
Time-Independent Gossiping on Full-Port Tori

Ulrich Meyer and Jop F. Sibeyn

Max-Planck-Institut für Informatik

Im Stadtwald, 66123 Saarbrücken, Germany.

E-mail: umeyer, jopsi@mpi-sb.mpg.de.

WWW: http://www.mpi-sb.mpg.de/�umeyer,�jopsi/

June 25, 1998

Abstract

Near-optimal gossiping algorithms are given for two- and higher dimensional tori. It is assumed

that the amount of data each PU contributes is so large that start-up time may be neglected. For two-

dimensional tori, a previous algorithm achieved optimality in an intricate way, with a time-dependent

routing pattern. In all steps of our algorithms, the PUs forward the received packets in the same way.

1 Introduction

Meshes and Tori. One of the most thoroughly investigated interconnection schemes for parallel com-

putation is the n� n mesh, in which n2 processing units, PUs, are connected by a two-dimensional grid

of communication links. Its immediate generalizations are d-dimensional n � � � � � n meshes. Despite

their large diameter, meshes are of great importance due to their simple structure and efficient layout.

Tori are the variant of meshes in which the PUs on the outside are connected with “wrap-around

links” to the corresponding PUs at the other end of the mesh. Tori are node symmetric. Furthermore, the

bisection width for tori is twice as large as for meshes, and the diameter is halved. Numerous parallel

machines, such as the Intel Paragon, Cray T3D and Cray T3E, have been built with two- and three-

dimensional mesh and torus topologies Tori can be embedded in meshes with load 1, dilation 2 and

congestion 2. That is, for all those algorithms that run twice as fast on tori as on meshes, one can assume

without loss of performance that the network is a torus.

Gossiping. Gossiping is a fundamental communication problem: Initially each of the P PUs knows

s bytes of information, which must be routed so that in the end all PUs have the complete set of infor-

mation of size s � P bytes (this problem is also called all-to-all broadcast).

Gossiping appears as a subroutine in many important problems. For example, if M numbers are

to be sorted on P PUs, then a good approach is to select a set of m splitters [12, 8] which must be

made available in every PU. This means that we have to perform a gossip in which each of the P PUs

contributes s = m=P numbers. A second application of gossiping appears in algorithms for solving

ordinary differential equations using parallel block predictor-corrector methods [11]. In each application

of the block method, computations corresponding to the prediction are carried out by different PUs and

these values are required by all other PUs.

Earlier Work. A substantial amount of research has been carried out on variants of the gossiping

problem [10, 3, 6, 9, 4, 7]. Recently Šoch and Tvrdı́k [14] have analyzed the following variant of the

gossiping problem:

� Packets of size s can be transferred in one step between adjacent PUs (store-and-forward model).

1

� In each step a PU can exchange packets with all its neighbors (full-port model).

The assumption that it takes one step to transfer a packet is debatable. Most modern parallel com-

puters, such as the Intel Paragon, the Cray T3D and T3E, are characterized by a high start-up latency.

This means that if the number of bytes s contributed by each PU is small (on the Paragon this means

s � P < 10,000) the gossiping time will be determined mainly by the number of times a PU sends a

packet. In that case, the primary goal should be to minimize the number of sending operations [9, 4].

In an intermediate range of s-values (on the Paragon up to about s = 20,000), one should establish an

optimal trade-off between the number of sending operations and the routing volume, the number of bytes

sent by each PU [7]. For even larger s, the start-up latency becomes negligible and one can focus entirely

on minimizing the routing volume. For such large values of s, it is correct to assume that it takes one

step for every transferred packet of size s.

In [14], it was shown that on a two-dimensional n
1

� n

2

torus, the given problem can be solved

in d(n
1

� n

2

� 1)=4e steps if n
1

; n

2

� 3. This is optimal. The algorithm is based on time-arc-disjoint

broadcast trees. This implies that the action to be performed by a PU is time-dependent, and thus, that

for every routing decision, a PU has to perform some non-trivial computation. Furthermore, there are

many cases to distinguish, and the description is mainly in the form of pictures. It is stated that a similar

construction works for higher-dimensional meshes, but the description would be much more complicated

and is omitted. We think these weaknesses are inherent in the time-dependent approach.

New Results. In this paper, we analyze the same problem as Šoch and Tvrdı́k. Clearly, we cannot im-

prove their optimality. Instead, we try to determine the minimal concessions that must be made to obtain

a time-independent algorithm. That is, we are aiming for algorithms in which a PU performs the same

actions in each step: In our gossiping algorithms, after some O(d) precomputation on a d-dimensional

torus, a PU knows once and for all that packets coming from direction x
i

have to be forwarded in direc-

tion x
j

, 1 � i; j � d. Time-independence ensures that the routing can be performed with minimal delay,

for a fixed size network the pattern might even be built into the hardware. This is also advantageous on

a system in which the connections must be somehow switched.

However, in Section 2 we will show that with one packet per PU one cannot achieve the optimal

number of steps with a time-independent algorithm. Thus, to obtain time-independent algorithms, we

must make some concessions in comparison with [14]. Our first approach is to try to achieve the optimal

number of steps while assuming that the PUs hold k > 1 packets. The optimal number of steps, means

a routing time of k � P=(2 � d) steps on a torus with P PUs. For d-dimensional tori this is achieved with

k = d by routing the packets along edge-disjoint Hamiltonian cycles.

Our second approach, which is the more interesting one, is to accept that the gossiping takes an

additional o(P) routing steps. For d = 2, the algorithm is particularly simple and needs n
1

� n

2

=4 +

n

1

=2+1 steps, which is onlyn
1

=2 steps more than optimal. Therefore, this algorithm might be preferable

over the one from [14]. Generally, we show that, with one packet per PU, gossiping can be performed in

P=(2 � d) + o(P) steps on a d-dimensional torus. In these algorithms, we construct partial Hamiltonian

cycles: on a d-dimensional torus, we construct d cycles, which each cover P=d+ o(P) PUs. These are

so that for every cycle, every PU is adjacent to a PU through which this cycle runs. In particular, for the

practically relevant case d = 3, this gives the first simple and explicit construction achieving close to

optimally: on an n
1

� n

2

� n

3

torus, it requires n
1

� n

2

� n

3

=6 + n

1

� n

2

=2 + 1 steps.

Practical Aspects Modern parallel computers mostly apply worm-hole routing. This means that packets

are transferred between their origin and destination as a stream of “flits”. As long as there is no conges-

tion, the time for such a transfer is more or less independent of the distance. For a packet of size k, it can

be written as t
s

+ k � t

f

.

For sufficiently large packets, the “start-up time” t
s

becomes negligible, and the time depends almost

exclusively on s. This suggests that it does not matter much how origins and destinations are chosen: on

2

a network with P PUs, one could gossip by letting PU
i

transfer its packet to PU
(i+t) mod P

, in Round t,

1 � t < P .

On small networks, this may be a good approach, but in general it will lead to substantial losses due

to congestion. For personalized communication there is not much to do about this (see [13]), but if the

packet to be sent is the same for all PUs, it is much better to apply a strategy in which packets are routed

only between neighbors.

There is nothing magic about packets, and as long as they are so large that the start-up time remains

negligible, we may split them up or recombine them at will. That is why we may assume that initially

each PU holds some number k of packets: this only means that they have k size s=k instead of s, and

that thus the start-up costs play a slightly larger role. As long as k is small, this will be no problem.

Contents. In Section 3, we describe the optimal-time gossiping algorithm for two-dimensional tori and

outline its generalizations for higher dimensional meshes. Then, in Section 4, we describe near-optimal-

time algorithms that require only one packet per PU. Finally, in Section 5, we numerically compare the

performance of the gossiping algorithms of this paper and determine their range of optimality.

2 Lower-Bound

We show that it is not possible to construct two edge-disjoint Hamiltonian cycles so that a time-

independent algorithm with one packet per PU can perform the gossiping in d(P � 1)=4e steps by

concurrently routing the packets along those cycles.

So, in the remainder of this paper we assume that there are two edge-disjoint Hamiltonian cycles.

We may assume that the PUs are indexed so that the first cycle visits the PUs in consecutive order:

0; 1; : : : ; P�2; P�1. Thus, PU iwill receive the packets from PU (i�j) mod P and PU (i+j) mod P

in Step j, 0 < i; j < P . In the same step, PU i will also receive the packets from PU i

�j

and PU i

+j

where : : : ; i

�2

; i

�1

; i

0

; i

+1

; i

+2

; : : : denotes the order of the second cycle relative to PU i. Let k
i

=

jA

i

\ B

i

n figj, where A
i

= f(i� P=4) mod P; : : : ; (i+ P=4) mod Pg and B
i

= fi

�P=4

; : : : ; i

+P=4

g.

k

i

gives the number of multi-receives by PU i during the first P=4 steps, thus at least k
i

=4 additional

steps are necessary to complete the gossiping.

We prove that an i with k

i

� P=10 exists. Choose i arbitrarily. If k
i

� P=10, we are done.

Otherwise at least P=2� P=10 = 2=5 � P elements from B

i

have indices in A
i

= f0; : : : ; P � 1g n A

i

.

Let C
i

= A

i

\ B

i

. The elements of C
i

are sorted, and then cyclically shifted so that the smallest element

larger than i comes first. Out of this arrangement the median is selected and assigned to i0. For this i0,

we will show that k
i

0

� P=10, but first we illustrate the definitions given with an example.

Example 1 Consider the case P = 40 and i = 22. A

22

= f12; : : : ; 22; : : : ; 32g and A

22

=

f33; : : : ; 39; 0; : : : ; 11g. Suppose that

B

22

= f35; 11; 7; 4; 34; 8; 25; 38; 9; 6; 22; 20; 1; 17; 33; 3; 5; 10; 36; 0; 39g:

Hence, A
22

\ B

22

n f22g = f17; 20; 25g, and thus k
22

= 3. For C
22

= A

22

\ B

22

we have

C

22

= f33; 34; 35; 36; 38; 39; 0; 1; 3; 4; 5; 6; 7; 8; 9; 10; 11g;

and jC
22

j = 17. For i0 we now take i0 = 3, which is the median of C
22

in the given arrangement, in which

33, the smallest element larger then 22, comes first. A
3

= f33; : : : ; 39; 0; : : : ; 13g. B
3

is not exactly

known, but in any case

B

3

� f8; 25; 38; 9; 6; 22; 20; 1; 17; 33; 3; 5; 10; 36; 0; 39g;

Hence, A
3

\ B

3

� f8; 38; 9; 6; 1; 33; 3; 5; 10; 36; 39g, and thus k
3

� 11.

3

Theorem 1 A time-independent gossiping on two edge-disjoint Hamiltonian cycles with one packet per

PU requires at least d(11=40) � P � 1e steps.

Proof: We only have to deal with the case k
i

< P=10, so that i0 must be selected. The particular choice

of i0 and the position of i0 on the second cycle determines how many elements of C
i

belong to A
i

0 . In

the best case, PU i

0 is followed on one side of the second cycle by at least P=4 PUs storing elements not

belonging toA
i

0 . Let us assume this is the case on the left side, for example, fi0
�P=4

; : : : ; i

0

�1

g\A

i

0

= ;.

This situation might occur for example when i0 was just located at the left end of B
i

, i0 = i

�P=4

. Then

superfluous receives for PU i

0 may only arrive from the right side.

We have jC
i

j � 2=5 � P , thus in the best case the first P=2 � 2=5 � P = P=10 elements received

from the right side of the second cycle may not belong to A
i

0 as well. After that, the number of multi-

receives is minimized if the largest elements of C
i

(arranged so that the smallest element larger then i

comes first) are transferred first. Again, in the best case C
i

consists of two chunks of elements: the large

elements f(i0 � jC

i

j + P=2) mod P; : : : ; (i

0

� jC

i

j=2 + P=2) mod Pg on the one hand, and the small

elements f(i0 � jC

i

j=2) mod P; : : : ; i

0

g on the other hand. Note that the median i

0 is just the largest

element among the chunk of small elements in C
i

(when arranged as before). But any of those elements

in C
i

which are smaller than (i

0

+ P=4) mod P will fit into A
i

0 . So, even in the best case, after at most

i

0

� jC

i

j=2 + P=2 � (i

0

+ P=4) = P=20 more steps, the elements received from the right are small

enough to belong toA
i

0 . Altogether, during the first P=4 steps PU i

0 receives on the second cycle at least

P=4� P=10� P=20 = P=10 elements fitting into A
i

0 .

3 Optimal-Time Algorithms

In this section we first present optimal gossiping algorithms for two-dimensionaln
1

�n

2

tori. We assume

that each PU initially holds two packets. The transfer of a packet between two adjacent PUs takes one

step. We show that the gossiping can be performed in n

1

� n

2

=2 steps. We distinguish several cases,

depending on the parity of n
1

and n

2

. Finally we indicate how this idea can be generalized for higher

dimensional tori.

3.1 Two-Dimensional Tori, n
1

and n

2

Even

First we settle the indexing of the torus. The PU with index i will be designated PU i. PU (0; 0) lies

in the upper-left corner. PU (i; j) lies in row i and column j. n
1

gives the number of rows and n

2

the

number of columns. The routing rules are very simple: PU (i; j) determines whether j is odd or even,

then it sets its routing rules as follows:

j < n

2

� 1; j even : T $ R;B $ L:

j < n

2

� 1; j odd : T $ L;B $ R:

Here T;B; L;R designate the directions top, bottom, left and right, respectively. By T $ R, we mean

that the packets coming from above should be routed on to the right, and vice-versa. The other $

symbols are to be interpreted analogously. Only in the special case j = n

2

� 1 do we have the following

rule

j = n

2

� 1 : T $ R;B $ L:

The resulting routing scheme is illustrated in Figure 1.

Theorem 2 If every PU of an n
1

� n

2

torus, with n
1

and n
2

even, holds 2 packets, then gossiping can

be performed in n
1

� n

2

=2 steps.

Proof: Initially every PU knows two packets. In each step, it receives four new packets. Only in the last

step, a PU receives twice the same two packets.

4

Figure 1: A Hamiltonian cycle on a 6 � 8 torus (blue), whose complement (drawn with red lines) also

gives a Hamiltonian cycle.

3.2 Two-Dimensional Tori, n
1

Odd and n

2

Even

If n
1

or n
2

are odd, we must use a slightly modified schedule. In this section we consider only the

case n
1

odd and n
2

even. The case n
1

even and n
2

odd can be solved in a similar way. Here we do not

construct complete Hamiltonian cycles, but cycles that visit most PUs, and pass within distance one from

the remaining PUs. Except for Column n

1

� 2, the rules governing how to pass on the packets are the

same as in the basic case. In Column n
1

� 2 we perform

i = n

1

� 2 : L$ R:

PUs which do not lie on a given cycle, out-of-cycle-PUs, abbreviated OOC-PUs, are provided with the

f

b

f

b

b

f

b

f

f

b

f

b

f

b

Figure 2: Partial Hamiltonian cycles on a 6� 7 torus. The PUs in column 5 lie on only one cycle. Such

a PU passes the packets that are running forward on this cycle to the PU below it, and those that are

running backward to the PU above it.

packets which are transferred along this cycle by their neighboring on-cycle-PUs, OC-PUs. With respect

to different cycles, a PU can be both out-of-cycle and on-cycle. The packets received by an OOC-PU are

not forwarded. This can be achieved in such a way that a connection has to transfer only one packet in

each step. The resulting routing scheme is illustrated in Figure 2.

5

The optimal performance in the basic case (n
1

, n
2

even) was achieved by using both directions on

every cycle, thus halving the circulation time. The inclusion of OOC-PUs complicates this approach:

We need two different OC-PUs, A and B, in order to provide an OOC-PU C with packets from both

directions of that cycle. Let A transfer the packets that are walking forward whereas B is responsible for

the packets going backward. If m denotes the cycle length and A and B are not adjacent on the cycle,

then m=2 circulation steps are not enough: some packets are received from both directions, while others

pass by without notice. Figure 3 gives an example.

1 8
2 7
3 6
4 5

54

1

72

8

3 6

8
1
2
3

6
7
8
1

54

1

72

8

3 6

8
1
5
4

2
3
7
6

54

1

72

8

3 6

Figure 3: Packets received by an OOC-PUs. Left: If the relevant OC-PUs are adjacent, then 4 steps are

sufficient to receive all packets. Middle: Otherwise multiple receives occur. Right: a solution to this

problem by adequate packet classification.

This problem does not arise if there are four packets in each PU, two for each cycle, which are

routed for N � 1 steps in one direction along one cycle each. In this way we obtain an entirely time-

independent algorithm. If we are willing to make a small concession in this respect, in applying the

following switching-strategy, it is sufficient to have two packets per PU. Let l be the number of OC-PUs

between A and B, then during the first l steps, A transfers to C the packets that are running forward, and

during the last m=2� l steps those that run backward. B operates in the opposite dircetion. In our case

the number l equals 2 �n
1

� 1 for all PUs in Column n
1

� 2. Thus, each PU can still compute its routing

decisions in constant time.

Theorem 3 If every PU of an n
1

� n

2

torus, with n
1

odd and n
2

even, holds 2 packets, then gossiping

can be performed in n
1

� n

2

=2 steps.

3.3 Two-Dimensional Tori, n
1

and n

2

Odd

If both n
1

and n
2

are odd, then we need another modification similar to that in Section 3.2. It applies to

Row n

2

�2 and Row n

2

�1. The only difference is that we now allow OOC-PUs to be located at distance

two from their supporting OC-PUs. This implies that OOC-PUs will sometimes forward a packet that

they received in their capacity as an OOC-PU to an adjacent OOC-PU, the latter being unfortunate

enough to have only one adjacent OC-PU. Special attention has to be given to PU (n

1

�2; n

2

�2) which

does not belong to any cycle and simply transmits every packet it receives in the opposite direction,

so L $ R and T $ B. After the preceding discussion the modified routing scheme as described in

Figure 4 is self-explanatory.

Except for row n

2

� 2, the rules are the same as before. In row n

2

� 2 we perform

i 6= n

1

� 1 and j = n

2

� 2 : t$ b; l$ r:

i = n

1

� 1 and j = n

2

� 2 : t$ r; b$ l:

Theorem 4 If every PU of an n
1

� n

2

torus, with n

1

odd and n
2

odd, holds 2 packets, then gossiping

can be performed in dn
1

� n

2

=2e steps.

6

b

f b

b

f

b f b f

b

b f

f

b

f

b

f

b

f

f

b

f

f

b

b

b

f

f

b

ff

f

b

f

f

f

b

b

b

b

Figure 4: Routing scheme for two partial Hamiltonian cycles on a 7� 7 torus.

3.4 Higher Dimensional Tori

For d-dimensional tori, one should first construct d edge-disjoint Hamiltonian cycles. Such constructions

are described in [5, 2, 1]. Then, if every PU holds d packets of size s, each packet is forwarded for P=2

steps in both directions along one of the Hamiltonian paths. In this way, after P=2 steps, each PU has

received all packets.

The routing is trivial, but the precomputation may be quite involved. The number of routing steps

performed is also rather high due to the fact that each PU holds d packets. In the following section we

give a generic construction that works for arbitrary dimensions, and which gives a routing that can be

performed in P=(2 � d) + o(P) steps.

4 One-Packet Algorithms

In this section we give another practical alternative to the approach in [14]: we present algorithms which

require only one packet per PU and are optimal to within o(P) steps. The idea is simple: we construct d

edge-disjoint cycles of length P=d+ o(P). Each of the cycles must have this special property: if a PU

does not lie on it, this PU must be adjacent to two PUs that do lie on the cycle. Each of these two PUs

will transmit the packets from one direction of the cycle to the out-of-cycle-PU.

4.1 Two-Dimensional Tori

The construction of two partial Hamiltonian cycles with the desired properties is easy for two-

dimensional tori. At the same time, this clearly illustrates our intentions. There are two axes: the

x

1

-axis, running horizontally and the x
2

-axis running vertically. PU (0; 0) is assumed to lie in the upper-

left corner. n
1

and n

2

denote the size of the torus in the x
1

and x

2

direction, respectively. We assume

that n
1

is even and that n
2

� 2.

The construction is somewhat similar to the approach presented in Section 3.2. Here we have one

zigzag in the highest rows of the torus. This zigzag makes positive moves along axes x
1

, x
2

and x

1

,

respectively. Below this n
2

� 1 moves along the x
2

-axis follow, the final move bringing us over the

wrap-around connection to the next zigzag. In this way we obtain two edge-disjoint cycles of total length

n

1

� n

2

=2 + n

1

. The constructed cycles are illustrated in Figure 5. Binding the out-of-cycle-PUs is done

exactly as in the algorithm in Section 3.2; the case of odd n

1

can be treated by inserting one special

column.

7

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

b

f

Figure 5: Two edge-disjoint cycles, each of which comes within distance at most one from all PUs.

Theorem 5 If every PU of an n

1

� n

2

torus holds 1 packet, then gossiping can be performed in n

1

�

n

2

=4 + n

1

=2 + 1 steps.

Proof: Each of the cycles consists of n
1

� n

2

=2 + n

1

PUs, so using both directions in parallel one needs

n

1

�n

2

=4+n

1

=2+1 steps to spread all the packets within the cycle. For every OOC-PU, the two supplying

OC-PUs are separated by n
2

+1 other PUs on their cycle, so extra steps required for multiple receives in

the OOC-PUs can be easily eliminated using the switching strategy presented in Section 3.2. Omitting

the simple forward/backward switching at the cost of n
2

+1 extra steps leads to a fully time-independent

n

1

� n

2

=4 + O(n

1

+ n

2

) step algorithm.

4.2 Three-Dimensional Tori

For three-dimensional tori, we generalize the scheme of Section 4.1, showing more abstractly the under-

lying approach. PU (0; 0; 0) is assumed to lie in the upper-back-left corner. The three axes are denoted

as x
1

, x
2

and x

3

. They run left-, front- and downward, respectively. We consider an n

1

� n

2

� n

3

torus, where we assume that n
1

is a multiple of 3, that n
2

is a multiple of n
1

and that n
3

� 3. As a

generalization of the two-dimensional pattern, we construct a pattern that is similar to the bundle of rods

in a nuclear power-plant.

For two-dimensional tori, there are two cycles, each a concatenation of n
1

=2 laps. Each lap consists

of a zigzag followed by a long move along the x
2

-axis. The zigzags are needed to bring us two positions

further, connecting the laps of a cycle. For three-dimensional tori, there are three cycles. These are

identical, except that they start in different positions: Cycle j, 0 � j � 2, starts in PU (j; 0; 0). Here,

the zigzags bring us three positions further. The first type of zigzag consists of positive moves along the

following sequence of axes: (1; 3; 1; 3; 1). A zigzag is followed by n
3

� 2 moves along the x
3

-axis, the

last move traversing a wrap-around connection. In this way we can fill up a plane, but in order to get to

the next plane, there must be a second type of zigzag consisting of moves along the following sequence

of axes: (1; 3; 1; 3; 2). Thus, a complete cycle is the concatenation of n
1

=3 �n

2

laps. After each n
1

=3�1

laps using a zigzag of the first type, one lap with a zigzag of the second type follows. The cycles are

illustrated in Figure 6 and Figure 7.

8

cycle 0

Figure 6: One edge-disjoint cycle used in the one-packet algorithm on a three-dimensional torus.

9

cycle 1 cycle 2cycle 0

Figure 7: Three edge-disjoint cycles used in the one-packet algorithm on a three-dimensional torus.

10

That the constructed cycles have all the desired properties is proven generally in the next section, but

in the case of low-dimensional tori, it can also be tested more explicitly with the help of the following

reduction.

Lemma 1 PU (x

1

+ 3 � k

1

; x

2

+ 3 � k

2

; x

3

), k
1

; k

2

� 0, lies on the same cycle as PU (x

1

; x

2

; x

3

).

Proof: The (1; 3; 1; 3; 1) zigzag brings us three positions further along the x

1

-axis, This implies that

the cycle in all positions (x
1

+ 3 � k; x

2

; x

3

) is the same as in (x

1

; x

2

; x

3

). The zigzag (1; 3; 1; 3; 2)

brings us two positions further along the x
1

-axis and one position along the x
2

-axis. Thus, in position

(x

1

+ 6 � k; x

2

+ 3 � k; x

3

) we are on the same cycles as in position (x

1

; x

2

; x

3

). But, according to the

first rule we may shift along the x
1

-axis over multiples of three. This gives the lemma.

For any given value of x
3

> 3, the structure of the rods is the same. Thus,

Corollary 1 In testing that the cycles are cycles and edge-disjoint, and in testing that the locality struc-

ture is as desired, it is sufficient to test these properties for a 3� 3� 4 torus.

The 3� 3� 4 torus is so small that it is easy to verify that the cycles are edge-disjoint cycles. Also,

cutting through the rods for x
3

= 4 gives the following pattern of cycle numbers:

0 1 2
1 2 0
2 0 1

In this way, PU (x

1

; x

2

; x

3

), x
3

> 3, on Cycle j can be supplied with packets which do not lie on its own

cycle: it receives packets running forward on Cycle (j+1) mod 3 from the PU ((x

1

�1) mod n

1

; x

2

; x

3

)

and packets running backward from PU ((x

1

; (x

2

�1) mod n

2

; x

3

). Similarly, it is supplied with packets

running forward on Cycle (j�1) mod 3 from PU ((x

1

+1) mod n

1

; x

2

; x

3

) and with backward-running

packets from PU ((x

1

; (x

2

+ 1) mod n

2

; x

3

). Each pair of supporting on-cycle-PUs is separated by

(n

1

=3 + 1) � n

3

� 1 other PUs.

In the upper part of our reactor, exactly two cycles pass through each PU P , and the shifts are so,

that the connections that are not used by cycle traffic lead to PUs that lie on the third cycle. These facts

can be easily established for the 4 � 3 � 3 torus. At most 2 � (n
1

=3 + 1) � n

3

� 1 PUs lie between two

supporting on-cycle-PUs.

Theorem 6 If every PU of an n
1

� n

2

� n

3

torus, with n
1

a multiple of three, n
2

a multiple of n
1

and

n

3

� 3, holds 1 packet, then gossiping can be performed in n
1

� n

2

� n

3

=6 + n

1

� n

2

=2 + 1 steps.

Proof: Each lap has lengthn
3

+3. There are n
1

=3�n

2

laps, so the cycles have length n
1

�n

2

�n

3

=3+n

1

�n

2

.

Packets are routed in both directions along them, so after n
1

�n

2

�n

3

=6+n

1

�n

2

=2 steps, a PU has received

all the packets that have started in a PU that lies on the cycle(s) in which the first-mentioned PU lies.

The remaining packets running on the other cycles are received from the PU’s neighbors one step after

they received those packets. Multiple receives in the OOC-PUs can again be eliminated by using the

switching-strategy from Section 3.2. Giving up the switching, in order to obtain a time-independent

algorithm, requires O(n

1

� n

3

) extra steps.

4.3 Higher Dimensional Tori

The idea from the previous section can be generalized with no problem for d-dimensional n
1

� n

2

�

� � � � n

d

tori. Now we construct d edge-disjoint cycles, each of them covering P=d+ o(P) PUs.

11

4.3.1 Construction

The cycles are numbered 0 through d � 1. Cycle j starts in PU (j; 0; : : : ; 0). As before, a cycle is

composed of laps, starting with a zigzag and ending with moves along the x
d

-axis. There are d � 1

types of zigzags, which are used in increasingly exceptional cases. They can be concisely represented by

specifying the sequence of (positive) axes along which a move is made. We give all types of zigzags for

2 � d � 5:

zigzag(2; 1) = (1; 2; 1):

zigzag(3; 1) = (1; 3; 1; 3; 1);

zigzag(3; 2) = (1; 3; 1; 3; 2):

zigzag(4; 1) = (1; 4; 1; 4; 1; 4; 1);

zigzag(4; 2) = (1; 4; 1; 4; 2; 4; 1);

zigzag(4; 3) = (1; 4; 1; 4; 2; 4; 3):

zigzag(5; 1) = (1; 5; 1; 5; 1; 5; 1; 5; 1);

zigzag(5; 2) = (1; 5; 1; 5; 2; 5; 1; 5; 1);

zigzag(5; 3) = (1; 5; 1; 5; 2; 5; 3; 5; 1);

zigzag(5; 4) = (1; 5; 1; 5; 2; 5; 3; 5; 4):

Generally, zigzag(d; j) indicates the j-th zigzag pattern for d-dimensional tori. It makes d� j+1 moves

along the x
1

-axis, one move along the x
2

up to the x
j

-axis and d� 1 moves along the x
d

-axis.

During lap i, 1 � i � n

1

=d � n

2

� � � � � n

d�1

, zigzag(d; j) is applied, where j is the largest index for

which the following condition is true:

i mod (n

1

=d � n

2

� � � � � n

j�1

) = 0:

That is, after precisely this many laps, the cycle has filled up a subspace spanned by x
1

; : : : ; x

j�1

and x
d

and it should make a move along the x
j

-axis to get to the next subspace.

For the numbers z
d;j

of zigzag(d; j) patterns that are traversed by a cycle, we have

z

d;1

= (n

1

=d� 1) �

d�1

Y

l=2

n

l

; z

d;j

= (n

j

� 1) �

d�1

Y

l=j+1

n

l

; for 1 < j < d:

Thus, for the total moves m
d;j

along the x
j

-axis, we have

m

d;1

=

d�1

Y

l=1

n

l

�

d�1

X

j=2

d�1

Y

l=j

n

l

; m

d;j

=

d�1

Y

l=j

n

l

; for 1 < j < d:

In order to guarantee that a cycle returns to its starting point after traversing n
1

=d � n

2

� � � � � n

d�1

laps, it must be the case that each m
d;j

is a multiple of n
j

. For 1 < j < d, this condition is void, because

the expression for m
d;j

contains n
j

as a factor. On the other hand, for j = 2, we find as one of the most

important conditions on the n
l

, that

(

d�1

X

j=2

d�1

Y

l=j

n

j

) mod n

1

= 0: (1)

The other conditions are that

n

1

mod d = 0 (2)

n

d

� d: (3)

12

(2) is required to guarantee that the x
1

-x
d

planes are nicely filled-up by n
1

=d laps of all cycles. Maybe

it is not essential, but it makes the construction much more regular. (3) must be statisfied because the

zigzags make d� 1 moves along the x
d

-axis. Surprisingly, (1) together with (2) does not imply that all

the n
l

, 1 � l < d, must be multiples of d. For example, for d = 4, the conditions are satisfied for n
1

= 4,

n

2

= 5, n
3

= 2, because n
2

� n

3

+ n

3

= 12, a multiple of n
1

. This case is illustrated in Figure 8.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 8: Cycle 0 in a four-dimensional 4� 5� 2�n

4

torus. The torus is projected along the x
4

-axis, so

the moves along this axis are not shown. PU (0; 0; 0; 0) lies in the upper-back-left corner. The x
1

-, x
2

-

and x

3

-axis run left-, down- and frontward, respectively. The dots give the beginpoints of the zigzags.

Because n
1

= d = 4, zigzag(4; 1) does not occur. Moves with zigzag(4; 2) are drawn in red, those with

zigzag(4; 3) in blue.

4.3.2 Analysis for a Simplified Case

For further analysis we first consider a simplified construction with only zigzags of type zigzag(d; 1) at

the beginning of each lap. The cycles are now decomposed in many non-connected subcycles. If for

PU (i

1

; : : : ; i

d�1

; 0), the indices satisfy

(i

1

+

d�1

X

l=2

(l � 1) � i

l

) mod d = j; (4)

then this PU belongs to a subcycle of Cycle j. First we test that all desired properties hold for this

simplified construction. Then, in Section 4.3.3, we will add the higher zigzags in order to connect more

and more subcycles, testing that these properties are preserved.

In any two-dimensional x
1

-x
d

-plane, the situation is as depicted in Figure 9. So, as there are no

other connections, the whole scheme is clearly edge-disjoint. Each PU is traversed by one cycle, except

for the PUs in the highest d rows, which are each traversed by two cycles. By (4), if a PU P at position

(i

1

; : : : ; i

l

; : : : ; i

d�1

; i

d

) lies on Cycle j, then a PU in position (i
1

+x; i

2

; : : : ; i

d�1

; i

d

) lies on Cycle (j+

x) mod d and a PU in some position (i
1

; i

2

; : : : ; i

l

+ x; : : : ; i

d�1

; i

d

), l � 2, lies on Cycle (j + x � (l�

1)) mod d. In particular, considering all neighbors of P , that is x = 1 or x = �1, this implies that P

13

. . .

?

?

?

?

?

?

. . .
-

-

-

-

-

-

-

?

?

?

?

?

?

. . .

?

?

?

?

?

?

. . .

-

-

-

-

-

-

. . .

?

?

?

?

?

?

Figure 9: The situation in an x
1

-x
d

-plane.

is adjacent to two nodes of all cycles different from Cycle j. In the highest rows, the connections along

the x
1

-axis are already used, but this is not serious, a PU in these rows receives packets directly from

two cycles, and the total situation is so that it can again receive all packets without delay. The whole

schedule is illustrated in more detail in Figure 10. For higher dimensions this schedule is generalized in

a straightforward way. A PU must determine whether its last coordinate i
d

satisfies i
d

< d or i
d

� d.

Then it can determine the appropriate actions for each of the following four types of connections:

1. The connection along the negative x
1

-axis: do nothing, send the backward moving packets, re-

spectively.

2. The connections along a negative x
j

-axis, 1 < j < d: send the forward moving packets along the

x

d

-axis, send the forward moving packets, respectively.

3. The connection along the positive x
1

-axis: do nothing, send the forward moving packets, respec-

tively.

4. The connections along a positive x
j

-axis, 1 < j < d: send the backward moving packets along

the x
1

-axis, send the backward moving packets, respectively.

4.3.3 Reinserting the Higher Zigzags

In the following, we reintroduce the zigzag(d; j) for j running from 2 to d � 1, testing that the edge-

disjointness is preserved and that the structure of the neighborhood is still so that each PU can receive

packets running in both directions along all cycles.

First we insert one zigzag(d; 2) pattern after each n

1

=d � 1 laps starting with zigzag(d; 1). In this

way fewer connections along the x

1

-axis are used, so the x

1

-axis cannot cause problems. Between

any pair of consecutive x
1

-x
d

planes, only one connection along the x
2

-axis is used. That is, for any

given set of indices (i

2

; i

3

; : : : ; i

d�1

), one connection between some PU (i

1

; i

2

; i

3

; : : : ; i

d�1

; i

d

) and

PU (i

1

; (i

2

+ 1) mod d; i

3

; : : : ; i

d�1

; i

d

) is used. So, these are disjoint as well. We must still check that

the zigzag(d; 2) indeed connect subcycles of the same cycle. But this is precisely what is guaranteed by

(4) and the moves of zigzag(d; 2): Comparing the positions of the cycles in an x

1

-x
d

plane with those

in the subsequent plane, we see that they are all shifted one position along the negative x
1

axis. This

is consistent with the fact that in zigzag(d; 2) precisely one move along the positive x
1

-axis is replaced

by a move along the positive x
2

-axis. That there are no overlaps along the x
d

-axis, follows because the

zigzag(d; 2) are inserted so that they just connect each other, continuing the cycle exactly there where it

was disrupted. This replacement of zigzag(d; 1) patterns by zigzag(d; 2) is illustrated in Figure 11.

14

�3, +3
�2, +2

�x

3

�4, +4
�3, +3

�x

2

�2, +2
�1, +1

�x

4

�4, +4
�3, +3

�x

1

�0, +0
�4, +4

�1, +1
�0, +0

+x

1

�3, +3
�2, +2

+x

4

�1, +1
�0, +0

+x

2

�2, +2
�1, +1

+x

3

"!

"!

"!

"!

"!

"!

"!

"!

"!

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

�3, +3

�4, +4 �2, +2

�4, +4 �0, +0 �1, +1

�3, +3 �1, +1

�2, +2

�x

3

�x

2

�x

4

�x

1

+x

1

+x

4

+x

2

+x

3

"!

"!

"!

"!

"!

"!

"!

"!

"!

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

Figure 10: The structure of the neighborhoods of a PU on Cycle 0 in a five-dimensional torus. Left: The

situation of a PU with i
d

< d. Right: The situations for a PU with i
d

� d. The circles indicate PUs, the

lines connections. The numbers next to the axes give the connections (from the perspective of the PU in

the middle). Here +x

l

and �x
l

indicate a positive and a negative move along the x
l

-axis, respectively.

The numbers in the circles give the packets that pass through these PUs. +j and �j, indicate forward

and backward moving packets on Cycle j, respectively. This pattern is derived from the construction in

(4). zigzag(d; 1) is so that a PU also holds in addition to the packets from some Cycle j, the packets from

Cycle (j � 1) mod d. This zigzag uses the connections along the x
1

-axis. If a number in the circles is

printed in red, this indicates that the corresponding packets are transferred from this PU towards the PU

in the middle.

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

??

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

??

?

??

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

??

?

??

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 11: Left: Sections of subcycles of the same cycle in three consecutive x
1

-x
d

-planes. zigzag(d; 1)

is used at the beginning of each lap. Right: The rightmost zigzag(d; 1) patterns have been replaced by

zigzag(d; 2) patterns, connecting these subcycles.

15

The replacement of some of the zigzag(d; j), 2 � j � d � 2 patterns by zigzag(d; j + 1) patterns

works in the same way: one move along the x

1

-axis is replaced by a move along the (j + 1)-axis.

Because of the off-sets specified in (4), these new moves fit in another subcycle of the same cycle just

after a disruption caused by the removal of the move along thex
1

-axis. This guarantees edge-disjointness

and also ensures that all subcycles of a cycle are finally connected together.

4.3.4 Structure of the Neighborhood

It remains to show that the structure of the neighborhood still allows each PU to receive packets running

in both directions along all cycles. For the PUs with i

d

� d, nothing has changed by replacing some

zigzags. Now consider a PU P with i
d

< d. For i
d

= 0; 1, the situation is unchanged. Generally, P is

traversed by two zigzags, but they cannot use arbitrary connections. For i
d

= j, we can find only four

possible situations in P :

Situation 1: (�x

d

;+x

1

) + (�x

1

;+x

d

);

Situation 2: (�x

d

;+x

j

) + (�x

1

;+x

d

);

Situation 3: (�x

d

;+x

1

) + (�x

j

;+x

d

);

Situation 4: (�x

d

;+x

j

) + (�x

j

;+x

d

):

Here (�x

d

;+x

l

) + (�x

l

0

;+x

d

) denotes that one of the zigzags through P enters over the negative x
d

-

axis and leaves over the positivex
l

-axis, and the other over the negative x
l

0-axis and the positive x
d

-axis.

This follows from the definitions of the zigzags. These situations are illustrated in Figure 12.

w

www

w

g

ggg

g

�x

d

+x

d

�x

1

+x

1

P

?

?

?

-
-

-

-
-

-

?

?

?

w

w

ww

w

g

g

gg

g

�x

d

+x

d

�x

1

+x

j

P

?

?

?

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

R
R

R

-
-

-

?

?

?

w

ww

w

w

g

gg

g

g

�x

d

+x

d

�x

j

+x

1

P

?

?

?

-
-

-

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

R
R

R

?

?

?

w

w

w

w

w

g

g

g

g

g

�x

d

+x

d

�x

j

+x

j

P

?

?

?

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

R
R

R

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

R
R

R

?

?

?

Figure 12: From left to right, Situation 1 to Situation 4 for a PU P with i
d

= j, 2 � j < d.

We use the zigzag that enters over�x
d

to define the Type of P : if this zigzag is a part of Cycle i, then

we say that P is of Type i. By �c
l

and +c

l

, 0 � l < d, we denote the set of packets moving backward

and forward on Cycle l, respectively. In the sequel we will explain how the following properties can be

established for a PU of Type i:

1. P receives all packets from �c

i

and +c

i

without delay.

2. P receives all packets on �c
(i�1) mod d

and all packets on +c

l

, 0 � l < d, with delay at most 1.

3. P receives all packets on �c
l

, 0 � l < d, l 6= (i� 1) mod d, with delay at most 2.

We will apply an induction-like proof. Point 1 immediately holds for all PUs, because the packets on

Cycle i run through P in all situations. We may utilize this while establishing Point 2, and both Point 1

and 2 may be utilized while establishing Point 3.

Above we have seen that the three points hold when there are only zigzag(d; 1) patterns. In the more

general setting, the properties can be established easily for a PU in Situation 1. Its neighbors send P the

same packets as before. In this way, P receives the packets from �c

i

and �c
(i�1) mod d

without delay;

the packets on +c

l

, 0 � l < d, l 6= i; (i� 1) mod d, have been received by the neighbors of P without

delay (according to Point 1), and reach P with delay at most 1; similarly, the packets on �c
l

, 0 � l < d

16

in sit. packets from cycle are received via connection with delay

�c

0

; �c

d�1

on cycle 0

1 +c

l

; 1 � l � d� 2 +x

l+1

1

�c

l

; 1 � l � d� 2 +x

d�l

2

�c

0

; �c

d�1

on cycle 0

+c

l

; 1 � l � d� 2; l 6= j � 1 +x

l+1

1

2 +c

j�1

�x

j+1

1

�c

1

+x

1

1

�c

l

; 2 � l � j � 2 �x

d�l+1

1

�c

l

; j � 1 � l � d� 2 �x

d�l

2

�c

0

; �c

d�j+1

on cycle 0

+c

l

; 1 � l � d� 2; l 6= d� j + 1 +x

l+1

1

3 +c

d�1

�x

1

1

�c

l

; 1 � l � d� j � 1 �x

l+1

2

+c

d�j

+x

d�j+2

2

�c

l

; d� j + 2 � l � d� 1 �x

d�l+1

1

�c

0

; �c

d�j+1

on cycle 0

+c

l

; 1 � l � d� 2; l 6= d� j; d� j + 1 +x

l+1

1

4 +c

d�j

�x

j+1

1

+c

d�1

�x

1

1

�c

l

; 1 � l � d� 1; l 6= d� j; d� j + 1 �x

d�l+1

1

�c

d�j

�x

d�j+2

2

Table 1: Packet supply for a Type 0 PU in Situations 1 to 4.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�4, +4

�3

�6, +6

�5

�0, +0

�6, +6
�1, +1

�0

�3, +3

�2

�6, +6

�5

�5, +5

�4

�3, +3

�2

�2, +2

�1

�5, +5

�4

�4, +4

�3

�2, +2

�1

�1, +1

�0

�

�

�

�

�

H

H

H

H

H

�

�

�

�

�

A

A

A

A

A

H

H

H

H

H

�

�

�

�

�

A

A

A

A

A

�

�

�

�

�

+x

1

+x

2

+x

3

+x

4

+x

5

+x

6

�x

1

�x

2

�x

3

�x

4

�x

5

�x

6

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�4, +4

�3

�6,+6

�5

�0, +0

�4, +4
�1, +1

�0

�3, +3

�2

�6, +6

�5

�5, +5

�4

�3, +3

�2

�2, +2

�1

�5, +5

�4

�4, +4

�3

�2, +2

�1

�1, +1

�0

�

�

�

�

�

H

H

H

H

H

�

�

�

�

�

A

A

A

A

A

H

H

H

H

H

�

�

�

�

�

A

A

A

A

A

�

�

�

�

�

+x

1

+x

2

+x

3

+x

4

+x

5

+x

6

�x

1

�x

2

�x

3

�x

4

�x

5

�x

6

Figure 13: Situations 2 (left) and 4 (right) for a PU of Type 0 in a seven dimensional torus for the

case j = 4. The circles represent the PUs, the lines the specified connections. In the central circle, we

have indicated the streams that this PU receives directly through the cycles on which it lies. In the other

circles, the numbers in the higher row indicate the streams of packets that reach these PUs without delay.

The numbers in the lower row indicate the streams that reach them with delay at most one. In red, the

streams that are forwarded to the central PU are indicated.

17

l 6= i; (i� 1) mod d, have reached the neighbors with delay at most 1 (according to Point 2), and reach

P with delay at most 2.

Proceeding with our induction-like proof, we will establish Point 2 and Point 3 for the other three

situations. Point 2 is a very strong guideline: for a PU of Type i, the packets of �c
(i�1) mod d

and of

+c

l

, 0 � l < d, l 6= i, must be drawn from the packets of its neighbors that were received without delay

according to Point 1. Hereafter, for establishing Point 3 there is almost no freedom left. Table 1 gives a

complete specification that meets our requirements for a Type 0 PU under all four situations. Adaptation

to Type i PUs, 1 � i � d� 1, can easily be done by adding i and calculating modulo d.

4.3.5 Running Time

Having checked the correctness of the algorithm, we now turn to its performance. Each lap has length

n

d

+ d. There are n
1

=d �

Q

d�1

l=2

n

l

laps, so the cycles have length (1+ d=n

d

) �P=d. Packets are routed in

both directions along them, so after (1 + d=n

d

) � P=(2 � d) steps, a PU has received all the packets that

have started in a PU that lies on the cycle(s) on which the first-mentioned PU lies. The packets running

on the other cycles are received from the PU’s neighbors one step after they received those packets,

the maximal delay is two. Multiple receives in the out-of-cycle-PUs can again be eliminated by the

switching-strategy of Section 3.2: the supporting OC-PUs are separated by at most three hyperplanes.

Giving up the switching in order to obtain a time-independent algorithm, requires at most (n
d

+ d) �

n

1

=d � n

2

� � � � � n

d�2

� 3 extra steps. This would introduce an extra factor 1 + 3 � d=n

d�1

in the time

consumption. To resume, we obtain the main result of this paper:

Theorem 7 If every PU of a d-dimensionaln
1

�� � ��n

d

torus withP PUs holds 1 packet, then gossiping

can be performed in (1 + d=n

d

) � P=(2 � d) + 2 steps. A fully time-independent algorithm runs in

(1 + d=n

d

) � (1 + 3 � d=n

d�1

) �P=(2 � d) steps. Both results require that (
P

d�1

j=2

Q

d�1

l=j

n

j

) mod n

1

= 0,

n

1

mod d = 0 and n
d

� d.

In order to minimize the time consumption, depending on the applied variant, one should try to index

the axes so that either n
d

� n

l

, for all 1 � l � d� 1, or that n
d�1

� n

d

� n

l

, for all 1 � l � d� 2. Of

course, this should only be done within the limits imposed by conditions (1), (2) and (3).

5 Comparison of Performances

We assume that every PU initially holds s bytes of data, and that sending a packet of size s0 between two

adjacent PUs takes

Ttransfer(s
0

) = s

0

=s+ r (5)

time units. Here r = start-up-time=(s � time-to-transfer-byte) is the normalized start-up time. Depending

on the parallel computer under consideration and the value of s, r can be large (up to 10,000) or small

(less than 1). This cost model gives an accurate description of the transfer time on real systems.

On a d-dimensional n� � � � � n torus, the algorithms from Section 3 require nd

=2 steps, in each of

which a PU sends packets of size s0 = s=d to all its neighbors. Thus, for the number of time units Topt

for these algorithms, we find

Topt(n; d) = n

d

=2 � (1=d+ r):

The algorithms from Section 4 require nd

=(2 � d) + n

d

=(2 � n) + 2 steps, in each of which a PU sends

packets of size s0 = s to all its neighbors. Thus, for the number of time units Tone for these algorithms,

we find

Tone(n; d) ' n

d�1

=2 � (n=d+ 1) � (1 + r):

The corresponding number of time steps Tstv for the algorithm from [14] is given by

Tstv(n; d) ' n

d

=(2 � d) � (1 + r):

18

n

@

@

r 0.01 0.1 1
4 11 4 12 8 21

4 4 11 5 14 12 43

6 19 7 21 12 37

65 689 70 751 128 1365

16 65 702 77 887 192 2730

73 818 79 891 144 1620

1034 44110 1126 48041 2048 87346

64 1044 44958 1229 56754 3072 174719

1067 46152 1162 50264 2112 91390

Table 2: Comparison between the number of time steps taken by the algorithms from [14] (top), from

Section 3 (middle) and from Section 4 (bottom). In each cell we give the result for d = 2 (left) and d = 3

(right).

Numerical results for some characteristic values of n and r are given in Table 2. For r > 1, none of

these approaches makes sense, because then one should better apply a strategy that requires substantially

fewer start-ups (see [7]). We see that mostly the one-packet algorithm from Section 4 is only a small

percent slower than the algorithm from [14], but it is much simpler and far easier to generalize for

higher dimensions. Therefore, we think that in most cases it may constitute a practical alternative. The

algorithm from Section 3 may be attractive for d = 2 and small r: for d = 2 it is very simple, while

achieving almost optimal performance.

6 Conclusion

We have completed the analysis of the gossiping problem on full-port store-and-forward tori. In [14]

only one interesting aspect of this problem was considered. We have shown that an almost equally good

performance can be achieved by simpler time-independent algorithms, and have given explicit schemes

for higher-dimensional tori as well.

References

[1] Alspach, B., J-C. Bermond, D. Sotteau, ‘Decomposition into Cycles I: Hamilton Decompositions,’

Proc. Workshop Cycles and Rays, Montreal, 1990.

[2] Aubert, J., B. Schneider, ‘Decomposition de la Somme Cartesienne d’un Cycle et de l’Union de

Deux Cycles Hamiltoniens en Cycles Hamiltonien,’ Discrete Mathematics, 38, pp. 7–16, 1982.

[3] Barnett, M., R. Littlefield, D.G. Payne, R. van de Geijn, ‘Global Combine on Mesh Architectures

with Wormhole Routing,’ Proc. 7th International Parallel Processing Symposium, pp. 13–16, IEEE,

1993.

[4] Delmas, O., S. Perennes, ‘Circuit-Switched Gossiping in 3-Dimensional Torus Networks,’ Proc.

2nd International Euro-Par Conference, LNCS 1123, pp. 370–373, Springer-Verlag, 1996.

[5] Foregger, M.F., ‘Hamiltonian Decomposition of Products of Cycles,’ Discrete Mathematics, 24, pp.

251–260, 1978.

[6] Fraigniaud, P., J.G. Peters, ‘Structured Communication in Torus Networks,’ Proc. 28th Hawai Con-

ference on System Science, pp. 584–593, 1995.

19

[7] Juurlink, B., P.S. Rao, J.F. Sibeyn, ‘Worm-Hole Gossiping on Meshes and Tori,’ Techn. Rep. MPI-

I-96-1018, Max-Planck Institut für Informatik, Saarbrücken, Germany, 1996. Appearing soon in

IEEE Transactions on Parallel and Distributed Systems.

[8] Kaufmann, M., S. Rajasekaran, J.F. Sibeyn, ‘Matching the Bisection Bound for Routing and Sorting

on the Mesh,’ Proc. Symposium on Parallel Algorithms and Architectures, pp. 31–40, ACM, 1992.

[9] Peters, J.G., M. Syska, ‘Circuit-Switched Broadcasting in Torus Networks,’ IEEE Transactions on

Parallel and Distributed Systems, 7, pp. 246–255, 1996.

[10] Plateau, B., D. Trystam, ‘Optimal Total Exchange for a 3-D Torus of Processors,’ Information

Processing Letters, 42, pp. 95–102, 1992.

[11] Rao, P.S., G. Mouney, ‘Data Communications in Parallel Block Predictor-Corrector Methods for

solving ODEs,’ Techn. Rep. No. 95399, LAAS-CNRS, France, 1995.

[12] Reif, J., L.G. Valiant, ‘A logarithmic time sort for linear size networks,’ Journal of the ACM, 34(1),

pp. 68–76, 1987.

[13] Sibeyn, J.F., ‘Routing with Finite Speeds of Memory and Network,’ Proc. 22nd Symposium on the

Mathematical Foundations of Computer Science, LNCS 1295, pp. 488–497, Springer-Verlag, 1997.

[14] Šoch, M., P. Tvrdı́k, ‘Optimal Gossip in Store-and-Forward Noncombining 2-D Tori,’ Proc. 3rd

International Euro-Par Conference, LNCS 1300, pp. 234–241, Springer-Verlag, 1997.

20

