension (i.e., topological sort) and traverse

G

i�1

according to that order. Usually, performing such an ordering on a generic graph is not

I/O-e�cient, but here we exploit the fact that in these earlier rounds (i < l), the underlying

graph G

i�1

has small size and thus we can a�ord to pay even one I/O per visited node. Hence,

we can compute this ordering by adopting a standard internal-memory algorithm which pays one

I/O per step, and thus requires a number of I/Os linear in the size of the graph G

i�1

, that is

jG

i�1

j = jT

i�1

j I/Os (this term is hidden by the next I/O-bounds). We can then proceed to visit

Figure 4: Adjacency graph

the trapezoids according to the induced order. At a generic step of the traversal, we say that an

arc of G

i�1

is waiting if its starting node has been visited but its ending node is yet to be visited;

11



we also say that the corresponding vertical edge is waiting and that the trapezoid currently under

consideration is active. We assume that the trapezoids � in T

�

are stored with a particular order:

First appear those trapezoids that touch the left vertical edge in order from top to bottom, then

those that do not touch the vertical edges, and then those that touch the right vertical edge from

top to bottom. During the visit of G

i�1

, as the next active trapezoid � 2 T

i�1

is considered, we

take the (ordered) list of trapezoids which are still not completed and thus are associated with the

one or the two waiting vertical edges e

1

and e

2

(the neighbors of � on the left). We merge these

lists with the (ordered) list of trapezoids of T

�

, by taking O((jT

�

j=B)+1) I/Os, since the �rst two

lists are surely smaller than the latter. As a result, some new trapezoids in T

i

are completed, some

are completely inside �, some other are started, and still others continue (i.e., stab �). The not

completed trapezoids are stored on the disk, associated with the (at most two) waiting vertical

edges to the right of � (thus preserving the invariant). Therefore, the overall I/O-cost of merging

trapezoids in the T

�

's to get T

i

is

P

�2T

i�1

((jT

�

j=B) + 1).

Within the same I/O-bound, it is possible to compute the next graph G

i

, thus preserving the

invariant. We are left with the problem of computing the conict lists T

i

[S], which are large

and thus must be managed properly. As before, a sorting operation would not yield the optimal

bound. Instead, we exploit the geometric structure of the problem and proceed as follows. We

assume that the trapezoids � 2 T

�

are stored in the particular order described before and now

have also associated their conict lists. The algorithm visits G

i�1

according to the induced order.

When a trapezoid � 2 T

i�1

becomes active, the algorithm proceeds by matching the trapezoids in

the one or the two corresponding waiting vertical edges e

1

and e

2

(the neighbors of � on the left),

and updating their conict lists. Namely, if � was incomplete in e

i

and matches with �

0

2 T

�

,

then we merge � and �

0

by augmenting the conict list of � with those conicts of �

0

that do not

intersect e

i

. These conicts are guaranteed to refer to new segments which don't intersect � and

thus have been not yet inserted in its conict list. This approach allows to merge the conict lists

without rescanning their segments over and over. Clearly, we must pay at least one disk access per

trapezoid in T

�

but this is not much of a problem due to the small size of G

i�1

(see considerations

above). In conclusion, the number of I/Os necessary to do this merging process is bounded by the

number of trapezoids in T

i�1

, in T

I

i

and in T

i

, and by the size of all the corresponding conicts

divided by B. Thus, Step 3 can be performed using a number of I/Os which is proportional to

the total number of blocks of size B required to hold the conict lists T

I

i

[S], and the resulting

conict lists T

i

[S].

4.2 Small Size Case Algorithm

We consider a set of segments S of size N � M and with K pairwise intersections (please note

that the variables S, N and K are local to this subsection). This computation is non-trivial since

K can be as large as M

2

and, hence, we cannot a�ord to even construct T (S) completely in

internal memory. For simplicity, in describing the algorithm we will ignore (in Step 1 below) the

deviations in the conict list sizes resulting from sampling. We can nevertheless cope with them

by adopting the cutting technique as we have done for the general algorithm in Section 3.2.

1. Take a p-sample R from S where p = 1=

p

M and compute T

0

= T (R) in internal memory.

As already indicated, we ignore the deviations and thus max

�2T

0

N

�

� 1=p =

p

M . Also

compute the adjacency graph G

0

of T

0

and a topological sort L

0

(in internal memory).

2. For each s 2 S compute the conicts with T

0

by walking on it in internal memory and by

storing the conicts on the disk as they are determined. Then sort all these conicts to

bring together the ones corresponding to S

�

, for each � 2 T

0

, according to ordering L

0

.
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3. For each � 2 T

0

compute T

�

= T (S

�

) in internal memory (see assumption in Step 1).

4. Obtain T (S) from the collection of T

�

's, where � 2 T

0

: First, traverse G

0

according to the

ordering L

0

, and assign addresses to the �nal trapezoids � 2 T (S) by loading in turn the

T

�

's (if a trapezoid � 2 T (S) is divided into many pieces in T

0

, then only the piece appearing

�rst is given an address). Then, the di�erent pieces of each � 2 T (S) are brought together

using sorting. At this point, all the pieces of � 2 T (S) can �nd out the �nal address of

� by a simple scan. Subsequently, we undo the sort so that each trapezoid can determine

the address of its neighbors. This information is propagated to all trapezoid pieces by

again sorting, scanning and undoing the sorting. Finally, a traversal of G

0

according to the

ordering L

0

, is used to write the resulting adjacency graph of T (S).

We elaborate further on the use of sorting in Steps 2 and 4. In Step 2, each determined conict is

made into a pair indicating the conicting segment and the position of the conicting trapezoid

in L

0

. Sorting these pairs brings together the conicts belonging to the same trapezoid of T

0

according to the ordering L

0

. In Step 4, for each � 2 T

0

and each chopped � 2 T

�

, we set up a

quadruple consisting of the top segment of � , the bottom segment of � , the x-coordinate of the

left boundary of � , and the x-coordinate of the right boundary of � . Sorting these quadruples

brings together all pieces that correspond to the same trapezoid � 2 T (S), and moreover brings

these pieces in their left to right ordering.

We point out that we can a�ord to sort segments and trapezoids here, because the two present

steps are executed only once (in the last round). Hence, the I/O-complexity of sorting is hidden

by the overall I/O-cost of the whole algorithm as we formally prove below.

We show that the total expected number of I/Os is O(n log

m

n+ k). The critical part is to verify

that the sort in Steps 2 and 4 can be performed within this bound. Indeed, the number of sorted

items is equal to the number of conicts and its expected value is N + (1=

p

M)K. Hence, using

multiway mergesort [37], the expected number of I/Os is (ignoring constants):

(n+ k=

p

M) log

m

(n+ k=

p

M) = n log

m

(n+ k=

p

M) + k=

p

M log

m

(n+ k=

p

M):

First note that the second term on the right side is always O(k) because N is assumed to be smaller

than M , K is then smaller then M

2

and also we have log

m

(n + k=

p

M)) = O(1). This term is

dominant if k=

p

M > n. On the other hand, if k=

p

M � n, then the �rst term is O(n log

m

n).

Therefore, the expected number of I/Os is indeed O(n log

m

n+ k).

5 Simpli�ed Algorithms Under Practical Conditions

5.1 First Version

We want to obtain an algorithm that achieves the optimal I/O bound but does not make use of

cuttings. Such a simpler algorithm can be designed as a slight variant of Algorithm I working

under some reasonable (and practical) conditions on the parameters N , M and B. These con-

ditions are not very restrictive because they hold for current computers and applications. The

new algorithm, called Algorithm I

0

, is derived from Algorithm I as follows: (i) the gradation

parameters are � = m

1=4

=2C and �

0

= M=(2C

2

logM logn), where C is determined by Eqn. (2)

with c = 2; (ii) if at the generic i-th round jR

i;�

j

2

> m, then the new algorithm performs as

many I/Os as they are necessary to access data that do not �t in internal memory (even paying

one I/O per internal memory operation); (iii) the small size case is now N � M=C logM and

the algorithm used here is the one described in Section 3.1.2 (without the use of cuttings as the
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resulting subproblems have size at most

p

M). The following lemma establishes conditions for

N;M;B under which Algorithm I

0

performs, within a constant factor, the same expected number

of I/Os as Algorithm I.

Lemma 5.1 Algorithm I

0

solves the segment intersections problem using an optimal expected

number of I/Os, under the conditions maxf6C

2

logC;B

1=2

g � n, B �M= log

2

M and

p

logm=C

2

� log n � m

1=4

.

Proof. First, note that �

0

� 1 when log n � M=2C

2

logM (this is weaker than the conditions

imposed below). For the i-th round, let us denote by I

i

(resp. I

0

i

) the expected number of I/Os

performed by Algorithm I (resp. Algorithm I

0

), and let W

i

be the expected number of internal

operations performed by both algorithms. If �

i

is the probability that condition (ii) above does

not hold during the i-th round (i.e., the probability that the algorithm starts executing an I/O

for each internal memory operation), then I

0

i

� I

i

+ �

i

W

i

. Therefore, adding over all the rounds,

we get I

0

� I +

P

i

�

i

W

i

� I +�BImax

i

�

i

, where � = logN= log

m

n (using I = n log

m

n+ k and

W = N logN +K). So we only need to establish the conditions under which max

i

�

i

� 1=�B

holds, and then I

0

= O(I) will immediately follow.

We need to evaluate �

i

, and thus we notice that 1 � �

i

(resp. 1 � �

l

) is the probability that

jR

i;�

j � m

1=2

(resp. jR

l;�

j � M=C logM). Now, since S

i�1

is a (1=�)-sample (resp. (1=�

0

)-

sample) from S

i

, using Eqn. (2) with c = 2, we obtain that jR

i;�

j � C� log s (resp. jR

l;�

j �

C�

0

log s) with probability at least 1� 1=s

2

, provided that s � jS

i

j=� (resp. s � jS

l

j=�

0

= N=�

0

).

Hence �

i

� 1=s

2

if we ensure that jR

i;�

j � m

1=2

(resp. jR

l;�

j � M=C logM) and s � jS

i

j=�

(resp. s � jS

l

j=�

0

= N=�

0

).

As far as the conditions on s are concerned, it su�ces that we choose s = 2C

2

n log n and assume

B �M= logM (which is weaker than the following conditions). As far as the conditions on jR

i;�

j

and jR

l;�

j are concerned, it su�ces that we impose C� log s � m

1=2

, C�

0

log s �M=C logM . By

assuming n � 6C

2

logC (hence, it is 2 log n � log s) and assuming log n � m

1=4

, both the above

conditions hold.

It remains to �x conditions for which we have �

i

� 1=(�B). Since �

i

� 1=s

2

, it su�ces to impose

B

1=2

� n (which actually implies logN � 3 log n) and logn � (1=C

2

)

p

logm.

Still, we need to ensure that the choice of �

0

does not a�ect the optimality of the algorithm

because the size of T

l�1

becomes too large (since we allow a number of I/Os linear in the size of T

i

when i � l� 1). So we need N=�

0

+K=�

02

� 2C

2

(n log

m

n+ k) or, splitting into two inequalities,

B � 2C

2

�

0

log

m

n and B � 2C

2

�

02

. These inequalities hold by imposing the additional conditions

B �M= log

2

M and 2C logn �M

1=2

(the latter is weaker than 2 log n � m

1=4

, assuming C is not

too large). Putting together all the conditions imposed above, gives the statement of the theorem.

Finally, we observe that the small size case N �M=C logM does not need to use cuttings because

for a sample of size

p

M , each of the trapezoids in its decomposition have conict list size at most

C(M=C logM) logM=

p

M =

p

M with probability at least 1=2, so we can repeat the sampling

until a good one is obtained.

5.2 Improved Conditions

We take advantage of the averaging results on the excess t

�

, to modify Algorithm I

0

so that it

performs well under less restrictive conditions. The new Algorithm I

00

proceeds as Algorithm I

0

with the exception that in Step 2 of the early rounds it uses bu�ers of size b

�

= max(1; B=t

2

�

),

instead of B, to produce the conict lists T

�

[S] (see Section 2.2). All these bu�ers can be allocated

in internal memory as long as jR

i;�

j

2

b

�

�M . Since jR

i;�

j

2

B=t

2

�

�M , it su�ces that jR

i;�

j

2

�M .

14



If this is the case, since t

2

�

behaves as a constant on the average, the expected total number of

I/Os required by Step 2 is equal to the one required by Algorithm I

0

. If T (R

i;�

) does not �t in

internal memory, the algorithm performs a large number of I/Os because it can possibly execute

one I/O per internal-memory operation.

Theorem 5.2 Algorithm I

00

solves the segment intersections problem using an optimal expected

number of I/Os, under the conditionsmaxf6C

2

logC;B

1=2

g � n, B �M= log

2

M and

p

logm=C

2

�

log n � (MB)

1=4

.

Proof. Lemma 3.2 is used to conclude that reducing the size of the bu�ers to b

�

does not a�ect

the expected number of I/Os performed by Step 2. Therefore, as long as the internal memory

can hold R

i;�

and its decomposition, that is as long as jR

i;�

j �M

1=2

, the expected total number

of I/Os is equal to that for Algorithm I within a constant factor.

The e�ect of jR

i;�

j �M

1=2

not holding, is analyzed following an argument similar to the one in the

proof Lemma 5.1. We want C� log s �M

1=2

(in the early rounds) and C�

0

log s �M=C logM (in

the last round). Since we set s = 2C

2

n logn and we assumed n � 6C

2

logC, it is 2 log n � log s,

so that from the �rst requirement we �nd the condition logn � M

1=2

=m

1=4

= (MB)

1=4

. The

other conditions remain the same as the ones stated in Lemma 5.1.

The last condition is a considerable improvement over the one in Lemma 5.1 for Algorithm I

0

.

The conditions hold for the values of N;M;B in current computers and applications.

6 General Algorithm and Other Applications

The RIC approach via gradations extends to many other problems in the framework of con�g-

uration spaces [14, 27], see Appendix A.1. The outline of the basic algorithm is the same as

that in Section 2. In most cases the resulting algorithm is optimal in the expected number of

(internal) operations performed. The corresponding external memory implementation is also just

as outlined in Section 3 (Algorithms I and H), except that the choice of the parameters � and �

0

needs to be modi�ed. Only the clean-up in Step 3 requires some additional comments.

This clean-up step is very problem dependent. In general, it requires some data movement on T

I

i

that must be performed e�ciently. This may require operations like integer sorting, connectiv-

ity, and graph traversal that are usually performed in O(X) operations when operating internal

memory, but cannot be performed with O(X=B) I/Os [11]. However, they can be implemented in

external memory by means of a sorting step which takes sort(X) = O((X=B) log

m

(X=B)) I/Os

to sort X items on the disk [37, 29]. In those cases, we have an additional I/O-term in Step 3:

sort

0

@

X

�2T

i�1

jT

�

j

1

A

= sort(jT

I

i

j):

Note that this cost involves the decompositions, not the conict lists because they are not managed

by the sorting process. This additive cost is acceptable in the applications where f(S) = jSj and

the corresponding desired I/O bound is O(n log

m

n). Although the RIC approach via gradations

extends to other problems like higher dimensional convex hulls and hyperplane arrangements, the

achievable bound is a factor log

m

n away from optimality because a sorting step seems unavoidable.

In the following subsections, we describe three further problems that can also be solved optimally

by means of our RIC approach: The problems are intersection of 3-d halfspaces, batched planar

point location, batch �ltering and abstract Voronoi diagrams. For these problems we have f(S) =
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jSj. The parameters of the gradation for algorithms I and H are � = m and �

0

= M , and for

Algorithm I

00

they are � = m

1=2

=2C and �

0

= M=2C log n. The conditions on N;M;B in the

corresponding version of Theorem 5.2 are:

maxf6C

2

logC;B

1=2

g � n, B �M= logm and

p

logm=C

2

� logn � (MB)

1=2

. (4)

6.1 Intersection of Halfspaces in 3-d Space

We consider the con�guration space in which the objects are halfspaces in 3-d space bounded by

nonvertical planes from below. The cells are semi-in�nite vertical triangular prisms bounded by

a nonvertical triangle from below (that is, the set of all points on or above a nonvertical triangle

in space). Given a set S of N halfspaces, we are interested in computing their intersections I(S).

Combinatorially, the boundary of I(S) consists of vertices, edges, and faces (polygons). We

assume non degeneracy, so that a vertex is determined by three halfspaces (an edge is determined

by two halfspaces). I(S) can be decomposed into cells of constant complexity by �rst triangulating

each face with a fan of edges from the lowest vertex to the other vertices, then the upward vertical

extension of this triangulation produces a decomposition of I(S) into prisms. These prisms are

the cells corresponding to S. For a prism � in the decomposition of I(R), R � S, �(�; S) consists

of those halfspaces whose bounding planes de�ne the vertices of � (hence a bounded number) and

S

�

consists of those halfspaces whose bounding planes intersect �. The number of faces, edges

and vertices in the set S of 3-d halfspaces is O(N), so Eqn. (1) becomes E

h

P

�2T (R)

N

�

i

� CN .

Figure 5 shows an example projected onto the xy-plane with two of its faces triangulated; the

thick triangle is the projection of a prism. The triangulation of the face only partially inside the

prism illustrates that cells (prisms) of T

i

are not obtained just by stitching pieces in T

I

i

. However,

we note that a cell of T

i

is determined by its three vertices and that its conict list is equal to the

p

q

Figure 5: Projection of halfspace intersection

union of the conict lists of its vertices (the conict list of a vertex v with respect to S consists

of those hyperplanes s 2 S which lie above v). The algorithm for the current problem follows the

algorithm outlined in Section 3 (Algorithms I and H) with appropriate changes. We elaborate

on those for Steps 2 and 3.

Walking. For a halfspace s, �rst a vertex in the intersection of its bounding plane h and the

boundary of I(R) is located using a logarithmic number of operations, and then a walk proceeds

along the intersection of h and the triangulation of the boundary of I(R), making use of the

adjacency information between triangles, and thus using a number of operations linear in the

number of conicts found.

Clean-up. The vertices incident to a particular face are identi�ed by creating three copies of

each vertex, each with a key equal to each of the three incident planes, and then sorting them
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lexicographically. Then, for each face, the lowest vertex and the fan triangulation are determined.

As already pointed out, the conict list of a prism is determined as the union of the conict lists

of its vertices (so, actually, one can just maintain the conict lists of the vertices).

Theorem 6.1 The 3-d halfspace intersection problem is solved optimally by Algorithm H in

O(n log

m

n) expected I/Os and O(N logN) expected internal operations. Under the conditions

in (4), the optimality is also achieved by the simpler Algorithm I

00

.

By standard geometric transformations [18], this also solves the 3-d convex hull and 2-d Euclidean

Voronoi diagram problems. Clearly, a somewhat simpler algorithm also solves the 2-d convex hull

problem.

6.2 Batched Point Location in a Planar Subdivision

In the batched planar point location one is given a set S of N interior disjoint edges (sharing

vertices is allowed) that de�ne a decomposition of the plane into regions (connected components),

and a query set P of K points. For each point x 2 P , one must determine the region which

contains x. The goal is an algorithm that executes O((n+ k) log

m

n) expected I/Os. This result

has already been obtained by Goodrich et al. [21] (for a monotone subdivision) and by Arge et

al. [5] (for the general case and deterministically). But our aim here is a simple solution within

our general approach. We speci�cally solve the equivalent problem of determining for each x 2 P ,

the segment in S directly above x.

Mulmuley [27] has used gradations for the purpose of point location as follows. The incremental

construction of T (S) determines a directed acyclic graph G(S) as follows: the vertex set G(S)

consists of the trapezoids � 2 T

i

for i = 0; : : : ; l, and (�; �) is an edge if for some i, � 2 T

i�1

,

� 2 T

i

and � \ � 6= ; (that is, � \ � 2 T

�

). The point location for a point x is a search in G(S)

which starts at the root (the only trapezoid at level 0) and progresses from level to level keeping

track of the trapezoid � 2 T

i

that contains x.

Our solution is an I/O-e�cient implementation of this approach. More speci�cally, �rst, the

trapezoidal decomposition T (S) induced by S is computed using our algorithm for the segment

intersections problem (actually, since the set of edges S is interior disjoint, the algorithm to

construct the trapezoidal decomposition can be considerably simpli�ed: since f(S) = jSj, the

clean-up can be performed using sorting and there is no need for a special small size case al-

gorithm). Then the multiple search in G(S) is made I/O-e�cient by using the batch �ltering

technique of Goodrich et al [21] adapted here to work with our construction by gradations. The

details are given in the next subsection 6.2. We can therefore state the following result:

Theorem 6.2 AlgorithmH solves the batched planar point location problem in O((n+k) log

m

n)

expected I/Os, and O(N logN +K) expected internal operations. Under the conditions in (4),

the optimality is also achieved by the simpler Algorithm I

00

.

Batch Filtering

In the previous subsection, we observed that the point location for a point x is a search in the

acyclic graph G(S) which starts at the root (the only trapezoid at level 0) and progresses from

level to level keeping track of the trapezoid � 2 T

i

that contains x. The multiple search in G(S)

for all the query points in the set P was made I/O e�cient there by the appropriate use of the

batch �ltering technique of Goodrich et al. [21]. In what follows we show how our RIC approach

is exible enough to be adapted to solve this multiple search process without any loss in e�ciency.
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This way, the batched planar point location problem can be solved entirely in the RIC framework

with expected optimal I/Os.

Let us �rst make the assumptions of Algorithm I, that is, ignore the deviations of jR

i;�

j. In the

batched �ltering technique, the K searches start at the root of the directed acyclic graph G(S)

and progress level by level (see the previous section). The search in level i � 1 is completed for

all K points before continuing with level i. At the beginning of the i-th round, for each � 2 T

i�1

,

there is the list P

�

of all points in P contained in �. Then, the search proceeds in two steps analog

to steps 2 and 3 of Algorithm I:

1. Each � 2 T

i�1

is considered in turn. For each � 2 T

�

, an internal memory bu�er of size

B is reserved. Then, for each x 2 P

�

perform a point location in T

�

(in internal memory),

and write the result into the corresponding bu�er. As a bu�er becomes full, it is written to

external memory. This results in P

�

for each � 2 T

�

.

2. For each � 2 T

i

, we bring together the sets P

�\�

for some � 2 T

i�1

. This only requires a

movement of the data in blocks, as the information on the pieces of � is already available

from the construction of T (S).

The number of I/Os performed can be evaluated in two parts. The �rst part accounts one I/O

per trapezoid of T

i�1

, T

I

i

and T

i

. This results in a cost of O(n) I/Os over all rounds. The second

part accounts for the direct manipulation of the K points and it is O(k) I/Os per round, for a

total of O(k log

m

n) I/Os. Thus, given a preprocessing of O(n log

m

n) expected I/Os, the queries

can be answered using O(n+ k log

m

n) I/Os. The overall cost is then O((n+ k) log

m

n) expected

I/Os.

Now, let us consider the modi�cations necessary to handle the deviations, that is, T (S) is con-

structed using Algorithm H. For each � 2 T

i�1

and x 2 P

�

, we need to perform a point location

for x in

^

T

�

. This is done as follows: Consider each � 2

^

T

�

in turn. Then scan P

�

checking

whether x 2 � ; if that is the case, it is written into an internal memory bu�er which is written to

external memory when full. At this point, for each � 2

^

T

�

, the point location for P

�

in T

�

can be

performed in internal memory. Afterwards, there are two clean-up steps, each of which consists

of a simple data movement. In conclusion, there is an additional cost

X

�2T

i�1

jP

�

j

B

t

2

�

;

where t

2

�

is an upper bound on the size of

^

T

�

. By an appropriate use of Eqn. (5), it is found that

in the expectation of this sum, t

�

also behaves as a constant. Hence, the expectation of this cost

is just O(k). Thus, this results in an overall cost of O((n+k) log

m

n) expected I/Os to answer the

queries. However, we must point out that the analysis requires P to be �xed, so that to obtain

the claim in general, we need to perform the construction of T (S) every time that a new set P of

queries is given.

Theorem 6.3 AlgorithmH solves the batch �ltering problem in O((n+k) log

m

n) expected I/Os,

and O(N logN +K) expected internal operations. Under the conditions in (4), the optimality is

also achieved by the simpler Algorithm I

00

.
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6.3 Abstract Voronoi Diagrams

Abstract Voronoi diagrams were introduced in [22]. They are de�ned by a system of bisecting

curves in the plane. We can deal with a subset of them (see [3]), in which a Voronoi cell can be

decomposed into cells of bounded size and hence a con�guration space of bounded degree results.

This subset still includes a large number of concrete important examples, e.g. Voronoi diagrams

of line segments.

Figure 6: Two segments and its bisector

For each pair of objects, their bisector splits the plane into the points closer to each of the objects.

These bisectors are assumed to be piecewise algebraic curves (a simple curve that consists of

a constant number of pieces, each one algebraic of constant degree), and some topological and

nondegeneracy assumptions are made about them. An important example, which we take up

in the remaining, is the Voronoi diagram of line segments in the plane. The example in Fig. 6

shows the bisector of two segments, it consists of seven pieces (the thin lines are auxiliary), linear

and quadratic. The Voronoi cell of an object O is the intersection over all the other objects O

0

of the region closer to O as determined by the bisector between O and O

0

. It is assumed that

the Voronoi cells can be decomposed into smaller cells, called trapezoids, so that the resulting

con�guration space satis�es the bounded degree property. Figure 7 shows an example in which

one of the Voronoi cells is decomposed into cells of bounded size.

σ
p

Figure 7: Voronoi diagram for 6 segments

The details of the algorithm are similar to those for the halfspace intersection problem. We only

point out how to obtain the conict lists during the clean-up step: Consider a trapezoid � inside

the Voronoi cell of a segment s; the conict list of � consists of those segments in S whose bisectors

with s intersect an edge of � which is also a Voronoi edge. This allows to perform the clean-up

by using sorting to bring together the conicts of each trapezoid. Figure 7 shows a (triangular)

trapezoid � and two bisectors that intersect its edges (note that only one of the intersected edges
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is a Voronoi edge).

Theorem 6.4 Abstract Voronoi diagrams (as de�ned in [3]) are computed optimally by Algo-

rithm H in O(n log

m

n) expected I/Os, and O(N logN) expected internal operations. Under the

conditions in (4), the optimality is also achieved by the simpler Algorithm I

00

.

7 Multiple Disks Model

We discuss the modi�cations required to extend our results to a system with D parallel disks. In

this model, it is assumed that an I/O-operation can transfer D blocks, one from/to each disk.

This implies that the main memory must have size M = 
(DB). In the D-disk model a set

of L items can be scanned with dL=(DB)e I/Os provided the L=B disk blocks containing the

items are evenly spread over the disks. Under the same assumption the set can be sorted with

O(L=(DB) log

m

(L=(DB))) I/Os, see [6, 29].

We modify our algorithms in such a way that the conict list of every trapezoid spreads nearly

evenly over the disks, in order to take advantage of the parallel block transfer. This requires the

following changes to Steps 2 and 3 of Algorithm I. We maintain a global bu�er area of size DB

in main memory, and in Step 2 we reserve a bu�er of size B per trapezoid, as previously done.

When the bu�er of a trapezoid is full, we write the block to the global bu�er area, and when the

global bu�er area is full, we choose a random permutation � of the integers 1 : : : D and write the

i-th block of the global bu�er area to the disk �(i) (emptying process). This guarantees that the

conict list of every trapezoid spreads nearly evenly over the disks (assuming the conict list size

is 
(DB logD) [6]).

We point out that the simpler approach consisting of storing the blocks in the global bu�er area

striped among the D disks would not work optimally. In fact, it might be the case that the

conict list of a given trapezoid is stored always on the same disk during a sequence of emptying

processes. This way, in the next round of Algorithm I, we could not retrieve this conict list with

an optimal number of parallel I/Os.

In Step 3, the conict lists are handled in a similar way, and since the topological sort of T

l�1

may require an I/O-operation for every internal operation, we set �

0

= max(DB logD;M

1=2

)

(the logD factor is so that conict list sizes are 
(DB logD)) and obtain an I/O-bound of

O(N=(DB) log

m

(N=(DB)) +K=(DB)).

8 Concluding Remarks

It seems likely that our approach is also e�cient for a model with D disks and p CPUs; such as

the models proposed in [17, 37]. Steps 1 and 2 parallelize trivially by working on p trapezoids

concurrently. Step 3 is more di�cult to parallelize. If T

l�1

is su�ciently small, topological

sorting may be performed with a single processor. Otherwise, since T

l�1

is a planar graph, it

follows from the planar separator theorem that T

l�1

can be divided in about p pieces of size

jT

l�1

j=p each by removing no more than

p

jT

l�1

j � p adjacencies between trapezoids. We assign

each piece to a single processor and let the processor do the clean-up across adjacencies within

the piece. We then do the clean-up across all removed adjacencies on a single processor. As long

as jT

l�1

j=p �

p

jT

l�1

j � p or p � jT

l�1

j

1=3

this should result in perfect speed-up.

Finally, we are working on the implementation of the simpler version of our algorithms (i.e.,

Algorithm I

00

) in the framework of the LEDA-SM library [15], in order to evaluate their practical

e�ciency on real-world problems.
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A Sampling in Con�guration Spaces

A.1 Con�guration Spaces

We consider geometric algorithms in the framework developed by Clarkson and Shor[14] and

Mulmuley [26, 27]. A geometric problem is formulated in terms of a con�guration space consisting

of a set O of objects; a set C of cells; a mapping T indicating for a set S � O, the set T (S) � C

of cells determined by S; a mapping � indicating for � 2 C and S � O, the set of objects

�(�; S) in S that de�ne �; and a mapping indicating for � 2 C and S � O, the set of objects

S

�

in S that conict with �, called the conict list of � in S. A con�guration space satis�es the

property of bounded degree if there are constants D and D

0

such that if S � O and � 2 T (S) then

j�(�; S)j � D, and if S � O with jSj � D then jT (S)j � D

0

; D is called the dimension of the

con�guration space. A con�guration space satis�es the property of locality if for all R � S � O

and � 2 C the following holds: � 2 T (R) i� �(�; S) � R and S

�

\ R = ;. In the applications,

the objects O \live" in a Euclidean space, and a subset S � O determines a collection of cells

(whose combinatorial complexity is not necessarily bounded), the arrangement A(S) of S, which

we are interested in computing. Then T (S) is a canonical decomposition of A(S) into disjoint cells

of bounded combinatorial complexity and, given a set S of objects, the problem is to compute

T (S). We assume that the objects S and the cells T (S) form a con�guration space satisfying the

bounded degree and locality properties.

A.2 Sampling

Recall that a p-sample R from S is obtained by taking each element of S into R independently

with probability p. Let f(S) denote an upper bound on the size of T (S), and let f(p; S) be

an upper bound on the expected size of T (R) where R is a p-sample from S. We assume that

f(p=2; S) = O(f(p; S)), which is the case in all our applications but not true in general. Let

N

�

= jS

�

j. The following generalization of Eqn. (1) is needed in the analysis of the algorithms

[14, 26, 27].

Fact A.1 There is a constant c > 0 such that if the function g satis�es g(tx)e

�ct

= O(g(x)) for

t � 1, then there is a constant C such that for a �nite set S of objects, if R is a p-sample from S,

then

E

2

4

X

�2T (R)

g(N

�

)

3

5

� C g(1=p) f(p; S): (5)

The left hand side of Eqn. (5) is a functional average of the conict list sizes, and thus this

equation indicates a sense in which the average conict list size is at most 1=p. Using g(x) = x in

Eqn. (5), we obtain Eqn. (1).

A.3 Cuttings

Fact 1.1 is well known but we sketch the proof as the procedure is essential in our optimal

algorithms.

Proof. Let D be so that x objects determine O(x

D

) cells (bounded degree property). Obtain a p-

sample R from S, with p = (Cr)

2

=N and compute T (R) and its conict lists. This takes O(r

2D

N)

time using brute force (there are at most O(r

2D

) cells to check). Repeat until no conict list is

greater than jSj=r. From Eqn. (2), with probability at least 1=2, max

�2T (R)

N

�

� jSj=r. Thus,
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the expected number of trials is O(1) and, hence, the expected number of operations required for

the construction is O(r

2D

N).

Optimal size cuttings. Neither the bound on the average of Eqn. (1) nor the bound on the

deviation of Eqn. (2) are su�cient in our applications. Fortunately, there is the following result

due to Chazelle and Friedman [10, 24]. Again, we sketch the proof.

Fact A.2 There is a randomized algorithm that, given a set S of N objects, constructs a (1=r)-

cutting for S of expected size O(f(p; S)), requiring O((1=p)f(p; S)) expected operations, where

p = r=N .

Proof. Let R be a p-sample from S. For each � 2 T (R), construct a (1=t

�

)-cutting T

�

for S

�

restricted to �, where t

�

= pN

�

(t

�

is called the excess of �), using the algorithm in Fact 1.1.

Then the cells in T =

S

�

T

�

have conict list size at most 1=p because for each � 2 T

�

, N

�

�

N

�

=t

�

= 1=p, and by using Eqn. (5), one can verify the claims on the size and the expected

number of operations.

B Analysis of RIC via gradations

In this section we analyze the number of operations executed by the RIC via gradations. For

the purpose of analysis, we look at the computation either from a backward or from a forward

point of view. In the former case, S

i�1

is seen as a (1=�)-sample from S

i

for i < l and as a

(1=�

0

)-sample for i = l, and this implies that S

i

is a q

i

-sample from S where q

i

= 1=�

0

�

l�1�i

. In

the latter case, S

i

is obtained from S

i�1

by adding a p

i

-sample R

i

taken from S � S

i�1

, where

p

i

satis�es q

i

= q

i�1

+ (1 � q

i�1

)p

i

(i.e. p

i

= (q

i

� q

i�1

)=(1 � q

i�1

)). Note that p

i

� q

i

(more

precisely, p

i

� (1=�)q

i

for q

i�1

� 1 � �). In the analysis, we use E

i

to denote the expectation

for sampling S

i

from S, and E

i�1;i

to denote the expectation for sampling S

i

and S

i�1

from S.

The expectations E

i

can be evaluated using Eqn. (5). To compute the expectations E

i�1;i

one

can take advantage of either the forward or backward views, respectively:

E

i�1;i

[X] = E

i�1

[E

i

[XjS

i�1

]] = E

i

[E

i�1

[XjS

i

]]:

The computation of the double expectation E

i�1;i

presents some di�culty if we keep using an

arbitrary function f(). So, we concentrate on f(p; S) = pjSj + p

2

K(S), K(S) = jK(S)j, where

K(S) is additive over cells and jK(S)j = O(jSj

2

) (K(S) is the set of pairwise intersection points in

the segment intersections problem). In the following, recall that for simplicity, we omit constant

factors.

Lemma B.1 Let f(p; S) = pjSj+ p

2

K(S). We have:

(i) E

i

[jT

i

j] � f(q

i

; S) and E

i

[jT

i

[S]j] �

f(q

i

; S)

q

i

(ii) E

i�1;i

2

4

X

�2T

i�1

jK(R

i;�

) \ �j

3

5

� f(q

i

; S)

(iii) E

i�1;i

2

4

X

�2T

i�1

N

�

log jR

i;�

j

3

5

� log

�

q

i

q

i�1

�

f(q

i�1

; S)

q

i�1

(iv) E

i�1;i

[jT

I

i

j] � f(q

i

; S) and E

i�1;i

[jT

I

i

[S]j] �

f(q

i

; S)

q

i

:
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Proof. (i) The �rst part follows by de�nition and the second follows from Eqn. 1.

(ii) is clear since

S

�2T

i�1

K(R

i;�

) � K(S

i

).

(iii) We adopt the forward view. First, E

i

[log(jR

i;�

j)jS

i�1

] � log(p

i

N

�

) � log(q

i

N

�

): Then, setting

g(x) = x log(q

i

x) in Eqn. (5), the desired expectation is at most (1=q

i�1

) log(q

i

=q

i�1

) f(q

i�1

; S).

(iv) For the �rst part, E

i�1;i

[jT

I

i

j] = E

i�1;i

[

P

�2T

i�1

P

�2T

�

1] � E

i�1

[

P

�2T

i�1

(jR

i;�

j + jK(R

i;�

)

\ �j)] � f(q

i

; S)=q

i

. For the second part, we have

E

i�1;i

2

4

X

�2T

i�1

X

�2T

�

N

�

3

5

= E

i�1

2

4

X

�2T

i�1

(N

�

+ p

i

jK(S) \ �j)

3

5

� N + q

i�1

K + p

i

K �

f(q

i

; S)

q

i

:

Bound on Internal Operations. Using (i-iii) in the previous lemma, in Eqn. (3) and adding

over all rounds, we obtain the following bound for the expected number of operations performed

(ignoring constant factors):

l

X

i=1

f(q

i

; S) +

l

X

i=1

log

�

q

i

q

i�1

�

f(q

i�1

; S)

q

i�1

+

l

X

i=1

f(q

i

; S)

q

i

� f(S) + (�

0

log�

0

)f(

1

�

0

; S) + log�

l�1

X

i=1

f(q

i�1

; S)

q

i�1

:

Finally, substituting f(p; S) = pjSj+ p

2

K(S), we obtain the bound jSj log jSj+K(S).

Bound on I/O Operations. In the case K(S) 6= 0, a sorting is not executed in the clean-up

step and hence the total number of I/Os in the i-th round is bounded by jT

I

i

j+

jT

I

i

[S]j

B

: In the case

K(S) = 0, a sorting operation is used in the clean-up step and then the total number of I/Os in

the i-th round is bounded by sort(jT

I

i

j)+

jT

I

i

[S]j

B

: In both cases, using the results above and adding

up over all rounds, the bound n log

m

n+ k results.

B.1 Proof of Lemma 3.2.

First, we verify (i):

E

i�1;i

2

4

X

�2T

i�1

t

c

�

N

e

�

3

5

=

1

�

c

E

i�1;i

2

4

X

�2T

i�1

jR

i;�

j

c

N

e

�

3

5

�

�

p

i

�

�

c

E

i�1

2

4

X

�2T

i�1

N

c+e

�

3

5

�

�

p

i

�

�

c

1

q

c+e

i�1

(q

i�1

N + q

2

i�1

K) �

1

q

e

i�1

(q

i�1

N + q

2

i�1

K):

The veri�cation of (ii) is similar. To verify (iii) we need to show that for a p-sample R from S:

E

2

4

X

�2T (R)

N

c

�

K

�

3

5

�

K

p

e

:

This is shown using a con�guration space in which the set of cells consists of the pairs (�; p) where

� is a trapezoid and p is an intersection point in K(S). Let T

0

(R) be the number of these cells in

T (R) for a p-sample R from S and let f

0

(p; S) be its expected number, then

E

2

4

X

(�;p)2T

0

(R)

N

c

�

3

5

�

f

0

(p; S)

p

:
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The left hand side is the expectation that we want to compute, and since f

0

(p; S) = K (each

point is in a trapezoid), the right hand side is also as desired.

Now, using this observation, we can verify (iii):

E

i�1;i

2

4

X

�2T

i�1

t

c

�

X

�2T

�

N

�

3

5

�

�

p

i

�

�

c

E

i�1

2

4

X

�2T

i�1

N

c

�

(N

�

+ q

i

K

�

)

3

5

�

�

p

i

�

�

c

 

1

q

c+1

i�1

(q

i�1

N + q

2

i�1

K) + q

i

1

q

c

i�1

K

!

� N + q

i

K:

C Handling Degeneracies in the Segments Problem

Proceeding similarly as in [34], the algorithm and analysis can be modi�ed so that multiple

intersection points (and also other degeneracies) can be handled. This is specially important as

otherwise the output sensitivity is not very meaningful.

The following degeneracies may appear: (i) vertices (endpoints or intersection points) with equal

x-coordinate (this includes the possibility of a vertical segment), and (ii) vertices that are (inte-

rior) intersection points of more than 2 segments. To deal with the �rst one we use a symbolic

perturbation so that points with the same x-coordinate are ordered left to right according to

the increasing value of the y-coordinate. This creates trapezoids of null width but provides the

resulting con�guration space with the bounded degree property. As for the algorithm, we only

need to point out that in the walk (in internal memory) to compute the conict lists, to locate

the next trapezoid requires to consider all the neighbors either adjacent through the upper and

lower boundaries or through the vertices: as shown in the �gure, if the exit point is a vertex of

the trapezoid, then one needs to consider the latter ones. The analysis below shows that it is �ne

to check all these neighbors.

Figure 8: Trapezoid and its neighbors

Analysis. There are two points in the analysis that need to be veri�ed to cover the case of

degeneracies. First, we want to verify that f(p; S) = O(pN + p

2

I(S)), where I(S) is the number

of intersection points of A(S). This is not trivial, because a particular vertex v can be the

intersection of more than 2 segments. Second, we verify that the exhaustive search among the

neighbors during the walk is very e�cient on the average.

First, we deal with the bound for f(p; S). Let I(S) be the points of the arrangement A(S) that

are interior intersection points for at least two segments (one such point could also be endpoint for

other segments), and for v 2 I(S) let d

v

be the number of such segments for which its endpoints
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are not adjacent to v. Thus, f(p; S) is bounded by pN plus

X

v2I(S)

�

1� (1� p)

d

v

� d

v

p(1� p)

d

v

�1

�

;

since a vertex in I(S) appears in I(R) if at least two of the segments intersecting at v are taken

into R. We want to show that this is O(p

2

I) where I = I(S) = jI(S)j. Let d =

1

I

P

v2I(S)

d

v

, the

average of the d

v

's. Then, we have

X

v2I(S)

�

1� (1� p)

d

v

� d

v

p(1� p)

d

v

�1

�

=

X

v2I

�

1� (1� p)

d

v

�1

(1 + (d

v

� 1)p)

�

� I

�

1� (1� p)

d�1

(1 + (d� 1)p)

�

� I(1� (1� (d� 1)p)(1 + (d� 1)p))

= I(d� 1)

2

p

2

:

where in the second line we have used convexity of the function g(x) = 1� (1� p)

x

(1 + xp), and

in the third line we have used (1� p)

c

� 1� cp. Now, note that

P

v

d

v

is bounded by the number

of edges in A(S) not incident to endpoints. Since the graph of the arrangement is planar, then we

can bound the number of edges by three times the number of vertices plus 6. So d � (3I+6)=I � 9

(note that we de�ned d

v

so that here the number of vertices is just I, not I + 2N). Thus, we

conclude that f(p; S) = O(pjSj+ p

2

I(S)).

Next, we deal with the cost of walking. More precisely, we argue that walking requires an expected

number of operations bounded by the expected number of conicts found. For a trapezoid � in

T (S), let �

�

be the number of neighbors of �, including those that share just a vertex (as shown

in the �gure above). We want to verify that

E

2

4

X

�2T (R)

N

�

�

�

3

5

�

f(p; S)

p

where R is a p-sample from S. This follows by considering a con�guration space in which the set

of cells consists of pairs (�; �) where � and � are neighbors, and the segments conicting with

(�; �) are those conicting with �. This is a bounded degree con�guration space, so for a p-sample

R from S we have

E

2

4

X

(�;�)2T

0

(R)

N

�

3

5

�

f

0

(p; S)

p

;

where T

0

(R) is the set of adjacent pairs (�; �) in T (R) and f

0

(p; S) is the expected size of T

0

(R).

Because of the planarity of the trapezoidal diagram, we have f

0

(p; S) = O(f(p; S)), and so this is

just the desired relation.
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