
Quasi–Orthogonal Drawing of Planar Graphs

Gunnar W. Klau� Petra Mutzel�

Max–Planck–Institut für Informatik

Saarbrücken, Germany

Abstract

Orthogonal drawings of graphs are highly accepted in practice. For planar graphs with vertex

degree of at most four, Tamassia gives a polynomial time algorithm which computes a region

preserving orthogonal grid embedding with the minimum number of bends. However, the graphs

arising in practical applications rarely have bounded vertex degree. In order to cope with general

planar graphs, we introduce the quasi–orthogonal drawing model. In this model, vertices are

drawn on grid points, and edges follow the grid paths except around vertices of high degree.

Furthermore we present an extension of Tamassia’s algorithm that constructs quasi–orthogonal

drawings. We compare the drawings to those obtained using related approaches.

1 Introduction

Visualizing discrete structures and relations is becoming more and more important. The field of Au-

tomatic Graph Drawing provides algorithms to construct geometric representations of the underlying

graph structures. Interesting and challenging applications arise in many scientific fields, e.g., software

engineering, astrophysics, automation engineering, and circuit layout in VLSI design.

We consider drawings of undirected connected planar graphs and concentrate on the aesthetic cri-

teria orthogonality, a low number of bends, and a small drawing area. Additionally, the vertices should

be represented by geometrical objects of equal size. Drawings that fulfill these standards are highly

accepted in practice because of their excellent readability. In an orthogonal grid drawing, the vertices

have integer coordinates and the edges follow the horizontal and vertical grid lines. Unfortunately

these drawings are only admissible for graphs with vertex degree of at most four. For this class of

graphs, the algorithm in [Tam87] computes an orthogonal grid drawing with the minimum number of

bends preserving the topological structure of the input graph.

Several extensions have been formulated in order to deal with planar graphs of arbitrary vertex

degree. In the Giotto model [TDB88], vertices of high degree are drawn as boxes occupying more

than one grid point. Another approach is the Kandinsky model [FK96] where vertices are placed on a

coarse grid and edges are allowed to run on a finer grid. The fineness of the edge grid depends on the

maximal vertex degree.

In the approach suggested in this paper, the vertices are represented by objects of equal size and

edges run mainly on grid paths. They are allowed to leave the grid only around vertices of high

degree; here, the first edge segment may run diagonally through the grid. We formally express this

�E–mail of the authors: guwek@mpi-sb.mpg.de, mutzel@mpi-sb.mpg.de. This work is partially supported by the Bun-

desministerium für Bildung, Wissenschaft, Forschung und Technologie (No. 03–MU7MP1–4).

2 PRELIMINARIES 2

model defining the term quasi–orthogonal grid embedding and present the algorithm Quod, which

produces drawings according to this standard.

Figure 1 shows two examples drawn with Quod. Note that neither graph is planar; the edge

crossings have been created by first computing the maximum planar subgraph [JM96] and subsequent

reinsertion of the missing edges by applying a heuristic based on shortest path computations in the

dual graph.

(a) (b)

2

1

4

1F

1

1

11

1

4

2

0

3+

1F

3

0

2

6

4 5

12

10

10

12 1F

Figure 1: Drawings computed by the Quod algorithm. (a) Graph drawing contest 1994, graph B. (b)

State diagram from automation engineering.

Sections 2 and 3 provide some fundamental definitions and present the bend minimization algo-

rithm by [Tam87] which forms the basis for our extension. Section 4 introduces the quasi–orthogonal

model and describes the algorithm Quod that produces drawings for this model. We conclude with

Section 5 in which we briefly introduce the models Giotto and Kandinsky and compare the drawings

achieved by the different approaches.

2 Preliminaries

An undirected graph is planar if it is embeddable in the plane, i.e., if it is possible to map its vertices

to distinct points in R
2 and the edges to non crossing Jordan curves connecting their endpoints. Such

a mapping is called a planar geometric embedding or simply an embedding when this causes no

confusion. It induces a partition of the plane into a set of regions or faces which we will denote by F .

The unbounded region will be referred to as the external face f0, other faces as internal faces. Euler’s

formula correlates the cardinalities of the vertex set V , the edge set E , and the face set F of a connected

planar graph G. It states that in any embedding of G we have jF j�jEj+ jV j= 2. An (orthogonal) grid

embedding is an embedding in which the vertices are mapped to integer grid points and the edges to

paths along the grid lines. The topological structure of a planar graph can be described using a planar

3 3 BEND MINIMIZATION FOR 4–PLANAR GRAPHS

representation P that specifies for each face the list of bounding edges in circular order; we define P

as a function from the set of faces to lists of edges. An edge appearing twice in one and the same list

P(f) is called a bridge in f . The degree of a face f is the number of bounding edges and is denoted as

δ(f), for a vertex v its degree δ(v) denotes the number of v’s neighbours. The maximal vertex degree

of a graph G = (V;E) is defined as ∆(G) = maxfδ(v) j v 2 Vg. We call a graph G k–planar if it is

planar and if ∆(G) is smaller than or equal to k. The deletion of a subset of vertices U �V together

with its adjacent edges from a graph G = (V;E) is written as G�U .

A network N is a tuple (U;A;b; l;u;c) (see [AMO93]). U and A build the node and arc set of a

directed graph. The vector b 2 Z
U contains for each node i 2U its supply (if bi � 0) or demand (bi <

0). Vectors l;u and c 2 Z
A denote lower bounds, upper bounds and costs, respectively. The minimum

cost flow problem is to find a legal flow vector χ 2 Z
A that minimizes the total cost. Formally, it is

stated as

min ∑
a2A

caχa

s.t. ∑
f jj(i; j)2Ag

χ
(i; j)� ∑

f jj(j;i)2Ag

χ
(j;i) = bi 8i 2U

la � χa � ua 8a 2 A:

3 Bend Minimization for 4–Planar Graphs

Given a 4–planar graph G with planar representation P, the algorithm by Tamassia [Tam87] computes

a grid embedding with the minimum number of bends in polynomial time. The computed embed-

ding is region preserving, i.e., the underlying topological structure given in P is not changed by the

algorithm. The problem of finding the bend minimum grid embedding with respect to every possible

planar representation is shown to be NP–hard [GT95].

The bend minimization algorithm runs in several phases (see Figure 2). Each step adds more

information to the given topological description. In the minimization phase a network N is constructed

depending on P in which each feasible flow corresponds to a possible shape of G.

topology

shape

drawing

minimization phase

dimensioning phase

planar representation P

orthogonal representation H

grid embedding Γ

Figure 2: The bend minimizing algorithm.

In particular, the minimum cost flow leads to an embedding with the lowest number of bends

since each unit of cost is associated with a bend in the drawing. The flow is used to build a so–

called orthogonal representation H which describes the shape of the latter drawing in terms of bends

occurring along the edges and angles formed by the edges. Formally, H is a function from the set of

3 BEND MINIMIZATION FOR 4–PLANAR GRAPHS 4

faces F to lists of triples r = (er;sr;ar) where er is an edge, sr is a bit string, and ar is the angle formed

with the following edge inside the appropriate face. The bit string sr provides information about the

bends along edge er, and the kth bit describes the kth bend on the right side of er where a 0 indicates a

90� bend and a 1 a 270� bend. The empty string ε is used to characterize straight line edges. Figure 3

shows an example.

H(f1) =
�

(e1;00;180);(e2;ε;90);(e3;010;90);

(e4;10;360);(e4;10;90);(e5;ε;180)
�

H(f2) =
�

(e6;0;90);(e7;ε;90);(e5;ε;90)
�

H(f0) =
�

(e7;ε;270);(e6;1;90);(e3;101;270);

(e2;ε;180);(e1;11;90)
�

e6

e7

e1

e2

e3

e4

e5f2 f1

f0

Figure 3: Grid embedding and orthogonal representation of a 4–planar graph.

There are four necessary and sufficient conditions for an orthogonal representation H to be a valid

shape description of some 4–planar graph:

P1 There is a 4–planar graph whose planar representation P is identical to that given by H restricted

to the e–fields. We say that H extends P.

P2 Let r and r0 be the elements in H with er = er0 . Since each edge is contained twice in H these

pairs always exist. Then string sr0 can be obtained by applying bitwise negation to the reversion

of sr.

P3 Let jsj0 and jsj1 denote the numbers of zeroes and ones in string s, respectively. Define for each

element r in H the value

ρ(r) = jsrj0�jsrj1+(2�
ar

90
):

Then for each face f

∑
r2H(f)

ρ(r) =

(

+4 if f is an internal face

�4 if f is the external face f0:

P4 For each vertex v 2V is

∑
er=(u;v)

ar = 360 8u 2V;

i.e., the angles around v given by the a–fields sum up to 360�.

We say that a drawing Γ realizes H if H is a valid description for the shape of Γ. Figure 3 shows

an orthogonal representation H and a grid embedding realizing H . Note that the number of bends in

any drawing that realizes H is

b(H) =

1

2
∑
f2F

∑
r2H(f)

jsrj:

5 3 BEND MINIMIZATION FOR 4–PLANAR GRAPHS

Let G = (V;E) be the input graph with planar representation P defining the face set F . For the

cardinalities jV j and jEj we write n and m, respectively. The construction of the underlying network

N follows [GT97]: Let U =UF [UV denote its node set. Then for each face f 2 F there is a node in

UF and for each vertex v 2 V there is one in UV . Nodes uv 2UV supply b(uv) = 4 units of flow and

nodes u f 2UF consume

�b(u f) =

(

2δ(f)�4 if f is an internal face

2δ(f)+4 if f is the external face f0

units of flow. Thus, the total supply is 4n and the total demand is

∑
f 6= f0

(2δ(f)�4)+2δ(f0)+4 = 2∑
f

δ(f)�4jFj+8 = 4m�4jFj+8

which is equal to the total supply, according to Euler’s formula. The arc set A of network N consists

of two sets AV and AF where

AV = f(uv;u f) j uv 2UV ;u f 2UF ;v is adjacent to fg and

AF = f(u f ;ug) j u f 6= ug 2UF ; f is adjacent to gg

[f(u f ;u f) j f contains a bridgeg:

Arcs in AV have lower bound 1, capacity 4, and cost 0. Each unit of flow represents an angle

of 90�, so a flow in an arc (uv;u f) 2 AV corresponds to the angles formed at vertex v inside face f .

Note that there can be more than one angle, see for example Figure 3 where the vertex common to

edges e6;e5;e4; and e3 builds two angles in f1. Precisely, the flow in (uv;u f) corresponds to the sum

of the angles at v inside f . Following this interpretation, flow in arcs (u f ;ug) 2 AF find their analogy

in bends occurring along edges separating f and g that form a 90� angle in f . Naturally their lower

bound is 0, their capacity unbounded, and they have unit cost.

The conservation rule at nodes uv 2 UV expresses the fact that the angle sum around the cor-

responding vertex v equals 360�. The units of flow are consumed by the nodes in UF ; here, the

conservation rule states that every face has the shape of a rectilinear polygon. A planar graph and the

transformation into a network is shown in Figure 4 (a) – (d).

There is always a feasible flow in network N: The flow produced by nodes in UV can be trans-

ported to nodes in UF where it satisfies the demand. If it is not possible to satisfy every node in UF

by exclusively using arcs AV , units of flow can be shifted without restriction between nodes in UF

because of their mutual interconnection by arcs in AF . Every feasible flow can be used to construct

an orthogonal representation for the input graph G, in particular the minimum cost flow, leading to

the orthogonal representation with the minimum number of bends. The following lemma states the

analogy between flows in the network and orthogonal representations.

Lemma 1. [Tam87] Let G be the input graph, P its planar representation, and N the constructed

network. For each integer flow χ in network N, there is an orthogonal representation H that extends

P and whose number of bends is equal to the cost of χ. The flow χ can be used to construct the

orthogonal representation.

Proof. We extend P using flow χ such that the resulting orthogonal representation H fulfills properties

(P1) – (P4). We then show that the number of bends in H equals the cost of flow χ. Let R(v; f) be

the subset of H(f) with endpoints of entry er equal to v. These are the entries whose angle values are

determined by χ
(uv;u f)

. Formally,

R(v; f) = fr 2H(f) j er = (u;v) for some u 2Vg:

3 BEND MINIMIZATION FOR 4–PLANAR GRAPHS 6

(b) Nodes in network N.

Supply/demand shown.

(a) Planar representation P.

(c) Arcs in AV . Capacity 4,

lower bound 1, cost 0.

(d) Arcs in AF . Capacity ∞,

lower bound 0, cost 1.

+4
+4

+4

+4

+4

+4
+4

-4
-8

-16

v1

v2

v3

v4

v5v6

v7f1

f2

f0

Figure 4: Network construction.

Let r1; : : : ;rk be the elements of R(v; f) in the order they appear in H(f). Note that k can be at most

4. Setting the a–values is done by analyzing the flow in arcs AV . Let (uv;u f) be such an arc with flow

χ
(uv;u f)

. Then

ar1
= (χ

(uv;u f)
� k+1) �90� and ari

= 90� for 2 � i � k:

In this manner we distribute the units of flow among the angles, guaranteeing that every angle gets

at least one unit of flow. Flow in arcs (u f ;ug) 2 AF determines the number of bends along the edges

separating the faces f and g. Let R(f ;g) = r01; : : : ;r
0

k denote the elements common to H(f) and H(g)

in the order of H(f). For each r0i let r00i be the element of H(g) with identical edge entry. Then

sr0

1
=

(

0

χ
(u f ;ug) if f = g

0

χ
(u f ;ug)

1

χ
(ug ;u f) if f 6= g

sr00

1
=

(

1

χ
(ug ;u f) if f = g

0

χ
(ug ;u f)

1

χ
(u f ;ug) if f 6= g

sr0

i
= sr00

i
= ε for 2 � i� k:

Property (P1) is not changed and thus valid; (P2) follows directly from the way the bit strings are set.

Finally, the flow conservation in the network implies properties (P3) and (P4).

The number of bends in H is

b(H) =

1

2
∑

f
∑

r2H(f)

jsrj=
1

2
∑

(u f ;ug)2AF

(χ
(u f ;ug)

+χ
(ug;u f)

) = ∑
a2A

ca:

7 3 BEND MINIMIZATION FOR 4–PLANAR GRAPHS

1

11

1 1 1

2

1

4

3
2

3

3

1 (cost 1)13

Figure 5: Minimal cost flow in network N and a resulting grid embedding.

Note that in a minimum cost flow solution, we do not have to distinguish between different cases; all

bend patterns will be either 0� or 1�.

Figure 5 completes the example from Figure 4, showing the minimum cost flow in the constructed

network and a realizing grid embedding for the derived orthogonal representation.

Vice versa, it can be shown that the number of bends in each orthogonal grid embedding of a

graph with planar representation P is equal to the cost of some feasible flow in network N. This result

and Lemma 1 lead to the following theorem, combining the basic results of [Tam87] and [GT97]:

Theorem 3.1. [Tam87, GT97] Let P be a planar representation of a connected 4–planar graph G

with n vertices and let N be the appropriate network. Each feasible flow χ in N corresponds to an

orthogonal representation for G that extends P and whose number of bends is equal to the cost of χ. In

particular, the minimum cost flow can be used to construct the bend optimal orthogonal representation

preserving P. This can be done in time O(n7=4
p

logn).

At this point, the shape of the latter drawing is determined but the actual coordinates of vertices

and bends still need to be computed. The problem is to find a grid embedding Γ that realizes the

orthogonal representation H .

We briefly present the method proposed in [Tam87]: Each face is dissected in rectangular sub-

faces by eventually adding virtual vertices and edges. For the resulting special kind of orthogonal

representation H 0 it is easy to do the length assignment. The total edge length can be minimized by

constructing two separate networks for the horizontal and vertical edge segments, respectively. A unit

of flow corresponds to a length unit; the flow conservation expresses the fact that the two opposite

sides of each face must be of the same length. Another method computes longest paths in two so–

called polar graphs in linear time. The result is an orthogonal grid embedding with minimum height

and width for the transformed representation H 0 — but not necessarily minimum edge length.

After having deleted the virtual vertices and edges, the area consumption of the drawings is O((n+

b)2
) where n denotes the number of vertices and b the number of bends in H . Though these drawings

are optimal for H 0, they are not for the original shape description H . One dimensional compaction

strategies known from VLSI design may be applied to improve the area consumption; minimizing the

total edge length for arbitrary orthogonal representations is conjectured to be NP–hard.

4 THE QUASI–ORTHOGONAL MODEL 8

4 The Quasi–Orthogonal Model

The algorithm presented in Section 3 fulfills the desired aesthetic criteria and produces the best results

in comparison with other methods used for orthogonal graph drawing [BGL+97]. Unfortunately, it

is restricted to the relatively small class of 4–planar graphs; however, the graphs arising in practical

applications rarely have bounded vertex degree. Thus, several extensions have been formulated in

order to cope with arbitrary planar graphs. In this section we introduce the quasi–orthogonal drawing

model. Furthermore we present an extension of Tamassia’s algorithm that constructs quasi–orthogonal

drawings.

In our model, vertices are represented by grid points. This implies that we can no longer stick to

orthogonal grid embeddings. Neither do we want to use different grids for vertices and edges. These

two requirements enforce some edges to leave the grid lines. We observe that 4–planar subgraphs can

still be drawn with the pure orthogonal standard. Our solution is to allow the first segment of any

edge leaving a vertex with degree greater than four to run diagonally through the grid. The following

definition provides a formal description of this drawing standard:

Definition 4.1. A quasi–orthogonal grid embedding of a planar graph G = (V;E) is a function Γ that

maps V to points in the grid and E to sequences of segments whose endpoints lie on the grid. The

following properties hold:

(Q1) Γ(v) 6= Γ(w) for v;w 2V;v 6= w.

(Q2) The endpoints of Γ(e) are Γ(v) and Γ(w) for all e = (v;w) 2 E .

(Q3) For two different edges e1 and e2 the paths Γ(e1) and Γ(e2) do not intersect except possibly at

their endpoints.

(Q4) Γ(G�fv 2V j δ(v)> 4g) is an orthogonal grid embedding.

Note that property (Q4) of Definition 4.1 yields a pure orthogonal grid embedding for 4–planar

graphs. This implies that every orthogonal grid embedding is also a quasi–orthogonal grid embedding.

Figure 6 shows an example for a drawing respecting the properties of Definition 4.1.

Figure 6: Quasi–orthogonal grid embedding of a 6–planar graph with 7 bends.

In the following we describe the algorithm Quod that computes quasi–orthogonal grid embeddings

for planar graphs. Related work is discussed in Section 5. In Quod high degree vertices v are replaced

by faces fv with δ(fv) = δ(v). The vertices on the boundary of such a newly created representative

face fv correspond to the adjacencies of the former vertex v, reflecting the order of the neighbours.

9 4 THE QUASI–ORTHOGONAL MODEL

We call these special faces cages, in a later phase every high degree vertex will be placed in its

corresponding cage. Unlike the method used for the Giotto model (which will be briefly discussed in

the next section), we do not prescribe on which side of fv the edges adjacent to v have to leave. We

refer to the transformation as T1. It works in the following way (see also Figure 7):

Transformation T1

Input: Planar graph G = (V;E), vertex v 2V .

Output: G, where v is replaced by a cage.

forall edges (v;w) 2 E

split edge (v;w);

forall faces f adjacent to v

link pair of new vertices in f by an edge;

delete v;

fv

vv

w1 w2

w3

w4

w5

wδ(v) wδ(v)

w1 w2

w3

w4

w5

Figure 7: Transformation T1. Replacement of a vertex v with high degree by a cage fv.

After having applied T1(G;v), the newly created face fv acts as a representative for the former

vertex v. Note that v has been replaced by a structure of δ(v) vertices, each of which has exactly three

neighbours. Let eG be the graph that results from applying T1 to every high degree vertex in G. In the

following analysis, Vi denotes the set fv 2V j δ(v) = ig. The number of vertices in eG is

j

eV j = jV j+ ∑
δ(v)>4

(δ(v)�1)

= jV1j+ jV2j+ jV3j+ jV4j+ ∑
δ(v)>4

δ(v)

� ∑
i

i � jVij � 2jEj � 6n�12 = O(jV j);

and it is obvious that eG is still planar. Furthermore one can easily verify that the inverse operation of

transformation T1 results in the original graph.

Now we can apply the algorithm from Section 3 to eG. Since jeV j=O(jV j), the asymptotical notion

of running time does not change. But if we do not distinguish between cages and normal faces, we will

get a pure orthogonal grid embedding in which the cages have arbitrary rectilinear shape. Since we

4 THE QUASI–ORTHOGONAL MODEL 10

want to place the formerly high degree vertices in their corresponding cages, it would not be a good

idea to let the latter have a too–complicated shape. Therefore we force cages to be of rectangular

shape by modifying the network introduced in Section 3. We then show that our modifications indeed

achieve the desired results and that our formulation always provides a solution meeting our constraints.

A rectilinear polygon Π has the shape of a rectangle if each of the angles inside Π does not exceed

180�. We exploit this fact to formulate a modification of network N concerning the shape of the cages.

Consider the set of elements R = fr 2 H(f)j f is a cageg. For every element r 2 R we must ensure

ar � 180 and sr = 0

�. These two constraints guarantee that there will be neither a concave angle nor

a concave bend in a cage. In [Doo95] a similar method is proposed resulting in drawings according

to the Giotto standard. In this approach the angles ar are forced to be equal to 180�; this leads to an

increased total edge length compared to our approach.

Note that the first requirement (ar � 180�) is automatically fulfilled. Each vertex v bounding a

cage has degree δ(v) = 3 and thus can only form angles of at most 180�. The second constraint can

be formulated by deletion of arcs in N. We have to avoid a flow χ
(ug;u f)

in the case that f represents a

cage. Deleting the arc (ug;u f) makes such a flow impossible.

We have now modified the network given in Section 3 so that each legal flow in it corresponds to an

orthogonal representation with rectangular cages. The following lemma states that these modifications

have no influence on the feasibility of the minimum cost flow problem:

Lemma 2. The minimum cost flow in the modified network corresponds to an orthogonal represen-

tation with the minimum number of bends under the constraint that every cage has a rectangular

shape.

Proof. Let N be the modified network. The modification concerns only the arcs in AF . To prove the

lemma we only have to show that the conservation rule at nodes u f 2UF still holds. Therefore we

consider three cases:

Face f is a cage.

The incoming flow is ∑uv
χ
(uv;u f)

, the outgoing flow is ∑ug
χ
(u f ;ug)

. There are exactly four angles of

90� in the cage occurring either at vertices or at bends. Thus jfuv j χ
(uv;u f)

= 1gj+∑ug
χ
(u f ;ug)

= 4.

We get

∑
uv

χ
(uv;u f)

�∑
ug

χ
(u f ;ug)

= 2δ(f)�jfuv j χ
(uv;u f)

= 1gj�∑
ug

χ
(u f ;ug)

= 2δ(f)�4 = bu f
:

Face f is the neighbour of a cage.

According to their construction, cages can never be neighbours to other cages, neither can they

enclose other faces. For this reason the demand of u f can be fulfilled by adjacent normal faces.

Face f is neither a cage nor a neighbour of a cage.

In this case there is no difference from the unmodified network. Conservation is guaranteed.

We now construct an orthogonal embedding Γ for eG with one of the compaction methods. During

this step we ensure that both the height and the width of a cage measure at least two grid units. This

can be easily done in the compaction phase. At this point, we want to reverse the changes of transfor-

mation T1. Therefore, we define a second transformation T2 which operates on grid embeddings and

places the high degree vertices in their cages. The aim is to minimize the number of bends arising

at the boundary of a cage during the process of connecting a high degree vertex v with its adjacent

edges. Let w1; : : : ;wδ(v) be the vertices on the boundary of the corresponding cage fv and let Γ(fv)

11 5 COMPARISON AND CONCLUSION

characterize the set of grid points covered by fv. Using straight line edges for the connection of v with

its adjacencies, we can save at most four bends. For the detailed and somewhat tedious description of

finding the best grid point for v, see [Kla97].

Transformation T2

Input: Orthogonal grid embedding Γ, cage fv with boundary w1; : : : ;wδ(v).

Output: Γ in which fv is replaced by the appropriate vertex v.

place v in Γ(fv);

/* creating min. number of bends in Γ(fv) */

for i = 1 to δ(v)
connect v with wi;

The whole algorithm Quod is summarized below. The procedure tamassia mod refers to the

modified bend minimizing algorithm described in Section 3 in which each cage is forced to be of

rectangular shape. Quod has been implemented using C++ and LEDA [MN95] and forms a part of

the AGD–Library [AGMN97, AGD97].

The algorithm Quod

Input: Planar graph G = (V;E) with planar representation P.

Output: Quasi–orthogonal grid embedding Γ of G.

eG = G;

while 9 vertex v 2 eV with δ(v)> 4
eG = T1(

eG;v);
eΓ = tamassia mod(

eG; eP);

Γ =

eΓ;
forall cages f 2 eF if f is cage

Γ = T2(Γ; f);

return Γ;

5 Comparison and Conclusion

Several algorithms and drawing models have been developed to extend Tamassia’s algorithm to gen-

eral planar graphs. In this section we briefly present the approaches Giotto and Kandinsky. In the

discussion following, we compare the different methods.

5.1 Giotto

In [TDB88] the following standard is proposed for drawing general planar graphs: Vertices may be

represented by rectangular boxes instead of grid points. The input graph is transformed into a 4–planar

graph by replacing each vertex v whose degree exceeds 4 by a rectangular structure. The neighbours

of v are connected to the four borders of this structure in a prescribed order. This distribution may

5 COMPARISON AND CONCLUSION 12

be computed by a simple heuristic or using the k–gonal representation of the input graph. k–gonal

representations are generalizations of orthogonal representations: For their computation, a similar

network can be constructed in which each unit of flow represents an angle of 180=k degrees. It is

shown that a slightly modified version of Theorem 3.1 still holds.

The basic algorithm is used to compute an embedding for the transformed graph. In order to reflect

the prescribed orthogonal representation for the rectangular structures the network must be changed.

Note that the drawings produced by this method do not necessarily have the minimum number of

bends. Related work appears in [Doo95].

5.2 Kandinsky

Another extension of the basis algorithm has been presented in [FK96] and is described in detail in

[Föß97]. The model as well as the appropriate algorithm are referred to as Kandinsky. In the model,

vertices are represented by squares of equal size. In order to draw every edge segment horizontally or

vertically, the edge segments may run parallel using a finer grid than that of the vertices. Furthermore

the model requires that at least one grid point lies in every face.

For a fixed topology of an input graph the algorithm Kandinsky achieves bend minimality in its

model. It extends Tamassia’s algorithm in the following way:

� The angles ar can also take the value 0�. This is used to model parallel edge segments.

� The network is modified in order to consider vertices with degree greater than four.

� The straightforward modification would lead to an unlimited growth of the vertices which is

not allowed by the Kandinsky model. An additional network modification is needed that forces

exactly one bend for every 0� angle. This modification introduces cycles of negative cost. In

order to get a useful solution, a special minimum cost flow algorithm which augments the flow

exclusively on paths from the source to the sink must be applied.

Drawings produced by the Kandinsky algorithm may be transformed to drawings in the propor-

tional growth model [BMT97]. This drawing standard requires vertices to be drawn as boxes whose

size is bounded by the corresponding vertex degree. However, the transformed drawings do not have

the minimum number of bends in the new model and the drawing area is quite high compared to other

approaches.

5.3 Comparative discussion

Each of the approaches presented has its advantages and disadvantages. Although the different models

make it hard to compare the approaches, we can state some universally valid observations. Figure 8

shows a planar graph drawn with the algorithms Giotto, Kandinsky, and Quod, respectively. Note that

the planar representation is the same for each of the three drawings.

In the Giotto drawing one can observe that the vertices with degree greater than four may grow

independently of their vertex degree. A negative impact of the fixed assignment of edges to the four

borders can be seen in the example: The upper edge must leave the box for the high degree vertex

at its right side. It is easy to save a bend connecting it to the upper side. The price for distributing

adjacent vertices evenly around the boxes is a high number of bends. If we transform the Quod output

in the Giotto standard we get a drawing with only three bends — but unpleasantly long boxes.

Even if the drawing standard of Quod is different, the long boxes still exist implicitly in the

drawings and lead to very small angles after having replaced the high degree vertices. Both Giotto

13 5 COMPARISON AND CONCLUSION

(b)(a) (c)

Figure 8: The same planar graph drawn with the different approaches. (a) Giotto: 11� 10 grid, 13

bends. (b) Kandinsky: 7�11 vertex grid, 12�15 effective grid, 14 bends. (c) Quod: 10�13 grid, 18

bends.

and Quod suffer from the fact that dimensions play no role during the minimization phase: Bends are

avoided by stretching the boxes.

This may not occur in Kandinsky drawings. But additional bends is the price paid for keeping the

vertices small. For each 0� angle the underlying network structure creates one bend which is necessary

in this special model. Often, many edges run parallel on the dense grid (like in the example), in such

cases it is not easy to follow the edges. Allowing vertices to grow reasonably leads to drawings in the

proportional growth model [BMT97]. This can be done by building a new grid taking the grid lines

used by the edges. Note that this effective grid is considerably bigger than the primary vertex grid and

that the transformed drawings are not bend minimal in the new model.

Giotto and Quod are very well suited for drawing planarized graphs. These are arbitrary graphs

that are planar due to a foregoing planarization step [JM96] and reinsertion of the missing edges.

During this process dummy vertices are introduced to model the crossings. In a drawing of a planarized

graph these vertices have to be drawn on a single grid point p, the four adjacent edges have to use the

four grid segments around p. The algorithms Giotto and Quod fulfill this requirement automatically.

For Kandinsky the situation is not as easy: The network needs to be changed again and becomes very

complicated.

At present, there is no algorithm producing drawings with the minimum number of bends for

the proportional growth model. The drawings could easily be transformed in the quasi–orthogonal

drawing standard using the transformation T2 yielding an angular resolution close to the optimum.

Further research should also be invested in minimizing or bounding the size of the drawings. Each

of the tested implementations suffer from severe compaction problems. The commonly used method

(see Section 3) leads to drawings in which a lot of space is wasted. Compaction heuristics known from

VLSI design may lead to improvements; however, the authors are convinced that it is worth designing

practically efficient exact compaction algorithms.

REFERENCES 14

References

[AGD97] AGD–Library – A library of Algorithms for Graph Drawing, 1997. A Software Project

supported by the DFG involving groups in Halle, Köln and Saarbrücken, Germany;

Available via http://www.mpi-sb.mpg.de/�mutzel/dfgdraw/dfgdrawsoft.html.

[AGMN97] D. Alberts, C. Gutwenger, P. Mutzel, and S. Näher. AGD–Library: A library of algo-

rithms for graph drawing. In G.F. Italiano and S. Orlando, editors, WAE ’97 (Proc. on

the Workshop on Algorithm Engineering), Venice, Italy, Sept. 11-13, 1997.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[BGL+97] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experi-

mental comparison of four graph drawing algorithms. CGTA: Computational Geometry:

Theory and Applications, 7:303 – 316, 1997.

[BMT97] T. Biedl, B. Madden, and I. Tollis. The three–phase method: A unified approach to

orthogonal graph drawing. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),

volume 1353 of Lecture Notes in Computer Science, pages 391–402. Springer-Verlag,

1997.

[Doo95] M. Doorley. Automatic Levelling and Layout of Data Flow Diagrams. PhD thesis,

Department of Computer Science and Information Systems, College of Informatics and

Electronics, University of Limerick, 1995.

[FK96] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In

Franz J. Brandenburg, editor, Graph Drawing (Proc. GD ’95), volume 1027 of Lecture

Notes in Computer Science, pages 254–266. Springer-Verlag, 1996.

[Föß97] U. Fößmeier. Orthogonale Visualisierungstechniken für Graphen. PhD thesis, Fakultät

für Informatik, Eberhard–Karls–Universität zu Tübingen, 1997.

[GT95] A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear

planarity testing. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94),

volume 894 of Lecture Notes in Computer Science, pages 286–297. Springer–Verlag,

1995.

[GT97] A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to graph

drawing. In S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190. Springer–

Verlag, 1997.

[JM96] M. Jünger and P. Mutzel. Maximum planar subgraph and nice embeddings: Practical

layout tools. Algorithmica, 16(1):33 – 59, 1996. Special Issue on Graph Drawing.

[Kla97] G. W. Klau. Quasi–orthogonales Zeichnen planarer Graphen mit wenigen Knicken.

Diplomarbeit, Universität des Saarlandes, Saarbrücken, Fachbereich Informatik, Tech-

nische Fakultät, Januar 1997.

[MN95] K. Mehlhorn and S. Näher. LEDA: A platform for combinatorial and geometric comput-

ing. Communications of the ACM, 38(1):96–102, 1995.

15 REFERENCES

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number of bends.

SIAM J. Comput., 16(3):421–444, 1987.

[TDB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of

diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.

