
Scheduling Multicasts on Unit-Capacity Trees and Meshes

Monika R. Henzinger

�

Stefano Leonardi

y

Abstract

This paper studies the multicast routing and admission control problem on unit-capacity

tree and mesh topologies in the throughput-model. The problem is a generalization of the

edge-disjoint paths problem and is NP-hard both on trees and meshes.

We study both the o�ine and the online version of the problem: In the o�ine setting, we

give the �rst constant-factor approximation algorithm for trees, and an O((log logn)

2

)-factor

approximation algorithm for meshes.

In the online setting, we give the �rst polylogarithmic competitive online algorithm for tree

and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network

topologies [BFL96] and there exists a polylogarithmic lower bound on the competitive ratio of

any online algorithm on tree topologies [AAFL96]. We prove the same lower bound for meshes.

�

Systems Research Center, Digital Equipment Corporation, 130 Lytton Ave, Palo Alto CA 94301. Email:

monika@pa.dec.com

y

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany & Dipartimento di Informatica Sistemistica, Univer-

sit�a di Roma \La Sapienza", via Salaria 113, 00198-Roma, Italia. This work was partly supported by EU ESPRIT

Long term Research Project ALCOM-IT under contract n. 20244, and by Italian Ministry of Scienti�c Research

Project 40% \Algoritmi, Modelli di Calcolo e Strutture Informative". Email: leon@dis.uniroma1.it

1 Introduction

Multicast routing and admission control are the basic operations required by future high-speed

communication networks that use bandwidth-reservation for quality-of-service guarantees. A num-

ber of applications from collective communication to data distribution will be based on e�cient

multicast communication.

Formally, the multicast routing and admission control problem with M multicasts consists of an

n-node graph G and a sequence or set of requests (t; s

i

), where the request node t and the source

node s

i

are nodes in G and i 2 f1; 2; : : : ;Mg. Multicast i consists of all requests with source s

i

.

For each request the algorithm has to decide whether to accept or reject it. If request (t; s

i

) is

accepted, the algorithm has to connect node t to the multicast tree connecting the already accepted

requests of multicast i with source s

i

. In the unit-capacity setting, each link can be assigned to only

one multicast tree: the trees spanning di�erent multicasts must be edge-disjoint. The objective

function is to maximize the total number of accepted requests. In the online version the requests

form a sequence and when processing a request, the algorithm must decide without knowledge of

future requests. In the o�ine version the requests form a set, which is given before the algorithm

decides which requests to accept.

Online multicast routing was recently studied under the small bandwidth assumption that the link

bandwidth required by every connection is at most a fraction logarithmic in the size of the network.

Awerbuch and Singh [AS97] gave an O(log n(log n + log logM) logM)-competitive algorithm for

the case in which all the requests to a given multicast arrive before the next multicast is created.

Goel, Henzinger, and Plotkin [GHP98] extended the study to the case in which requests to di�erent

multicasts can be interleaved.

With the sizes of networks growing faster than the link capacity, the small bandwidth request

assumption is not necessarily a realistic assumption. There are many applications, for instance a

multimedia server managed by a supercomputer, in which large amount of data must be transferred

in a local network where a single communication path consumes a large fraction of the available

bandwidth on a link [AGLR94]. Thus, the situation where the bandwidth required by a connection

is a large fraction of the link capacity needs to be studied as well for the multicast routing problem.

In this paper we take a �rst step into this direction by assuming that every connection uses the

total bandwidth on a link. We call this the unit-capacity case.

This paper studies both the o�ine and the online version of the multicast routing and admission

control problem in unit-capacity graphs. The o�ine problem models the case of arrival of a batch

of connection requests to several multicasts. It is also motivated by all those situations where the

answer to the user can be delayed for a limited time while other requests are collected.

We present algorithms for tree and mesh topologies, which are at the basis of many communication

networks. Trees are important practical network topologies [ABFR94, AGLR94, RU94, MKR95],

they are at the basis of topologies for communication networks such as trees of rings, often con-

sidered as interconnection of SONET rings optical networks [RU94, MKR95], or topologies for

connecting high performance multicomputers systems as trees of meshes [AGLR94] and fat trees.

The multicast routing problem on trees, when all the multicast groups use the same spanning tree, is

then a basic problem to solve in this context. There has also been an extensive study of the unicast

problem on these network topologies motivated by virtual circuit assignment and optical communi-

cation. Meshes topologies are often the basis of the interconnecting topology of high performance

multiprocessor systems. They are also relevant as a �rst approximation of nearly-planar communi-

1

cation networks [KT95]. The o�ine problem on meshes arises also in FPGA-routing, where various

subsets of components have to be connected by trees such that the trees of di�erent subsets do not

overlap and the underlying routing fabric is a mesh. The unicast problem for meshes was recently

studied in both the o�ine and the online version (see e.g. [AGLR94, KT95, Rab96, LMSPR98]).

Note that the multicast routing problem in unit-capacity graphs reduces to the edge-disjoint paths

problem if only one request is presented for each multicast, also called the unicast setting. Multicast

routing is also an interesting extension of the maximum coverage problem [Hoc97].

Previous work on unit-capacity networks. All previous work on unit-capacity networks stud-

ied unicast routing. Unlike multicast routing, the o�ine unicast problem is still polynomial on

trees [GVY93], but it is NP-hard on meshes. Kleinberg and Tardos [KT95] proposed the �rst con-

stant approximation algorithm for edge-disjoint paths on meshes and on a class of planar graphs

called \densely embedded, nearly-Eulerian graphs". They formulated the escape problem as an

interesting subproblem and gave a constant-factor approximation for the escape problem in the

unicast setting. A straightforward extension of their approach leads to a O(logn)-factor approxi-

mation for the escape problem for multicasts. We use instead a recursive approach that achieves a

O((log log n)

2

)-factor approximation.

For the online problem no algorithm, not even a randomized one, has a polylogarithmic competitive

ratio for any network topology [BFL96] for the unicast problem. Deterministic algorithms for the

unicast problem have a very high lower bound even for line networks [AAP93]. (This clearly extends

also to the multicast problem.) Therefore in the unicast setting restricted graph topologies like trees,

meshes, and \densely embedded, nearly-Eulerian graphs" [ABFR94, AGLR94, KT95, LMSPR98]

were studied before and algorithms with logarithmic competitive ratio were proposed for all these

network topologies.

Our o�ine results. The problem on trees contains the MAX-3SAT problem and is thus MAX-

SNP hard [Ali97]. We present a polynomial time approximation algorithm for unit-capacity trees

that achieves an approximation ratio of 18. The algorithm presents an interesting version of a

greedy strategy. Each step schedules the \densest residual subtree" for a multicast and discards

the overlapping subtrees of di�erent multicasts already selected. The \densest residual subtree" of

a multicast is the subtree maximizing the ratio between a value related to the net increase of the

objective function after the selection, and a weight associated with the subtree itself. The algorithm

can be easily implemented using a dynamic programming approach. To the best of our knowledge

no approximation algorithm was known for this problem before.

We also present the �rst approximation algorithm on unit-capacity meshes. Our polynomial time

algorithm obtains an approximation ratio of O((log log n)

2

). It formulates the multicast routing

problem as a fractional packing problem [GK98, PST95, You95] which is solved using duality-

based algorithms. The fractional solution is then rounded probabilistically, leading to a potentially

infeasible set of multicast trees, which are used to guide the construction of an integral solution.

Our online results.

We show that in the multicast setting polylogarithmic-competitive randomized algorithms are pos-

sible for restricted topologies: We present an O(log n(logn+log logM) logM)-competitive random-

ized multicast algorithm for trees and an O(log

2

n(log n+log logM) logM)-competitive randomized

multicast algorithm for meshes. We also show a randomized lower bound of
((log n logM)=d) for

a connected graph with minimum degree d. This gives a lower bound of
(log n logM) for meshes.

The same lower bound for trees follows from [AAFL96]. No competitive multicast algorithms were

known for these topologies before. There are various di�culties that multicast algorithms face over

2

unicast algorithms. One of them is that latter multicasts might be more pro�table than earlier

ones. Thus, our algorithms accept each multicast that pass an initial screening for \routability"

with roughly equal probability.

Section 2 of this paper presents the constant approximation algorithm on trees, Section 3 contains

the online algorithm for trees, Section 4 gives the o�ine algorithm on meshes, Section 5 presents

the online algorithm on meshes.

2 The o�ine algorithm for trees

We present a constant-factor approximation algorithm on trees. To denote the i-th multicast whose

request node set is V we use the pair (i; V). A submulticast (i; V

0

) of (i; V) is a multicast with

source s

i

and request node set V

0

� V . Our approach is to use a greedy algorithm that maintains

an initially empty set S of (potentially) accepted submulticasts and assigns a weight and a residual

pro�t to each submulticast. The algorithm repeatedly adds to S the submulticast that maximizes

the ratio of its residual pro�t to its weight. Since the algorithm is o�ine, it can �rst accept a

submulticast and then later add or subtract from it. We indicate this by saying that (i; V) is added

to or removed from the current set S of submulticasts. Two submulticasts (i; V) and (i

0

; V

0

) overlap

if they share an edge. We only add (i; V) to S if its pro�t is signi�cantly larger than the pro�t lost

by submulticasts which overlap with (i; V).

We root the tree T at an arbitrary leaf. This de�nes an ancestor-descendant relation on the nodes

of the tree. Let T (i; V) be the tree connecting the nodes of V to the source of i. The highest node

of T (i; V) is called the root root(i; V) of (i; V). Note that the root does not have to belong to V .

We say r is a subroot of (i; V) if r is the root of one of the submulticasts of (i; V). For each subroot

r we say (i; V

0

) is the maximum submulticast max(i; r) of (i; V) if (i; V

0

) is the submulticast of

(i; V) with root r that has the maximum number of requests.

Next we de�ne a weight for each multicast such that multicasts \higher" in the tree have higher

weight and hence are added to S \later", except if they are very pro�table. Given a submulticast

(i; V) with root r and a multicast (i

0

; V

0

) with i

0

6= i, let R(i

0

; i; r) be the set of subroots r

0

of (i

0

; V

0

)

such that r

0

is a true descendant of r and max(i

0

; r

0

) overlaps with max(i; r). For each multicast

(i; V) and each possible root position r, we de�ne the weight w(i; r) to be

w(i; r) = 1 +

X

i

0

6=i

max

r

0

2R(i

0

;i;r)

w(i

0

; r

0

):

For all multicasts (i; V) and (i

0

; V

0

) with i 6= i

0

and all subroots r, max(i; r) and R(i

0

; i; r) can be

computed in polynomial time. Thus, w(i; r) can be computed in polynomial time by a bottom-up

traversal of the tree.

The pro�t p(i; V) of a submulticast (i; V) is the number of requests in (i; V). For i 6= i

0

the

overlapping pro�t p(i; V; i

0

; V

0

) of submulticast (i; V) and (i

0

; V

0

) is de�ned to be the pro�t of the

maximum submulticast of (i

0

; V

0

) whose requests cannot be accepted if (i; V) is accepted, i.e., the

number of requests of (i

0

; V

0

) that cannot be accepted if (i; V) is accepted. For i = i

0

the overlapping

pro�t p(i; V; i

0

; V

0

) of submulticast (i; V) and (i

0

; V

0

) is de�ned to be the pro�t of (i

0

; V

0

\ V). Note

that in general p(i; V; i

0

; V

0

) 6= p(i

0

; V

0

; i; V).

Let O(i; V) be the set of submulticasts overlapping with (i; V). For a submulticast (i; V) the

3

residual pro�t

p

res

(i; V) = p(i; V)� �

X

(i

0

;V

0

)2S\O(i;V)

p(i; V; i

0

; V

0

);

where � > 1 is a constant to be chosen later. Let the ratio r(i; V) of a submulticast be de�ned to

be p

res

(i; V)=w(i; r), where r = root(i; V). Now the greedy algorithm works as follows:

(1) S = ;

(2) for each submulticast (i; V): the residual pro�t p

res

(i; V) = p(i; V)

(3) while there exists a submulticast not in S with positive residual pro�t:

(4) Let (i; V) be a submulticast with maximum r(i; V) of all submulticasts not in S.

(5) Let S

del

= f(i

0

; V

00

); (i

0

; V

00

) is the maximum submulticast of (i

0

; V

0

) 2 S

whose requests cannot be accepted together with (i; V)g

(6) S = S [(i; V) n S

del

(7) Update the residual pro�t for each submulticast.

Let the pro�t p(S) of set S of submulticasts be

P

(i;V)2S

p(i; V). If (i; V) is added to S, then

X

(i

0

;V

0

)2S\O(i;V)

p(i; V; i

0

; V

0

) = p(S

del

):

Thus, the residual pro�t of a submulticast compares its pro�t with the pro�t lost from S if the

submulticast is added to S. We �rst show that the algorithm terminates.

Lemma 1 The algorithm terminates after at most nM iterations.

Proof. Whenever a multicast (i; V) is added to S and a set S

del

of submulticasts is deleted,

p

res

(i) > 0. It follows that p(i; V) > �p(S

del

). Thus, p(S) increases in each iteration by at least 1.

The maximum value it can assume is nM.

We prove in the next subsection that this algorithm gives a constant factor approximation of

the optimum solution. In the following subsection we show how to implement each iteration in

polynomial time.

2.1 Proof of the constant approximation ratio

To prove that this algorithm gives a constant factor approximation we distinguish three types of

overlaps: If T (i; V) contains an edge incident to the root(i

0

; V

0

) then (i; V) is ancestor-touching

(a-touching) (i

0

; V

0

). Note that either root(i

0

; V

0

) = root(i; V) or root(i; V) is an ancestor of

root(i

0

; V

0

). If root(i; V) is a true descendant of root(i

0

; V

0

) and T (i; V) � T (i

0

; V

0

) then (i; V)

is internal to (i

0

; V

0

). Otherwise, i.e., if (i; V) and (i

0

; V

0

) overlap, root(i; V) is a true descendant

of root(i

0

; V

0

), but T (i; V) 6� T (i

0

; V

0

) then (i; V) is descendant-touching (d-touching) (i

0

; V

0

).

The weight of a multicast was de�ned such that the following lemma holds.

Lemma 2 Let S be a set of nonoverlapping submulticasts that are all internal or d-touching to

a submulticast (i; V) such that S contains at most one submulticast for each multicast i

0

. Then

P

(i

0

;V

0

)2S

w(i

0

; root(i

0

; V

0

)) � w(i; root(i; V)).

4

Proof. Let r = root(i; V) and let (i

0

; V

0

) 2 S be a submulticast with root r

0

. Note that r

0

is a true

descendant of r. Furthermore (i

0

; V

0

) and (i; V) overlap, thus max(i; r) and max(i

0

; r

0

) overlap.

Hence, r

0

2 R(i

0

; i; r) and w(i

0

; r

0

) � max

r

00

2R(i

0

;i;r)

w(i

0

; r

00

):

Thus,

X

(i

0

;V

0

)2S

w(i

0

; root(i

0

; V

0

)) �

X

(i

0

;V

0

)2S

max

r

00

2R(i

0

;i;r)

w(i

0

; r

00

)

�

X

i

0

6=i

max

r

00

2R(i

0

;i;r)

w(i

0

; r

00

)

< w(i; root(i; V))

The following lemma is used repeatedly.

Lemma 3 Let S be a set of non-overlapping submulticasts.

Then for each submulticast (i; V),

P

(i

0

;V

0

)2S a�touches (i;V)

p(i

0

; V

0

; i; V) � 2p(i; V).

Proof. Let S

0

be the set of submulticasts of S that a-touch (i; V). Let r be the root and let s be

the source of (i; V). Furthermore let e be the edge on the path from s to r that is incident to r.

Let (i

�

; V

�

) be the submulticast in S

0

whose multicast tree contains e if such a submulticast exists.

For each submulticast (i

0

; V

0

) 6= (i

�

; V

�

) in S

0

let children(i

0

; V

0

) be the children v of r such

that (v; r) belongs to T (i

0

; V

0

). Then the overlapping pro�t p(i

0

; V

0

; i; V) is at most the pro�t

of (i; V) in the subtrees of children(i

0

; V

0

). Since the submulticasts in S

0

are non-overlapping,

the set children(i

0

; V

0

) and children(i

00

; V

00

) are disjoint for any pair (i

0

; V

0

); (i

00

; V

00

) 2 S

0

. Thus,

P

(i

0

;V

0

)2S

0

;(i

0

;V

0

)6=(i

�

;V

�

)

p(i

0

; V

0

; i; V) � p(i; V).

Since p(i

�

; V

�

; i; V) � p(i; V), the lemma follows.

Next we show that the above algorithm gives a constant approximation of the optimum result: Let

S

opt

be the set of submulticasts chosen by the optimum algorithm and let S

f

be the �nal value of

S. Note that every submulticast in S

opt

overlaps with a submulticast in S

f

. We partition S

opt

as

follows: Let S

2

be the set of submulticasts in S

opt

that are d-touching or internal to a submulticast

of S

f

. Let S

1

be the set of submulticasts in S

opt

that are a-touching to a submulticast of S

f

, but

are not internal or d-touching to any submulticast of S

f

.

Lemma 4 p(S

1

) � 2�p(S

f

)

Proof. Let (i

0

; V

0

) 2 S

1

. Let S

0

f

be the set of submulticasts of S

f

that are a-touched by (i

0

; V

0

).

Note that S

0

f

= O(i

0

; V

0

) \ S

f

and that the residual pro�t of (i

0

; V

0

) is not positive at termination.

Thus,

p(i

0

; V

0

) � �

X

(i;V)2S

f

\O(i

0

;V

0

)

p(i

0

; V

0

; i; V):

Thus, by Lemma 3,

p(S

1

) =

X

(i

0

;V

0

)2S

1

p(i

0

; V

0

) � �

X

(i

0

V

0

)2S

1

X

(i;V)2S

f

\O(i

0

;V

0

)

p(i

0

; V

0

; i; V)

5

= �

X

(i;V)2S

f

X

(i

0

;V

0

)2S

1

a�touches (i;V)

p(i

0

; V

0

; i; V) � �

X

(i;V)2S

f

2p(i; V) � 2�p(S

f

)

Next we handle submulticasts in S

2

.

Lemma 5 p(S

2

) � (10 + 2�)p(S

f

) for � � 2.

Proof. The lemma follows from the following claim which we show by induction on the number

of iterations j: let S

j

be the set S after iteration j. Let D

j

be the subset of S

opt

consisting of all

submulticasts that d-touch or are internal to a submulticast in [

k�j

S

k

. Then

X

(i

0

;V

0

)2D

j

p(i

0

; V

0

) � 10

X

(i;V)2S

j

p(i; V) + �

X

(i;V)2S

j

X

(i

0

;V

0

)2D

j

:(i

0

;V

0

) a�touches (i;V)

p(i

0

; V

0

; i; V):

The claim holds before iteration 1 since S

0

and D

0

are empty. Assume the claim holds before

iteration j. Let (i; V) be added to S in iteration j and let S

del

be deleted. Let � = D

j

n D

j�1

.

Then the left side of the inequality increases by

P

(i

0

;V

0

)2�

p(i

0

; V

0

). We need to show that the right

side increases by at least so much.

Each (i

00

; V

00

) 2 S

j�1

is partitioned into two submulticasts (i

00

; V

00

1

) and (i

00

; V

00

2

) with (i

00

; V

00

1

) 2 S

j

and (i

00

; V

00

2

) 2 S

del

. Note that p(i

0

; V

0

; i

00

; V

00

) � p(i

0

; V

0

; i

00

; V

00

1

) + p(i

0

; V

0

; i

00

; V

00

2

). By Lemma 3

X

(i

00

;V

00

2

)2S

del

X

(i

0

;V

0

)2D

i�1

:(i

0

;V

0

) a�touches (i

00

;V

00

2

)

p(i

0

; V

0

; i

00

; V

00

2

) � 2p(S

del

)

Thus,

X

(i

00

;V

00

)2S

j�1

X

(i

0

;V

0

)2D

i�1

:(i

0

;V

0

) a�touches (i

00

;V

00

)

p(i

0

; V

0

; i

00

; V

00

) �

X

(i

00

;V

00

1

)2S

j

X

(i

0

;V

0

)2D

i�1

:(i

0

;V

0

) a�touches (i

00

;V

00

1

)

p(i

0

; V

0

; i

00

; V

00

1

) + 2p(S

del

):

Thus, the total decrease of the right side by removing S

del

from S is at most (10 + 2�)p(S

del

). It

follows that the right side increases by at least

10p(i; V) + �

X

(i

00

;V

00

)2S

j

X

(i

0

;V

0

)2�:(i

0

;V

0

) a�touches (i

00

;V

00

)

p(i

0

; V

0

; i

00

; V

00

)� (10 + 2�)p(S

del

):

We know that p(i; V) � �p(S

del

), which implies that 7p(i; V) � (10 + 2�)p(S

del

) for � � 2.

We show below that

X

(i

0

;V

0

)2�

p(i

0

; V

0

) � 3p(i; V) + �

X

(i

00

;V

00

)2S

j

X

(i

0

;V

0

)2�:(i

0

;V

0

) a�touches (i

00

;V

00

)

p(i

0

; V

0

; i

00

; V

00

): (�)

Thus, the inductive claim continues to hold.

To show (�) we consider two cases. Let A = � \ S

del

: Let B be the rest of �.

Bounding A: As shown above, �p(S

del

) � p(i; V). Thus, p(A) � p(i; V)=� � p(i; V).

6

Bounding B: Consider a multicasts (i

0

; V

0

) in B. When (i; V) is added, (i

0

; V

0

) does not belong to

S

j�1

and it is not selected by the algorithm. Thus, the ratio r(i

0

; V

0

) is at most the ratio r(i; V).

Note that each multicast has at most one submulticast in B. Thus, using Lemma 2 it follows that

X

(i

0

;V

0

)2B

p

res

(i

0

; V

0

) =

X

(i

0

;V

0

)2B

r(i

0

; V

0

)w(i

0

; root(i

0

; V

0

)) �

r(i; V)

X

(i

0

;V

0

)2B

w(i

0

; root(i

0

; V

0

)) � r(i; V)w(i; root(i; V)) = p

res

(i; V):

Thus,

X

(i

0

;V

0

)2B

(p(i

0

; V

0

)� �

X

(i

00

;V

00

)2S

j�1

\O(i

0

;V

0

)

p(i

0

; V

0

; i

00

; V

00

)) � p(i; V)� �p(S

del

):

By de�nition no submulticast (i

0

; V

0

) in B d-touches or is internal to a submulticast in S

j�1

. Thus,

all submulticasts in S

j�1

\ O(i

0

; V

0

) are a-touched by (i

0

; V

0

). Using Lemma 3 for the second

inequality in the same way as above shows that

p(B) � p(i; V)� �p(S

del

) + �

X

(i

00

;V

00

)2S

j�1

X

(i

0

;V

0

)2B:(i

0

;V

0

) a�touches (i

00

;V

00

)

p(i

0

; V

0

; i

00

; V

00

) �

p(i; V) + �p(S

del

) + �

X

(i

00

;V

00

1

)2S

j

X

(i

0

;V

0

)2B:(i

0

;V

0

) a�touches (i

00

;V

00

1

)

p(i

0

; V

0

; i

00

; V

00

1

) �

2p(i; V) + �

X

(i

00

;V

00

1

)2S

j

X

(i

0

;V

0

)2B:(i

0

;V

0

) a�touches (i

00

;V

00

1

)

p(i

0

; V

0

; i

00

; V

00

1

):

Since p(�) = p(A) + p(B), this shows (�).

It follows that

p(S

opt

) = p(S

1

) + p(S

2

) � (4� + 10)p(S);

for � � 2. Choosing � = 2 gives an approximation factor of 18.

2.2 The polynomial time implementation of the algorithm

We are left with showing how to implement each iteration in polynomial time. Given a set S, the

algorithm must compute at each step a submulticast of maximum ratio r(i; V). Note that it su�ces

to compute for each multicast i and each possible root position r

�

the submulticast best(i; r

�

) with

maximum residual pro�t. The desired submulticast is the one that maximizes over all multicasts i

and all possible root positions r

�

of i the ratio

p

res

(best(i; r

�

))

w(i; r

�

):

Let T

v

be the subtree of T rooted at node v.

We describe a polynomial time procedure based on dynamic programming that �nds for each

multicast i and for each possible root position r

�

a submulticast best(i; r

�

) with maximum residual

pro�t. To be precise it su�ces to consider all submulticasts of max(i; r

�

).

7

Let (i; V) be the submulticast of i that currently belongs to S (V = ; if no such submulticast

exists.) To �nd best(i; r

�

) root the tree T at the source s of max(i; r

�

). (This rooting is completely

independent of the rooting in the previous section.) We �rst compute a cost cost(e) for each edge

in the tree. Then we construct a binary tree T

0

from the original tree for use in a dynamic program.

Next, we use the edge costs to compute two cost functions cost

0

v

and cost

1

v

for each vertex v 2 T

0

using bottom-up dynamic programming. Finally, cost

1

s

can be used to determine best(i; r

�

).

Computing the edge costs: Use a depth-�rst traversal of the tree starting at s. When traversing

edge e, a cost is assigned to e. The cost of edge e will be the pro�t that is lost by S when this edge

is assigned to multicast i and thus is no longer available for submulticasts in S, ignoring the pro�t

that S already lost on the edges along the path from e to s.

Formally, we have the following de�nition: If e belongs to (i; V) 2 S, or e does not belong to any

submulticast in S, or e does not belong to the multicast tree of max(i; r

�

), cost(e) is 0. Otherwise,

e belongs to the multicast tree of max(i; r

�

) and to a submulticast (i

0

; V

0

) of S with i

0

6= i. Let

e = (u; v) and let u be the parent of v. Let p(i

0

; V

0

; s; x) be the number of requests of (i

0

; V

0

) that

use an edge on the path from s to x. Then cost(e) = p(i

0

; V

0

; s; v)� p(i

0

; V

0

; s; u).

Obviously all edge costs can be computed in polynomial time.

To illustrate the edge costs, assume for a moment that S contains only 1 submulticast (i

0

; V

0

). Let

s

0

be the source of i

0

. Then the only edge costs that have non-zero value are the ones on the path

from s

0

to s or incident to a node on the path from s

0

to s. Call these edge costs the edge costs

for (i

0

; V

0

). If S consists of more than one submulticast (i

j

; V

j

), then the edge costs are simply

assigned considering separately each (i

j

; V

j

). Thus, a multicast i

0

6= i of S with an edge of positive

cost incident to v has its source in the subtree rooted at v.

Constructing the binary tree T

0

: For the bottom-up dynamic programming approach we need to

transform the tree into a binary tree T

0

by introducing additional nodes and edges. The cost of

each additional edge is 0. Let v be a node in the original tree with d � 1 children. We call an edge

incident to v unused if it does not belong to a submulticast of S or has cost(e) = 0. All the other

edges incident to v have positive cost and belong to a submulticast of S. Recall that a multicast

i

0

6= i of S with an edge of positive cost incident to v has its source in the subtree rooted at v. Let

q be the number of di�erent multicasts with a edge of positive cost incident to vertex v.

We replace v by a binary tree with q+1 leaves, if there are unused edges incident to v, and with q

leaves otherwise. The �rst q are called special and correspond to a submulticast in S incident to v

with at least an edge of positive cost; the last leaf L, if applicable, corresponds to all unused edges

incident to v. Leaf L is the root of a binary tree with l leaves, where l is the number of unused

edges incident to v. Each unused edge incident to v in T is incident to one of these leaves such that

each leaf is incident to one of the unused edges.

Let v(i

0

) be the special node corresponding to submulticast (i

0

; V

0

) 2 S and assume t edges of

(i

0

; V

0

) are incident to v. Then v(i

0

) has two children, one corresponding to the edge e connecting

v to the source of i

0

and the other being the root of a binary tree with t � 1 leaves. The subtree

for v(i

0

) in T

0

consists of v(i

0

), its children and the binary tree of t� 1 leaves. Edge e is connected

to \its"' leaf and each other edge of (i

0

; V

0

) incident to v is incident to one of the other leaves such

that each leaf is incident to one of these edges. Note that these nodes have one child each in T

0

,

i.e., are not leaves in T

0

.

The root of the binary tree for v is labeled v. A leaf of the binary tree corresponding to a leaf v of

T is also labeled v.

8

All submulticasts are extended in a natural way to T

0

.

Computing the cost functions cost

0

and cost

1

: We want to compute a submulticast of max(i; r

�

)

with maximum residual pro�t. Thus, we �nd for each possible pro�t b, b = 1; 2; : : : ; n, the submul-

ticast (i; V

�

) that gets b pro�t and maximizes b � �cost(b), where cost(b) is the minimum pro�t

that S \looses" if (i; V

�

) is accepted. This is equivalent to �nding the submulticast with pro�t b

that minimizes cost(b). The basic idea is to use bottom-up dynamic programming to compute for

each node v

0

in T

0

the submulticast that minimizes cost

v

0

(b), where cost(b)

v

0

is the minimum cost

that S \looses" in the subtree rooted at v

0

if the submulticast is accepted.

However, there is a complication at special nodes that requires the use of two cost functions, cost

0

v

0

and cost

1

v

0

: Let w be a node of T with 2 children y and z, both belonging to submulticast (i

0

; V

0

) 2 S.

Let y lie on the path from v to the source of i

0

. Let v

0

be the special node v(i

0

) in the subtree of

w in T

0

and let l

0

and r

0

be its children such that T

0

l

0

contains the node labeled y. Assume pro�t

0 < j < b is achieved in T

y

and pro�t b � j is achieved in T

z

. Then we do not want to add both

cost(w; y) and cost(w; z) to cost

v

0

, since cost(w; y) considers already the cost of \loosing" all the

requests of (i

0

; V

0

) whose path uses w. Instead we want to only add cost(w; y) and not cost(w; z)

to cost

v

0

. Thus, to \tell" the recursion on r

0

that it should not add in any more \lost pro�t" of

(i

0

; V

0

) we use the cost function cost

0

r

0

. If the recursion on r

0

is allowed to add in more \lost pro�t"

of (i

0

; V

0

) (since e.g. no pro�t was achieved in T

y

), we use cost

1

r

0

. Note that this complication arises

only at special nodes.

We need to use cost

0

in T

0

r

0

until we reach the leaf x

0

of the subtree of v(i

0

) in T

0

whose edge e to

its child corresponds to (w; z). When computing cost

0

x

0

we do not add in the cost cost(w; z) of e

and then use cost

1

to recurse on the children of x

0

. Thus, cost

0

x

0

is only needed at nodes belonging

to the subtree of v(i

0

) in T

0

for some submulticast (i

0

; V

0

) 2 S.

We next give the formal de�nitions. When we want to avoid that the dynamic program chooses a

speci�c cost

t

v

0

(b), t = 0; 1, combination, we set its value to 1.

(1) For all v

0

2 T

0

and for t = 0; 1: cost

t

v

0

(0) = 0.

(2) For all v

0

2 T

0

such that there are less than b requests of max(i; r

�

) in the subtree of v in T

0

and for t = 0; 1: cost

t

v

0

(b) =1.

(3) For any b > 0, for t = 0; 1, and for all v

0

2 T

0

with one child, call the missing child r

0

. We

assume that cost

t

r

0

(b) =1.

(4) For all non-special v

0

2 T

0

, let c be the number of requests of max(i; r

�

) at v

0

. Then,

cost

1

v

0

(b) = minfmin

fj=1;::;b�c�1g

cost(v

0

; l

0

) + cost

1

l

0

(j) + cost(v

0

; r

0

) + cost

1

r

0

(b� c� j);

cost(v

0

; l

0

) + cost

1

l

0

(b� c); cost(v

0

; r

0

) + cost

1

r

0

(b� c)g

For all special v

0

= v(i

0

) 2 T

0

, let l

0

be the child of v that leads to the source of multicast i

0

. Then

cost

1

v

0

(b) = minfmin

fj=1;::;b�1g

cost(v

0

; l

0

) + cost

1

l

0

(j) + cost

0

r

0

(b� j);

cost(v

0

; l

0

) + cost

1

l

0

(b); cost(v

0

; r

0

) + cost

1

r

0

(b)g

(5) For all v

0

2 T

0

whose children are not labeled by a vertex of T , let c be the number of requests

of max(i; r

�

) at v

0

. Then

cost

0

v

0

(b) = min

fj=0;::;b�cg

(cost

0

l

0

(j) + cost

0

r

0

(b� c� j))

9

For all v

0

2 T

0

whose children are labeled by a vertex of T

cost

0

v

0

(b) = min

fj=0;::;bg

(cost

1

l

0

(j) + cost

1

r

0

(b� j))

In (5) we are not adding in cost(v

0

; l

0

) and cost(v

0

; r

0

).

Computing cost

t

v

0

(b) for a given v

0

and b by bottom-up dynamic programming takes time O(n).

Since there are n di�erent values for b and O(n) nodes in the tree, we spend time O(n

3

) for multicast

i and possible root position r

�

to compute all cost

0

and cost

1

values.

Lemma 6 Let s

0

be the node of T

0

labeled with the source s of i. The largest residual pro�t of any

submulticast of max(i; r

�

) is max

b

(b� �cost

1

s

0

(b)).

Proof. Let T

0

v

0

be the subtree of T

0

rooted at v

0

. We prove the following claims by bottom-up

induction:

(1) For each vertex v

0

2 T

0

cost

1

v

0

(b) equals

� the minimum number of requests in T

0

v

0

of submulticasts in S that cannot be accepted if a

submulticast of max(i; r

�

) accepts b submulticasts in T

0

v

0

,

� and 1 otherwise.

(2) For each vertex v

0

2 T

0

that belongs to the subtree of v(i

0

) for some (i

0

; V

0

) 2 S, cost

0

v

0

(b) equals

� the minimum number of requests in T

0

v

0

of submulticasts in Sn(i

0

; V

0

) that cannot be accepted

if a submulticast of max(i; r

�

) accepts b submulticasts in T

0

v

0

,

� and 1 otherwise.

The second part of each claim follows by the de�nition of cost

1

v

0

and cost

0

v

0

, we only need to show

the �rst part.

(1) For the basis of the induction, if v

0

is a leaf of T

0

it is labeled with a leaf v of T . We can assume

that b requests of max(i; r

�

) are at v

0

. Note that any submulticast (i

0

; V

0

) of S with a request at

v

0

also must have its source at v

0

. Thus, the request of (i

0

; V

0

) can be accepted, even if b requests

of max(i; r

�

) are accepted. Hence, cost

1

v

0

(b) = 0, and the claim holds.

If v

0

is an internal vertex of T

0

, we distinguish two cases, depending on whether v

0

is a special node

or not. Let l

0

and r

0

be the two children of v

0

.

Case 1: v

0

of T

0

is not a special node. If v

0

is not a special node of T

0

, then cost

1

v

0

(b) is de�ned by

the �rst part of rule (4).

If only one edge (v

0

; l

0

) is incident to v

0

then cost

1

v

0

(b) = cost(v

0

; l

0

) + cost

1

l

0

(b � c) and the claim

holds by induction on vertex l

0

. Otherwise, cost

1

v

0

(b) is de�ned as the minimum over all the possible

partitions of b�c between the two subtrees T

0

l

0

and T

0

r

0

. Since inductively cost

1

l

0

and cost

1

r

0

are equal

to the minimum pro�t that S looses in T

0

l

0

and T

0

r

0

, the claim holds also for cost

1

v

0

.

Case 2: v

0

of T

0

is a special node. If v

0

= v(i

0

) is a special node of T

0

, then cost

1

v

0

(b) is de�ned by

the second part of rule (4). Let (i

0

; V

0

) 2 S.

The minimum number of lost requests is the minimum over all the possible partitions of b between

the subtree T

0

l

0

that contains the edge leading to the source of i

0

and the subtree T

0

r

0

containing the

10

other edges of T (i

0

; V

0

). Let w be the node in T to whose binary tree n T

0

v

0

belongs and let y be

the child of w such that T

y

contains the source of i

0

. Note that in T

0

the edge e from l to its only

child in T

0

has cost cost(w; y).

If the submulticast of max(i; r

�

) accepts requests in T

0

l

0

then the submulticast contains e. By the

de�nition of cost(w; y), e's cost cost(w; y) contains already all the pro�t of (i

0

; V

0

) lost in T

0

r

0

. Thus,

no further lost pro�t in T

0

r

0

should not be added to cost

1

v

0

. By the inductive claim, cost

0

r

0

computes

the minimum pro�t lost by S in T

0

r

0

, not considering the pro�t lost by the submulticast to which

edge (v

0

; r

0

) belongs, i.e., the pro�t of (i

0

; V

0

).

Since cost

1

v

0

(b) is again de�ned as the minimum over all the possible partitions of b� c between the

two subtrees, using cost

0

l

0

for T

0

l

0

and cost

0

r

0

for T

0

r

0

. Thus, the claim follows as in case 1.

If, however, the submulticast of max(i; r

�

) does not accept requests in T

0

l

0

, then the lost pro�t

equals cost(v

0

; r

0

) + cost

1

r

0

(b� c) and the claim holds by induction on r

0

.

(2) The edges in T

0

with non-zero cost are edges that connect nodes labeled by a vertex of T to

their parents. Let e = (x

0

; y

0

) be such an edge belonging to submulticast (i

0

; V

0

) 2 S. Note that the

higher endpoint x

0

of e belongs to the subtree of v(i

0

) in T

0

and that all children of x', including

y

0

, are labeled with a node in T . Then the cost of no further edge in T

0

y

0

is related to the pro�t of

(i

0

; V

0

), i.e., if (i

0

; V

0

) were the only submulticast in S, all edges in T

0

y

0

would have zero cost.

To prove the claim for cost

0

v

0

(b) we distinguish again two cases.

Case 1: v

0

's children are labeled by vertices of T . Note that v

0

is not labeled and thus, there is no

request of max(i; r

�

) at v

0

. By the above observation, no edges in the subtree of v

0

's children have

costs related to the pro�t of (i

0

; V

0

). Using induction on l

0

and r

0

, the minimum number of requests

in T

0

v

0

of submulticasts in S n (i

0

; V

0

) that cannot be accepted if a submulticast of max(i; r

�

) accepts

b submulticasts in T

0

v

0

is given by the minimum over all 0 � j � b of cost

1

l

0

(j) + cost

1

r

0

(b� j). Thus,

the claim holds.

Case 2: v

0

's children are not labeled by vertices of T . Let (i

0

; V

0

) be the submulticast such that v

0

belongs to the subtree of v(i

0

). Note that the edges from v

0

to its children have cost 0 and that

v

0

is an internal node of the subtree of v(i

0

). Thus, the children l

0

and r

0

of v

0

also belong to the

subtree of v(i

0

). Inductively their cost

0

equals the minimum number of requests in T

0

l

, resp. T

0

r

0

,

of submulticasts in S n (i

0

; V

0

) that cannot be accepted if a submulticast of max(i; r

�

) accepts

b submulticasts in T

0

l

, resp. T

0

r

0

. Hence the minimum for T

0

v

0

is given by the minimum over all

0 � j � b� c of cost

0

l

0

(j) + cost

0

r

0

(b� c� j). Thus, the claim holds.

Determining best(i; r

�

): By Lemma 6 the largest residual pro�t of a submulticast of max(i; r

�

) is

found by determining the value b

best

that maximizes the function b� �cost

1

s

(b). The submulticast

best(i; r

�

) is found by reconstructing which edges were used for the computation of cost

1

s

(b

best

).

3 The online algorithm for trees

We describe an online algorithm ST for unit-capacity trees. For sake of simplicity we assume that

the sources as well as the members of the multicasts are leaves of the tree. The general case can be

easily reduced to this setting. The algorithm consists of two stages. The �rst stage is a randomized

procedure that selects a subset of requests that will form the set of \candidate" requests C for the

second stage. The second stage decides for each request in C whether to accept or reject it. The

requests accepted by the second stage are the requests accepted by ST.

11

The �rst stage of the algorithm.

The �rst stage runs the multicast algorithm, called MC, of [GHP98] on a tree with capacity u,

where u = log � and � = 4m

6

M. Then stage 1 adds the accepted requests to C.

On a graph where each link has capacity u, MC achieves a competitive ration of O((log n +

log logM)(log n+M) log n). However, when applied to trees and compared to an o�ine algorithm

with link capacity 1, MC's competitive ratio is O(log n+ logM): A �rst O(logn) factor is saved

since in a tree both the online algorithm and the o�ine algorithm connect the requests accepted

by both algorithms to the root through the same multicast tree. (In particular, in this setting the

claim of Lemma 5.1 of [GHP98] can be proved without the O(log n) factor). An additional O(log �)

factor is saved since the online algorithm has O(log �) more capacity on the edges. This is proved

in the same way as for unicast (see [LMSPR98] and [LMS95]). (In particular in [GHP98] a factor

of O(logn + log logM) is saved in Claim 5.7). Thus, MC, when applied to a tree network with

O(log �) more capacity on the edges is O(logn+ logM)-competitive.

The second stage of the algorithm.

In the second stage all the vertices of the tree are partitioned into O(log n) di�erent classes, by

recursively �nding a balanced tree separator. A balanced tree separator [vLe90] is a vertex whose

removal splits the tree into pieces of at most

2

3

n vertices. The tree separator of T is assigned level

0. Removing the level-0 node splits T into subtrees of level-1. In general, the tree separators of

the level-j trees are assigned level j and removing them creates subtrees of level j + 1. After a

logarithmic number of recursions the trees obtained are single vertices and the procedure stops. A

similar technique is also used in [ABFR94] for the online call-control problem on trees.

Each of the requests in C is assigned to one of O(logn) classes as follows. A request from vertex v

to multicast source s is assigned to class j if the vertex of lowest level on the path from v to s has

level j.

One of the O(log n) levels is chosen at random by the algorithm before to process the sequence of

requests. We denote with i the level selected.

Stage 2 decides to accept or reject a request in C using the following algorithm:

1. If the request is not of level i then reject it and stop.

2. If the request is the �rst one of multicast i seen at this step, then:

� Flip a coin with success probability

1

u

.

� If success then pass to step 3 the current and all the future requests to i seen at this

step; otherwise reject all the future requests to i seen at this step and stop.

3. Accept a request from vertex v to source s if no edge on the path from v to s is assigned to

other multicasts; otherwise reject.

The following lemma bounds the expected number of requests accepted by ST .

Lemma 7 The algorithm ST expects to accept an

1

O(logn log �)

fraction of the requests accepted by

MC.

Proof. The expected number of requests passed from step 1 to step 2 of stage 2 is a

1

O(log n)

fraction

of the requests accepted by MC, since the level of each request is chosen uniformly at random with

12

probability

1

O(log n)

. The expected number of requests passed from step 2 to step 3 is a fraction

1

u

of

all the requests received from step 1. This follows since all the requests for a multicast are passed

to step 3 with probability

1

u

.

We are left to prove that each request received at step 3 is accepted with constant probability.

Consider a pair of requests for di�erent multicasts. If they intersect, the intersection is on an

edge adjacent to a level i vertex. Each request is connected to the source through at most two

edges adjacent to a level i vertex. The probability that a request is accepted is then given by the

probability that these 2 edges are not assigned to other multicasts.

Any edge of the tree is part of at most u multicasts given the maximum capacity of the edges of the

tree for the online algorithm in the MC solution. The edge is assigned to each of these multicasts

with probability

1

u

, if the algorithm decides to accept requests from this multicast. When a request

arrives at step 3, the probability that an edge adjacent to the level i vertex on the path to the

source has not been assigned to a di�erent multicast is then lower bounded by (1 �

1

u

)

u

� 1=e.

The probability that both edges adjacent to a level i vertex have not been assigned is then lower

bounded by 1=2e, thus proving the claim.

This leads to the following theorem:

Theorem 8 There exists an O((log n+M)(log n+log logM) log n)-competitive algorithm for mul-

ticast routing on unit-capacity trees.

A randomized lower bound of
(log n logM) follows from [AAFL96] since the multicast routing

problem on trees of unit capacity contains the online set cover problem.

4 The o�ine algorithm for a mesh

We present an O((log logn)

2

)-factor approximation algorithm on meshes. The algorithm partitions

the mesh into squares of logarithmic size and divides every square into an external and an internal

region. The external region of a square is reserved to route requests into, out of, and through the

square. It is called the crossbar structure of the mesh. To avoid edge-overlapping we discard all

requests whose request node or source belongs to an external region. From the remaining requests

the algorithm considers with equal probability either only short requests directed from a request

vertex to a source in the same square, or only long requests directed from a request vertex to a

source in a di�erent square. A randomized rounding technique based on a novel formulation of the

multicast routing problem as an integer linear program is then used in conjunction with the use of

a simulated network with edges of higher capacity.

Let G denote the n �m two dimensional mesh such that m = �(n). Wlog., m � n. We assume

n su�ciently large such that blog log lognc � 3. De�ne B = 4blog nc, f(k) = k div 9B, and

f

1

(k) = k mod 9B. Given two integer values a and b an (a; b;B)-partitioning of the mesh G is a

partitioning into f(n) � f(m) submeshes of O(B) size induced by segmenting the horizontal and

the vertical side of the mesh. The horizontal side is partitioned into a segment from column 1 to

column a, followed by f(m)� f

1

(m) contiguous segments of size 9B, by f

1

(m)� 1 segments of size

9B + 1 and by a last segment of size 9B + 1 � a. The vertical side of the mesh is partitioned in

a similar way with b used in place of a and n instead of m. By abuse of notation every resulting

submesh is called a square, even though the size of the two sides of a square may di�er. Note that

13

each node belongs to exactly one square while an edge can be incident to nodes of two di�erent

squares. We denote the square containing a node t by S

t

.

The border of G is formed by all nodes of degree less than 4. The 1st ring in a square S consists of

all nodes of S that are incident to a node outside of S or belong to the border of G. Recursively,

the i-th ring of S with i > 1 consists of all nodes of S that are incident to a node of ring i-1 of S.

The innermost ring of a square is either a single vertex or a line of nodes. A ring that is not the

innermost ring either forms a rectangle (if its square does not contain nodes of the border of G) or

forms a rectangle with one or two borders of G. In any square S we de�ne two regions R

1

S

and R

2

S

.

Region R

1

S

consists of rings from 1 to B, region R

2

S

contains all remaining rings of S. Ring B + 1

is the border of R

2

S

.

Let A be the sequence of requests. The algorithm chooses two integer values a and b uniformly at

random in the interval 2B +1; ::::; 7B and constructs an (a; b;B)-partitioning. Then it discards all

requests (t; s) such that either t or s does not belong to the R

2

region of its square. The set of

remaining requests is denoted by C. The following lemma implies that for any input sequence A,

E[jOPT (C)j] � jOPT (A)j=25 since for every request (t; s) the probability that t and s both belong

to R

2

is at least 1=25.

Lemma 9 Given two nodes t and s they both belong to region R

2

of their squares with probability

at least 1=25.

Proof. We prove separately that the x and the y coordinates of t and s are within region R

2

with

constant probability. Consider interval I = [2B + 1; :::; 7B] from which a is chosen uniformly at

random. Since region R

1

has width 2B, x

t

falls within region R

2

if a is chosen out of a subset I

s

of I of size at least 3B. Analogously, x

s

falls within region R

2

if a is chosen out of a subset I

t

of

I of size at least 3B. Since I has size 5B, for at least B out of 5B possible values of a, i.e. with

probability at least 1=5, both x

t

and x

s

fall with region R

2

. By symmetry, y

t

and y

s

fall within

region R

2

with probability at least 1=5. It follows that with probability at least 1=25 every request

has both endpoints in region R

2

.

By the choice of a and b, at least 2B rings are contained in a square. Thus, region R

1

S

is always

complete, while region R

2

S

is formed by at least B rings.

The set of requests C is partitioned into the set of long requests L = f(t; s) 2 C : S

t

6= S

s

g and the

set of short requests S = f(t; s) 2 C : S

t

= S

s

g. For i 2M, denote by L

i

= ft : (t; s

i

) 2 Lg the set

of request nodes of multicast i.

The algorithm decides with equal probability to accept either only long requests or only short

requests. We describe next the algorithm specialized for long requests then the algorithm specialized

for short requests.

4.1 Long requests

Our approach is to transform the problem into a problem on a network G

0

, then formalize the

problem on G

0

as IP, relax it to an LP, solve the LP, and round the LP solution probabilistically.

Finally we use the rounded solution to construct a solution in G.

Mesh G is transformed into a network G

0

= (V

0

; E

0

) as follows. For every square S of G, network G

0

contains vertex x

S

. The vertices x

S

and x

S

0

of two adjacent squares S and S

0

are connected by an

14

edge of capacity blog nc. For every square S of G, every vertex u of region R

2

S

has a corresponding

vertex u

0

in G

0

. For any pair of adjacent vertices u; v in R

2

S

, vertices u

0

; v

0

in G

0

are linked with

an edge of unit capacity. Every vertex of the border of R

2

S

is connected to x

S

by an edge of unit

capacity. For every multicast i and for every request vertex u 2 L

i

, a vertex u

0

i

is connected to

vertex u

0

with a unit-capacity edge. The input sequence for the multicast routing problem on G

0

is created by transforming every request (t; s) 2 L

i

into a request (t

0

i

; s

0

i

) in G

0

.

The next step is to formulate the multicast routing problem in G

0

as a packing problem: For every

multicast i consider the set T

i

consisting of all trees containing s

i

and a non-empty subset of the

request nodes t

0

i

. Since we introduced the nodes t

0

i

, T

i

\ T

j

= ; for i 6= j. Let T = [

i2M

T

i

. Denote

by V (T) the set of vertices of tree T and by E(T) the set of edges. Let the bene�t of tree T 2 T

i

be b(T) = jft

0

i

2 V (T) : t 2 L

i

gj.

We associate a variable x

T

2 f0; 1g with every tree T 2 T . Edges of E

0

are subject to constraints:

X

T2T :e2E(T)

x

T

� c(e); 8e 2 E

0

; (1)

X

T2T

i

:e2E(T)

x

T

� 1; 8e 2 E

0

;8i 2M: (2)

The multicast routing problem consists in maximizing the following objective function:

S =

X

T2T

b(T)x

T

:

The fractional packing problem is obtained replacing the integrality constraints on variables x

T

with constraints x

T

� 0. We also drop edge constraints (2) to obtain a linear program where

every edge is involved in a single constraint and solve it using the polynomial time �-approximation

algorithm of Garg and K�onemann [GK98] based on duality. The algorithm assigns a dual variable

y(e) to every edge e 2 G

0

. The central step of the algorithm requires to �nd the variable x

T

with

maximum ratio opt = b(T)=

P

e2T

y(e). This problem is NP-hard, since it corresponds to �nding

the densest tree in the network G

0

where edges are weighted with the values of the dual variables.

However it is easily checked that if we �nd a variable x

~

T

with b(

~

T)=

P

e2

~

T

y(e) � opt=� then the

algorithm of [GK98] also gives a 1 + �-factor approximation of the fractional multicast problem on

G

0

.

As was previously observed by [Awe96] a k-MST algorithm can be used to solve the densest tree

problem. The 3-approximate k-MST algorithm of Garg [Gar96] can be adapted to work in the

case the k vertices are restricted to be request vertices of the same multicast. Thus, for every

multicast i and every k = 1; :::; jL

i

j, the 3-approximate k-MST algorithm is applied. It �nds

the tree T

i

(k) spanning k request vertices of L

i

such that

P

e2T

i

(k)

y(e) � 3opt

k;i

, where opt

k;i

=

minf

P

e2T

y(e); b(T) = k; T 2 T

i

g. Then the tree of maximum ratio k=

P

e2T

i

(k)

y(e) over all k and

all i is selected. Since this ratio has value at least opt=3, this results in an 1+�-factor approximation

algorithm for the fractional multicast problem.

Denote by x

�

T

the solution of the fractional multicast routing problem

1

.

1

Let for some i, fT

(1)

; : : : ; T

(j)

g be the set of all the trees of T

i

with x

T

(

l)

= 1, for all 1 � l � j. Then T

(1)

[: : :[T

(j)

forms the multicast tree for multicast i.

15

Let s = 1=((c log logn)

2

), where c � e is an appropriate constant to be �xed later. The algorithm

rounds variable x

T

to x

T

= 1 with probability sx

�

T

, and to x

T

= 0 with probability 1 � sx

�

T

. Let

G

i

be the graph with edges E(G

i

) = [

T2T

i

:x

T

=1

E(T). For any multicast i the algorithm selects an

arbitrary spanning tree T

i

of graph G

i

.

The trees T

i

do not form the integral solution since there might be violated edge capacities for the

unit-capacity edges. However, as described below, the requests accepted by the �nal solution form

a subset of the requests accepted by the trees T

i

and the size of the subset is a constant fraction

of the requests accepted by the trees of T

i

. To prove the approximation bound we show in the

appendix that the value S of the optimal solution of the fractional packing formulation is within a

constant factor of the optimal integral solution on the set of requests L (Lemma 17), and that the

expected number of request nodes contained in the trees T

i

is within a factor of O((log logn)

2

) of

the value S (Lemma 18).

Let L

1

i

= L

i

\ V (T

i

) be the set of request vertices to multicast i that are spanned by tree T

i

if

no edge (x

S

; x

S

0

) of G

0

is violated, L

1

i

= ; otherwise, and let L

1

=

P

i2M

L

1

i

. We prove that

with at least constant probability no edge (x

S

; x

S

0

) of G

0

is violated , i.e., L

1

6= ; (Lemma 19). If

L

1

= ;, the algorithm terminates without accepting any multicast. Otherwise, each request of L

i

accepted by the �nal solution is routed along a path containing the same edges (x

S

; x

S

0

) as its path

to the source in T

i

. The remaining problem is to route request nodes and sources to the border of

their square. This problem was called the escape problem. The solution proposed by Kleinberg and

Tardos for unicast routing [KT95] uses the fact that the bene�t collected in a square is of the same

order as the maximum ow that can be routed through the border of the square. This is not true

for multicast routing: the maximum bene�t that can be collected in a square is O(log

2

n), while

the maximum ow that can be routed through the border of the square is O(log n). Thus, using

the same maximum ow approach as in [KT95], which means routing request nodes individually

out of the square, leads to an O(log n)-factor approximation. We give instead a recursive approach

that achieves a O((log log n)

2

)-factor approximation.

Our basic idea is to recursively partition every region R

2

S

into subsquares of size O(log log n), and

each subsquare Q into a subregions R

1

Q

and R

2

Q

. Requests are routed to the border of R

2

Q

on the

same path as in the trees T

i

and from there they use rings of the R

1

regions of subsquares to reach

the border of R

2

S

. The sequence of subsquares used for a request is the same as on the path in T

i

.

Therefore we enforce that the trees T

i

are edge-disjoint within the R

2

Q

regions and that there are

at most O(log logn) trees connecting between any two neighboring subsquares.

We next give the details: A gate vertex for multicast i in square S is a vertex q on the border of R

2

S

such that (q; x

S

) belongs to T

i

. Let g(p) be the gate vertex closest to node p 2 L

i

on the path from

p to s

i

in T

i

closest to p. Let g(s

i

) be a gate vertex closest to s

i

on a path from s

i

to a node outside

S

s

i

in T

i

. The escape problem is the problem to connect each request node p to g(p) and to connect

each source to s to at least one g(s

i

). Let S be a square whose region R

2

S

consists of a k

1

�k

2

mesh.

Let k = min(k

1

; k

2

) and let B

S

= 4blog kc. Note that k � B. The algorithm uniformly chooses

two integer values a

S

and b

S

from the interval 2B

S

+ 1; : : : ; 7B

S

for each square S and creates an

(a

S

; b

S

; B

S

)-partitioning for the region R

2

S

. Each submesh Q created by this partitioning is called

a subsquare. If Q does not contain nodes of the border of R

2

S

, region R

1

Q

of subsquare Q consists

of rings 1 to B

S

, region R

2

Q

consists of the remaining part of Q. If Q contains nodes of the border

of R

2

S

, we need a di�erent de�nition: Let Q be a k

3

� k

4

mesh with k

3

; k

4

� 9B

S

. Assume Q is

extended into a 9B

S

� 9B

S

mesh Q

0

by nodes outside of R

2

S

. Regions R

1

Q

0

and R

2

Q

0

are de�ned as

above. Region R

1

Q

is then R

1

Q

0

\R

2

S

and region R

2

Q

is R

2

Q

0

\R

2

S

. By the choice of a

S

and b

S

and the

16

de�nition of R

2

Q

there are gate vertices in S that belong to R

2

Q

if subsquare Q lies on the border of

R

2

S

.

(1) The algorithm rejects all requests whose source or request node belongs to the region R

1

Q

of

their subsquare Q. The remaining set of requests is called L

2

. A subsquare is called invalid if one

of the edges of G

0

incident to a node in the subsquare belongs to more than one tree T

i

. Since every

edge is assigned to a tree with probability O(1=((log logn)

2

), a subsquare in not invalid with at

least constant probability (Lemma 23). (2) Every request node belonging to an invalid subsquare

is discarded and every multicast whose source belongs to an invalid subsquare is discarded. The set

of remaining requests is called L

3

. A square S is called invalid if there exists a pair of neighboring

subsquares Q and Q

0

of S such that more than B

S

=4 trees T

i

contain an edge incident to Q and Q

0

.

Every square is proved to be not invalid with at least constant probability (Lemma 24). (3) Every

request node belonging to an invalid square is discarded and every multicast whose source belongs

to an invalid subsquare is discarded. The set of remaining requests is called L

4

. (4) All request

nodes p in L

4

such that g(p) belongs to R

1

Q

for some subsquare Q are discarded and multicast i is

discarded if all gate vertices of square S containing source s

i

belong to R

1

S

. The set of remaining

requests is called L

5

. (5) Finally all requests p of L

5

such that g(p) belongs to an invalid subsquare

are discarded, and multicast i is discarded if in a square S containing source s

i

all gate vertices in

S connected to s

i

in T

i

belong to invalid subsquares. The set of remaining requests, called L

6

, is

accepted. Set L

6

is expected to be at least a constant fraction of set L

4

(Lemma 25 and 26).

4.1.1 Routing Algorithm

We next show how to route the accepted requests, i.e., how to construct the multicast tree T

i

for

multicast i. The basic idea is to route using the same squares and subsquares as the tree T

i

but to

route \through" a square S in R

1

S

and \through" a subsquare Q in R

1

Q

.

Let T

f

i

be the subtree of T

i

spanning s

i

and the vertices in T

i

\L

6

, the request vertices accepted for

multicast i. We �rst explain how to connect gate vertices. For every vertex x

S

of T

f

i

the algorithm

assigns a ring r

S;i

of region R

1

S

to multicast i. For every edge (x

S

; x

S

0

) of T

f

i

let r be the ring of

fr

S;i

; r

S

0

;i

g with larger index. The algorithm assigns to multicast i the straightline extension of r

from one corner of r to the other ring, thereby connecting r

S;i

and r

S

0

;i

. For a vertex x

S

of T

f

i

and

every gate vertex q of multicast i belonging to the horizontal (vertical) side of the border of R

2

S

and

to a valid subsquare of S, the algorithm assigns to multicast i the vertical (horizontal) straightline

path from q to r

S;i

. Note that all gate vertices of multicast i in S are connected to the same ring

r

S;i

.

Next we describe how to connect a request node p of multicast i in S to its gate vertex q = g(p).

Let Q be the subsquare of p and Q

0

be the subsquare of q. Recall that g(p) lies in region R

2

Q

. Let P

be the path between p and q in T

i

and let e

p

be the edge on P closest to p and incident to exactly

one node of R

2

Q

. Let e

q

be de�ned symmetrically.

For every subsquare Q such that (i) T

f

i

contains a vertex of R

2

Q

and (ii) s

i

or a request node of T

i

belongs to S we assign a ring r

Q;i

of R

1

Q

to multicast i, where S is the square containing Q.

If Q = Q

0

and p is connected to q in T

f

i

by a path in R

2

Q

then p is connected to q in the same way

in T

i

. If Q = Q

0

and p is connected to q in T

f

i

by a path P with edges outside R

2

Q

, we connect

both p and q to r

Q;i

in T

i

. Request vertex p is connected to r

Q;i

in T

i

by the part of P from p to

17

e

p

and then the straightline extension from e

p

to r

Q;i

. Gate node q is connected to r

Q;i

in T

i

in an

analogue way.

If Q 6= Q

0

, then p is connected to q by the same path as above to r

Q;i

, then the path P

0

described

below to r

Q

0

;i

, and �nally the same path as above from r

Q

0

;i

to q. To construct path P

0

the above

algorithm to construct a path between gate vertices is applied: for each neighboring pair (Q

1

; Q

2

)

of subsquares on P a horizontal or vertical connection between rings r

Q

1

;i

and r

Q

2

;i

is assigned to

the multicast. Path P

0

is a simple path between r

Q;i

and r

Q

0

;i

created from the assigned rings and

connections.

Next we describe how to connect the source of i to one of the gate vertices q of i in S. This su�ces

since all gate vertices of i in S are connected to the same ring r

S;i

. Recall that one of the gate

vertices, say q, belongs to R

2

S

. The algorithm connects s to q in the same way as it connected a

request node p to q.

4.1.2 Proof of Correctness

We show that the resulting multicast trees T

i

are edge-disjoint. The multicast tree for multicast

i is contained in the rings r

S;i

of squares and rings r

Q;i

of subsquares assigned to i, the assigned

horizontal or vertical connections between assigned rings and from gate vertices or edges e

p

to rings,

and paths of T

f

i

in regions R

2

Q

of subsquares.

We distinguish the following seven types of paths used by the multi casts and show below that (1)

for each square S the algorithm can assign a unique ring r

S;i

if x

S

2 T

f

i

(Claim 10); (2) for each

subsquare Q the algorithm can assign a unique ring r

Q;i

if T

f

i

contains a vertex of R

2

Q

and s

i

or

a request node of T

i

belongs to the square of Q (Claim 11); (3) for every edge (x

S

; x

S

0

) in T

f

i

the

algorithm can assign a unique horizontal or vertical connection between r

S;i

and r

S

0

;i

(Claim 12);

(4) for each gate vertex q of multicast i in square S the algorithm can assign a unique horizontal

or vertical connection between q and r

S;i

if q belongs to a valid subsquare (Claim 13); (5) for every

neighboring pair (Q

1

; Q

2

) of subsquares and for each multicast i the algorithm can assign a unique

horizontal or vertical connection between r

Q

1

;i

and r

Q

2

;i

if they both exist, (Claim 14); (6) if p is

either a request vertex in T

f

i

or a gate vertex such that a request node of T

f

i

in S

p

connects through

p to s

i

, then the algorithm can assign a unique horizontal or vertical connection between e

p

to r

Q;i

,

where Q is the subsquare containing p (Claim 15); (7) if p is either a request vertex in T

f

i

or a

gate vertex such that a request node of T

f

i

in S

p

connects through p to s

i

, then the algorithm can

uniquely assign the path in T

i

from p to e

p

or to g(p) if this path is contained in R

2

Q

, where Q is

the subsquare containing p (Claim 16). Since the set of edges that can be used for type-(j) paths

is disjoint from the set of edges that can be used for type-(j

0

) paths with j 6= j

0

, proving the claims

shows the correctness of the algorithm.

Claim 10 The number of trees T

f

i

including vertex x

S

for a square S is at most the number of

rings B of region R

1

S

.

Proof. The number of trees T

f

i

including an edge e = (x

S

; x

S

0

) does not exceed c(e). Every tree

containing x

S

but not a terminal in R

2

S

takes 2 units of capacity on edges (x

S

; x

S

0

). Every tree

containing a terminal in R

2

S

takes at least one unit of capacity on edges (x

S

; x

S

0

). Since the overall

18

capacity of edges (x

S

; x

S

0

) is at most 4blog nc = B, a ring of R

1

S

can be assigned to every tree T

f

i

containing x

S

.

Claim 11 There are at most B

S

trees T

f

i

such that (i) T

f

i

contains a vertex of region R

2

Q

of a

subsquare Q and (ii) s

i

or a request node of T

f

i

belongs to S, where S is the square containing Q.

Proof. Assume by contradiction that a subsquare Q does not ful�ll the claim. The trees T

f

i

that

contain a vertex of region R

2

Q

each use at least one edge with exactly one endpoint in Q. Thus

there exists a neighboring subsquare Q

0

of Q in S such that more than B

S

=4 trees T

f

i

contain an

edge incident to Q and Q

0

. It follows that S is invalid and the algorithm discards all request nodes

in S and all multicasts whose source is in S. Thus, none of the trees T

f

i

contains a request node or

source in S. Contradiction.

Claim 12 Let S and S

0

be a pair of adjacent squares. For each multicast i with edge (x

S

; x

S

0

) 2 T

f

i

the algorithm can assign a unique horizontal or vertical straightline connection between r

S;i

and r

S

0

;i

.

Proof. Since each ring is assigned to at most one multicast, there are at most two multicasts that

potentially want to use a straightline extension, namely one from ring r in S and one from ring

r in S

0

. Since there are two \corners" of ring r, there are two straightline extensions from ring r

between S and S

0

and hence each of the two multicasts can be assigned a unique one.

Claim 13 For each gate vertex q of multicast i in a valid subsquare Q the algorithm can assign a

unique horizontal or vertical connection between q and r

S;i

, where S is the square containing Q.

Proof. Since the subsquare Q of q is valid, the edge (q; x

S

) belongs to at most one multicast and

the horizontal or vertical connection between q and any ring of R

1

S

can be uniquely assigned to this

multicast.

Claim 14 For every neighboring pair (Q

1

; Q

2

) of subsquares and for each multicast i the algorithm

can assign a unique horizontal or vertical connection between r

Q

1

;i

and r

Q

2

;i

.

Proof. The same proof as for Claim 12 applies.

For the following two claims, let i be a multicast, and let p either be a request node in T

f

i

or a gate

node such that a request node p

0

of T

f

i

in S

p

connects through p to s

i

. Let Q be the subsquare of

p. If p is a request node, let e

p

be the edge closest to p and incident to Q on the path from p to s

i

in T

f

i

. If p is a gate node, let e

p

be the edge closest to p and incident to Q on the path from p to

p

0

.

Claim 15 The algorithm can assign a unique horizontal or vertical connection between e

p

to r

Q;i

.

Proof. If p is a request node, then Q is valid since otherwise p would not belong to T

f

i

. If p is a

gate node, then Q is valid since otherwise the request node connecting through p would have been

discarded.

It follows that each edge in Q belongs at most one tree T

i

, and the algorithm assigns the straightline

extension from e

p

to r

Q;i

only to this multicast.

19

Claim 16 If the path in T

i

from p to e

p

or to g(p) is contained in R

2

Q

, it is edge-disjoint from any

other multicast tree.

Proof. The same argument as in Claim 15 shows that each edge in Q belongs at most one tree T

i

.

Thus the edges on the path in T

i

from p to e

p

or to g(p) are used only for one multicast.

4.1.3 Proof of the approximation ratio

We prove that the algorithm gives an O((log log n)

2

) approximation using the following steps: Recall

that S is an upper bound of the optimal fractional solution. Lemma 17 shows that the value S

is within a constant factor of the optimal integral solution on set of requests L. Lemma 18 shows

that the expected pro�t of the trees T

i

is at least sS=e

2

. Lemma 19 shows that the capacity of no

edge (x

S

; x

S

0

) is violated with at least constant probability. Lemma 21 shows that E[jL

1

j] � sS=e

2

.

Lemma 22 shows that E[jL

2

j] � jL

1

j=25, Lemma 23 shows that E[jL

3

j] � jL

2

j=2, Lemma 24 shows

that E[jL

4

j] � jL

3

j=4, Lemma 25 shows that E[jL

5

j] � jL

4

j=25, and �nally Lemma 26 shows that

E[jL

6

j] � jL

5

j=4.

Lemma 17 Let OPT be the optimal integral solution on set of requests L. Then OPT � 37S.

Proof. Edge e = (x

S

; x

S

0

) has capacity c(e) = blog nc in the fractional packing formulation on

network G

0

. The border between square S and S

0

has size 9B + 1 � 37blog nc. The optimal

integral solution for the multicast routing problem on set of requests L can be transformed into

a feasible solution for the fractional packing problem assigning capacity 1=37. The claim of the

lemma follows.

Lemma 18 Let b =

P

T

i

b(T

i

). Then E[b] � sS=e

2

.

Proof. Note that E[b] equals the expected number of request nodes contained in the trees T

i

.

Let t be a request node of L

i

and let x

t

0

i

=

P

T2T

i

:t

0

i

2V (T)

x

�

T

. We show below that

Pr[t

0

i

2 V (T

i

)] �

sx

t

0

i

e

2

:

Summing over all request nodes t

0

i

it follows that

E[b] �

X

i

X

t

sx

t

0

i

e

2

=

X

i

X

T2T

i

b(T)sx

�

T

=e

2

= sS=e

2

:

We are left with showing the bound on Pr[t

0

i

2 V (T

i

)]. Let fT

i

: x

T

i

> 0; i = 1; ::; rg be the set

of trees in the fractional solution spanning vertex t

0

i

. If r = 1, the claim is true, since Pr[t

0

i

2

V (T

i

)] = sx

t

i

. Consider r � 2. The probability that vertex t

0

i

is in graph G

i

is lower bounded

by

P

j=1;:::;r

Pr[x

T

j

= 1 andx

T

i

= 0;8i 6= j] =

P

j=1;:::;r

sx

�

T

j

Q

i 6=j

(1 � sx

�

T

i

). This expression is

minimized when all the probabilities have equal value x

�

T

j

=

x

t

0

i

r

. We then have Pr[t

0

i

2 V (T

i

)] �

r(

sx

t

0

i

r

)(1 �

sx

t

0

i

r

)

(r�1)

� sx

t

0

i

exp� (sx

t

0

i

r

r�1

) � sx

t

0

i

e

�2

, since sx

t

0

i

� 1.

20

Lemma 19 For every edge e = (x

S

; x

S

0

) of G

0

with capacity c(e) = blog nc, Pr[jfT

i

: e 2

E(T

i

)gj > c(e)] � n

� log log log n

.

Proof. Let X(e) = jfT : e 2 E(T); x

T

= 1gj. Since X(e) � jfT

i

: e 2 E(T

i

)gj it su�ces to show

the bound for Pr[X(e) > c(e)].

We prove the claim using the following version of Cherno� bounds [Rag88]:

Proposition 20 Let X

1

;X

2

; :::;X

n

be independent Poisson trials such that , for 1 � i � n,

Pr[X

i

= 1] = p

i

, where 0 < p

i

< 1. Then,for X =

P

n

i�1

X

i

, � = E[X] =

P

n

i=1

p

i

, and any

� > 0,

Pr[X > (1 + �)�] <

h

e

�

(1 + �)

(1+�)

i

�

:

We need to bound Pr[X > (1 + �)�] = Pr[X(e) > c(e)], for which we set � =

c(e)

�

� 1. For the

expected value � we have � =

P

T2T :e2E(T)

x

�

T

� sc(e). Applying Cherno� bounds we obtain:

Pr[X(e) > c(e)] <

h

e

(

c(e)

�

�1)

(

c(e)

�

)

c(e)

�

i

�

�

1

(

c

e

(log log n)

2

)

blog nc

� n

� log log log n

Lemma 21 E[jL

1

j] � sS=2e

2

Proof. By Lemma 19, the capacity of an edge is violated with probability at most n

�3

, since

log log log n � 3. No edge (x

S

; x

S

0

) of network G

0

is then violated with probability at least 1=n.

The claim follows.

Lemma 22 E[jL

2

j] � jL

1

j=25,

Proof. Follows from Lemma 9.

Lemma 23 There is a suitable choice of c such that for every subsquare Q, Pr[9e 2 V (R

2

Q

) : jfT

i

:

e 2 E(T

i

)gj > 1] � 1=2.

Proof. Region R

2

Q

contains O((log log n)

2

) edges. Consider edge e of subsquare Q and consider

the solution of the fractional packing problem. Every edge e of R

2

Q

is assigned to tree T with

probability sx

�

T

. Since the fractional solution is feasible,

P

T2T

x

�

T

� 1. The \expected capacity"

of edge e assigned to a tree T

i

is then bounded by s. Using the Markov inequality we have

that the probability that the capacity of an edge e is exceeded is bounded by s. With a suitable

choice of c, the probability that the capacity of at least one edge of R

2

Q

is violated is bounded by

sO((log logn)

2

) � 1=2.

21

Lemma 24 E[jL

4

j] � jL

3

j=4,

Proof. We show that the probability that a square is invalid is at most 1=2. Let Q and Q

0

be

neighboring subsquares. Let T

QQ

0

be the set of trees containing an edge between Q and Q

0

and

having x

�

T

> 0. Let � =

P

T2T

QQ

0

x

�

T

� (9B

S

+1)s and let X be the number of trees T in T

QQ

0

with

x

T

= 1: X is clearly an upper bound to the number of distinct trees crossing the border between

two subsquares. Choosing a suitable large constant c, we prove in a way similar to Lemma 19 that

Pr[X > B

S

=4] � ((log n)

� log log logn

). Since there are O(logn)

2

adjacent subsquares in a square

S, and log log logn � 3, with probability at least 1 �
(1= log n) no border between two adjacent

subsquares is crossed by more than B

S

=4 distinct trees. A request t of multicast i of L

3

is in L

4

if

square S

t

and square S

s

i

are valid. The theorem then follows.

Lemma 25 E[jL

5

j] � jL

4

j=25,

Proof. Let (s; t) be a request of L

4

and let q be a gate vertex in S

s

. Request (s; t) belongs to L

5

if q 2 R

2

S

s

and g(p) 2 R

2

S

t

. By Lemma 9 this happens with probability at least 1=25.

Lemma 26 E[jL

6

j] � jL

5

j=4,

Proof. As shown by Lemma 23 a subsquare is invalid with probability at most 1=2. A request t

of multicast i of L

5

is in L

6

if the subsquare S

g(t)

and subsquare S

g(s

i

)

are valid.

We then conclude with the following:

Lemma 27 There exists an O((log logn)

2

) approximation algorithm for long requests for the mul-

ticast routing problem on meshes.

4.2 Short requests

We complete the approximation algorithm for meshes describing the algorithm for short requests.

We separately consider every square S of G and set of requests S

S

= f(t; s) : S

s

= Sg. We apply

recursively the algorithm for requests S

S

in a square S. Square S is partitioned in subsquares of

size O(log log n). Denote by Q the generic subsquare. Those requests of S

S

that are considered

long requests within square S are dealt by the algorithm of the previous section. Those requests

of S

S

that are considered short requests within a subsquare Q are dealt with exhaustive search of

the best solution for the multicast routing problem in submesh Q of size O(log logn), which takes

time polynomial in n.

We then conclude with the following lemma for short requests.

Lemma 28 There exists an O((log log log n)

2

) approximation algorithm for short requests for the

multicast routing problem on meshes.

This shows the desired theorem.

Theorem 29 The above algorithm gives an O((log log n)

2

)-factor approximation for multicast rout-

ing on unit-capacity meshes.

22

5 The online algorithm for meshes

We propose an algorithm with polylogarithmic competitive ratio on meshes. As in the unicast

algorithm for meshes [KT95] the algorithm partitions the mesh into squares of size 13B � 13B,

where B = �(logn). Then it uses four main ideas: (1) It \�lters" requests in stage one to \make

space" for our routing, but it guarantees that if a square contains requests, then at least one request

of them survives the �ltering. Thus, step one \looses" an O(log

2

n) factor. (2) Stage two contracts

each square to a node and runs the algorithm MC of [GHP98] on G

0

. For each accepted request

MC returns a path consisting of a sequence of neighboring squares. To translate this sequence into

a path in the original mesh we have to be able to construct B disjoint paths between neighboring

squares. The idea is that a path from a neighboring square enters a square in the \middle" B links

between the two squares. Within a square each path is assigned its own concentric ring on which it

proceeds until it reaches either the appropriate row

2

or column to exit the square or its multicast

tree. (3) However there can be requests accepted by MC which cannot be routed \locally", i.e.,

there is a conict in the squares of the endpoints. These requests have to be rejected. In the

unicast setting this causes no problem since the rejection of a request does not a�ect routing of

requests accepted later on. In the multicast setting, however, MC might output a path in G

0

that

does not connect the request to its source in G since an earlier request of the same multicast was

accepted by MC and rejected by our algorithm. We handle this situation by always connecting the

same squares as MC even if the request is not accepted. (4) Since latter requests might be more

pro�table than earlier ones, the algorithm selects each multicast with roughly equal probability

(after passing some additional screening for \routability") and discards all unselected multicasts.

5.1 The �rst stage of the algorithm

Let G = (V;E) denotes the n � n two dimensional mesh. We assume that n is su�ciently large

such that B = b

blog nc

13

c � 1.

Let f = n div blog nc and let f

1

= n mod blog nc. We partition the mesh into f

2

submeshes of

logarithmic size. The partition of the mesh is obtained segmenting every side into f�f

1

contiguous

segments of size blog nc followed by f

1

segments of size dlog ne. By abuse of notation every submesh

is called a square, even though the size of the two sides may di�er by 1. We denote the square

containing a node t by S

t

.

The �rst ring in a square S consists of all nodes of S that either are incident to a node outside of

S or have degree less than 4 in the mesh G. Recursively, the i-th ring of S with i > 1 consists of

all nodes of S that are incident to a node of ring i� 1 of S. Each ring, except the innermost, forms

a rectangle of nodes, the innermost ring either forms a rectangle or a line of nodes. A corner of a

ring is a corner of the rectangle or an endpoint of the line. The �rst ring is also called the border

of S.

In any square S we de�ne three regions R

1

, R

2

and R

3

. Region R

1

consists of rings 1 to 2B, region

R

2

consists of rings 2B+1 to 4B, and region R

3

is formed by rings 4B+1 to 6B and the remaining

piece of S, called the central region of S. The central region is a rectangle with sides of size at least

B, i.e., consisting of at least B rings.

The �rst stage of the algorithm selects for each square one of its regions at random. The selected

region is used to route paths \through" the square. All requests whose request node or source

2

We use row to denote a horizontal path and column to denote a vertical path in the mesh.

23

belong to the selected region are rejected to guarantee that they do not overlap with the paths

routed through the selected region. Additionally each ring of the square is randomly dedicated

either to sources or to request nodes and requests not following the dedication are rejected. Again

the idea is to guarantee that requests with a source in a ring does not overlap with a request with

a request node in the same ring.

The details of the �rst stage are as follows:

1. Dedicate each ring to multicast sources with probability 1=2, otherwise to request nodes.

2. Select uniformly at random one of the three regions in each square.

3. Discard all the requests from vertex t to source s if t or s are in a selected region.

4. Discard all the requests from a vertex t on a ring dedicated to sources, unless the request is

directed to a source s on the same ring of t.

5. Discard all the multicasts whose source is in a ring dedicated to requests.

Let the original sequence of requests be called A and let the remaining set of requests be called

C. Denote by OPT (A) the sequence of requests accepted by the optimal algorithm over a set of

requests A.

Lemma 30 For any input sequence �, E(jOPT (C)j) �

1

12

jOPT (A)j.

Proof. Let us consider the probability that a request (t; s) of OPT (A) belongs to C. Assume �rst

that both t and s are within the same square. Then (t; s) belongs to C if (a) both are outside the

selected region, and (b) the ring of s is dedicated to sources and the ring of t is either dedicated to

requests or equal to s's ring. The condition (a) is ful�lled with probability at least 1=3, condition

(b) with probability at least 1=4. Thus, (t; s) belongs to C with probability at least 1=12.

Assume next that t and s belong to di�erent squares. Then (t; s) belongs to C if (a) both are outside

the selected region, and (b) the ring of s is dedicated to sources and the ring of t is dedicated to

requests. The condition (a) is ful�lled with probability at least 4=9, condition (b) with probability

at least 1=4. Thus, (t; s) belongs to C with probability at least 1=9.

This shows that E[jOPT (A) \ Cj] �

1

12

jOPT (A)j. Since jOPT (C)j � jOPT (A) \ Cj, the result

follows.

5.2 The second stage of the algorithm.

The second stage of the algorithm receives as input the requests of C accepted by the �rst stage,

in the order in which they are presented to the algorithm. It partitions C into the set L

0

of long

requests, and the set S

0

of short requests. A request (t; s) is a long request if at presentation no

branch of the multicast rooted at s is in S

t

. Otherwise, (t; s) is a short request. The algorithm

routes short requests \locally" within the square and uses MC for long requests.

Recall that each square contains 13B concentric rings. To guarantee that the trees used for di�erent

multicasts are edge-disjoint we maintain the invariant that

24

(I1) all edges of a ring that belong to any multicast tree belong to the same multicast tree.

To maintain the invariant each ring is assigned by the algorithm to at most one multicast and this

is the only multicast whose tree is allowed to use edges of the ring. To achieve this each request

of C has to pass various tests. These tests guarantee that the following additional invariants are

maintained.

(I2) No two request nodes of accepted requests belong to the same square.

(I3) No two sources of accepted requests of di�erent multicasts belong to the same ring.

(I4) No two sources of accepted long requests of di�erent multicasts belong to the same square.

(I5) No two sources of accepted short requests from the same square belong to the same square.

(I6) No two request nodes of accepted long requests belong to the same square.

Invariant (I6) follow from invariant (I2).

5.2.1 Long requests

The algorithm for long requests decides whether to accept or reject a request in four steps. Each

step rejects the request if certain conditions are not ful�lled. The requests which are not rejected

after step i, i = 1; 2; 3; 4, form a sequence L

i

.

Whenever the �rst request of a multicast is added to L

2

, the algorithm decides whether the multicast

is selected for long requests. This is needed (1) to discard multicasts were the \local" routing causes

potential conicts and (2) to guarantee that latter multicasts have roughly the same probability of

being accepted as earlier ones. A multicast with source s is selected for long requests if all of the

following conditions are ful�lled at the time of the test:

(i) no multicast with source on the ring of s is already selected for short requests;

(ii) no multicast with source in S

s

is already selected for long requests;

(iii) a coin toss with success probability 1=(4B) is successful; and

(iv) if s is in R

3

then the largest ring of R

3

in S

s

is dedicated to sources.

When a multicast becomes selected for long requests, up to two of the rings in S

s

are assigned to

the multicast: (a) the ring containing s is assigned to the multicast; and (b) if s is in R

3

, the largest

ring of R

3

in S

s

.

The second ring is needed for the following reason: When routing a long request to the border of S

s

the algorithm needs to be able to use any available crossbar row or column. However, if s belongs

to the central region, the ring of s does not intersect all crossbar rows and columns. Thus, we route

the path from the ring of s to the largest ring of R

3

and from this ring the algorithm can connect

to any crossbar row or column. To avoid that the connection between the ring of s and the largest

ring of R

3

overlaps with any other multicast tree, the two rings are connected along a \straightline

extension" of the internal ring assigned to s, which will guarantee that the connection does not use

an edge of a short request (see Section 5.2.2).

25

However, the connection of s from the central region to the largest ring of R

3

overlaps a crossbar

row or column that may be used to connect a request node t

0

2 R

3

of a di�erent long request (t

0

; s

0

)

to the border. Our algorithm will reject all long requests from a request node in the square if (i) a

request to a source node in the square has been accepted, or (ii) if a long request to a request node

in the square has been accepted. This implies that if a connection from a source in R

3

to the largest

ring of R

3

exists then no further long requests are accepted. Thus, the problem is restricted to the

situation when the long request from a request node in R

3

was accepted and afterwards a request

with source in R

3

appears. We avoid the intersection by selecting an appropriate straightline

extension connecting a ring of the central region to the largest ring of R

3

that avoids the crossbar

row or column used by the long request with request node in R

3

.

We now give the details of the decision algorithm when a request (t; s) arrives. Let G

0

be a mesh

such that each square of the original mesh is represented by a vertex in G

0

and two vertices of G

0

are connected by an edge if the two corresponding squares are adjacent. Each edge has capacity B.

1. If a long request with request node or source in S

t

has been added to L

3

, the algorithm rejects

(t; s) and stops. If a short request with request node in S

t

has been accepted, the algorithm

rejects (t; s) and stops. Otherwise it adds the request to L

1

.

2. The request (t; s) of L

1

is transformed into a request between the two vertices S

t

and S

s

of G

0

,

and then submitted to MC. If MC accepts the transformed request, request (t; s) is added

to L

2

. In this case MC also returns a route in G

0

which corresponds to a sequence of squares

in the original mesh. Otherwise, the request is rejected and the algorithm stops.

3. If the multicast of the request (t; s) in L

2

is selected for long requests, the request is added

to L

3

and an unassigned ring of the selected region of S

t

is assigned to the multicast of the

request. Otherwise the algorithm rejects the request and stops.

4. If t is not in the central region of S

t

, then (t; s) is added to L

4

.

If t belongs to the central region of S

t

, and one of rings 4B + 1; : : : ; 6B in S

t

is dedicated to

request nodes then (t; s) is added to L

4

and one of rings 4B + 1; : : : ; 6B in S

t

dedicated to

request nodes is assigned to the multicast.

If (t; s) is added to L

4

it is accepted. The ring of t is assigned to the multicast of (t; s) and

t is connected to the multicast tree of s. Otherwise the request is rejected and an arbitrary

node u on the assigned ring of the selected region is connected to the multicast tree of s.

Step 4 guarantees that the following invariant is maintained:

(I7) If a request (t; s) is added to L

3

, then a node of S

t

is connected to s.

We show next how the algorithm routes a request of L

3

. For each such request s denotes the source

node and v denotes the node of S

t

to which the request is routed, i.e., either v = t or v = u, where

u is a node on the assigned ring of the selected region. For every such request we are given by MC

a path in G

0

consisting of a sequence of neighboring squares. Let S

1

; S

2

; : : : ; S

p

be the sequence of

squares such that S

1

= S

t

and S

p

contains a node x of the multicast tree of s. If S

p

contains s, let

x = s. Otherwise, if S

p

contains an accepted request node not in R

3

, let x be this node. Otherwise,

as we show in Lemma 34, a ring of the selected region was assigned to the multicast and at least

one node on the ring is connected to s. In this case let x be this node.

26

Each request of L

3

is routed from v to the border between S

1

and S

2

, from there to the border

between S

2

and S

3

and so forth, until �nally to the border between S

p�1

and S

p

and from there to

x. Let P denote the resulting path from v to x. We describe next each step in detail.

To route paths between two neighboring squares we reserve the crossbar of rows 6B + 1; : : : ; 7B

and columns 6B + 1; : : : ; 7B. All rows and columns in the crossbar cross the central region of the

square. By Lemma 34 there is an unassigned crossbar row resp. column for each accepted request.

Case 1: From v to the border between S

1

and S

2

: Wlog the border between S

1

and S

2

is a row.

We assign an unassigned crossbar column and the ring of v to the multicast.

If v does not belong to the central region, we route P along the ring of v until it reaches the

point on its assigned crossbar column closest to the border. At this point P is routed along

the assigned column until it reaches the border.

If v belongs to the central region, we route P on the ring of v until a corner of the ring is

reached. There P continues straight to the assigned ring of R

3

. From the assigned ring of R

3

we continue as above.

Case 2: From one border of a square to another border of the square: Wlog the entering border

is a column and the exiting border is a row. One unassigned ring of the selected region is

assigned to the multicast. We additionally assign one of the unassigned crossbar columns

between the current square and the next square to P .

Path P follows the entering row until it intersects the assigned ring. Then P is routed along

the ring until it reaches the intersection point with the assigned column closest to the exiting

border. There P switches to the assigned column until it reaches the border.

Case 3: From the border of S

p

to the node x: Wlog the border between S

p�1

and S

p

is a row.

There are three cases to consider: (i) x = s, (ii) x 62 R

3

is a request node of an accepted

request of the multicast, or (iii) x is a node connected to s that belongs to a ring of the

selected region assigned to the multicast.

(i) If s does not belong to R

3

, we route P along the entering column until the ring of s is

reached. At this point P is routed along the ring of s to s. If s belongs to R

3

, P follows

the entering column until the largest ring of R

3

is reached. Then, P is routed along this ring

until it reaches a point from which a row or column is available that (1) connects straight to

a corner of the ring of s and (2) does not intersect any existing multicast tree. By Lemma 34

such a row or column exists. Path P routes along this row or column to the ring of s and

along the ring of s to s.

(ii) When the request at x 62 R

3

was accepted, the ring of x was assigned to the multicast.

We route P along the entering column until the ring of x is reached. At this point P is routed

along the ring of x to x.

(iii) We route P along the entering column until the assigned ring of the selected region is

reached. At this point P is routed along the ring to x.

We need to show that this routing is always possible. We �rst show two properties of MC.

Lemma 31 The maximum number of paths routed by MC between two adjacent squares is B.

27

Proof. Each edge in G

0

has capacity B and MC does not violate the capacity constraints.

We say a path in G

0

is routed through a square S if S is an internal node of the path.

Lemma 32 Let S be a square. There are at most 2B paths of MC routed through S. If a request

node of a request in L

2

belongs to S, then at most 2B � 1 paths of MC are routed through S.

Proof. Every path routed through a square consumes two units of bandwidth on the edges incident

to the vertex of G

0

associated with the square. Additionally, a long request consumes one unit of

bandwidth. The overall bandwidth on the edges incident to a vertex of G

0

is 4B.

We prove with the next two lemmata that all paths constructed for di�erent multicasts are edge-

disjoint.

Lemma 33 Invariants (I4) and (I6) are maintained.

Proof. Condition (ii) of being selected for long requests guarantees that invariant (I4) is main-

tained. Step 1 of the algorithm guarantees invariant (I6).

Lemma 34 Let (t; s) be a request of L

3

and let (v; x) be the corresponding pair of nodes that has

to be connected by a path. Then the above algorithm succeeds in constructing a path from v to

x. Furthermore, this path does not share any edge with paths constructed for requests in L

3

for

di�erent multicasts.

Proof. We �rst show that the algorithm succeeds in constructing a path from v to x. We need

to show that (a) whenever the algorithm tries to assign an unassigned ring of the selected region

to the multicast, such a ring is available; (b) if s 62 S

p

and no request node of this multicast in R

1

or R

2

was accepted then s is connected to a node x on a ring of the selected region of S

p

that is

assigned to the multicast; (c) whenever the algorithm tries to assign an unassigned column or row

between two neighboring squares, such a column or row is available; (d) whenever the algorithm

tries to connect the largest ring of R

3

with vertex s in R

3

, such connection is possible without

overlapping with a di�erent multicast tree.

(a) The selected region consists of 2B rings. The algorithm tries to assign a ring of the selected

region for each request of L

3

with request node in the square and for each request routed through

a square. Step (1) of the algorithm guarantees that at most one long request with request node in

a square belongs to L

3

. If this happens, Lemma 32 shows that at most 2B � 1 paths are routed

through the square, otherwise at most 2B paths are routed through the square. Thus, in either

case there are enough rings in the selected region.

(b) If s 62 S

p

but MC routed the path from S

t

to S

p

, then MC connected S

p

to S

s

during an

earlier request. Thus, an earlier request (t

0

; s) of the same multicast was added to L

2

and, since

the multicast is selected for long requests, was also added to L

3

. Thus, a ring r of the selected

region of S

p

is assigned to the multicast. If (t

0

; s) 2 L

3

n L

4

, then a node u of r is connected to s.

If (t

0

; s) 2 L

4

, then by assumption t

0

2 R

3

. Thus, the crossbar row or column on the path from t

0

to the border of S

p

also contains a node of r.

(c) The crossbar consists of B rows and columns. By Lemma 31 there are at most B requests

that have to cross the border between any two neighboring squares. Thus, it is guaranteed that

28

whenever a path needs to be routed between two neighboring squares an unassigned row or column

is available.

(d) The ring of s has at least one corner, and thus there are at least two possible rows and two

possible columns through which the largest ring of R

3

can be connected with the ring of s. At

most one long request (t

0

; s

0

) with t

0

in R

3

has been accepted in S

s

, potentially using one of these

crossbar rows or columns. Thus, there are still at least three possible ways to connect to the ring

of s.

Let S be a square. We show next that the path from v to x does not share any edge in S with

paths constructed for requests in L

3

for di�erent multicasts. The lemma follows.

Note �rst that no ring of S shares an edge with a crossbar row or column or a straightline segment

connecting two rings. To complete the proof that no two paths of di�erent multicasts share an

edge in S, it then su�ces to show that the rings of the two paths are edge-disjoint and that the

straightline segments of the two paths are edge-disjoint. The straightline segments connect the

various rings of a path and a ring with the border of S.

A path that is routed through S consists of an entering crossbar row or column, a part of a ring

in the selected region, and a departing crossbar row or column. Both crossbar pieces go from

the border to the selected region. By points (a) and (c) and the observation that the straightline

extensions belong to R

3

, which is in this case not the selection region, all these three pieces are

disjoint from the paths used by any other request path with edges in S. Thus, any path routed

through S is edge-disjoint from any path of a di�erent multicast in S.

We are left with showing that no two paths of long requests starting or ending in S share an edge

in S. Let P and P

0

be two such paths belonging to di�erent multicasts and let y and y

0

be their

endpoints in S. By invariants (I4) and (I6), y and y

0

can only be a source node and a non source

node. Wlog., y is a source and y

0

is a non-source node. Node y belongs to a ring that is assigned

to sources and does not belong to the selected region, node y

0

either belongs to the selected region

or to a ring that is assigned to requests. In either case, the rings of y and of y

0

are edge-disjoint.

Furthermore, the largest ring of R

3

might have been assigned to path P and in this case is dedicated

to sources. A di�erent ring of R

3

, which is dedicated to request nodes, might have been assigned

to path P

0

. Again these rings are edge-disjoint.

By point (c) the crossbar rows or columns assigned to P and P

0

are di�erent and, thus, edge-disjoint.

Since the straightline extensions start at di�erent rings, they are edge-disjoint. We are left to show

that the straightline extensions connecting the rings assigned to y and y

0

are edge-disjoint with

the crossbar rows or columns used in P and P

0

. If neither y nor y

0

belong to R

3

, no straightline

extension is necessary. If only one between y and y

0

belongs to R

3

, one straightline extension exists,

belonging completely to R

3

, and the crossbar row or column of the other path does not reach R

3

.

Thus, of P and P

0

are edge-disjoint. If both y and y

0

belong to R

3

, note that by Step 1 P

0

was

accepted and routed before P . By point (d) above the straightline extension of P does not overlap

with P

0

.

It follows that P and P

0

are edge-disjoint.

5.2.2 Short Requests

Recall that a request (t; s) is short if a node x in S

t

belongs to the multicast tree of s. The algorithm

for short requests decides whether to accept or reject a request in three steps. Each step rejects

29

the request if certain conditions are not ful�lled. The requests which are not rejected after step i,

i = 1; 2; 3 form a sequence S

i

.

Whenever the �rst request with S

t

= S

s

of a multicast is added to S

2

, the algorithm decides whether

the multicast is selected for short requests. Note that this decision will only a�ect short requests

with S

t

= S

s

, other short requests of the same multicast are accepted or rejected independent of

this decision.

A multicast with source s is selected for short requests if all of the following conditions are ful�lled

at the time of the test:

(i) no short request of a multicast with source in S

s

has been added to S

2

;

(ii) a coin toss with success probability 1=2 is successful.

Whenever a multicast is selected for short requests, the ring of s is assigned to the multicast.

In the following let y denote a node of S

t

that belongs to the multicast tree of s. Note that y = s

is possible. The decision part of the algorithm for short requests consists of three steps:

1. (a) If a short request with request node in S

t

has been accepted then reject (t; s) and stop. (b)

If a long request with request node in S

t

has been added to L

3

, reject (t; s) and stop. (c) If

a long request with source in S

t

has been added to L

3

, reject (t; s) and stop. Otherwise add

(t; s) to S

1

.

2. If either t or y, but not both, is in the central region, the other vertex is not in R

3

, and ring

4B + 1 to 6B of S

t

are all dedicated to sources, then reject (t; s) and stop. Otherwise add

(t; s) to S

2

.

3. If S

t

6= S

s

or if S

t

= S

s

and the multicast with source s is selected for short requests, then add

(t; s) to S

3

. Otherwise reject (t; s) and stop.

Accept every request (t; s) in S

3

and assign the ring of t to the multicast. If either t or y,

but not both, belong to the central region of S

t

, and the other vertex does not belong to R

3

,

assign one of rings 4B + 1 to 6B of S

t

dedicated to requests to the multicast of s.

We describe next the routing part of the algorithm. Let P denote the path used by an accepted

request (t; s) to connect t to y. If t and y belong to the same ring, simply connect them by a path

along the ring.

If t and y do not belong to the same ring, let a denote the vertex of ft; yg that belongs to a ring of

S

t

with larger index than the other vertex. Let b denote the other vertex. If a is outside the central

region then P starts at a and follows the ring containing a until a corner of the ring is reached.

Then, P continues along a straightline extension of the ring to the ring of b and from there along

the ring of b to b.

If a is in the central region and b is not, then P starts at a, follows the ring of a until a corner of

the ring is reached. There P continue straight to the ring in the external 2B rings of R

3

assigned

to the multicast. Then, path P continues as described above, i.e., it routes to a corner of the ring,

extends straight from there until it reaches the ring of b, and follows the ring of b to b.

If both a and b belong to the central region, P is routed from a along the ring of a until it reaches

a corner of the ring. From there it continues straight until it reaches the ring of b and it follows

the ring of b to b.

30

Lemma 35 Invariant (I1), (I2), (I3), and (I5) hold.

Proof. Step 1(a) and 1(b) of the algorithm for short requests and step 1 of the algorithm for long

requests ensure that invariant (I2) holds.

Condition (i) and (ii) of being selected for a long request and condition (i) of being selected for a

short request ensure invariant (I3).

Condition (i) of being selected for a short request ensure invariant (I5).

Finally, we show that invariant (I1) holds. The routing phase guarantees that edges on a ring are

only used by the multicast to whom the ring is assigned. Thus, we need to show that each ring is

assigned to at most one multicast. A ring is assigned to a multicast during request (t; s) (a) if it

contains s, (b) if it contains t, (c) if it belongs to the selected region, (d) if it is the largest ring of

S

s

and dedicated to sources or, (e) if it is one of rings 4B+1 to 6B in S

t

and dedicated to requests.

During a request (t; s) a type (c) assignment is only done if the ring was not previously assigned.

Thus, we only need to show that type (a), (b), (d), and (e) assignments do not assign previously

assigned rings. Recall that each ring is either dedicated to a source or to a request node. A request

is rejected if its source lies on a ring dedicated to request nodes or its request node lies on a ring

dedicated to sources and its source does not lie on this ring. In the following let r denote the ring

that is assigned.

Type (a): The ring r of s is dedicated to sources. When the ring r of s is assigned to the multicast

with source s, the multicast with source s is selected for long or short requests. If it becomes

selected for long requests, by condition (i) and (ii) for selection for long requests no multicast with

source on r is already selected for short or long requests. If the multicast becomes selected for

short requests, note that S

s

= S

t

. By by condition (i) for selection for short requests and step 1c

of the algorithm for short requests no multicast with source in S

s

is already selected for short or

long requests. Thus, r was not assigned to any other multicast with source on r. Furthermore, r

does not belong to the selected region. Thus, r has not been assigned because of type (a), (b), (c),

or (e) assignments. Finally a type (d) assignment can happen only if a previous source of a long

request belongs to S

s

. This is impossible by condition (ii) of being selected for a long request if

the current request (t; s) is a long request, and by step (1c) of the algorithm for short requests if

the current request (t; s) is a short request.

Type (b): The ring r is dedicated to request nodes and does not belong to the selected region. Thus,

r was not previously assigned with type (a), (c), and (d) assignments. Since (t; s) is an accepted

short request, no earlier request with request node in S

t

was accepted by invariant (I2). Thus, r

was not previously assigned by type (b) or (e) assignments.

Type (d): In this case ring r belongs to S

s

and is dedicated to sources. Furthermore, s 2 R

3

,

i.e., R

3

is not selected and the current multicast is selected for long requests. It follows that no

multicast with source in S

s

is already selected for long requests and no multicast with source on r

was previously selected. The former implies that no type (d) assignment has happened to r before,

the latter implies that no type (a) assignment has happened to r before. Since r does not belong to

the selected region and is dedicated to sources, type (b), (c), and (e) assignments are not possible.

Type (e): In this case ring r belongs to S

t

and is dedicated to request nodes. Furthermore, R

3

is

not selected and t 2 R

3

. It follows that type (a), (c), and (d) assignments are not possible. By

invariant (I2) no earlier request with request node in S

t

was accepted. Thus, no previous type (b)

or (e) assignment can have occurred.

31

Lemma 36 No two paths constructed for di�erent multicasts share an edge.

Proof. Let S be a square. We show that no two paths P and P

0

constructed for di�erent multicasts

share an edge in S. By Lemma 34 no two paths assigned to long requests share an edge. Thus, we

can assume that P is a path constructed for a short request. Let (t; s) be the request leading to

the construction of P and let (t

0

; s

0

) be the request leading to the construction of P

0

.

By step (1a) of the algorithm, only one short request is accepted in a square. By step (1b) of the

algorithm, if a long request from a request node in a square has been added to L

3

, no short request

from that square is accepted. By step (1c) of the algorithm if a long request with source node in

a square was added to L

3

, no short request from that square is accepted. Thus, it follows that

when (t; s) is accepted, no previously accepted request has either its source or its request node in

S

t

. Thus, either P

0

routes through S

t

or (t

0

; s

0

) is a long request accepted after (t; s). By step 1 of

the algorithm for long requests it additionally follows that S

t

6= S

t

0

, i.e., that S

t

= S

s

0

.

Lemma 35 shows that we maintain invariant (I1), i.e., the edges of a given ring are used by at most

one multicast tree. Thus, no two di�erent multicast trees share an edge on a ring. As argued in

Lemma 34, no ring of S shares an edge with a crossbar row or column or a straightline segment

connecting two rings.

We are left with proving that the subpaths of P

0

used to connect the (at most 2) rings of P

0

and

the border(s) of the square are edge-disjoint with the (at most 2) subpaths of P that connect the

(at most 3) rings used by P .

Each subpath used by P is a straightline extension either (a) from a corner of a ring outside the

central region to a more external ring, (b) from a corner of a ring of the central region to a ring of

R

3

with smaller index, or (c) from a corner of a ring of the central region to another ring of the

central region. Each subpath used by P

0

is either (i) a straightline extension from a corner of a

ring of R

3

to ring 4B+1, or (ii) a crossbar row or column from a vertex of ring 4B+1 or of a ring

outside R

3

to the border of the square. Since they start from di�erent rings, every type (i) subpath

of P

0

is edge-disjoint with all type (a), (b), or (c) subpaths used by P . Every type (ii) subpath of

P

0

is edge disjoint with any type (a) subpath of P , since a type (a) subpath does not use edges on

the crossbar. Every type (ii) subpath of P

0

is also edge-disjoint with any type (b) or (c) subpath

of P , since type (b) or (c) subpaths only use edges with both endpoints in R

3

.

Thus, P and P

0

are edge-disjoint.

5.2.3 The analysis

Let � = log n(logn+ log logM) logM. Recall that MC achieves a competitive ratio of O(�). We

prove in this section that the expected number of requests accepted by the second stage of the

algorithm is an O(� log n) fraction of OPT (C), for any possible set C. Together with Lemma 30 it

follows that our algorithm is O(� log n) = O(log

2

n(log n+ log logM) logM) competitive.

Since

jOPT (C)j= jOPT (C) \ L

0

j+ jOPT (C) \ S

0

j

= jOPT (C) \ ((L

0

n L

1

) [(S

0

n S

1

))j+ jOPT (C) \ L

1

j+ jOPT (C) \ S

1

j

it su�ces to show the following results:

32

jOPT (C) \ ((L

0

n L

1

) [(S

0

n S

1

))j � 48 log

2

nE[jON(C)j] (Lemma 39),

jOPT (C) \ L

1

j � O(� log n)E[jON(C)j] (Lemma 40), and

jOPT (C) \ S

1

j � O(log

2

n)E[jON(C)j] (Lemma 42).

We �rst need to show the following claim. We assume here that each node can receive at most one

request per multicast.

Claim 37 At most 4 log

2

n requests with request node in a given square can be accepted in a solu-

tion.

Proof. Each node in a square is incident to four edges and thus can belong to at most four

multicast trees. Thus at most 4 log

2

n requests with request node in a square can be accepted by

a solution.

Claim 38 Every request of L

3

is added to L

4

with probability at least 1=2, i.e., E[jL

4

j] � jL

3

j=2.

Proof. Let (t; s) be such a request of L

3

. By Step 4 of the algorithm for long requests, (t; s) is not

added to L

4

if t belongs to the central region and rings 4B + 1 to 6B are all dedicated to sources.

If t belongs to R

3

, R

3

is not the selected region, and thus every ring of R

3

is dedicated to request

nodes with probability 1=2.

Lemma 39 jOPT (C) \ ((L

0

n L

1

) [(S

0

n S

1

))j � 4 log

2

nE[jON(C)j].

Proof. We �rst show that jOPT (C) \ (L

0

n L

1

)j � 24 log

2

nE[jON(C)j].

A request (t; s) of L

0

is not added to L

1

because (i) a long request with request node in S

t

was

added to L

3

or (ii) a long request with source in S

t

was added to L

3

or (iii) a short request with

request node in S

t

was accepted. Consider the following charging from long requests in L

0

n L

1

to

squares of the mesh: (A) If a request (t; s) of L

0

was not added to L

1

because situation (i) or (iii)

arose, the request is charged to S

t

. (B) If (t; s) was not added because a type (ii) request (t

0

; s

0

)

was added to L

3

, we charge (t; s) to S

t

0

. Claim 37 shows that there are at most 4 log

2

n type (A)

charges and at most 4 log

2

n type (B) charges to a given square.

Let q be the number of squares to which at least one request of L

0

nL

1

is charged. Then jOPT (C)\

(L

0

n L

1

)j � 8 log

2

nq. It su�ces to prove q � 3E[jON(C)j]

Every square with a type (A) charge contains the request node of an accepted request of C. Every

square with a type (B) charge contains the request node of a request in L

3

. By Claim 38, jL

3

j �

2E[jON(C)j]. Thus, q � jON(C)j+ 2E[jON(C)j].

Then, jOPT (C) \ (L

0

n L

1

)j � 8 log

2

nq � 24 log

2

nE[jON(C)j]

The same argument applies to S

0

n S

1

.

Lemma 40 jOPT (C) \ L

1

j � O(� log n)E[jON(C)j].

Proof. The requests of L

1

are transformed into requests on G

0

, giving rise to a request sequence

L

1;G

0

submitted to MC. The bandwidth on M is a factor of 13 larger than the bandwidth on G

0

.

33

On the request sequence L

1;G

0

we compare MC on G

0

with an optimum algorithm on a mesh G

00

whose topology is identical to G

0

and whose edge capacity is a factor of 13 larger. Then we compare

the optimum algorithm on G

00

with the request sequence L

1;G

0

with the optimum algorithm on M

with the request sequence L

1

. Note that ON

MC

(L

1;G

0

) = L

2

.

The same arguments as in [AAP93, KT95] show that jOPT (L

1;G

00

)j � O(�)E[jON(L

1;G

0

)j] =

O(�)E[jL

2

j]:

Note that jOPT (L

1;G

00

)j � jOPT (L

1

)j, since routing requests on G

00

is identical to routing requests

in M where all edges inside a square have in�nite capacity. Thus,

jOPT (C) \ L

1

j � jOPT (L

1

)j = O(�)E[jL

2

j]:

Claim 41 below shows that jL

2

j � O(logn)E[jL

3

j]. From Claim 38 we obtain that jL

3

j � 2E[jL

4

j].

Since jL

4

j � jON(C)j, this concludes the proof of the lemma.

Claim 41 jL

2

j � O(log n)E[jL

3

j].

Proof. A request of L

2

is added to L

3

if its multicast is selected for long requests. We show that

a multicast is selected for long requests with probability
(1= log n). This shows the claim.

A multicast is selected for long requests if conditions (i) { (iv) hold. Let r be the ring of of the

source s of the multicast. We bound next the probability that each condition holds.

Condition (i): The �rst short request with source on r added to S

2

is selected for short requests

with probability at most 1=2. None of the short requests with source on r added later to S

2

can

become selected for short requests. Thus, condition (i) that no source on r is already selected for

short requests holds with probability at least 1=2.

Condition (ii): The total capacity of edges incident to S

s

is 4B. Thus there exist at most 4B

multicasts with source in S

s

in L

2

. Each of them is selected with probability at most 1=(4B).

Thus the probability that condition (ii) holds, i.e., that none of them is selected, is at least (1 �

1=(4B))

4B

� 1=e.

Condition (iii): The coin toss is successful with probability 1=(4B).

Condition (iv): The largest ring of R

3

in S

s

is dedicated to sources with probability 1/2.

Thus a multicast is selected for long requests with probability at least 1=(16eB) =
(1= log n).

Lemma 42 jOPT (C) \ S

1

j = O(log

2

n)E[jON(C)j].

Proof. Since jOPT (C)\S

1

j = jOPT (C)\ (S

1

nS

3

)j+ jOPT (C)\S

3

j and jOPT (C)\S

3

j � jON(C)j

it su�ces to show

jOPT (C) \ (S

1

n S

3

)j � 32 log

2

nE[jON(C)j]:

Let S be a square and let C \S denote the sequence C restricted to the requests with either request

or source node in S. We show that for each square S that

jOPT (C \ S) \ (S

1

n S

3

)j � 16 log

2

nE[jON(C) \ Sj]:

Since

jOPT (C)\(S

1

nS

3

)j �

X

S

jOPT (C\S)\(S

1

nS

3

)j �

X

S

16 log

2

nE[jON(C)\Sj] � 32 log

2

E[jON(C)j]:

34

By Claim 37,

jOPT (C \ S) \ (S

1

n S

3

)j � jOPT (C \ S)j � 4 log

2

n:

It su�ces to show that

(*) For each square S with S

1

\ S 6= ;, E[jON(C) \ Sj] � 1=4: Consider the �rst request (t; s) of

S

1

\ S. It is added to S

2

if t and y either both belong to the central region or both not belong to

the central region. Otherwise, the request is added to S

2

if at least one of rings 4B + 1 to 6B is

dedicated to request nodes. This happens with probability at least 1=2.

If y 6= s, then the request is added to S

3

and the claim is proved. If y = s, then the request is

added to S

3

if the multicast is selected for short requests. If Condition (i) of being selected for short

request is not satis�ed, there exists a short request (t

0

; s

0

) of S

2

with S

s

0

= S for which Condition

(i) of being selected for short requests was satis�ed, that has been added to S

3

with probability

1=2. If Condition (i) of being selected for short requests holds for source s, then (t; s) is added

to S

3

with probability 1=2. Thus, with probability 1=2 at least one request of S

2

is added to S

3

.

This shows that if S

1

\ S 6= ;, then a request of C \ S is accepted by the online algorithm with

probability at least 1=4.

Lemmata 39, 40 and 42 together prove the following theorem:

Theorem 43 There exists a O(log

2

n(logn+log logM) logM) competitive algorithm for multicast

routing on unit capacity meshes.

5.3 A lower bound for the online algorithm on meshes

In [GHP98] a lower bound of
(log(M=u) log n) against an oblivious adversary is given for the

online multicast algorithm in a tree, where u is the (minimum) edge capacity, M is the number of

multicasts, and n is the size of the tree. We show here how to modify the proof to give a lower

bound of
((log(M=u) log n)=d) in a connected graph whose minimum degree is d. This gives a

polylogarithmic lower bound for a mesh.

We assume �rst that all demands and all edge capacities are 1 and prove a lower bound of

(logM logn). Afterwards we show how to add edge capacities to the proof.

We restrict ourself to the case that

p

n > logM. Let M = M= log n and N = n= logM . Assume

that the nodes are numbered with consecutive numbers from 0 to n � 1 such that the node with

minimum degree is labeled 0. Consider the following sequence of multicast requests. There are

logN phases. In the following we describe phase i, with 1 � i � logN . In each phase the adversary

generates M new multicasts. Each multicast has source 0. Its requests consists of logM sets. The

�rst set of requests consists of the nodes 1 to 2

i

. Then the adversary ips a coin and terminates

the multicast with probability 1/2. The j-th set of requests consists of nodes 2

i

� (j � 1) + 1 to

2

i

� j. After processing all M multicasts a new phase starts.

Let c(i) be the capacity on any edge incident to node 0 used by the online algorithm during phase

i. Also, let p(i) be the pro�t obtained by the online algorithm during the i-th phase. We use c

�

(i)

and p

�

(i) to denote the corresponding quantities for the optimal algorithm.

By contradiction we show below that there exists a phase k such that

P

1�i�k

E[p(i)] � 2

k+1

d= logN .

The adversary stops the sequence of requests after this phase k. Claim 8.2 of [GHP98] proves that

during phase k the optimal algorithm can obtain a pro�t of at least (logM=4)2

k

by accepting the

35

multicast with highest pro�t in this round. This gives a lower bound of
((logM logN)=d) =

((logM log n)=d).

We are left with showing that there exists a phase k such that

P

1�i�k

E[p(i)] � 2

k+1

d= logN .

Assume by contradiction that no such phase exists. Let S(k) = (1=2

k

)

P

1�i�k

E[p(i)]. Then for

all k, S(k) > 2d= logN , i.e.,

P

1�k�logN

S(k) > 2d. But

X

1�k�logN

S(k) =

X

1�k�logN

(1=2

k

)

X

1�i�k

E[p(i)] =

X

1�i�logN

E[p(i)]=2

i�1

:

Claim 8.1 of [GHP98] shows that E[p(i)] < 2

i

E[c(i)]: Since

P

i

c(i) � d, it follows that

P

1�k�logN

S(k)

<

P

1�i�logN

2E[c(i)] � 2d, which gives a contradiction.

If the edge capacity is u, each phase is repeated u times. This increases the number of multicasts

by a factor of u. Thus, the same proof as above gives a lower bound of
((log(M=u) log n)=d). We

summarize the result in the following theorem.

Theorem 44 No randomized algorithm for online multicast routing on a connected graph with

minimum degree d > 0 can have a competitive ratio better than
((log(M=u) log n)=d) even against

an oblivious adversary, where u is the capacity of an edge.

References

[AAFL96] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in the face

of uncertainty: How to pick a winner almost every time. In Proc. of the 28th Annual

ACM Symposium on Theory of Computing, pages 519{530, 1996.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In

34th IEEE Symposium on Foundations of Computer Science, pages 32{40, 1993.

[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros�en. Competitive non-preemptive call

control. In Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, pages 312{

320, 1994.

[AGLR94] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission control and

circuit routing for high performance computing and communication. In Proceedings

of the 35th Annual IEEE Symposium on Foundations of Computer Science, pages

412{423, 1994.

[Ali97] P. Alimonti, 1997. Personal communication.

[AS97] B. Awerbuch and T. Singh. On-line algorithms for selective multicast and maximal

dense trees. In Proceedings of the 29th Annual ACM Symposium on Theory of Com-

puting, pages 354{362, 1997.

[Awe96] B. Awerbuch. Online selective multicast and maximal dense trees: A survey, 1996.

Available as http://www.cs.jhu.edu/baruch/MULTICAST/index.html.

[BFL96] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems with

application to on-line circuit and optical routing. In Proceedings of the 28th ACM

Symposium on Theory of Computing, pages 531{540, 1996.

36

[Gar96] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proc. of the

of 37th Annual IEEE Symposium on Foudations of Computer Science, pages 302{309,

1996.

[GHP98] A. Goel, M.R. Henzinger, and S. Plotkin. Online throughput-competitive algorithm

for multicast routing and admission control. In Proceedings of the 9th ACM-SIAM

Symposium on Discrete algorithms, pages 97{106, 1998.

[GK98] N. Garg and J. K�onemann. Faster and simpler algorithms for multicommodity ow

and other fractional packing problems. Technical Report MPI-I-97-1-025, Max-Planck-

Institut f�ur Informatik, 1998.

[GVY93] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-ow min-(multi)cut

theorems and their applications. In Proceedings of the International Colloquium on

Automata, Languages and Programming, LNCS, pages 64{75. Springer-Verlag, 1993.

[Hoc97] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS, 1997.

[KT95] J. Kleinberg and

�

E. Tardos. Disjoint paths in densely embedded graphs. In Proceedings

of the 36th Annual IEEE Symposium on Foundations of Computer Science, pages 52{

61, 1995.

[LMS95] S. Leonardi and A. Marchetti-Spaccamela. On-line resource management with applica-

tions to routing and scheduling. In Proceedings of the 23rd International Colloqium on

Automata, Languages and Programming, LNCS 955, pages 303{314. Springer-Verlag,

1995.

[LMSPR98] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Ros�en. On-line ran-

domized call-control revisited. In Proceedings of the 9th ACM-SIAM Symposium on

Discrete Algorithms, pages 323{332, 1998.

[MKR95] M. Mihail, C. Kaklamanis, and S. Rao. E�cient access to optical bandwidth. In Proc.

of the of 36th Annual IEEE Symposium on Foudations of Computer Science, pages

548{557, 1995.

[PST95] S. Plotkin, D. Shmoys, and

�

E Tardos. Fast approximation algorithms for fractional

packing and covering problems. Mathematics of Operations Research, 20:257{301,

1995.

[Rab96] Y. Rabani. Path-coloring on the mesh. In Proceedings of the 37th Ann. IEEE Sympo-

sium on Foundations of Computer Science, pages 400{409, 1996.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating

packing integer programs. Journal of Computer and Systems Sciences, 2(37):130{143,

1988.

[RU94] P. Raghavan and E. Upfal. E�cient routing in all-optical networks. In Proceedings of

the 26th Annual ACM Symposium on Theory of Computing, pages 133{143, 1994.

[vLe90] Jan van Leeuwen ed. Handbook of theoretical computer science, Vol A, Algorithms and

Complexity. The MIT Press, 1990.

37

[You95] N. Young. Randomized rounding without solving teh linear program. In Proceedings

of the 6th ACM-SIAM Symposium on Discrete Algorithms, pages 170{178, 1995.

38

