
Robustness Analysis in Combinatorial Optimization

Greg N. Frederickson

�

Roberto Solis-Oba

y

Abstract

The robustness function of an optimization problemmeasures the maximumchange in the

value of its optimal solution that can be produced by changes of a given total magnitude on

the values of the elements in its input. The problem of computing the robustness function of

matroid optimization problems is studied under two cost models: the discrete model, which

allows the removal of elements from the input, and the continuous model, which permits

�nite changes on the values of the elements in the input.

For the discrete model, an O(log k)-approximation algorithm is presented for computing

the robustness function of minimum spanning trees, where k is the number of edges to be

removed. The algorithm uses as key subroutine a 2-approximation algorithm for the problem

of dividing a graph into the maximum number of components by removing k edges from it.

For the continuous model, a number of results are presented. First, a general algorithm is

given for computing the robustness function of any matroid. The algorithm runs in strongly

polynomial time on matroids with a strongly polynomial time independence test. Faster algo-

rithms are also presented for some particular classes of matroids: (1) an O(n

3

m

2

log(n

2

=m))-

time algorithm for graphic matroids, where m is the number of elements in the matroid and n

is its rank, (2) an O(mn(m+n

2

)jEj log(m

2

=jEj+2))-time algorithm for transversal matroids,

where jEj is a parameter of the matroid, (3) an O(m

2

n

2

)-time algorithm for scheduling ma-

troids, and (4) an O(m logm)-time algorithm for partition matroids. For this last class of

matroids an optimal algorithm is also presented for evaluating the robustness function at a

single point.

1 INTRODUCTION

The robustness function of a (minimization) optimization problem measures the maximum in-

crease in the value of the optimal solution that can be produced by changes of a given total

\magnitude" on the values of the elements in its input. The robustness function of a maximiza-

tion problem can be de�ned in a similar way. In this paper we are interested in computing the

robustness functions of combinatorial optimization problems. Combinatorial optimization is an

�

Department of Computer Science, Purdue University, West Lafayette IN 47907. Research of this author

partially supported by the National Science Foundation under grant CCR-9322501. Email: gnf@cs.purdue.edu.

y

Max Planck Institut f�ur Informatik. Im Stadtwald, 66123 Saarbr�ucken. Most of this research was done while

this author was a graduate student at the Department of Computer Sciences at Purdue University. Research

of this author partially supported by NSF grant CCR-9322501, by CONACyT-Fulbright and by Universidad

Autonoma Metropolitana. Email: solis@mpi-sb.mpg.de.

1

2

exciting branch of mathematics, whose importance derives from its large number of applications

and from the elegant algorithmic techniques that have been developed to solve combinatorial

optimization problems [21, 55, 83, 99]. A combinatorial optimization problem requires �nding

the maximum or minimum of a certain function, called the objective function. The input of the

problem consists of a �nite set of discrete \elements" each one having some associated value.

Consider a combinatorial optimization problem de�ned on a dynamic environment. The

dynamic nature of the input might cause frequent changes on the value of the solution of the

problem. Recomputing the solution could be expensive, and thus, one might desire to do it

infrequently. The robustness function for the problem can help decide when the updates need

to be performed. One might decide to compute the solution for the problem, and recompute it

only after the robustness function indicates that the changes in the input have had a large e�ect

on the value of the actual solution for the problem.

Similar sensitivity issues arise in the solution of a problem for which the exact values of the

input data are not known, and hence estimates must be used. A measure of the quality of the

solution computed with the estimates is given by determining how sensitive the solution is to

changes in the values of the estimates.

Sensitivity analysis provides only a partial answer to the above questions. The sensitivity

analysis of an optimization problem determines for each element of an optimal solution, the

magnitude of the largest perturbation in the value of the element that would not a�ect the opti-

mality of the solution [56, 88, 106, 111]. If simultaneous changes in the values of all the elements

in the input are considered, like required in the above two situations, then sensitivity analysis

does not su�ce [36, 38, 42, 61, 100]. Our concept of robustness function of an optimization

problem generalizes the notion of sensitivity analysis by considering changes in the values of all

the elements in the input of the problem.

1.1 Matroid Optimization Problems

In this paper we focus our study of robustness functions on the large class of matroid optimization

problems. Matroids have an elegant and strikingly simple structure that captures the essence

of many problems that can be solved using greedy algorithms [9, 83, 95, 98, 115]. Several

fundamental problems in graph theory [1, 22, 54, 83, 90], scheduling [43, 83], mathematical

programming [85, 98, 115], electrical networks [85, 103], mechanics [44, 85, 103], and operations

research [8, 69, 85] have an inherent matroid structure, and can thus be solved using tools from

matroid theory.

A matroid M = (E; I) consists of a �nite set of elements E and a family I of independent

subsets of E satisfying well known axioms (see e.g. [115]). A fundamental property of a matroid

is that all maximal independent sets, called bases, have the same cardinality, called the rank of

the matroid. A base of a matroid (or a minimum or maximum weight base, if the elements have

associated weights) can be found using a greedy algorithm (see e.g. [115]).

There is an important practical consequence for a problem to have a matroid structure:

results from matroid theory can be used to discover structural properties of the set of possible

3

solutions of a problem that might be di�cult to show otherwise. Many combinatorial optimiza-

tion problems have been solved only after their connection with matroid theory was established

[25, 103, 86], and e�cient solutions to some other problems heavily rely on their inherent matroid

structure [43, 46, 47, 85].

Some fundamental problems of diverse areas of research are matroid optimization problems

that can be solved using the greedy algorithm. In graph theory two such problems are �nding a

minimum spanning tree and �nding a maximum cardinality matching. In scheduling, a problem

in this class is to �nd a largest set of unit-time jobs, with integer release times and deadlines,

that can be scheduled for execution in a single processor. In mathematical programming, the

problem of �nding a pivot rule for the simplex method that avoids cycling. In mechanics, the

problem of deciding if a structure formed by rods and joins is rigid. In electrical networks, the

problem of selecting the smallest set of electrical equations that uniquely determine the values

of the electrical currents in all branches of a circuit.

Other important prototypical matroid optimization problems are the assignment problem,

the maximum weight matching problem, the problem of �nding a minimum weight branching in a

directed graph, �nding a spanning tree with degree constraint on some vertices, and the problem

of �nding the maximum number of edge disjoint spanning trees in a graph. A fundamental

problem in graph theory whose fastest known solution uses tools from matroid theory is the

problem of computing the edge connectivity of a graph [47].

In the rest of this section we describe some speci�c matroids for which we have designed

algorithms for computing their robustness functions. Throughout, we will let m be the number

of elements in the ground set of a matroid and n be its rank. When describing graph algorithms,

we denote by m the number of edges in the graph and by n the number of vertices. This use of

m is consistent since in a graphic matroid the ground set is formed by all the edges in the graph.

However, our use of n is inconsistent because the rank of a graphic matroid is one less than the

number of vertices. The context will make it clear when n refers to the rank of a matroid or to

the number of vertices in a graph.

1.1.1 Graphic Matroids

Given an undirected graph G = (V;E), a graphic matroid M = (E; I) has ground set equal to

the set of edges in G, and its independent sets are the subsets of edges that do not form cycles.

If the elements in E have non-negative weights, then a minimum weight base ofM is a minimum

spanning tree (forest) of G.

Finding a minimum spanning tree is a fundamental problem in graph theory. This seminal

problem has a long and rich history that goes back to the beginning of the century [11]. Graham

and Hell have written an excellent survey paper on the history of the problem up to 1985 [54].

In the last 20 years many algorithms have been designed to compute e�ciently a minimum

spanning tree. The fastest sequential algorithm for the problem is due to Gabow et al. [45]

and it runs in O(m log �(m;n)) time, where �(m;n) = minfi j log

(i)

n � m=ng. Karger et al.

[72] have designed a randomized linear time algorithm for �nding a minimum spanning tree.

4

Fredman and Willard [40] also discovered a linear time algorithm for the problem, but they

consider a model of computation that allows bit manipulations on the binary representation of

edge weights.

Minimum spanning trees �nd applications in areas as diverse as network design [1], numerical

methods [12], image processing [54], data bases [54], biology [76], and archaeology [59]. The

importance of minimum spanning trees comes not only from its wealth of applications, but from

their structure, typical of matroid optimization problems [83]. Graphic matroids are among the

�rst matroids that were ever studied [116, 113], and much of the early development in matroid

theory came from the study of graphic matroids. As we mentioned above a fundamental property

of matroids is that a minimum weight base can be found using a greedy strategy. This property

was �rst discovered for minimum spanning trees [11, 81], and then extended by Rado to arbitrary

matroids [102].

Many of the algorithmic techniques initially created to solve the minimum spanning tree

problem have found applications in other problems as well. The desire for �nding faster ways

for computing minimum spanning trees has also led to the development of sophisticated data

structures, some of which have been used to speed up the solutions to many other combinatorial

optimization problems.

1.1.2 Transversal Matroids

A transversal matroid can be de�ned in terms of matchings in bipartite graphs. A bipartite

graph G = (D [D

0

; A) has its vertices divided in two disjoint sets D and D

0

, and every edge

e 2 A has one endpoint in D and the other in D

0

. A matching of G is a set of edges T such that

no two edges in T share a common endpoint. Given a set of vertices S � D and a matching T ,

we say that the set S is covered by matching T if T has one edge incident to every vertex in S.

Given a bipartite graph G = (D [D

0

; A), a transversal matroid M = (D; I) is de�ned as

having ground set equal to the set of vertices on one side of G. A subset S of E is independent

in M if and only if it can be covered by a matching. A matching of maximum cardinality in G

de�nes a base of M .

Finding a maximum cardinality matching in a graph is a classical problem in graph theory

[112]. There is an interesting relationship between maximum cardinality matchings in bipartite

graphs and maximum ows, that was �rst noticed by Ford and Fulkerson [33]. They showed

that an integer maximum ow of a bipartite graph with unit capacity edges de�nes a maximum

cardinality matching. This observation led to the �rst algorithm for �nding maximum matchings

in bipartite graphs. The algorithm was later improved by Hopcroft and Karp who gave an

O(

p

nm) time algorithm [62] for the problem.

If the edges of the bipartite graph have non-negative weights, the minimum weight matching

problem consists in �nding a maximum cardinality matching in which the sum of the weights

of the edges is minimum. This problem is equivalent to the assignment problem and it has

applications in resource allocation problems.

Matchings in bipartite graphs are related to the so called systems of distinct representatives,

5

an important topic in combinatorial analysis. Typical of the viewpoint of combinatorial analysis

is a classic theorem of P. Hall which states necessary and su�cient conditions for the existence

of a system of distinct representatives, or equivalently of a matching of maximum cardinality

in a bipartite graph. Given a bipartite graph G = (D [D

0

; A), and a set S � D, let N (S) =

fv 2 D

0

j v is adjacent to some vertex in Sg be the set of neighbors of vertices in S. Hall's

Theorem states that G has a matching covering the vertices of S if and only if jN (S

0

)j � jS

0

j

for all S

0

� S. We use this result in our algorithm for computing the robustness function of a

transversal matroid.

1.1.3 Scheduling Matroids

Consider the following scheduling problem. Let J = fj

1

; j

2

; : : : ; j

m

g be a set of jobs. Each job

j

i

requires one unit of processing time and it cannot be preempted, i.e., the execution of the

job cannot be interrupted. Job j

i

has integer release time r

i

and deadline d

i

, with d

i

> r

i

. The

problem is to select the largest set of jobs that can be executed on a single processor so that no

job is started before its release time and all jobs are completed by their deadlines.

A convex bipartite graph G = (D [D

0

; A) is a bipartite graph for which there is an indexing

for the vertices in D

0

such that every vertex v 2 D is adjacent to consecutively indexed vertices

from D

0

. Interestingly, the above scheduling problem can be reduce to a matching problem on a

convex bipartite graph G

J

= (J [J

0

; A). We think of the ith vertex of J as job j

i

, and the ith

vertex of J

0

as the unit time interval from i� 1 to i. For each job j

i

, graph G

J

has an edge from

j

i

to every unit time interval between r

i

and d

i

. It can be proved that a maximum cardinality

matching in G

J

corresponds to a valid scheduling of a largest subset of jobs from the set of jobs

J [43].

A scheduling matroid M = (J; I) has a set of jobs J as its ground set, and a subset of jobs is

independent in M if and only if there is a valid non-preemptive scheduling for them on a single

processor. By the previous discussion on convex bipartite graphs, it is clear that a scheduling

matroid is a special kind of transversal matroid.

The above scheduling problem is perhaps the most fundamental problem in scheduling theory

[18, 41, 94]. It can be solved with Jackson's earliest deadline �rst rule [71]. This rule schedules

at each unit time interval one job that has not been scheduled yet, has release time at least

equal to the current time, and has smallest deadline. The fastest known algorithm to solve the

problem is due to Frederickson [34] who showed how to solve it in O(m) time and using O(L+m)

space, where L is the size of the largest deadline.

This problem is a special case of the problem in which arbitrary values are allowed for the

release times and deadlines. This more complex problem can be solved in O(m logn) time [50].

Another generalization of the problem considers di�erent processing times for the jobs, instead

of unit times. This version of the problem is NP-hard [49]. Many other scheduling problems can

be de�ned by allowing the jobs to be preempted, i.e. the processing of a job can be interrupted

and resumed later, or by having more than one processor for performing the jobs. Still more

modalities arise when the processors have di�erent speeds, or when some of the jobs can be

6

executed only by certain processors. Furthermore, the solution of a scheduling problem does

not necessarily need to �nd a maximum set of jobs that can be scheduled for execution, but it

might be desired to schedule jobs so as to minimize the maximum completion time of a job, or

to minimize some penalty function that is activated when a jobs fails to be completed by its

deadline [18, 73, 94].

1.1.4 Partition Matroids

A partition matroid M = (E; I) is de�ned over a �nite set of elements E partitioned into `

disjoint blocks E

1

; E

2

; : : : ; E

`

. Given a set of ` integer values fn

1

; n

2

; : : : ; n

`

g, where n

i

� jE

i

j

for all i = 1; : : : ; `, a set S � E is independent in M if an only if jS\E

i

j � n

i

for all i = 1; : : : ; `.

A uniform matroid is a partition matroid in which ` = 1.

Despite their simplicity, partition matroids have interesting applications in graph theory [43]

and resource allocation problems [83]. As an example of the use of the robustness function of a

partition matroid consider the following situation. Suppose that you are considering investing

your lifelong savings in the stock market. Your broker gives you the names of some very promis-

ing companies and, in order to minimize risk, he advises you to buy equal amounts of stock in

a certain number of them. To help you make the best choice, the broker based on a �nancial

analysis of the companies gives you the following information for each company: (a) an estimate

of the pro�t that you would make if you buy stock in the company, hold the stock for one year,

and sell it at the end of the year; and (b) a \coe�cient of faith" which reects how con�dent

the broker feels about his prediction. The smaller the coe�cient of faith is, the less con�dent

the broker feels about his estimate, and the larger the variation on the real pro�t can be.

With this information you build the following model. An adversary is allowed to use a �nite

amount of resources to decrease the estimated pro�ts of the companies. The cost of each unit

decrease in the pro�t of a company is proportional to the value of the coe�cient of faith for that

company. The resources given to the adversary reect your degree of incredulity with respect

to the clairvoyant abilities of the broker.

Plotting the total pro�t that you hope to get versus the amount of resources given to the

adversary, yields the robustness function of a partition matroid. The robustness function pro-

vides information that might help you decide whether it is worth risking your money in the

stock market.

The importance of partition matroids is probably best appreciated when considering the

large number of applications of matroid intersection algorithms. Some problems that can be

modeled with the intersection of two matroids, one of which is a partition matroid are: the

assignment problem, the problem of �nding, in a graph with red and green edges, a spanning

tree of minimum weight and having at most k red edges, and the problem of �nding a branching

of minimum weight, where a branching of a digraph is a set of edges forming a spanning tree in

the underlying undirected graph.

7

1.2 Continuous and Discrete Models

In this paper we study robustness functions for minimization matroid optimization problems

only. It is easy to see how to extend our concepts and algorithms for maximization optimization

problems.

Let M = (E; I) be a matroid in which every element e 2 E has an associated weight w(e).

We study robustness functions of matroid optimization problems under two di�erent models.

The �rst model, that we call the continuous model, assigns to each element e 2 E a non-negative

coe�cient c(e) that indicates the cost of each unit-increase in the weight of the element. If the

weight of element e is increased by some amount �, then the total cost of the increase is c(e) � �.

The robustness function in this model, that we call the continuous robustness function, measures

the maximum increase in the weight of the minimum weight bases of M caused by changes of a

given total cost on the weights of its elements.

Consider, for example, a communications network in which information is broadcast through

a minimum spanning tree. Tra�c congestion might increase the time needed to send a message

between the two endpoints of a link. This, in turn, might a�ect the weight of a minimum span-

ning tree of the network, and hence the quality of the broadcasting algorithm. The continuous

robustness function can be used to quantify this decrease in performance.

The second model that we consider is called the discrete model. It assigns to each element

e 2 E a cost c(e) for removing the element from the input. In this case the robustness function,

called the discrete robustness function, gives the maximum increase in the weight of the minimum

weight bases of M that can be obtained by removing elements of a given total cost from E.

Consider the same communications network as above. Link failures might a�ect the performance

of the broadcasting algorithm, and the discrete robustness function can be used to model this

situation.

The problem of computing the robustness function of a matroid optimization problem in the

continuous model is called the continuous robustness problem, and the problem of computing

the robustness function in the discrete model is the discrete robustness problem.

1.3 Overview of Results

1.3.1 Discrete Robustness Problems

Let G = (V;E) be an undirected graph with non-negative weights on the edges. Given an integer

k > 0, the discrete robustness problem for minimum spanning trees is to select a set of k edges

that when removed from G maximizes the weight of any minimum spanning tree in the resulting

graph.

We prove that the discrete robustness problem for minimum spanning trees is NP-hard even

if the weights of the edges are 0 or 1. This fact strongly suggests that there is no algorithm

that can solve exactly the problem in polynomial time [49, 74]. One natural approach to deal

with NP-hard problems is to compromise on the quality of the solution for the sake of e�ciently

computing a sub-optimal solution. Algorithms that compute sub-optimal solutions which can be

8

proved to be of value within some multiplicative factor of the value of the optimal solution are

called approximation algorithms. Such multiplicative factor is called the performance guarantee,

or performance ratio of the algorithm.

More formally, the performance ratio of an approximation algorithm for a minimization

problem is the maximum value, over all instances of the input, of the ratio of the value of the

solution computed by the algorithm to the value of the optimum solution for the instance. The

performance ratio of an approximation algorithm for a maximization problem is de�ned as the

reciprocal of this ratio. If an algorithm has a performance ratio of �, it sometimes will be

referred to as an �-approximation algorithm.

We present the �rst approximation algorithm for the discrete robustness problem for mini-

mum spanning trees when the edges have arbitrary non-negative weights. The algorithm runs in

O(k log n(m+ kn log n)) time and �nds a solution whose value is
(1= logk) times the optimal.

If the weights of the edges can only be 0 or 1, the problem is equivalent to the maximum

components problem. This latter problem consists in selecting a set of k edges, for some given

k > 0, that when removed from an undirected graph divides it into the maximum possible

number of connected components. We give a simple 2-approximation algorithm for this problem,

that runs in O(km+ k

2

n logn) time.

The maximum components problem is in some sense the dual of the minimum k-cut problem,

de�ned as follows [53]. Given an undirected graph G, and an integer k > 0 the problem is to

select the smallest subset of edges whose removal from G divides it into k components. We show

that the maximum components problem is NP-hard by a simple reduction from the minimum k-

cut problem. Despite the seemingly equivalence between these two problems, an approximation

algorithm for one does not translate into an approximation algorithm with a similar performance

ratio for the other.

We have also studied the more general version of the discrete robustness problem for mini-

mum spanning trees in which the edges have a non-negative destruction cost. Given a positive

budget b > 0 the problem is to �nd a set of edges of total destruction cost at most b whose

removal from the graph maximizes the weight of any minimum spanning tree in the resulting

graph. We have designed an O(logn)-approximation algorithm for this problem by extending

our algorithms for the restricted version of the problem in which the edges have unit destruction

cost.

The discrete robustness problem for partition matroids can be formulated as a discrete

version of the optimal distribution of e�ort problem [31, 75]. If the elements of the matroid have

arbitrary destruction costs, then the problem is NP-hard even for uniform matroids. To see

this, note that any instance (E; p; v; b) of the knapsack problem (the instance consists of a set E,

weight and value functions w and v, and bound b on the total value of the solution) corresponds

to an instance of the discrete robustness problem for a uniform matroid M

U

= (E

U

; I

U

). Set

E

U

has n + k elements, k of them have very large weight L and cost L. Each one of the other

elements e corresponds to an element e

0

of the knapsack problem; the cost of e is c(e) = v(e

0

)

and its weight is w(e) = L� p(e

0

).

9

If the elements have unit destruction cost, a simple dynamic programming algorithm solves

the problem in O(mk) time, where k is the number of elements to be removed from the matroid.

1.3.2 Continuous Robustness Problems

Given a matroid M = (E; I), we show that its robustness function F

M

is piecewise linear and

non-decreasing. Moreover, we prove that F

M

has at most mn breakpoints. We present a general

algorithm for computing all the breakpoints in the robustness function of an arbitrary matroid.

The algorithm incrementally modi�es the weights of the elements in the ground set in such a

way that it actually \marches" along the curve F

M

.

The algorithm runs in strongly polynomial time for any matroid with a strongly polynomial

time independence test, i.e., a matroid for which it can be decided whether a set is independent

in strongly polynomial time. The algorithm requires time O(m

5

n

2

+ m

4

n

4

�), where � is the

time needed by an oracle to test independence for a set of at most n elements.

There are two key ideas in this algorithm. The �rst is a reduction from the problem of

computing the robustness function of a weighted matroid to that of computing the robustness

function of some family F of minors of the matroid (for the de�nition of minor of a matroid see

Chapter 3. This family F has the nice property that each minor in it is formed by elements

of the same weight. The second key idea is a transformation from the latter problem to the

membership problem on a matroid polyhedron (see Chapter 3), for which there are several known

algorithms that solve it in strongly polynomial time [23, 96].

We also consider particular classes of matroids that have interesting applications in graph

theory, scheduling, and operations research. Speci�cally we have studied the problem of com-

puting the continuous robustness function for graphic, transversal, scheduling, and partition

matroids. All of this algorithms have the same general structure as our general robustness algo-

rithm. However, we take advantage of the special structure of these kinds of matroids to design

very e�cient algorithms for the key subroutines.

For the case of graphic matroids, we present an algorithm that computes the set of break-

points of the robustness function in O(n

3

m

2

log(n

2

=m)) time. The core of the algorithm is a

procedure for selecting a subset S of edges that maximizes the ratio of the increase in the weight

of the minimum spanning trees of G to the cost of modifying the weights of the edges in S.

This selection can be made e�ciently by a careful combination of edge contractions and graph

strength [16, 46] computations.

Since computing the robustness function of a minimum spanning tree might require increasing

the weights of an exponential number of minimum spanning trees, it is somewhat surprising that

this version of the problem is not NP-hard as its discrete counterpart.

For transversal matroids, we give an algorithm that computes the robustness function in

O(mn(m + n

2

)jEj log(m

2

=jEj + 2)) time, where E is the set of edges in the bipartite graph

that de�nes the transversal matroid. We prove an extension of Hall's Theorem for the class of

minors that constitute the family F . This extended theorem allows us to solve the membership

problem for the matroid polyhedron associated with each submatroid in F by performing a

10

single minimum-cut computation over a bipartite graph.

Our algorithm for scheduling matroids �nds all the breakpoints of the robustness function in

O(m

2

n

2

) time. Each breakpoint is computed by solving a series of scheduling-with-preemption

subproblems in which some subset of elements of the matroid must be scheduled to completion.

We present a formulation for these scheduling subproblems that corresponds to a generalization

of the o�-line min problem de�ned in [1]. This reformulation allows us to solve optimally each

scheduling subproblem.

For partition matroids, we have designed an algorithm that computes all the breakpoints

of the robustness function in O(m logm) time. As the algorithm computes the breakpoints, it

identi�es increasingly larger clusters of elements that must undergo the same weight increases

in the computation of the remaining breakpoints. These clusters have a certain \convexity"

property that we exploit to compute each breakpoint in O(logm) time. The increasing size of

the clusters allows us to prove that the robustness function of a partition matroid has only O(m)

breakpoints.

If we do not want to compute all the breakpoints of the robustness function of a matroid M ,

but wish only to evaluate it at a certain given point then it might be possible to design faster

algorithms. Stated in a di�erent way, suppose that for a given �xed value b we only want to

know the maximum increase that can be expected in the weight of the minimum weight bases of

a matroid when changes of a total �xed cost b are allowed. The above algorithms compute one

by one the breakpoints of the robustness function, and so if b is large they might require a long

time to give the desired answer. In this paper we have also studied the problem of designing

faster algorithms that evaluate the robustness function at only a required point.

For the case of a partition matroidM , the problem of evaluating F

M

at a �xed point b can be

formulated as an optimal distribution of e�ort problem (see e.g. [75]). Under this formulation,

the problem is to split the budget b among the blocks E

i

so that when the partial budget b

i

assigned to block E

i

is optimally used, the weight of a minimum weight base ofM is maximized.

Methods of solution for the optimal distribution of e�ort problem [31, 75] assume that it is

possible to compute e�ciently the optimal way of spending each partial budget b

i

increasing the

weights of the elements in block E

i

. But we do not know how to do this. Hence, instead of using

those methods we present a new approach that optimally solves the problem by a sophisticated

application of a linear-time selection algorithm [10], that interleaves searches on weights with

searches on costs.

1.4 Related Work

1.4.1 Discrete Robustness Problems

The discrete robustness problem for minimum spanning trees has appeared in the literature

under the name of \the most vital edges for a minimum spanning tree" [63, 64, 70, 89]. In [89]

it is shown that when the edges of a graph have arbitrary destruction costs, the problem of

computing the maximum increase in the weight of the minimum spanning trees achievable by

11

removing edges of a certain total destruction cost is NP-hard. In [63, 64, 70, 110] algorithms

are given for �nding the single edge that when removed from a graph causes the largest possible

increase in the weight of the minimum spanning trees of the resulting graph.

Several related problems have also been studied. The problem of �nding the k most vital

edges in the shortest path problem consists in selecting the k edges that when removed from an

undirected graph G maximize the shortest distance between two distinguished vertices s and t

[4, 91]. In [77] it is proved that this problem is NP-hard even if all edges in G have the same

weight. In [77, 91] exponential time branch and bound algorithms are given for solving the

problem.

Given a capacitated network with destruction costs on the edges, the problem of spending

a given budget destroying edges so as to minimize the maximum ow that the network can

transport from a vertex s to a vertex t, is shown to be NP-hard in [100]. In [100] it is also given a

fully polynomial time approximation scheme for the problem on planar networks. This algorithm

uses the properties of the dual of a planar graph to cast the problem in terms of shortest paths

instead of maximum ows. This formulation of the problem allows an approximate solution to

be obtained with a dynamic programming approach.

1.4.2 Continuous Robustness Problems

The concept of continuous robustness function in combinatorial optimization can be seen as

a generalization of that of sensitivity analysis [56, 106, 110], since it deals with simultaneous

changes in the weights of all the elements in the input. Although the name \continuous robust-

ness function" has not been used before, the concept has been previously studied. In [42, 52]

algorithms are given for computing the continuous robustness function for the problem of �nding

the shortest distance between two points. These algorithms are based on a linear programming

formulation for the problem which shows that it is equivalent to a minimum cost ow problem.

In [100] a fully polynomial time approximation scheme is given for the continuous robustness

function for maximum ows on planar graphs. Like the algorithm for the discrete robustness

function for maximum ows, this algorithm also relies on the properties of the dual of a planar

graph.

Some other related problems that have been considered are the following. In [28] a constant-

approximation algorithm is given for the problem of spending a �xed budget reducing the weights

of the edges in a given graph to minimize the weight of its minimum spanning trees. In this

problem every edge e has a lower bound `(e) below which the weight of the edge cannot be

reduced. Interestingly, this minimization version of the continuous robustness problem for min-

imum spanning trees is NP-hard, as opposed to our version that is solvable in strongly poly-

nomial time. The algorithm in [28] assigns to every edge e in the graph a modi�ed weight

w

0

(e) that depends on its original weight w(e) and cost c(e). Speci�cally, for a parameter � � 0,

w

0

(e) = minfw(e); w(e)+(w(e)�`(e))(�c(e)�1)g. The core of the algorithm is a result showing

that for some value of � a minimum spanning tree T computed with the modi�ed weights is

such that if the weights of the edges in T are reduced to their lower bounds, then the weight of

12

a minimum spanning tree computed with these new weights is close to the value of the optimal

solution.

In [28] constant-approximation algorithms are also given for the problems of reducing edge

weights so as to minimize the diameter of a graph, and for minimizing the weight of an optimal

Steiner tree. The algorithms are similar to that for minimum spanning trees. In [6] a simple

algorithm is given for optimally shortening the lengths of edges in a given rooted tree to minimize

the sum of the distances from the root to all of the other vertices in the tree. This algorithm

heavily relies on the fact that the underlying graph is a tree.

1.5 Presentation Overview

In Section 2 we prove that the maximum components problem is NP-hard and present a 2-

approximation algorithm for it. This algorithm serves as the key subroutine for our O(log k)-

approximation algorithm for the discrete robustness problem for minimum spanning trees. The

approximation algorithm runs in O(km(m+kn log n)) time, but we show that by preprocessing

the graph our algorithm can be made to run in only O(k logn(m+ kn log n)) time. Finally, we

show that the discrete robustness problem for minimum spanning trees is NP-hard even if the

weights of the edges are 0 or 1.

In Section 3 we present some de�nitions and results from matroid theory needed to under-

stand our algorithms for computing the continuous robustness functions of matroid optimization

problems.

In Section 4 we present our general algorithm for computing the continuous robustness

function of an arbitrary matroid. We prove that the robustness function is piecewise linear and

that it has at most mn breakpoints. We also specialize the algorithm for the case of graphic

matroids and design a faster algorithm that runs in O(n

3

m

2

log(n

2

=m)) time. As we show our

algorithms can compute all the breakpoints of the robustness function.

In Section 5 we give the algorithm for computing the continuous robustness function for

transversal matroids. We formulate the problem �rst in terms of matroid and polymatroid

theory, and then bring it to the realm of parametric maximum ows. We also present an

algorithm for computing the robustness function for scheduling matroids. For this class of

matroids, the problem is formulated as a series of scheduling with-preemption subproblems. We

introduce an interesting generalization of the o�-line min problem de�ned in [1] which allows us

to design an O(m

2

n

2

) time algorithm for computing the breakpoints in the robustness function

of a scheduling matroid.

In Section 6 we give an O(m logm) time algorithm for computing the continuous robustness

function for partition matroids. An algorithm is presented �rst for uniform matroids, and then

we show how to generalize it for arbitrary partition matroids. In the second part of the section

we describe an algorithm for evaluating the robustness function at only a given point in O(m)

time.

In Section 7 we present our conclusions and directions for future research.

13

1

1

1

1

4

2

4

2 2
2

2

1
4

Figure 1: An instance of the discrete robustness problem. The two edges in bold

are those whose removal maximize the weight of the minimum spanning trees.

2 Discrete Robustness Problem for Minimum Spanning Trees

In this section we study the e�ect that the removal of a given number of edges from a graph has

over the weight of its minimum spanning trees. We show that the discrete robustness problem

for minimum spanning trees is NP-hard and present an O(log k)-approximation algorithm for

it, where k is the number of edges to be removed. This algorithm uses as key-subroutine a

2-approximation algorithm for the problem of removing a given number of edges from a graph

so as to maximize the number of its connected components.

The discrete robustness problem for minimum spanning trees consists in selecting a set of k

edges, for a given value k > 0, that when removed from a graph G maximizes the weight of its

minimum spanning trees. Consider for example the graph shown in Figure 1. For k = 2, the

maximum increase in the weight of the minimum spanning trees of this graph is achieved by

removing the edges shown in bold. By doing this, the edge of weight 1 shown in bold in Figure

1 is replaced in every minimum spanning tree by an edge of weight 4 . Furthermore, in some

minimum spanning trees the edge in bold of weight 2 is also replaced by some other edge of

weight 2. The weight of the minimum spanning trees increases from 8 to 11.

To motivate this problem, consider a packet-switching network in which periodic information

has to be sent from a distinguished vertex to the rest of the network. Suppose that this network

is used in a real time application, and that the broadcast information has to be delivered in

a timely manner. The solution chosen is to use a virtual circuit formed with the edges of a

minimum spanning tree [7, 5]. To �nd a minimum spanning tree, every edge of the network is

assigned a weight that indicates the time needed to sent a packet between its two endpoints.

In the event that some of the links in the network fail, the virtual circuit has to be changed

and this might a�ect the performance of the broadcasting algorithm. The discrete robustness

problem for minimum spanning trees can be used to model this situation.

Minimum spanning trees are used to approximate minimum Steiner trees[66, 67, 117] and

minimum weight Hamiltonian circuits [84, 17]. The solution to the discrete robustness problem

14

for minimum spanning trees can be used to approximate the maximum increase on the weight of

a minimum Steiner tree or on the weight of a minimum Hamiltonian cycle that can be produced

by the removal of a certain number of edges from a graph.

In this section we present an O(log k)-approximation for the discrete robustness problem for

minimum spanning trees. The algorithm is based in the following property of minimum spanning

trees.

Property 2.1 Let G = (V;E) be an undirected graph, and let w

1

< w

2

< : : : < w

p

be its

di�erent edge weights. Let G

�w

i

= (V;E

�w

i

) be the subgraph of G formed by all edges of weight

at most w

i

, for w

1

� w

i

� w

p

. A minimum spanning tree of G induces a spanning tree in every

connected component of G

�w

i

. Therefore, the maximum number of edges of weight larger than

w

i

in any minimum spanning tree of G is equal to the number of connected components in G

�w

i

minus one.

Proof. Let T be a minimum spanning tree of G. Suppose that in some connected component

of G

�w

i

, T does not induce a spanning tree but a forest fF

1

; F

2

; : : : ; F

q

g; q > 1. Let e 2 E

�w

i

be an edge that connects a vertex from F

i

with a vertex from F

j

, 1 � i; j � q. Include e in T to

form a unique cycle, and then remove the edge of largest weight in that cycle to get a new tree

T

0

. Clearly, this tree T

0

has smaller weight than T , which is a contradiction. 2

We use the following approach to �nd an approximate solution for the discrete robustness

problem for minimum spanning trees. For every edge weight w

i

, remove from G

�w

i

a subset S

i

of k edges that partitions G

�w

i

into the maximum possible number of connected components,

n

i

. By Property 2.1, if the edges in S

i

are removed from G, then every minimum spanning tree

of G will have at least n

i

� 1 edges of weight larger than w

i

. We choose as our approximation

the set S

i

that causes the largest increase in the weight of the minimum spanning trees of G.

An essential component of this algorithm is a procedure for selecting a set of k edges that

splits a graph into the maximum number of connected components. We study this problem in

the following section.

2.1 The Maximum Components Problem

A k-cut of a graph G = (V;E) is a set of edges that when removed from G partitions it into k

connected components. The minimum k-cut problem [53] consists in �nding a k-cut of minimum

cardinality. This problem is similar to the maximum components problem, except that in the

latter problem we want to maximize the number of components created by the removal of a

given number of edges.

It is easy to see that an algorithm to solve the maximum components problem could be used

to solve the minimum k-cut problem. Simply run the algorithm over the values i = 1; 2; : : : ; m

until we �nd the smallest value i for which the number of components created by removing i

edges from the graph is at least k. Since the minimum k-cut problem is NP-hard [53], the above

reduction implies the NP-hardness of the maximum components problem.

15

Algorithm dice (G; k)

repeat

Remove from G the edges in a smallest cut that divides

one of the connected components of G.

until k

0

� k edges have been removed and no additional cut can be made

with the remaining k � k

0

edges

Output the set of edges that were removed from G.

Figure 2: Algorithm dice.

We modify an algorithm by Saran and Vazirani [104] to obtain a 2-approximation algorithm

for the maximum components problem. Our algorithm, described in Figure 2, uses a greedy

approach to chop up a graph into as many pieces as possible by removing k edges from it.

Theorem 2.1 Given an undirected graph G, algorithm dice �nds a set S of at most k edges

whose removal from G partitions it into d > a=2 components, where a is the maximum number

of components that can be formed by removing any set of k edges from G.

Before proving the theorem, we prove the following Lemma for connected graphs. Assume

that we run algorithm dice on a connected graph G. Let D = fD

1

; D

2

; :::; D

d�1

g be the set of

cuts selected by dice indexed in the order in which they were chosen. We assume that a > d,

because otherwise D would be an optimal solution and hence Theorem 2.1 would follow trivially.

For convenience, let D

d

denote the d-th cut that dice would choose. Let A be a set of k edges that

divides G into the maximum possible number of connected components, and let V

1

; V

2

; : : : ; V

a

be such components. For all 1 � i � a, let A

i

be the cut that separates V

i

from V � V

i

. We

assume that the cuts A

i

are indexed in non-decreasing order of size.

Lemma 2.1 jD

i

j � jA

i

j for all 1 � i � d.

Proof. The proof is by induction on i.

Basis. Clearly jD

1

j � jA

1

j because D

1

is a minimum cut of G.

Induction step. Assume as induction hypothesis that jD

i

j � jA

i

j for all 1 � i < d. Note

that since a > d, the cuts A

1

; A

2

; : : : ; A

d

divide G into at least d + 1 components. This means

that [

d

i=1

A

i

6� [

d�1

i=1

D

i

because the cuts D

1

; D

2

; : : : ; D

d�1

divide G into only d components, say

V

0

1

; V

0

2

; : : : ; V

0

d

. Hence, there must be some cut A

j

, 1 � j � d, that partitions at least one of the

components V

0

1

; V

0

2

; : : : ; V

0

d

. Such a cut has size jA

j

j � jD

d

j because algorithm dice would choose

in the d-th iteration the smallest cut that splits any one of the existing components. Since the

cuts A

i

are indexed in non-decreasing order of size, then jA

j

j � jA

d

j and, so, jD

d

j � jA

d

j. 2

Proof of Theorem 2.1. To simplify the proof we assume �rst that the graph G is connected.

Then we show that the Theorem also holds for disconnected graphs.

Let D and A be as above. The cuts in D are pairwise disjoint, and hence

P

d�1

i=1

jD

i

j = k

0

� k.

Combining this inequality with Lemma 2.1 we get

P

d

i=1

jA

i

j �

P

d

i=1

jD

i

j = k

0

+ jD

d

j > k. Every

16

edge e 2 A appears in exactly two of the cuts A

i

and, therefore,

P

a

i=1

jA

i

j � 2k. From these

last two inequalities it follows that

P

a

i=d+1

jA

i

j � 2k �

P

d

i=1

jA

i

j < k <

P

d

i=1

jA

i

j. Since

the cuts A

i

are indexed in non-decreasing order of size, then the number of cuts in the set

fA

d+1

; A

d+2

; : : : ; A

a

g is smaller than the number of cuts in the set fA

1

; A

2

; : : : ; A

d

g. This

means that a� d < d and thus that the value of d is larger than a=2.

Now we consider the case when G is disconnected. Suppose that G consists of j+1 connected

components. Add j edges to connect these components in a tree-like fashion and call the resulting

graph G

0

. It is clear that if we use algorithm dice to remove k edges from G and to remove

k + j edges from G

0

, the number of components created in both cases is equal to d. Similarly,

the maximum number of components that can be formed by removing k edges from G and k+ j

edges from G

0

is a. Since the graph G

0

is connected, by the above argument it follows that

d > a=2. 2

Theorem 2.2 Algorithm dice runs in O(km+ k

2

n log n) time.

Proof. We can implement algorithm dice so that in each iteration, except the �rst one,

it only computes connectivity cuts for the two components that were created in the preceding

iteration. Gabow's algorithm [47] �nds the edge connectivity � and a connectivity cut for a

given graph in O(m + �

2

n log(n=�)) time. Furthermore, if k < � this algorithm only needs

O(m + k

2

n log(n=k)) time to check that the graph does not have a cut of size k. A simple

calculation shows that algorithm dice runs in O(km + k

2

n logn) time when implemented with

Gabow's algorithm. 2

2.2 The Discrete Robustness Problem

As we mentioned earlier, the approach that we follow to approximate the solution of the discrete

robustness problem for minimum spanning trees consists in forcing into every minimum spanning

tree of G as many edges of \large" weight as possible. By Property 2.1, an edge e 2 E belongs

to a minimum spanning tree of G if and only if e is the smallest weight edge in some cut of

G. This means that if some edge e

0

does not belong to any minimum spanning tree of G, by

deleting the edges of weight smaller than w(e

0

) in some cut that separates the endpoints of e

0

we

get a new graph in which e

0

belongs to at least one minimum spanning tree. Since all minimum

spanning trees of a graph have the same number of edges of a given weight, the process just

described can be used to add an edge of weight w(e

0

) into every minimum spanning tree of G.

Our approximation algorithm for the discrete robustness problem for minimum spanning

trees is described in Figure 3. The algorithm outputs both, the selected set S

s

&

d

and the weight

of the minimum spanning trees that can be achieved by removing those edges from the graph.

We note that the sequence of graphs G

�w

i

is not well-behaved in the sense that we could not

perform binary search on the weights w

i

to �nd the set S

s

&

d

. The algorithm performs at most

m iterations, and the time complexity of dice dominates each one of them, hence slice n dice

runs in O(km

2

+ k

2

mn logn) time.

17

Algorithm slice n dice (G = (V;E); k)

max mst wgt 0

for each distinct edge weight w

i

in G do

S dice (G

�w

i

; k)

mst wgt weight of a minimum spanning tree of (V;E� S)

if mst wgt > max mst wgt then

max mst wgt mst wgt

S

s

&

d

 S

end if

end for

Output S

s

&

d

and max mst wgt.

Figure 3: Algorithm slice n dice.

Figure 4 shows the solution found by the algorithm for the graph of Figure 1 when k = 2. For

graph G

�1

, the algorithm removes the two edges shown in bold in Figure 4(a). This increases

the weight of the minimum spanning trees from 8 to 10. For graph G

�2

, the algorithm might

choose to discard the edges shown in bold in Figure 4(b). The removal of these edges increases

the weight of the minimum spanning trees to 10. Graph G

�4

has connectivity 3 and so no

cut can be made by deleting two edges. Algorithm slice n dice might either choose the edges

discarded in G

�1

or those removed from G

�2

, increasing the weight of the minimum spanning

trees by 2.

2.2.1 Performance Ratio of the Algorithm

To simplify the analysis of the performance ratio of slice n dice we assume �rst that all the edges

in G have weights of the form 2

i

, where i is an integer. Let S

�

be a set of k edges whose removal

from G causes the largest possible increase in the weight of its minimum spanning trees. Let T ,

T

�

, and T

s

&

d

denote minimum spanning trees of G, (V;E� S

�

), and (V;E� S

s

&

d

) respectively.

Given a subset of edges S � E, we denote by w(S) the sum of the weights of its edges.

Lemma 2.2 If the edges of G have weights of the form 2

i

, where i is an integer, then the

performance ratio of slice n dice is r = w(T

s

&

d

)=w(T

�

) � 1=(1 + 2 log(k + 1)).

Proof. Let the smallest and largest edge weights in G be 2

s

and 2

u

respectively. We can

write the weight of the optimal tree T

�

as

w(T

�

) = w(T) +

u

X

i=s+1

a

i

2

i

�

u�1

X

i=s

b

i

2

i

where a

i

(b

i

) is the number of edges of weight 2

i

that are added to (taken o�) every minimum

spanning tree of G after the removal of the edges in S

�

. It is easy to see that, for every s < i � u,

a

i

is no larger than the maximum number of new components that can be formed in G

�2

i�1

18

1

1

1

1 1

(a)

1

1

1

1 2

2 2
2

2

1

(b)

1

1

1

1

4

2

4

2 2
2

2

1
4

(c)

Figure 4: Figure showing an execution of algorithm slice n dice.

by removing k edges from it. Let a

`

2

`

= max f a

i

2

i

j s < i � u g. From the description of

slice n dice it follows that w(T

s

&

d

) � w(T) and that w(T

s

&

d

) � a

`

2

`

=2 (the factor 1=2 comes

from the fact that algorithm dice gives a (1=2)-approximation to the solution of the maximum

components problem). Combining these inequalities we get

1

r

=

w(T

�

)

w(T

s

&

d

)

�

w(T) +

P

u

i=s+1

a

i

2

i

w(T

s

&

d

)

� 1 +

2

P

u

i=s+1

a

i

2

i

a

`

2

`

Since at most k edges are removed from G, then at most k new edges can be included in

any minimum spanning tree. This means that no more than k of the coe�cients a

i

in the above

summation can be non-zero. Let such non-zero coe�cients be a

�

0

; a

�

1

; : : : ; a

�

t

, t < k. Since

a

�

i

2

�

i

� a

`

2

`

for all 0 � i � t, the performance ratio r achieves its minimum possible value

when a

�

i

2

�

i

= a

`

2

`

for all 0 � i � t. Without loss of generality assume that �

0

> �

1

> : : : > �

t

,

then

k �

t

X

i=0

a

�

i

= a

�

0

t

X

i=0

2

�

0

��

i

� a

�

0

t

X

i=0

2

i

� 2

t+1

� 1

19

Taking logarithms we get t < log(k + 1). Thus at most log(k + 1) of the coe�cients a

i

can

be di�erent from zero and therefore r � 1=(1 + 2 log(k + 1)). 2

Lemma 2.3 The maximum weight of the minimum spanning trees of a graph G = (V;E) that

can be achieved by the removal of k edges from G is no larger than 2 times the corresponding

optimal value for the graph G

0

= (V;E) formed by rounding down the weight of every edge in E

to its nearest integer power of 2.

Proof. For every e 2 E, let w

0

(e) be equal to the value of w(e) rounded down to its

nearest integer power of 2. Let T

�

and T

0

be minimum spanning trees having the maximum

possible weight that can be achieved by removing k edges from G and G

0

respectively. It is easy

to see that for any S � E, w(S)=2 < w

0

(S) � w(S) .

By the de�nition of T

0

it follows that w

0

(T

�

) � w

0

(T

0

) and, therefore, that w(T

�

) <

2w

0

(T

�

) � 2w

0

(T

0

) � 2w(T

0

): 2

Lemmas 2.2 and 2.3 allow us to state the following result.

Theorem 2.3 The performance ratio of slice n dice when the input graph has edges with arbi-

trary non-negative weights is r = w(T

a

)=w(T

�

) � 1=(2+ 4 log(k + 1)). 2

The bound stated in Lemma 2.2 for the performance ratio of slice n dice is tight to within a

constant factor. To prove this, construct the following graph G. Let

^

k be the largest power of

2 no larger than k. Let N

i

, for i = 0; 1; : : : ;

^

k=2, be a clique of size k + 2. Every edge of clique

N

i

has weight " = 2

�L

for some L � 1. For all 0 � i <

^

k=2, add an edge of weight " between

one of the vertices of N

i

and one of the vertices of N

i+1

. For all 1 � j � log

^

k, add an edge of

weight 2

j

between one vertex of N

i

and one of N

i+1

for all 0 � i <

^

k=2

j

. To increase the edge

connectivity of G above k, we add k edges of weight 2

log

^

k�blog ic�1

between N

i

and N

i+1

for each

1 � i <

^

k=2, and we also add k edges of weight

^

k between N

0

and N

1

(see Figure 5).

The set of k edges whose removal fromGmaximizes the weight of its minimum spanning trees

includes all the edges of weight " and the edges of weight smaller than 2

log

^

k�blog ic�1

between N

i

and N

i+1

, for all 1 � i <

^

k=2. If these edges are removed from G, a minimum spanning tree of

the resulting graph has weight w(T

�

) = 2

^

k=2

2

+2

2

^

k=2

3

+2

3

^

k=2

4

+ : : :+2

log

^

k�1

^

k=2

log

^

k

+2

log

^

k

=

^

k(log

^

k + 1)=2.

Algorithm slice n dice chooses the edges of weight smaller than 2

log

^

k

placed between N

0

and

N

1

. The weight of a minimum spanning tree in the graph obtained after removing the set of edges

chosen by the algorithm has weight w(T

s

&

d

) =

^

k+ (

^

k=2� 1)". Hence w(T

�

)=w(T

s

&

d

) > log k=2.

2.2.2 Graphs with Arbitrary Destruction Costs on the Edges

We consider now the following more general version of the problem. Assume that the edges

in a graph G have arbitrary destruction costs and that we are given a positive budget B to

remove edges from G so as to maximize the weight of its minimum spanning trees. We modify

algorithm dice so that in each iteration of the repeat-loop it removes from G the edges in a

cut with smallest destruction cost. The repeat-loop is performed until all the budget is used

20

N
0 1 2 3 k/4 k/2N N NN Nε

2

ε

2

ε

2

. . .

. . .

ε ε

2 2

. . .

. . .

ε ε

2 2

2
2

2
2

2
2

. . .2
2 2

2

. . .2 2

2
3

2
3 2

3

. . .2
3 2

2 . . .2 2

. 222
2

2
log k-22 2 2

log k log k-1 log k-2

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

2
log k

.
.

.

2
log k-1

2
log k-2

.
.

.

. . .2
log k-2 2

2
. . .2 2

.
.

.

.
.

.

ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ ˆ

Figure 5: Graph used to show the tightness of the analysis.

up, or no cut can be made with the remaining budget. With these changes on dice, algorithm

slice n dice can be used to approximate the solution to this version of the problem.

Lemma 2.4 The performance ratio of slice n dice is r � 1=(1 + 4 logm) when the edges of the

input graph have arbitrary destruction costs and edges of a total given destruction cost are to be

removed.

Proof. We can modify the proof of Theorem 2.1 to show that the performance ratio of

algorithm dice is still 2 when the edges have arbitrary destruction costs. The only change that

we need to make in the proof is to replace, in each inequality involving cuts, the cardinality of

a cut by the sum of the destruction costs of its edges.

To �nd the performance ratio of slice n dice, assume �rst that the edges of G have weights

of the form 2

i

, where i is integer. Proceeding similarly as in the proof of Lemma 2.2 we get

1

r

� 1 +

2

u

X

i=s+1

a

i

2

i

a

`

2

`

:

Up to m�n+1 edges can be removed from G, and thus at most m�n+1 of the coe�cients

a

i

in the above summation can be non-zero. This implies that r � 1=(1 + 2 log(m � n + 1)).

From this and Lemma 2.3 we get the desired bound for the performance ratio of the algorithm

on graphs with arbitrary destruction costs on the edges. 2

21

2.3 A Faster Algorithm

In this section we show how to improve the time complexity of slice n dice by reducing the

number of iterations that it has to perform to at most dlog ke. The idea is to modify the

algorithm so that it does not build all the subgraphs G

�w

i

, but only those for \large" weights

w

i

. The intuition behind this approach is that the cuts made on G

�w

i

can be guaranteed to

force edges of large weight into a minimum spanning tree only if w

i

is large. Note that it might

happen that for a small weight w

i

, the cuts made by slice n dice on G

�w

i

add a large weight

edge to the minimum spanning trees of G. This situation causes no trouble since the same large

weight edge can be included in the minimum spanning trees by making cuts in a subgraph G

�w

j

for some larger weight w

j

.

While we wish to build subgraphs only for large weights, we need to be aware that some

edges of large weight might not possibly be part of a solution. Given an undirected graph G and

a value k, an edge e is said to be redundant if it is not possible to remove k edges from G in such

a way that e belongs to some minimum spanning tree of the resulting graph. Clearly slice n dice

can ignore the redundant edges of a graph without a�ecting the quality of the solution that it

computes. This observation is essential to design a faster version of slice n dice.

To simplify the following discussion, we assume that the weights of the edges in a graph G

are integer powers of 2. Let a largest non-redundant edge of G have weight 2

L

. Let T

s

&

d

be the

minimum spanning tree found by slice n dice for graph G when it is desired to remove k edges.

We modify slice n dice so that it forms only the graphs G

�w

i

for all 2

L�dlogke

� w

i

� 2

L

. Let

T

0

s

&

d

be the minimum spanning tree found by this modi�ed algorithm.

Lemma 2.5 w(T

s

&

d

)=w(T

0

s

&

d

) < 2.

Proof. Let T be a minimum spanning tree of G. We assume that L > dlog ke and that

the solution chosen by the original algorithm slice n dice comes from removing k edges from

some graph G

�w

i

with w

i

< 2

L�dlog ke

, because otherwise T

s

&

d

and T

0

s

&

d

would be the same.

From these assumptions it is clear that w(T

s

&

d

) � w(T)+k

0

2

L�dlog ke

+��k

1

, where k

0

� k

is the number of edges of weight at most 2

L�dlogke

added to the minimum spanning trees of G,

� is the increase in the weight of the minimum spanning trees caused by the inclusion of edges

of weight larger than 2

L�dlogke

into them, and k

1

� k is the number of edges that were replaced

in the minimum spanning trees. It is easy to see that w(T

0

s

&

d

) � w(T)+��k

1

. Note also that

w(T

0

s

&

d

) � 2

L

because at least one non-redundant edge has weight 2

L

. From these inequalities

we get

w(T

s

&

d

)

w(T

0

s

&

d

)

�

w(T) + �� k

1

+ k

0

2

L�dlog ke

w(T

0

s

&

d

)

� 1 +

k

0

2

L�dlogke

2

L

� 1 +

k

0

2

dlogke

� 2:

2

For a graphG = (V;E)with arbitrary non-negative weights, our modi�ed algorithm slice n dice

�rst rounds down the weight of every edge to its nearest power of 2. If any edge has weight

22

smaller than 1, then it multiplies all the weights by 2

s

, where 2

�s

is the smallest edge weight

resulting after the rounding. This scaling does not a�ect the performance ratio of the algorithm

and leaves edge weights that are integer powers of 2.

Theorem 2.4 The performance ratio of the modi�ed algorithm slice n dice described above is

r � 1=(4 + 8 log(k + 1)).

Proof. The Theorem follows from Lemmas 2.2, 2.3, and 2.5. 2

We turn our attention now to the problem of computing the weight w

i

of a largest non-

redundant edge in a graphG. An edge e is non-redundant if there is a cut separating its endpoints

that has at most k edges of weight smaller than w(e). Hence, the desired weight w

i

can be found

by sorting the edges non-decreasingly by weight and then performing a binary search over the

weights to �nd the smallest weight w

i

for which G

�w

i

has a minimum cut of size larger than k.

If we use Gabow's algorithm [47] to perform the connectivity computations in this binary search,

then the weight of a largest non-redundant edge can be found in O(m logm+k

2

n log(n=k) logm)

time.

Theorem 2.5 The modi�ed slice n dice algorithm runs in O(km logn+ k

2

n log

2

n) time. 2

2.4 NP-completeness

In this section we prove that the problem of selecting k edges that when removed from a graph

maximize the weight of its minimum spanning trees is NP-hard even if the weights of the edges

are either 0 or 1. The reduction is from the minimum k-cut problem.

Theorem 2.6 Let G = (V;E) be a graph whose edges have a weight of value either 0 or 1, and

let ` be a non-negative integer value. The problem of deciding if there is a set S of at most k

edges such that any minimum spanning tree of the graph (V;E � S) has weight at least `, is

NP-complete.

Proof.

The problem is clearly in NP. To show that it is NP-hard we give a reduction from the

minimum k-cut problem. Given an undirected graph G

H

= (V

H

; E

H

), build a graph G = (V;E)

by combining G

H

and a clique G

Z

= (V

Z

; E

Z

) of size k + 2 as follows: V = V

H

[V

Z

and

E = E

H

[E

Z

[f(z

i

; v

j

) j z

i

2 V

Z

and v

j

2 V

H

g. Assign weight 0 to the edges in E

H

and weight

1 to the other edges in E (see Figure 6). Observe that any cut of G has at least k + 1 edges.

We now prove that G

H

can be partitioned into j connected components by deleting k edges

from it if and only if it is possible to remove k edges from G in such a way that any minimum

spanning tree of the resulting graph has weight j + k + 1.

Suppose �rst that there is a set S of k edges that partitions G

H

into j components. If the

edges in S are removed from G, then any minimum spanning tree of the resulting graph has to

use j edges of weight 1 to connect the j components of G

H

to V

Z

, and it has to use k+ 1 edges

of weight 1 to connect the vertices of V

Z

among themselves.

23

0 0

0

0

1

1

1

1

1

1

1

1
0

G G
H Z

Figure 6: Construction of the graph G.

Suppose now that there is a set S of k edges that when removed from G causes any minimum

spanning tree T of the resulting graph to have weight j + k + 1. Observe that at least j of the

edges of weight 1 in T have to be incident to vertices in G

H

and, thus, that the set S must split

G

H

into j components. 2

3 Matroid Preliminaries

3.1 De�nitions

A matroid M = (E; I) consists of a �nite set E of elements and a collection I of subsets of E

that satisfy the following three axioms:

1. ; 2 I,

2. if S 2 I and T � S, then T 2 I ,

3. if S; T 2 I and jSj = jT j+1 then there exists an element x 2 S�T such that T [fxg 2 I.

Set E is called the ground set of the matroid, and I is called the family of independent sets of

M . Consider for example a graphic matroid M = (E; I). It is easy to see that, the independent

sets of M (subsets of edges that do not form any cycles) satisfy these properties,

1. the empty set does not have any cycles,

2. any subset of edges taken from a forest cannot form cycles, and

3. given two forests S and T with jSj = jT j+ 1, some edge of G must be incident to a vertex

of zero degree in T . Adding such an edge to T does not create any cycles.

A maximal independent set in a matroid is called a base. All bases of a matroid have the

same cardinality, and the number of elements in a base is called the rank of the matroid. A cycle

or dependent set is a subset of E that is not independent. For the case of a graphic matroid, a

base is a spanning tree of G if G is connected, or a spanning forest of G if G is not connected.

24

Algorithm greedy (M)

Let e

1

; e

2

; : : : ; e

m

be the elements of M indexed non-decreasingly by weight.

B ;

for i = 1 to m do

if B [fe

i

g does not have any cycles then B B [feg end if

end for

Output B

Figure 7: Algorithm greedy.

There are two functions de�ned on the elements of a matroid. Function w assigns a non-

negative weight to each element in E, and function c gives the cost for a unit decrease in the

weight of each element. We denote a matroidM asM = (E; I; w; c) when we want to emphasize

that the elements of the matroid have weight and cost. The most well-known algorithmic

property of matroids is that a base of minimum weight can be found using the greedy algorithm

described in Figure 7. or the case of a graphic matroid, the above algorithm is just Kruskal's

algorithm [81] for �nding a minimum spanning tree.

3.2 Matroid Operations

In this section we describe two operations that can be used to form \smaller" matroids from a

given matroid M . These \smaller" matroids are called submatroids of M or minors of M .

Let M = (E; I) be a matroid. For any set T � E, the restriction of M to T , denoted as

M jT , is the matroid whose ground set is T and whose independent sets are fS j S 2 I and

S � T g. Consider for example the graph G = (V;E) shown in Figure 8 (a). The graphic

matroid M

G

(E; I) for this graph has as independent sets all forests of G. Let T = fa; c; dg.

Matroid M jT has as independent sets f;; fag; fcg; fdg; fa; cg; fa; dg; fc; dgg.

The contraction of T from M , denoted as M=T , is the matroid with ground set E � T and

a

c

b

i

m

j

g

d
e

f

h

k
l

b

i

m

j

g

e
f

h

k
l

(a) (b)

Figure 8: Figure to illustrate the matroid operations of restriction and contraction.

25

1,2

1,1

1,1

1,3

4,2

2,2

4,1

2,1 2,3
2,1

2,1

1,4
4,4

Figure 9: An instance of the continuous robustness problem, with a best set of edges

for raising their weights shown in bold.

independent sets fS j S � E � T and S [Y 2 I g, where Y is any base of M jT . For the same

example as above, the contraction of T from M is the graphic matroid corresponding to the

graph G

0

obtained by contracting in G the endpoints of edges fa; c; dg to a single vertex. We

show graph G

0

in Figure 8 (b). The independent sets of submatroid M=T are the forests of the

multi-graph G

0

.

3.3 Continuous Robustness Function

The continuous robustness function F

M

of a matroid M gives the maximum increase in the

weight of the minimum weight bases of M that can be caused by increases of a given total cost

on the weights of its elements. Consider for example the graphic matroid M

G

corresponding

to the graph G shown in Figure 9. Every edge e in the graph is labeled by an ordered pair

consisting of its weight w(e) and its cost c(e). We want to evaluate F

M

G

(4), i.e. we desire to �nd

the maximum increase in the weight of the minimum spanning trees of G that can be caused

by increases of total cost 4 on the weights of its edges. The largest increase in the weight of

the minimum spanning trees is obtained by raising from 1 to 2 the weights of the edges shown

in bold in Figure 9. Note that as long as the weights of the edges shown in bold are smaller

than 2, at least two of them must be in every minimum spanning tree. Thus, the weight of the

minimum spanning trees increases from 8 to 10, and so F

M

G

(4) = 2.

Consider a matroid M = (E; I; w; c). Fix a subset S � E. The weight of S, denoted as

w(S), is equal to the sum of the weights of the elements in S. The cost of S, c(S), is de�ned in

a similar way. Let rank (S;M) denote the size of the largest independent subset of S. We de�ne

coverage (S;M) as the minimum number of edges that any minimum weight base of M shares

with S. Let S, for example, be the set of edges shown in bold in Figure 9. This set of edges does

not form any cycles, so rank (S;M

G

) = 3. Note that every minimum spanning tree of the graph

G shown in Figure 9 includes at least 2 edges from S since these are the smallest weight edges

incident to the two vertices drawn at the top of the �gure. Therefore, coverage (S;M

G

) = 2.

26

We say that the weights of the edges in set S are lifted when the weight of every edge in

S is increased by the same amount. We de�ne tolerance(S;M) as the maximum amount by

which the weights of the edges in S can be lifted until coverage (S;M) decreases. For the same

example as before, the value of tolerance (S;M

G

) is 1 because if the weights of the edges in S

are lifted above 2, then only the leftmost vertex at the top of Figure 9 must use the edges from

S to be connected to a minimum spanning tree.

De�ne the rate of S in M , denoted as rate (S;M), as c(S)=coverage (S;M). For any value

" � tolerance(S;M) � coverage (S;M), the cost of increasing the weight of all minimum weight

bases of M by at least " when only the weights of the edges in S are raised is " � rate (S;M).

For the same set S of edges shown in bold in Figure 9, rate (S;M

G

) = (1 + 1+ 2)=2 = 2. If the

weight of the edges in S are lifted by 1, the weight of every minimum spanning tree is increased

by 2. The total cost of these increases is 2 � 2 = 4.

3.4 Polymatroids

Given a �nite set E, let f : 2

E

! IR be a function that assigns a real value to each subset of E.

Function f is said to be submodular if f(A) + f(B) � f(A[B) + f(A\B) for all A;B � E. It

is well know that the function rank (S;M) giving the size of the largest independent set in any

subset S of elements of a matroid M is a submodular function.

Let IR

+

denote the set of nonnegative real numbers. Given a set function f on E, we let

P(f) denote the polyhedron fx 2 IR

E

+

j x(A) � f(A) for all A � Eg, where x(A) =

P

e2A

x(e).

A polymatroid is a polyhedron of the form P(f) where f is submodular and non-negative. If f

is the rank function of a matroid, then P(f) is called a matroid polyhedron.

Consider a matroid M = (E; I). Let E = fe

1

; e

2

; : : : ; e

jEj

g. Let S be an independent set

of M and x

S

be an jEj dimensional vector with components x

S

(e

i

) = 1 for all e

i

2 S, and

x

S

(e

j

) = 0 for all e

j

62 S. Vector x

S

is called the incidence vector or the characteristic vector of

the independent set S.

It is well known that the convex hull of incidence vectors of the independent subsets of

a matroid M form the matroid polyhedron P (M). Thus, an explicit representation for the

matroid polyhedron of a matroid M is P (M) = fz 2 IR

E

+

j z(S) � rank (S;M) for all S � Eg.

Given a vector y 2 IR

E

+

, a base of y is a maximal vector x 2 P (M) such that x(e) � y(e) for all

e 2 E.

We need the following result [9] in our algorithm for computing the continuous robustness

function of a matroid.

Theorem 3.1 Let y 2 IR

E

+

be an jEj-dimensional vector, and x be a base of y in P(M). Then

x(E) = minfrank (S;M) + y(E � S) j S � Eg.

Proof. Observe that for any S � E, x(E) = x(S) + x(E � S) � rank (S;M) + y(E � S).

Therefore it is enough to prove that there is a set S

�

for which equality holds. Let e be an element

of E. If x(e) 6= y(e) then by maximality of x there is a set S

i

� E such that x(S

i

) = rank (S

i

;M).

27

Algorithm poly greedy (M = (E; I); y)

x(e

i

) 0 for all e

i

2 E

for each e

i

2 E do

� minf rank (T;M)� x(T) j e

i

2 T � E g

x(e

i

) minf�; y(e

i

)g

end for

Output x

Figure 10: Algorithm poly greedy.

Set S

i

is called a tight set. Let A;B be tight sets, then

x(A [B) + x(A \B) � rank (A [B;M) + rank (A\ B;M) since x 2 P(M)

� rank (A;M) + rank (B;M); by submodularity

= x(A) + x(B); because A and B are tight

= x(A [B) + x(A \ B)

Since x(A[B) � rank (A[B;M) and x(A\B) � rank (A\B;M), it follows that x(A[B) =

rank (A[B;M) and x(A\B) = rank (A\B;M). Thus the union and intersection of tight sets are

tight. Let S

�

be the union of all tight sets. Then x(S

�

) = rank (S

�

;M), x(E�S

�

) = y(E�S

�

),

and so x(E) = rank (S

�

;M) + y(E � S

�

). 2

A corollary of Theorem 3.1 is that all bases of a vector y 2 IR

E

+

have the same component-

sum. Another consequence of the theorem is that a base x of a vector y can be found using

the \polygreedy" algorithm. This algorithm begins with x = 0, and for each element e 2 E

increases the component x(e) as much as possible but maintaining x in P(M). The algorithm

is described in Figure 10.

4 Continuous Robustness Function of a Matroid

In Section 2 we studied the discrete robustness problem for minimum spanning trees. Now we

study robustness functions in the continuous model, i.e. we are interested in how the optimal so-

lution of a matroid optimization problem changes when the weights of the elements are increased

by �nite amounts.

We present a general algorithm for computing the continuous robustness function of an

arbitrary matroid. This algorithm is mainly of theoretical interest due to its high time complex-

ity. Then, we show how to exploit the special structure of graphic matroids to design a faster

algorithm for computing the robustness function for this class of matroids.

28

4.1 The General Algorithm

Our approach for computing the robustness function F

M

of a matroid M = (E; I; w; c) consists

in raising the weights of the elements in a set S of smallest rate in M up to the point where

coverage (S;M) decreases. Then a new set S of smallest rate is chosen and the process is

repeated until the total cost of the weight increases reaches a desired value, b. The algorithm is

shown in Figure 11.

Consider the execution of algorithm uplift on the graphic matroid M

G

corresponding to the

graph shown in Figure 9 when the budget is b = 10. In the �rst iteration of the while-loop the

set S of smallest rate includes the edges shown in bold in Figure 9. This set has a coverage of

value 2 and rate of 2. Algorithm uplift increases the weights of these edges from 1 to 2. At this

point, the coverage of S decreases to 1, and its rate goes up to 4. In the second iteration, uplift

selects the edges shown in bold in Figure 12, since they have a coverage of value 1 and rate of

only (1+ 1)=1 = 2. Note that as long as the weight of each one of these edges is smaller than 4,

one of them must belong to every minimum spanning tree of the graph. By lifting the weights

of these edges to 4 the total cost of the weight increases is 10, and the weight of the minimum

spanning trees goes up from 8 to 12.

4.1.1 Correctness of the General Algorithm

Given a matroidM = (E; I; w; c) and a budget value b

�

, consider an optimal solution w

�

for this

instance of the continuous robustness problem for M . Let w

�

(e) denote the weight of element

e in the optimal solution. Assume that A is an algorithm that �nds this optimal solution and

that A builds it in several stages. In each stage A selects some set of elements and lifts their

weights by a certain amount, in such a way that at the end of all stages the weight of every

element e 2 E is w

�

(e).

We show that the increase in the weight of the minimum weight bases of M produced by

uplift is the same as that produced by A. For this purpose only, it is convenient to imagine

that whenever A or uplift increases the weight of an element e by some amount �, it does not

Algorithm uplift (M; b)

balance b

orig wgt weight of a minimum weight base of M

while balance > 0 do

Find a set S � E of smallest rate in M .

Lift the weights of the elements in S by � = min f tolerance (S;M); balance=c(S) g.

balance balance �� � c(S)

end while

new wgt weight of a minimum weight base of M

Output (new wgt � orig wgt)

Figure 11: Algorithm uplift.

29

2,2

2,1

2,1

1,3

4,2

2,2

4,1

2,1 2,3
2,1

2,1

1,4
4,4

Figure 12: Second iteration of uplift, with best choice of edges to be raised shown

in bold.

just add � to w(e), but gradually raises the weight from w(e) to w(e) + �. This allows us to

consider the partial solutions built by the algorithms when any fraction b of the budget b

�

has

been spent by them increasing element weights. For any value b, 0 � b � b

�

, let S

b

be the set of

elements whose weights are being lifted by uplift when the budget spent by it reaches value b and

M(b) = (E; I; w

b

; c) describe the matroid at that precise moment. Similarly, let S

�

b

; 0 � b � b

�

,

be the set of elements whose weights are being lifted by A when the budget spent by it reaches

value b and M

�

(b) = (E; I; w

�

b

; c) be the matroid at that moment.

To show that uplift �nds an optimal solution, we only have to prove that rate (S

b

;M(b)) =

rate (S

�

b

;M

�

(b)), for all 0 � b � b

�

. Let sm eq(x;M) be the subset of elements in M of weight

no larger than x.

Lemma 4.1 Let M = (E; I; w; c);M

0

= (E; I; w

0

; c) be matroids and S be a subset of E. If for

every element e 2 S, sm eq (w

0

(e);M

0

) � sm eq (w(e);M) then coverage (S;M) � coverage (S;M

0

).

Proof. Let T

0

be a minimum weight base of M

0

for which jT

0

\ Sj = coverage (S;M

0

). If

T

0

is not a minimum weight base of M , it can be transformed into one by taking every element

e 2 E � T

0

, one at a time, including e in T

0

and removing the element of largest weight in the

unique cycle that is formed.

Note that by including in T

0

any element e 2 S�T

0

, we create a cycle C in which all elements

a 2 C have weights w

0

(a) � w

0

(e) because T

0

is a minimum weight base of M

0

. Moreover, since

a 2 sm eq(w

0

(e);M

0

) � sm eq(w(e);M) then w(a) � w(e), and thus it is possible to construct

a minimum weight base of M that does not include any element from S� T

0

. This implies that

coverage (S;M) � coverage (S;M

0

). 2

Lemma 4.1 suggests a way in which A can select the sets S

�

b

that makes it easy to compare

their rates with those of the sets S

b

. We would like that during the construction of the opti-

mal solution, A always chooses S

�

b

to include only elements e for which sm eq(w

b

(e);M(b)) �

sm eq(w

�

b

(e);M

�

(b)). If this is possible, then by Lemma 3.1, rate (S

�

b

;M(b))� rate (S

�

b

;M

�

(b)).

Since uplift always chooses the set S

b

with smallest rate in M(b), then it would follow that

30

rate (S

b

;M(b))� rate (S

�

b

;M

�

(b)).

Let us specify how A can select the sets S

�

b

. De�ne w

�

b

(e) = minfw

�

(e); w

b

(e) + �

b

g for all

e 2 E, where �

b

is a constant selected so that the total cost of bringing the weight of every

element e from its initial value w(e) up to w

�

b

(e) is exactly b. Note that w

�

b

(e) � w

�

(e) and so

w

�

b

�

(e) = w

�

(e) for all e 2 E. Select S

�

b

to include all elements e for which w

�

b

(e) = w

b

(e)+�

b

�

w

�

(e) and w

�

b��

(e) < w

�

(e) for all b � � > 0.

Theorem 4.1 Algorithm uplift �nds the maximum increase in the weight of the minimum weight

bases of a matroid M that can be attained by spending a �nite budget b

�

augmenting element

weights.

Proof. Consider any value b; 0 � b � b

�

. Let e

1

2 S

�

b

and e

2

2 E. By de�nition of S

�

b

and

w

�

b

(e) it follows that w

�

b

(e

1

) = w

b

(e

1

) +�

b

and w

�

b

(e

2

) � w

b

(e

2

) + �

b

. Hence if w

b

(e

2

) � w

b

(e

1

)

then w

�

b

(e

2

) � w

�

b

(e

1

). Therefore, sm eq(w

b

(e

1

);M(b)) � sm eq(w

�

b

(e

1

);M

�

(b)), and by the

above discussion rate (S

b

;M(b)) � rate (S

�

b

;M

�

(b)). 2

Lemma 4.2 Algorithm uplift performs at most mn iterations.

Proof. Consider any iteration of the while-loop of uplift. Suppose that in that iteration

the algorithm selects set S, and that it increases the weights of its elements up to w

i

. Note that

S intersects every minimum weight base of M , and so the above weight increases augment by

at least one the number of elements of weight w

i

in every minimum weight base of the matroid.

Hence, in at most n iterations the weights of the elements in the sets selected by uplift can

be increased up to w

i

. There are at most m di�erent element weights, and thus the algorithm

performs at most mn iterations. 2

Lemma 4.3 The robustness function F

M

is piece-wise linear, concave and nondecreasing.

Proof. The proof of Theorem 4.1 shows that any partial solution constructed by uplift is

optimal for some budget value. Hence, uplift \marches" along the whole curve F

M

when given

as input an in�nite budget value. In each iteration of the while-loop, algorithm uplift \traverses"

a linear segment of F

M

of slope equal to the inverse of the rate of the set S selected during that

iteration. Since the slope of F

M

can only change when algorithm uplift selects a di�erent set,

then F

M

is piecewise linear.

To show that F

M

is concave and nondecreasing, suppose that in some iteration uplift selects a

set S

1

with rate (S

1

;M) = r and that in the next iteration it chooses a set S

2

with rate (S

2

;M) <

r. This would mean that S

1

was not the set of smallest rate in the previous iteration since S

1

[S

2

would have smaller rate. Therefore, the slope of F

M

is non-decreasing, and so F

M

is concave

and non-decreasing. 2

4.1.2 Finding a Set of Smallest Rate in M

In this section we describe an algorithm for �nding a set of smallest rate in a matroid M . Our

approach consists of two stages. In the �rst stage we form a family of submatroids of M , each

31

formed by elements of the same weight. We show that at least one of these submatroids M

j

is

such that any subset of elements with smallest rate in M

j

also has smallest rate in M . In the

second stage we exploit the fact that all elements in M

j

have the same weight to �nd a set of

smallest rate in it.

Fix a matroid M = (E; I; w; c). Let w

1

; w

2

; : : : ; w

p

be the di�erent element weights in M .

For a given subset S � E, let S

<w

i

, S

=w

i

, S

�w

i

, and S

>w

i

denote, respectively, the sets formed

by all elements in S of weight smaller than w

i

, equal to w

i

, at most w

i

, and larger than w

i

.

Lemma 4.4 Let B be a minimum weight base of M , and B

=w

i

6= ; for some element weight

w

i

. Set B

=w

i

is a minimum weight base of the submatroid M

i

= (M jE

�w

i

)=E

<w

i

.

Proof. It is clear that B

<w

i

is a minimum weight base of (M jE

�w

i

)jE

<w

i

. Thus, by

de�nition of the contraction operation, B

=w

i

is a base of (M jE

�w

i

)=E

<w

i

. Moreover, B

=w

i

has

minimum weight since all elements in M

i

have weight w

i

. 2

Lemma 4.5 Let B be a minimum weight base of M , and B

=w

i

6= ; for some element weight w

i

.

If A is a minimum weight base of the submatroid M

i

= (M jE

�w

i

)=E

<w

i

, then B

<w

i

[A[B

>w

i

is a minimum weight base of M .

Proof. Let A

0

be a base ofM jE

�w

i

such that A � A

0

. For every y 2 B

=w

i

�A there is an

element x 2 A

0

� B

�w

i

such that S = B

�w

i

� fyg [fxg is a base of M jE

�w

i

. Since w(y) = w

i

is the largest weight of any element in M jE

�w

i

, then w(x) = w(y) because B

�w

i

is a minimum

weight base of M jE

�w

i

. It follows that x 2 A and that S is a minimum weight base of M jE

�w

i

.

This process can be repeated for all other elements y 2 B

=w

i

�A to show that B

<w

i

[A[B

>w

i

is a minimum weight base of M . 2

The above two Lemmas allow us to prove that a set of smallest rate in M can be found by

considering only the submatroids M

i

.

Lemma 4.6 If S � E is a set of smallest rate in matroid M , and w

i

is the weight of some

element in S, then

1. S

=w

i

is a set of smallest rate in M , and

2. any set of smallest rate in M

i

= (M jE

�w

i

)=E

<w

i

has also smallest rate in M .

Proof. We prove (1) �rst. Let B

j

, for all j = 1; 2; : : : ; p, be minimum weight bases

of M such that coverage (S

=w

j

;M) = jB

j

\ S

=w

j

j. By Lemma 4.5, B = [

p

j=1

B

j

=w

j

is a

minimum weight base of M . Thus coverage (S;M) = jS \ Bj =

P

p

j=1

coverage (S

=w

j

;M).

Since S has smallest rate in M , then rate (S;M) =

P

p

j=1

c(S

=w

j

)=

P

p

j=1

coverage (S

=w

j

;M) =

c(S

=w

i

)=coverage (S

=w

i

;M) = rate (S

=w

i

;M) for any S

=w

i

6= ;.

We now prove (2). By Lemmas 4.4 and 4.5, the set of minimum weight bases of M

i

is

fA

=w

i

j A is a minimum weight base of M g. Hence, for any set T � E

=w

i

, coverage (T;M

i

) =

coverage (T;M), and rate (T;M

i

) = rate (T;M). It follows that any set of smallest rate in M

i

has also smallest rate in M . 2

32

Lemma 4.6 states that we can �nd a set of smallest rate in a matroid M with arbitrary

element weights by �nding a set S

i

of smallest rate in each submatroid M

i

= (M jE

�w

i

)=E

<w

i

,

and selecting the set S

j

for which the rate is minimum. All elements in the submatroid M

i

have the same weight, and thus, every base of M

i

has minimum weight. This means that for

the purpose of computing a set of smallest rate in M

i

we can consider that M

i

is an unweighted

matroid. This observation greatly simpli�es the problem of computing a set of smallest rate in

M

i

.

Consider an unweighted matroid M

i

= (E

i

; I

i

) with rank n

i

and m

i

= jE

i

j. Let �

i

be the

smallest rate of any subset of E

i

. De�ne the function g

i

(�) = min f c(T)�� � coverage (T;M

i

) j

T � E

i

g, for every � � 0. Then, �

i

is equal to the largest value of � for which g

i

(�) = 0.

Note that the slope of the curve g

i

at any given point � is equal to coverage (S;M

i

) for some set

S � E

i

, and thus g

i

is piecewise linear and has at most n

i

breakpoints. Furthermore, function

g

i

is non-increasing and its leftmost linear piece has slope 0. The value of �

i

is, then, equal to

the value � of the �rst breakpoint of g

i

.

Since �

i

� c(E

i

)=n

i

, we compute the value of �

i

by starting at the point � = c(E

i

)=n

i

and moving backwards along the curve g

i

using Newton's method. This procedure for comput-

ing the value of �

i

needs to solve at most n

i

parametric problems of the form: min f c(T)=��

coverage (T;M

i

) j T � E

i

g. SinceM

i

is an unweighted matroid, coverage (S;M

i

) = rank (E

i

;M

i

)�

rank(E

i

� S;M

i

) for any set S � E

i

. Hence, the above parametric problem is equivalent to

min fc(T)=�+ rank (E

i

� T;M

i

) j T � E

i

g: (1)

Cunningham [23] (see Theorem 3.1), shows that problem (1) is equivalent to the problem of

�nding a base for the vector c=� in the matroid polyhedron P (M

i

). The fastest known algorithm

for solving this latter problem is due to Narayanan [96].

Lemma 4.7 A set of smallest rate in an unweighted matroid M

i

= (E

i

; I

i

) can be computed in

O(m

4

i

n

i

+m

3

i

n

3

i

�) time, where � is the time required to test whether a set of at most n

i

elements

is independent in M

i

.

Proof. We use Narayanan's algorithm [96] to solve problem (1) in O(m

4

i

+m

3

i

n

2

i

�) time.

Since at most n

i

problems of the form (1) have to be solved to �nd a set of smallest rate in M

i

,

the total time needed to solve the latter problem is O(m

4

i

n

i

+m

3

i

n

3

i

�). 2

The process that we have described �nds a set S of smallest rate in M such that all

the elements in S have the same weight, say w

i

. To compute tolerance (S;M) we just �nd

the smallest weight w

j

to which the weights of the elements in S must be lifted in order

to decrease coverage (S;M). If such a weight w

j

exists, then tolerance (S;M) = w

j

� w

i

,

otherwise tolerance (S;M) = 1. Note that since all elements in S have weight w

i

, then

coverage (S;M) = coverage (S; (M jE

�w

i

)=E

<w

i

). Also, since M

i

= (M jE

�w

i

)=E

<w

i

is an

unweighted matroid, then coverage (S;M

i

) = rank (E

=w

i

;M

i

) � rank (E

=w

i

� S;M

i

). Hence,

coverage (S;M

i

) can be computed by performing at most jE

=w

i

j independence tests in M

i

.

33

To test if a set T � E

=w

i

is independent in M

i

, �nd a minimum weight base B of M , and

test if (B �B

=w

i

)[T is independent in M . Since independence in M

i

can be tested within the

same time needed to test independence in M , then coverage (S;M

i

) can be computed in O(jEj�)

time, and tolerance (S;M) in O(jEj

2

�) time.

Theorem 4.2 The robustness function of a matroid M = (E; I; w; c) can be computed in

O(m

5

n

2

+m

4

n

4

�) time.

Proof. A set of smallest rate in M is computed by �nding sets of smallest rate in the

submatroids (M jE

�w

i

)=E

<w

i

, for all 1 � i � p. By Lemma 4.7, the total time required to solve

these subproblems is

P

p

i=1

O(jE

=w

i

j

4

n+ jE

=w

i

j

3

n

3

�) = O(m

4

n+m

3

n

3

�). This time dominates

each iteration of uplift, and since uplift performs at most mn iterations the total time needed to

compute the robustness function is O(m

5

n

2

+m

4

n

4

�). 2

Corollary 4.1 The breakpoints of the robustness function of a matroid M can be computed in

O(m

5

n

2

+m

4

n

4

�) time. 2

4.2 Continuous Robustness Problem for Minimum Spanning Trees

We use algorithm uplift to compute the robustness function for the minimum spanning trees of

a graph. However, we take advantage of the special structure of graphic matroids to design a

faster algorithm for computing a set of smallest rate .

4.2.1 Finding a Set of Edges of Smallest Rate

We consider �rst the problem of �nding a set of edges of smallest rate in a connected graph

G = (V;E) assuming that all the edges have the same weight. Since in this graph every spanning

tree has minimum weight, then any set S � E with coverage (S;G) > 0 must partition the graph

into coverage (S;G)+1 components. So, what we want to do is to �nd a set S that minimizes the

ratio c(S)=(comps (S)� 1), where comps (S;G) is the number of connected components of the

graph (V;E�S). This ratio is called the strength of the graph [25] and is denoted as strength(G).

The concept of strength of a graph was introduced by Cunningham [25], who gave an

O(mnM

F

) time algorithm for computing the strength of a graph G, where M

F

is the time for

computing a maximum ow in G. Gus�eld [57] later reduced this time to O(mM

F

), and recently

Cunningham and Cheng [16] and Gabow [46] independently improved the time to O(nM

F

).

For the case when the graph G has arbitrary edge weights we can still use the above graph

strength algorithms to compute a set of smallest rate in G. But �rst, we need the following

property of the minimum spanning trees of G. Let w

1

; w

3

; : : : ; w

p

be the di�erent edge weights

in G. Let

~

G

=w

i

= (

~

V

=w

i

;

~

E

=w

i

) be the graph obtained by contracting from G

�w

i

all edges of

weight smaller than w

i

. To contract an edge (u; v), its two endpoints are replaced by a single

vertex uv. All edges incident to u or v are made incident to uv. Self-loops are removed, and if

there are multiple edges between uv and some vertex w, then only the edge of smallest weight

34

Algorithm optimal subset (G)

s

min

 1

while there is at least one edge in G do

Let w

i

be the weight of a smallest weight edge in G.

if strength(G

�w

i

) < s

min

then

s

min

 strength(G

�w

i

)

S any set of edges for which rate (S;G

�w

i

) = strength (G

�w

i

)

end if

Contract every edge of weight w

i

in G and remove self loops.

Let G be the resulting graph.

end while

Output S.

Figure 13: Algorithm optimal subset.

is retained. If several edges have smallest weight, they are replaced by a single edge with the

same weight and cost equal to the sum of their costs.

Property 4.1 Let T be a spanning tree of graph G. Tree T is a minimum spanning tree of G

if and only if it contains a spanning tree for every non-trivial component of each

~

G

=w

i

.

Proof. Follows from Property 2.1 2

By Property 4.1, for any subset of edges S � E, the value of coverage (S;G) is equal to

P

p

i=1

coverage (S;

~

G

=w

i

). This means that if set S has smallest rate in G then rate (S;G) =

P

p

i=1

c(S \

~

E

=w

i

)=

P

p

i=1

coverage (S;

~

G

=w

i

) = c(S \

~

E

=w

j

)=coverage (S;

~

G

=w

j

) for any w

j

such

that S \

~

E

=w

j

6= ;. Therefore, every graph has a subset of edges of smallest rate in which all of

the edges have the same weight.

Suppose that S � E is a set of smallest rate in G and that every edge of S has weight w

i

.

By the above discussion we know that rate (S;G) = c(S)=comps (S;

~

G

=w

i

) = strength (

~

G

=w

i

).

Hence we can �nd a set of smallest rate in S by computing the strength of each graph

~

G

=w

i

and selecting the set corresponding to the minimum overall strength value. The algorithm is

described in Figure 13.

Lemma 4.8 Algorithm optimal subset runs in O(n

2

m log(n

2

=m)) time.

Proof. Algorithm optimal subset solves at most m graph strength subproblems. In each

one of these subproblems a subgraph ofm

i

edges and n

i

vertices is considered, wherem

i

� jE

�w

i

j

and n

i

is the number of vertices of non-zero degree in G

�w

i

. Let p be the number of di�erent

edge weights in G. In the contraction step of the i-th iteration of the while-loop at least n

i

=2

vertices are removed from G, hence

P

p

i=1

n

i

� 2n. The O(m) graph strength subproblems

created by optimal subset can be solved in the same time required to �nd the strength of the

graph

�

G formed by the union of the graphs G

�w

i

considered by optimal subset. Since

�

G has

35

at most 2n vertices and m edges, we can use the graph strength algorithm in [16] or in [46] to

implement optimal subset in O(n

2

m log(n

2

=m)) time. 2

The only thing that remains to be done to have a faster algorithm for computing the ro-

bustness function of a graphic matroid is to show how to compute e�ciently tolerance (S;G)

for any set S of smallest rate in G. If all of the edges in set S have the same weight, say w

i

,

then coverage (S;G) is equal to comps (S;G

�w

i

) � 1. This fact makes it possible to compute

tolerance(S;G) e�ciently for a set S of edges of the same weight. Simply �nd the smallest edge

weight w

j

> w

i

for which comps (S;G

�w

j

) < comps (S;G

�w

i

). If such a weight exists then

tolerance (S;G) = w

j

� w

i

, otherwise tolerance(S;G) = 1. To �nd w

j

we proceed as follows.

Build a graph G

0

by removing the edges in S from G

�w

i

. Take, one by one, the edges of weight

larger than w

i

until we �nd an edge, of weight w

j

, that connects two components of G

0

. If the

edges of G are sorted non-decreasingly by weight, then we can compute tolerance(S;G) in O(m)

time.

Theorem 4.3 Algorithm uplift computes the robustness function of a graphic matroid in

O(n

3

m

2

log(n

2

=m)) time. 2

5 Transversal and Scheduling Matroids

In this section we study the problem of computing the robustness function of transversal and

scheduling matroids. We use again algorithm uplift to compute the robustness function for

these classes of matroids. However, we take advantage of the special structure of transversal

and scheduling matroids to design e�cient algorithms for �nding a set of smallest rate .

5.1 Transversal Matroids

Given a bipartite graph G = (D [D

0

; E), a transversal matroid can be de�ned in terms of

matchings in G. A transversal matroid M = (D; I; w; c) has as ground set, D, the set of vertices

in one side of the bipartite graph G, and a subset of D is independent in M if and only if it can

be covered by a matching of G. Let w

1

; w

2

; : : : ; w

p

be the di�erent element weights in M .

Fix a transversal matroid M = (D; I; w; c) and an element weight w

i

. Let M

i

= (D

i

; I

i

) =

(M jD

�w

i

)=D

<w

i

be the submatroid of M whose independent sets are the sets of elements of

weight w

i

that belong to some minimum weight base of M . For any set S � D

i

and vector

x 2 IR

D

i

we let x(S) =

P

e2S

x(e). Let P (M

i

) be the matroid polyhedron for submatroid M

i

.

It is well known [23, 29] (also see Section 3.4) that for any vector x 2 IR

D

i

,

min f x(S) + rank (D

i

� S;M

i

) j S � D

i

g = max fy(D

i

) j y 2 P (M

i

) and y � x g: (2)

We exploit this relationship between the rank function of a matroid and the base of a vector

in its matroid polyhedron to design an algorithm for �nding a set of smallest rate that is more

e�cient than the general algorithm presented in Chapter 4. Following the same approach of

36

the previous section, we reduce the problem of computing a set of smallest rate in a transversal

matroid to a sequence of n parametric problems of the form (1). Using identity (2) problem (1)

can be formulated as

max fy(D

i

) j y 2 P (M

i

) and y � c=� g: (3)

We derive below an expression for the polyhedron P (M

i

) that allows us to solve e�ciently

problem (3). Consider again the bipartite graph G = (D[D

0

; A) that de�nes transversal matroid

M . For any set S � D, let N (S) = f v 2 D

0

j v is adjacent to some vertex of S g be the set

of neighbors of vertices in S. By Hall's Theorem (see e.g. [115]), graph G has a matching

covering some set of vertices S � D if and only if jN (S

0

)j � jS

0

j for all S

0

� S. Our expression

for the matroid polyhedron P (M

i

) will come from a description of the independent sets of the

submatroids M

i

of the same avor as that provided by Hall's Theorem.

Let B be a maximum weight base of M , and let

�

B

=w

i

= B �B

=w

i

. For any set T � D

i

, we

de�ne the function

f(T) = min f jN (T [S)j � jSj : S �

�

B

=w

i

g: (4)

This function can be used to characterize the independent sets of the submatroid M

i

.

Lemma 5.1 A set S � D

i

is independent in M

i

if and only if jS \ T j � f(T) for all T � D

i

.

Proof. Suppose that set S � D

i

is independent in M

i

. Then, S [

�

B

=w

i

is an independent

set of M , and by Hall's Theorem, jN(S

0

)j � jS

0

j for all S

0

� (S [

�

B

=w

i

). Let T � D

i

and

F �

�

B

=w

i

. Clearly (S \ T) [F � (S [

�

B

=w

i

), and thus jN ((S \ T) [F)j � j(S \ T) [F j =

jS \ T j + jF j. Since jN (T [F)j � jN ((S \ T) [F)j, then jS \ T j � jN (T [F)j � jF j, and

therefore, jS \ T j � f(T) for all T � D

i

.

Suppose now that for some set S � D

i

, it holds that jS\T j � f(T) for all sets T � D

i

. This

means that jS \T j � jN (T [F)j� jF j for all T � D

i

and F �

�

B

=w

i

. In particular, by choosing

T to be a subset of S we get jN (T [F)j � jT j+ jF j = jT [F j. Thus, jN (T [F)j � jT [F j for

all (T [F) � (S [

�

B

=w

i

), and hence, by Hall's Theorem, S [

�

B

=w

i

is independent in M . 2

This result and the following property of function f will provide the desired formulation for

the polyhedron P(M

i

). A set function h : 2

H

7! IR is said to be submodular if h(S) + h(T) �

h(S [T) + h(S \ T) holds for all S; T � H .

Lemma 5.2 Function f is submodular.

Proof. Let T and T

0

be subsets of D

i

. Let S �

�

B

=w

i

and S

0

�

�

B

=w

i

be such that

f(T) = jN (T [S)j � jSj and f(T

0

) = jN (T

0

[S

0

)j � jS

0

j. Then (see Figure 14),

f(T) + f(T

0

) = jN (T [S)j+ jN (T

0

[S

0

)j � jSj � jS

0

j

= jN (T [S)j+ jN (T

0

[S

0

)�N (T [S)j+ jN (T

0

[S

0

) \N (T [S)j

� jS [S

0

j � jS \ S

0

j

37

T

T

S

S

Di

B wi

N (T ∪ S)

N (T ∪ S)

D D

=

Figure 14: Auxiliary diagram to show that function f is submodular.

� jN (T [S [T

0

[S

0

)j+ jN (T \ T

0

) [N (S \ S

0

)j � jS [S

0

j � jS \ S

0

j

� f(T [T

0

) + f(T \ T

0

)

2

We now use the following result by Edmonds [29, 24] to give explicit representations for the

independent sets of M

i

and for its matroid polyhedron P (M

i

).

Theorem 5.1 (Edmonds) Let h : 2

H

7! IR be a submodular function and J = fS j S � H

such that jS\F

0

j � h(F

0

) for all F

0

� H g. Then J is the family of independent sets of a matroid

on H, and the convex hull of incidence vectors of members of J is C = f y = (y

1

; y

2

; : : : ; y

jH j

) j

0 � y

i

� 1 for all 1 � i � jH j and y(F

0

) � h(F

0

) for all F

0

� H g. 2

From this Theorem, Lemma 5.2, and Lemma 5.1 we derive the following expression for

P(M

i

).

Theorem 5.2 The family of independent sets of M

i

= (D

i

; I

i

) = (M jD

�w

i

)=D

<w

i

is I

i

= fS j

S � D

i

and jS \ F j � f(F) for all F � D

i

g and its matroid polyhedron is P (M

i

) = f z =

(z

1

; z

2

; : : : ; z

jD

i

j

) j 0 � z

i

� 1 for all 1 � i � jD

i

j and z(F) � f(F) for all F � D

i

g.

By Theorem 5.2, we can solve problem (3) using a slight modi�cation of the polymatroid

greedy-algorithm (see e.g. Chapter 3) since function f can be used as the rank function for

submatroid M

i

. The algorithm is described in Figure 15.

Algorithm poly greedy can be implemented with a single maximum ow computation on a

bipartite graph. To see how, consider an iteration of the for-loop of algorithm poly greedy. Using

the de�nition of f , the value of �

`

can be rewritten as min f jN (T [F)j � jF j� y(T) j e

`

2 T �

D

i

and F �

�

B

=w

i

g. This minimization problem can be solved by computing a minimum cut in

38

Algorithm poly greedy (M

i

; f; c; �)

y(e

`

) 0 for all e

`

2 D

i

for each e

`

2 D

i

do

�

`

 minf f(T)� y(T) j e

`

2 T � D

i

g

y(e

`

) minf1; �

`

; c(e

`

)=�g

end for

Output y

Figure 15: Modi�ed polymatroid greedy-algorithm.

an auxiliary graph

^

G

`

= (fs; tg [D

i

[

�

B

=w

i

[D

0

; E

`

) (see Figure 16). Graph

^

G

`

has an edge of

in�nite capacity from s to e

`

, and an edge of capacity y(e

i

) from s to each e

i

2 D

i

�fe

`

g. It also

has an edge of capacity 1 from s to every vertex in

�

B

=w

i

, and an edge of in�nite capacity from

v 2 D

i

[

�

B

=w

i

to w 2 D

0

whenever the edge (v; w) belongs to the bipartite graph G. Finally,

^

G

`

has an edge of capacity 1 from each vertex in D

0

to t.

Lemma 5.3 Let (R;

�

R) be a minimum cut of

^

G

`

separating s from t, and c(R;

�

R) be its capacity.

Then, c(R;

�

R)� y(D

i

)� j

�

B

=w

i

j = min f jN (T [F)j � jF j � y(T) j e

`

2 T � D

i

and F �

�

B

=w

i

g.

Proof. Without loss of generality assume that s 2 R. Clearly vertex e

`

has to be in R.

Observe that for any v 2 R, N (v) � R because otherwise the minimum cut would have in�nite

capacity, and from Figure 16 it is apparent that a minimum cut of

^

G

`

has �nite capacity. Let

R

D

i

= R \ D

i

and R

�

B

=w

i

= R \

�

B

=w

i

. From Figure 16 we can see that c(R;

�

R) = jN (R

D

i

[

R

�

B

=w

i

)j+

P

e2(D

i

�R

D

i

)

y(e) + j

�

B

=w

i

� R

�

B

=w

i

j. Therefore,

c(R;

�

R)�

X

e2D

i

y(e)� j

�

B

=w

i

j

= jN (R

D

i

[R

�

B

=w

i

)�

X

e2R

D

i

y(e)� jR

�

B

=w

i

j

= min f jN (T [F)j �

X

e2T

y(e)� jF j : e

`

2 T � D

i

and F �

�

B

=w

i

g

2

By Lemma 5.3, we can implement poly greedy by performing jD

i

j maximum ow computa-

tions on auxiliary graphs

^

G

`

. However, we can do better than that. Note that in each iteration

of the for-loop of poly greedy the value of �

`

can be computed by �nding a maximum ow of

^

G

`

that saturates every edge leaving s, except the edge (s; e

`

) of in�nite capacity. By Lemma

5.3, �

`

is equal to the value of the ow going through edge (s; e

`

) in this maximum ow. If the

value of the ow on edge (s; e

`

) is larger than minf1; c(e

`

)=�g, then poly greedy reduces it to

minf1; c(e

`

)=�g. Thus, since in each iteration of the for-loop poly greedy essentially computes

the maximum ow that can be sent through edge (s; e

`

), we can modify the auxiliary graphs

so that the all values �

`

can be determined with a single maximum ow computation on a new

auxiliary graph G

i

.

39

s
t

e

y(e)

e

e

1

|D |

∞

0

1

1

1

1

∞
1

1

1

1

1

1

∞

∞

∞

∞

∞

∞

∞

∞

D

B D

i

v

v

v

1

2

|B |
=w i

=w
i

∞

∞

R R

i

Figure 16: Auxiliary graph

^

G

`

showing a minimum cut (R;

�

R).

This new auxiliary graph graph G

i

= (fs; tg [D

i

[

�

B

=w

i

[D

0

; E

i

) is built with the same

topology and edge capacities as any of the graphs

^

G

`

, except that each edge from s to e

j

2 D

i

has capacity minf1; c(e

j

)=�g (there is no edge of in�nite capacity incident to s). Let z be a

maximum ow for G

i

that saturates every edge from s to

�

B

=w

i

. (Such a ow must exist since

the elements in

�

B

=w

i

form an independent set of the transversal matroid M , and hence, there

has to be a matching in G

i

covering them.) Let z

0

be the vector giving the value of the ow z

through the edges from s to vertices in D

i

.

Lemma 5.4 The vector z

0

is a maximizer for problem (3).

Proof. It is clear that z

0

(s; e

j

) � c(e

j

)=� for every e

j

2 D

i

. We need only prove that z

0

is a maximal vector in P (M

i

) with this property. Let F and S be, respectively, subsets of D

i

and

�

B

=w

i

. Since z is a valid ow function for G

i

, then it follows that z(F [S) � N (F [S).

Also, z(F [S) = z(F) + jSj because z saturates every edge from s to

�

B

=w

i

. Combining these

40

two inequalities we get that z

0

(F) � N (F [S)� jSj for any F � D

i

and S �

�

B

=w

i

. Therefore,

by Theorem 5.2, z

0

2 P (M

i

).

Vector z

0

is maximal because the vector y computed by poly greedy forms a ow function for

the edges from s to D

i

of value no larger than the ow z

0

. 2

Lemma 5.5 A set of smallest rate in the submatroid M

i

= (D

i

; I

i

) can be computed in

O(jD

i

[

�

B

=w

i

j+ jE

i

j log(jD

i

[

�

B

=w

i

j

2

=jE

i

j+ 2)) time.

Proof. We compute a set of smallest rate in M

i

using Newton's method to �nd the largest

value �

i

for which g

i

(�

i

) = 0, as described in the previous section. Note that each iteration of

Newton's method decreases the value of the parameter � of problem (1) and increases the value

of vector c=� that de�nes the capacities of the edges from s to D

i

in G

i

. Hence in two successive

iterations of Newton's method, the only change in G

i

is an increase in the capacities of some

edges leaving the source vertex. Using parametric ow techniques, all iterations of Newton's

method can be performed in O(jD

i

[

�

B

=w

i

j � jE

i

j log(jD

i

[

�

B

=w

i

j

2

=jE

i

j + 2)) time using the

algorithm FIFO with dynamic trees described in [2].

This algorithm gives only the value of the rate of a set of smallest rate , we show now how

to �nd such a set. Let z

0

be the vector giving the value of the �nal ow through the edges from

s to vertices in D

i

. Let �

i

be the rate of a set of smallest rate in M

i

. We show that the set

S � D

i

formed by all elements e 2 D

i

such that z

0

(s; e) = c(e)=�

i

is a set of smallest rate in

M

i

. To see this note that min f c(T)=�

i

+ rank (D

i

� T;M

i

) j T � D

i

g = max fy(D

i

) j y 2

P (M

i

) and y � c=�

i

g = z

0

(D

i

), hence z

0

(D

i

) = c(S)=�

i

+ rank(D

i

� S;M

i

), and therefore S is

a set of smallest rate in M

i

. 2

Theorem 5.3 The breakpoints of the robustness function of a transversal matroid M can be

computed in O(mn(m+n

2

)jEj log(m

2

=jEj+2)) time, where E is the set of edges in its bipartite

graph.

Proof. By the previous lemma, the total time required to �nd a set of smallest rate in M is

O(

P

p

i=1

jD

i

[

�

B

=w

i

j � jE

i

j log(jD

i

[

�

B

=w

i

j

2

=jE

i

j+2)) = O(jEj log(m

2

=jEj+2)

P

p

i=1

jD

i

[

�

B

=w

i

j).

Observe that the sets D

i

and

�

B

=w

i

are disjoint and that

P

p

i=1

jD

i

j = jDj = m. Furthermore,

note that at most n of the matroids M

i

have to be considered when computing a set of smallest

rate in M . To see why, consider a minimum weight base B of M . Let w

i

be the weight of

some element in M such that no element of B has weight w

i

. Then, the only independent set

in matroid M

i

= (M jE

�w

i

)=E

<w

i

is the empty set. Therefore,

P

p

i=1

j

�

B

=w

i

j � n

2

, and the total

time needed to compute a set of smallest rate in matroid M is O((m+ n

2

)jEj log(m

2

=jEj+ 2).

Algorithm uplift adds an additional factor mn to this time. 2

5.2 Scheduling Matroids

Scheduling matroids arise in the following class of scheduling problems. Let J = fj

1

; j

2

; : : : ; j

m

g,

be a set of unit-time jobs. Each job j

i

has a weight w(j

i

), and integer release time r

i

and deadline

41

d

i

. The problem is to select a largest subset of jobs of minimum total weight that can be executed

on a single processor. Without loss of generality we assume that the largest deadline has value

at most m.

This problem is equivalent to a weighted matching problem on a convex bipartite graph

G = (J [T;A) (see e.g. [43]). To build G we think of the ith vertex of J as job j

i

, and the ith

vertex of T as the time interval from i�1 to i. For each job j

i

, graph G has edges of weight w(j

i

)

from j

i

to each time interval between r

i

and d

i

. A maximum cardinality matching of minimum

weight in G de�nes a scheduling of a largest subset of J of minimum total weight.

A scheduling matroid M = (J; I; w; c) has a set J of jobs as its ground set and a subset of

jobs is independent if and only if there is a valid scheduling for them. By the above discussion,

the class of scheduling matroids is a proper subset of the class of transversal matroids. Let

w

1

; w

2

; : : : ; w

p

be the di�erent weights of elements in M .

In the previous section we showed how to �nd a set of smallest rate in a transversal matroid

by performing a series of minimum-cut computations over auxiliary bipartite graphs G

k

. We

use this same approach here, but now we can design a faster algorithm by taking advantage of

the fact that the auxiliary graphs G

k

are convex bipartite.

Fix an auxiliary graph G

k

. Let M

k

= (J

=w

k

; I

k

) = (M jJ

�w

k

)=J

<w

k

. For reasons that will

be apparent later, we explicitly perform all the maximum ow computations on auxiliary graph

G

k

needed to �nd the largest value �

k

for which g

k

(�

k

) = 0, instead of using parametric ow

techniques as we did for transversal matroids. We show that at most jB

=w

k

j maximum ow

computations have to be performed on G

k

, where B is a minimum weight base of M . For

convenience we show graph G

k

in Figure 17.

In the sequence of maximum ow computations that have to be performed over G

k

the value

of the parameter � is monotonically decreased, and so the capacities of the edges form s to

J

=w

k

are monotonically increased. Let f

k

(1=�) denote the value of a maximum ow in G

k

as a

function of 1=�. It is well known [30, 107] that in an s-t graph in which the capacities of the

edges leaving the source are linear functions of a parameter 1=�, the value of a maximum ow

is a piecewise-linear concave function of 1=�.

By de�nition of B, there is a matching of maximum cardinality in G that covers the vertices

in B. Therefore, for any value of the parameter 1=� there is a maximum ow of G

k

that saturates

at least j

�

B

=w

k

j edges incident to vertex t. Let us consider this maximum ow. Note that if �

is decreased, the value of the ow increases linearly with 1=� until one more edge incident to t

is saturated. Since a maximum matching of G has size jBj, then for any value of 1=� at most

jBj of the edges incident to t can be saturated by a ow. This implies that f

k

(1=�) has at most

jB

=w

k

j breakpoints.

It is easy to see that a set of smallest rate in a scheduling matroid M = (J; I; w; c) has rate

�

�

� c(J)=n. To compute the value of �

�

, we use Newton's method on each function f

k

(1=�) to

�nd the largest value �

k

for which f

k

(1=�

k

) = jBj. By the above discussion, the value of �

k

can

be found by performing at most jB

=w

k

j maximum ow computations on G

k

. The value of �

�

is

equal to the smallest �

k

, for k = 1; 2; : : : ; p.

42

 |)/

s
t

e

min {1,c(e)/λ}
e

e

1

|J |

1

1

1

1

∞
1

1

1

1

1

1

∞

∞

∞

∞

∞

∞

∞

∞

J

B J

=w

v

v

v

1

2

|B |
=w k

=w
k

∞

∞

w
k

=

k
min {1,c(e)/λ}k

k

=wk
|Jmin {1,c(e λ}

Figure 17: Auxiliary graph G

k

.

We show that a maximum ow of G

k

that saturates all edges from s

k

to

�

B

=w

k

can be

computed in O(jJ

=w

k

[

�

B

=w

k

j) time, whereas the previous best algorithm for �nding a maximum

ow in a bipartite graph G

k

needs O(jJ

=w

k

[

�

B

=w

k

jjE

k

j log(jJ

=w

k

[

�

B

=w

k

j

2

=jE

k

j + 2) time [2].

We describe �rst how to �nd in linear time a maximum ow for G

k

, and then we show how to

modify it so that it saturates all edges from s

k

to

�

B

=w

k

as required by Lemma 5.4.

Consider one of the auxiliary graphs G

k

= (fs; tg [J

=w

k

[

�

B

=w

k

[J

0

; E

k

). The problem of

computing a maximum ow of G

k

can be interpreted as a scheduling-with-preemption problem

on a single processor. Let the vertices �

k

2 J

0

be time slots and the vertices j

i

2 J

=w

k

[

�

B

=w

k

be jobs. The capacity of edge (s; j

i

) is the processing time required by job j

i

, and each

in�nite capacity edge (j

i

; �

k

) identi�es a time slot �

k

where job j

i

can be scheduled. Under

this interpretation, any ow function for G

k

de�nes a feasible preemptive schedule for various

portions of the jobs in J

=w

k

[

�

B

=w

k

: the value of the ow on edge (s; j

i

) determines the total

time that job j

i

is scheduled for execution, and the ow on edge (j

i

; �

k

) de�nes the portion of

job j

i

that is scheduled in time interval �

k

. The converse of this statement is also true, i.e., a

preemptive schedule that speci�es the execution order of portions of the jobs in J

=w

k

[

�

B

=w

k

43

on a single processor de�nes a valid ow for G

k

.

By the previous discussion, any algorithm that �nds a preemptive schedule for the jobs in

�

B

=w

k

[J

=w

k

that maximizes the amount of time that the jobs are executed on a single processor,

also computes a maximum ow for G

k

. We present below an e�cient implementation of the

preemptive earliest deadline �rst rule [71], which �nds in linear time an optimal preemptive

schedule for the jobs

�

B

=w

k

[J

=w

k

, and thus, a maximum ow for G

k

.

We assume that the largest deadline among the jobs in J

=w

k

[

�

B

=w

k

is at most jJ

=w

k

[

�

B

=w

k

j.

If this condition does not hold, we use the techniques in [34] to modify the deadlines so that

this condition is satis�ed. This preprocessing step requires O(jJ

=w

k

[

�

B

=w

k

j) time. The extra

time required by this step does not a�ect the overall time complexity of our algorithm.

A straightforward implementation of the preemptive earliest deadline �rst rule uses an ini-

tially empty set T to store all those jobs that can be scheduled at a given time. Starting at the

earliest release time, and moving forward in time, a schedule is generated as follows. A job is

added into T whenever it becomes available for scheduling, and in each time interval (a fraction

of) the job with smallest deadline in T is scheduled.

Our scheduling problem can be seen as an extension of the o�-line min problem de�ned in

[1]. In this latter problem we are given a set of integers f1; 2; : : : ; ig, an initially empty set T , and

two operations: insert, that adds an integer to T , and extract min, that removes the smallest

integer from T . It is desired to maintain T under a given sequence of insert and extract min

operations, assuming that each integer is inserted in T only once.

As in an o�-line min problem, we want to maintain in our scheduling problem a set of jobs T

under some sequence S of two operations: insertion of all the jobs with a particular release time,

and extraction of a job with smallest deadline. However, contrary to the o�-line min problem, we

might have several jobs with the same deadline, and we do not know in advance how many jobs

will be extracted between two consecutive insertion operations. We de�ne the generalized o�-line

min problem over a set of elements fe

1

; e

2

; : : : ; e

m

g as follows. Each element has two attributes,

an integral value from the domain f1; 2; : : : ; mg, and a positive real magnitude no larger than

1. There is an initially empty set T over which two operations are de�ned, insert and retrieve.

Operation insert adds an element to T . Operation retrieve extracts from T elements of smallest

value until either T is empty or total magnitude 1 is achieved, splitting the magnitude of the last

element before extraction, as necessary. Given a sequence S of insert and retrieve operations,

the generalized o�-line min problem consists in �nding which portions of what elements are

removed by each retrieve operation.

Consider the following instance of the generalized o�-line min problem de�ned over the set

fa; b; c; d; eg. The values of the elements are 1; 1; 3; 4, and 2, respectively, and their magnitudes

are 0:3; 0:5; 0:4; 0:8, and 1:0. The sequence S is: insert a, insert b, insert c, retrieve, insert d,

insert e, retrieve, retrieve. The �rst retrieve operation extracts from T elements a and b, and

half of element c (so it leaves in T the rest of element c with magnitude 0:2). The second retrieve

operation extracts element e, while the third retrieve extracts the remaining of c plus element

d.

44

Algorithm generalized o�-line(S; fe

1

; e

2

; : : : ; e

m

g)

Initialize each Q(i) to ;, and set j 1.

while j < m do

i FIND(e

j

).

Add e

j

to the end of list Q(i).

Find S

m

, the sum of magnitudes of the elements in Q(i).

if S

m

� 1 then

UNION(i; succ(i); succ(i))

magnitude (e

j

) S

m

� 1

end if

if S

m

� 1 then j j + 1 end if

end while

Output Q

Figure 18: Algorithm generalized o� line

To solve the generalized o�-line min problem, it is convenient to write the sequence S as

I

1

; R; I

2

; R; : : : ; I

q

; R, where R is a retrieve operation and each I

i

is a sequence of insert opera-

tions. Let i be the set of elements inserted by I

i

. As in [1], we use disjoint-set data structures

to represent each set i; these sets are stored in a doubly linked list with succ(i) the successor of

i. We use an array Q, and store in Q(i) a list with the elements extracted by the ith retrieve

operation. Let the elements be indexed non-decreasingly by value. The algorithm to solve the

generalized o�-line min problem is described in Figure 18. Function FIND(x) returns the set to

which element x belongs and function UNION(x; y; y) on sets x and y, makes y x [y.

Lemma 5.6 Algorithm generalized o�-line runs in O(m) time.

Proof. We can use counting sort (see e.g. [22]) to index the elements non-decreasingly by

value, as required by generalized o�-line, in O(m) time. Note that the only UNION operations

that the algorithm performs are of the form UNION (i; succ (i); succ (i)). This special order of

the UNION operations allows us to use the algorithm of Gabow and Tarjan [44] to perform all

the UNION and FIND operations in O(m) time. 2

We use algorithm generalized o�-line to �nd an optimal scheduling for the jobs in J

=w

k

[

�

B

=w

k

as follows. We initialize the data structures of generalized o�-line by storing in set i all jobs

with the ith smallest release time. The attribute magnitude of each job is set equal to the

processing time for the job and the attribute value is equal to the deadline of the job. The jobs

are indexed non-decreasingly by deadline. Run algorithm generalized o�-line with the following

slight change: in each iteration of the while-loop, after �nding the set i containing job e

j

,

generalized o�-line inserts e

j

in Q(i) only if its deadline is at least i (otherwise job e

j

cannot be

scheduled in the ith time slot). The schedule can easily be obtained from the information that

generalized o�-line stores in Q.

45

Lemma 5.7 An optimal scheduling for the jobs J

=w

k

[

�

B

=w

k

can be computed in O(jJ

=w

k

[

�

B

=w

k

j) time and O(jJ

=w

k

[

�

B

=w

k

j) space. 2

The maximum ow of the auxiliary graph G

k

corresponding to the schedule generated by

generalized o�-line might not saturate all edges from s

k

to

�

B

=w

k

. We show below how to �nd a

ow that complies with this condition.

First, modify the deadlines of the jobs in

�

B

=w

k

so that no two of them have the same deadline.

To do this, �nd an optimal schedule for the jobs in

�

B

=w

k

using a time-reversed version of the

preemptive earliest deadline �rst rule. This new rule schedules jobs by starting at the largest

deadline and moving backwards in time towards the smallest release time. The rule schedules

in each interval the job with latest release time that is available. The correctness of this rule

can be easily established. Let S

0

be the schedule for the jobs in

�

B

=w

k

obtained with this rule.

Modify the deadline of each job j

i

2

�

B

=w

k

by making it equal to the completion time of job j

i

in S

0

. Let d

0

i

be the modi�ed deadline for job j

i

.

Then, modify algorithm generalized o�-line so that whenever two or more jobs have the same

modi�ed deadline, it chooses to schedule �rst the jobs from

�

B

=w

k

. (The only change that we

actually need to make is to index the jobs so that if several jobs have the same modi�ed deadline,

the jobs from

�

B

=w

k

are indexed �rst.) Use this modi�ed generalized o�-line algorithm to �nd a

schedule S

�

for the jobs in J

=w

k

[

�

B

=w

k

.

Lemma 5.8 The schedule S

�

maximizes the amount of time that the jobs in J

=w

k

[

�

B

=w

k

are

executed on a single processor, and it schedules to completion all jobs from

�

B

=w

k

.

Proof. We need only prove that there is an optimal schedule

^

S for the jobs in J

=w

k

[

�

B

=w

k

in which all jobs from

�

B

=w

k

are scheduled to completion, and such that no job j

i

2

�

B

=w

k

is

scheduled after its modi�ed deadline d

0

i

. The proof is by contradiction.

Let S

0

be the schedule used to determine the modi�ed deadlines d

0

i

. Suppose there is no

optimal schedule

^

S for the modi�ed deadlines, but there is one for the original deadlines. Choose

S to be an optimal schedule for the original deadlines that schedules to completion all jobs from

�

B

=w

k

, such that the �rst job j

i

2

�

B

=w

k

that is not completed by its modi�ed deadline has d

0

i

as

large as possible. Since jobs are scheduled in S

0

as late as possible, there must be at least one

job j

k

2

�

B

=w

k

with d

0

k

> d

0

i

and r

k

� r

i

that is scheduled in S to be completed at a time `

k

< d

0

i

.

Clearly, we can modify S so that j

i

is scheduled within the portions of time alloted to j

k

, and j

k

is scheduled in the time intervals assigned to j

i

. This modi�cation to S produces a new optimal

scheduling in which the completion time for j

i

does not exceed d

0

i

. This is a contradiction. 2

Theorem 5.4 The robustness function of a scheduling matroid M = (J; I; w; c) can be computed

in O(m

2

n

2

) time, where m = jJ j and n = jBj is the size of a maximum independent set in I.

Proof. In each auxiliary graph G

k

, the largest value �

k

for which a maximum ow has

value jBj can be computed in O(jB

=w

k

jjJ

=w

k

[

�

B

=w

k

j) time. Hence, the total time used to

�nd a set of smallest rate in the scheduling matroid M is O(

P

p

i=1

jB

=w

k

jjJ

=w

k

[

�

B

=w

k

j) =

46

OjBjjDj + jBj

2

) = O(mn). Since algorithm uplift computes O(mn) sets of smallest rate , the

total time needed to compute all the breakpoints in the robustness function in O(m

2

n

2

). 2

6 Partition Matroids

In this section we study the problem of computing the robustness function of a partition matroid.

As for transversal and scheduling matroids, we use algorithm uplift to compute the robustness

function. But, we show how to exploit the simple structure of partition matroids in the design

of a very e�cient algorithm for �nding a set of smallest rate . Furthermore, we show that for

partition matroids, algorithm uplift needs to perform at most O(m) iterations.

We also study the problem of evaluating the robustness function at a single point, instead

of generating all the breakpoints. For this version of the problem we design a sophisticated

prune-and-search algorithm that optimally solves it.

6.1 Robustness Function for Partition Matroids

A partition matroid P = (E; I; w; c) is de�ned over a �nite set E of m elements, partitioned

into ` disjoint blocks E

1

; E

2

; : : : ; E

`

. Given a set of ` positive integers n

i

� jE

i

j; i = 1; : : : ; `, a

set S � E is independent in P if and only if jS \E

i

j � n

i

, for all 1 � i � `. A minimum weight

base of P is a minimum weight subset B of E such that jB \ E

i

j = n

i

, for all 1 � i � `.

Consider a partition matroid P = (E; I; w; c). The blocks E

i

of E are independent in the

sense that any change in the weights of the elements in some block E

i

does not a�ect the set of

elements of another block E

j

that might belong to a minimum weight base. Hence, there must

be at least one block E

i

that contains a subset of elements having the smallest rate in P . This

observation simpli�es the problem of �nding a set of smallest rate since we need only show how

to compute a set of smallest rate in one of the blocks E

i

, or equivalently, how to �nd a set of

smallest rate in a uniform matroid. A uniform matroid is a partition matroid in which ` = 1. In

a uniform matroid P = (E; I; w; c) of rank n a set S � E is independent if and only if jSj � n.

Fix a uniform matroid U = (E; I; w; c) with rank n. Let w

n

be the weight of the nth smallest

element in E. Note that the only elements of E that can belong to a minimum weight base of U

are those elements of weight at most w

n

. Let E

<w

n

, E

=w

n

, and E

>w

n

denote the subsets of E

formed by all elements of weight smaller than w

n

, equal to w

n

, and larger than w

n

, respectively.

Let � = jE

<w

n

j+ jE

=w

n

j � n.

Lemma 6.1 If S � E is a set of smallest rate in U then

rate (S; U) = min f min f c(e) j e 2 E

<w

n

g;

min fc(T)=(jT j��) j T � E

=w

n

and jT j > � g g

Proof. For any set T � E

<w

n

, coverage (T; U) = jT j since all elements in E

<w

n

belong to

every minimum weight base of U . Also, for any set T � E

=w

n

, coverage (T; U) = max f0; jT j��g

47

Algorithm descend (T

=w

n

; U)

Let x be the root of T

=w

n

.

while x is not a leaf do

if jL(x)j � �, or rate (L(x); U) > rate (L(next (x)); U) then

x right child of x

else x left child of x end if

end while

if (cost of the element stored in node x) = rate (L(x); U) then

Find the rightmost leaf y that stores an element of cost equal to rate (L(x); U).

Output the set of elements in L(y)

else Output the set of elements in L(x) end if

Figure 19: Algorithm to �nd the largest set of smallest rate in E

=w

n

.

because there is a maximum weight base of U that contains minfn � jE

<w

n

j; jE

=w

n

j � jT jg

elements from E

=w

n

� T . 2

By Lemma 6.1, there is a set of smallest rate in U that either consists of a single element of

smallest cost in E

<w

n

, or that is formed by the k elements of smallest cost in E

=w

n

, for some

� < k � jE

=w

n

j. The following observation allows us to compute e�ciently the value of k. Let

fe

1

; e

2

; : : : ; e

jE

=w

n

j

g be the elements of E

=w

n

indexed in non-decreasing order of cost.

Lemma 6.2 The discrete function f(i) =

P

i

j=1

c(e

j

)=(i��) with integer argument i is strictly

decreasing in the interval � + 1 � i � k

0

, and non-decreasing in the interval k

0

� i � jE

=w

n

j,

where k

0

is the smallest integer where f reaches its minimum value.

Proof. Is it not di�cult to show that if f(i) � f(i� 1) for any � + 2 � i � jE

=w

n

j � 1,

then f(i+ 1) � f(i). 2

We use a balanced binary search tree T

=w

n

to compute e�ciently the value of k . The

elements of E

=w

n

are stored in the leaves of T

=w

n

, maintaining a dictionary order on the costs.

Given a node x of T

=w

n

, let L(x) be the set of all elements stored in the leaves of T

=w

n

that

appear before x in an in-order traversal of the tree. Let next(x) denote the �rst leaf of T

=w

n

that appears after x in an in-order traversal of the tree. The largest set of smallest rate in E

=w

n

can be found by a search in T

=w

n

from the root to the leaves as described in Figure 19. The

correctness of this algorithm follows from Lemma 6.2.

Lemma 6.3 Algorithm descend runs in O(log jT

=w

n

j) time.

Proof. Since rate (L(x); U) = c(L(x))=(jL(x)j � �), then to compute rate (L(x); U) we

need to know in each iteration of descend the number of elements in L(x) and their total cost.

This can easily be computed as the algorithm traverses the tree if each internal node x of T

=w

n

stores the number and total cost of all elements in the subtree rooted at x, and the smallest cost

of any element in that subtree. This information can also be used by the algorithm to compute

48

rate (L(next(x)); U). Since T

=w

n

is a balanced tree, the algorithm runs in O(log jT

=w

n

j) time.

2

Let H

<w

n

be a min-heap that stores the elements of E

<w

n

maintaining heap order on their

costs. With this heap and algorithm descend, a set of smallest rate in U can be found in

O(log jT

=w

n

j) time.

We describe now how our data structures need to be updated so that a set of smallest rate

in U can be computed e�ciently in each iteration of algorithm uplift. We use an additional

data structure, a list L

>w

n

containing the elements of E

>w

n

in non-decreasing order of weight.

There are two cases that have to be considered: (1) if a singleton fe

s

g � E

<w

n

is chosen as the

subset of smallest rate in U , then uplift increases the weight of e

s

up to w

n

and moves e

s

from

H

<w

n

into T

=w

n

; (2) if a set S � E

=w

n

is the set of smallest rate in U , then algorithm uplift

increases the weights of the elements in S to w

g

, the smallest element weight larger than w

n

.

Since then w

g

becomes the weight of the nth smallest element in E, all elements in E

=w

n

� S

are moved from T

=w

n

to H

<w

n

. Also each element of weight w

g

in L

>w

n

is removed form L

>w

n

and inserted in T

=w

n

.

Lemma 6.4 The robustness function of a uniform matroid U = (E; I; w; c) can be computed in

O(jEj log jEj) time and using O(jEj) space.

Proof. We �rst show that uplift performs at most 2jEj�n iterations. In each iteration in

which uplift selects some set S � E

=w

n

as the set of smallest rate in U , at least one element is

removed from L

>w

n

. This can happen at most jEj�n times, since no element is ever inserted into

L

>w

n

while updating the data structures. In each iteration in which uplift chooses a singleton

fe

s

g as the set of smallest rate , the element e

s

is moved from H

<w

n

to T

=w

n

, and it remains

in T

=w

n

until the algorithm ends. To show this, suppose that in a later iteration j, element e

s

is moved back to H

<w

n

. This means that in iteration j a set T � E

=w

n

, with e

s

62 T , has the

smallest rate in U . Since descend �nds the largest set of smallest rate in E

=w

n

, it follows that

c(e

s

) > rate (T; U). But, this is not possible since the robustness function is non-decreasing.

Therefore, the number of iterations in which a singleton is selected as a set of smallest rate is

at most jEj, and hence the total number of iterations that uplift performs is at most 2jEj � n.

A set S of smallest rate in U can be found in O(log jEj) time, and tolerance (S; U) can

be computed in constant time assuming that the weights of the elements are initially sorted

non-decreasingly by weight.

It only remains to bound the time required to update the data structures. Removing the

smallest element from H

<w

n

takes O(log jH

<w

n

j) time, and removing the �rst element from

L

>w

n

can be done in constant time. Inserting an element into T

=w

n

takes O(log jT

=w

n

j) time.

Since, by the above discussion, any element is removed from H

<w

n

or L

>w

n

at most once, and

an element can be inserted into T

=w

n

at most twice, the total time required to update the data

structures is O(jEj log jEj). 2

We now consider the complexity for computing the robustness function of a partition matroid

P = (E; I; w; c) with more than one block.

49

Theorem 6.1 The robustness function of a partition matroid P = (E; I; w; c) can be computed

in O(jEj log jEj) time and using O(jEj) space.

Proof. Let E

1

; E

2

; : : : ; E

`

be the blocks of E. We have shown above how to compute

e�ciently a set of smallest rate in each block E

i

. To �nd the set with overall smallest rate in

P , we use a heap H in which we store the rate of a set of smallest rate in each E

i

, for all

i = 1; 2; : : : ; `.

The arguments used in the proof of Lemma 6.4 can be extended to show that uplift performs

only O(jEj) iterations. Hence, uplift computes the robustness function of P in O(jEj log jEj)

time. The overall space used by our data structures is O(jEj). 2

6.2 Evaluating the Robustness Function at One Point

In the previous section we presented an algorithm that computes all the breakpoints of the

robustness function F

P

for a partition matroid P . If we do not want to compute all the break-

points of F

P

, but only wish to evaluate F

P

at a speci�c point b, then we can design an algorithm

that requires linear time.

Consider a partition matroid P = (E; I; w; c)with blocks E

1

; E

2

; : : : ; E

`

. Let P

i

= (E

i

; I

i

; w; c)

be the uniform matroid induced by block E

i

, for i = 1; 2; : : : ; `. For some given budget b, the

value of F

P

(b) can be computed by determining the optimal way of distributing the budget

among the matroids P

i

, and by optimally spending the fractional budget b

i

assigned to each P

i

increasing the weights of its elements. Therefore, we can write

F

P

(b) = max f

`

X

i=1

F

P

i

(b

i

) j b

i

� 0 for all 1 � i � ` and

`

X

i=1

b

i

= b g (5)

For arbitrary functions F

P

i

, problem (5) is known as the optimal distribution of e�ort problem

[75] or as the convex knapsack problem [31]. There are several e�cient algorithms to solve these

problems [68, 31], but only under the assumption that the functions F

P

i

are given in an explicit

form that make it possible to compute in constant time the value of F

P

i

(x) for any x � 0 and

1 � i � `. Since we do not have an explicit representation of the robustness functions F

P

i

,

we do not know how to compute the value of F

P

i

(x) in constant time, and thus, we have not

found e�cient implementations of these algorithms for our problem. Instead, we present here a

prune-and-search algorithm to compute F

P

(b) in O(m) time.

Let � = �

1

; �

2

; : : : ; �

k

be a sequence of increases on the weights of the elements of a partition

matroid P . We say that � is a canonical sequence of increases if each �

i

increases only the weights

of the elements in the largest set S of smallest rate in P , and each element in S has its weight

increased by the same amount d

i

� tolerance (S; P). Algorithm uplift can be implemented to

determine a canonical sequence of increases, and therefore, a canonical sequence of increases can

be used to compute F

P

(b) for any b � 0.

The following property of the largest sets of smallest rate in P plays a key role in our

algorithm.

50

Property 6.1 Let � = �

1

; �

2

; : : : ; �

k

be a canonical sequence of increases and S

i

be the set chosen

by some �

i

, i < k. In all subsequent increases �

j

, j > i, all elements of S

i

will undergo the same

weight changes.

Proof. Let e

1

and e

2

be elements of S

i

. Note that the cost of e

1

(e

2

) cannot be larger than

the rate r

S

i

of S

i

, because otherwise S

i

� fe

1

g (S

i

� fe

2

g) would have a smaller rate than S

i

.

Suppose that �

j

, j > i, selects set S

j

� E, with rate r

S

j

, and that e

2

2 S

j

but e

1

62 S

j

. This

means that r

S

j

< c(e

1

), because otherwise S

j

[fe

1

g would be a larger set with rate at most

r

S

j

. But, then r

S

j

< r

S

i

since c(e

1

) � r

S

i

. This contradicts that the robustness function of P is

non-decreasing. 2

Property 6.1 can be used to design a slightly more e�cient version of uplift than that pre-

sented in the previous section. The idea is that if in some iteration of uplift, set S � E with

jSj > 1 is selected as the set of smallest rate, then we can replace S by a single meta-element

e

S

. We can do this, since in the succeeding iterations uplift does not need to keep track of the

individual weight changes of the elements in S. Although this modi�ed algorithm is more e�-

cient than the original one, its time complexity is still O(jEj log jEj). We give below a di�erent

approach that exploits Property 6.1 to yield a linear time algorithm for computing F

P

(b), for a

�xed value b � 0. To introduce our basic strategy, we show �rst how to compute F

P

(b) for a

uniform matroid.

6.2.1 Uniform Matroid

Let �(w

i

), for any value w

i

� 0 be a canonical sequence of increases for the elements of a

partition matroid P such that the weights of the elements are increased as much as possible

without increasing the weight of any element above w

i

. Let

�

�(r

i

), for any value r

i

� 0 be a

canonical sequence of increases such that the weights of the elements in P are increased as much

as possible without selecting a set of rate at least r

i

.

Given a uniform matroid U = (E; I; w; c), our algorithm for evaluating F

U

(b), for some b � 0,

does not perform a linear search over the curve F

U

, as uplift does, but evaluates F

U

at some

sequence of probe values that converge to the desired one. The algorithm performs two di�erent

types of probes, each one implemented by a prune-and-search linear-time routine. The �rst

routine, called up to weight, takes a weight w

i

and computes the weight increases corresponding

to �(w

i

). The routine determines the cost of the weight increases and the rate of a set of smallest

rate according to the increased weights. The second routine, called up to rate, takes a rate r

i

and computes the weight increases corresponding to

�

�(r

i

). This routine determines the total cost

of the weight increases and the weight of the nth smallest element according to the increased

weights.

We present below linear time implementations for these routines. Routine up to weight

described in Figure 20, receives as arguments a weight w

i

, the set of elements E, and the weight

and cost functions w and c.

Lemma 6.5 Algorithm up to weight �nds in linear time the total cost of the weight increases

51

Algorithm up to weight (w

i

; E; w; c)

Find the largest set S of smallest rate in E

�w

i

assuming that all elements in E

�w

i

have the same weight.

Output the rate of S and the cost of increasing the weights of the elements in S to w

i

.

Figure 20: Algorithm up to weight.

made by �(w

i

) and the rate of a set of smallest rate according to the increased weights.

Proof. We �rst describe how to compute in linear time the largest set of smallest rate

in E

�w

i

assuming that all elements in E

�w

i

have the same weight. Perform a binary search

on the costs of the elements to �nd the smallest cost c

0

for which c(T)=(jT j � jE

�w

i

j + n) �

(c(T) + c

0

)=(jT j+ 1 � jE

�w

i

j + n), where T � E

�w

i

is formed by all elements in E

�w

i

of cost

smaller than c

0

and jT j > jE

�w

i

j � n. If c

0

= c(T)=(jT j � jE

�w

i

j + n), then add to T all those

elements from E

�w

i

of cost c

0

. By Lemma 6.2, T is the desired set. Using the linear-time

algorithm of Blum et al. [10], the above binary search can be performed in OjE

�w

i

j) time.

To show that algorithm up to weight is correct we have to consider two di�erent cases. Let

w

n

be the weight of the nth smallest element in E. If w

i

< w

n

, then only the elements of

smallest cost in E

<w

n

have their weights increased by �(w

i

). Note that the set S computed

by up to weight contains exactly those elements. For the case when w

i

� w

n

, suppose that the

weights of the elements have been increased by �(w

i

). Let R be the largest set of smallest rate

according to the increased weights, and let r

R

be its rate . Observe that all elements in E

�w

i

�R

have cost no smaller than r

R

. Hence, if we assume the same initial weight for all elements in

E

�w

i

, set R would be the largest set of smallest rate in it. 2

Algorithm up to rate, described in Figure 21, receives as input a rate r, the set of elements

E, and the weight and cost functions w and c. The algorithm performs a binary search on the

weights, invoking up to weight on each probe weight �w. If �w is too large, up to rate discards

all elements of weight �w or larger since their weights are not increased by

�

�(r). If �w is too

small, up to rate tries a larger probe value, but �rst it reduces the size of E: since all elements

of cost at least r and weight at most �w do not have their weights increased by

�

�(r), they can

be ignored. Note that all elements of cost smaller than r and weight at most �w will have their

weights increased by

�

�(r). Instead of keeping track of all the individual weight increases of

these elements, up to rate stores them in a set T . When the algorithm determines the maximum

weight increase that those elements should have, it performs the increases in a single step.

Algorithm up to rate maintains the invariant that the value of w

�

is an upper bound on the

maximum weight w

r

that

�

�(r) can assign to an element of E without selecting a set of rate at

least r. In each iteration of the repeat-loop, either the value of w

�

is decreased to �w, or it is

discovered that �w is a lower bound for w

r

. The gap between upper and lower bounds for w

r

decreases in each iteration of the repeat-loop. When the loop ends, the value of w

�

is equal to

w

r

.

52

Algorithm up to rate (r; E;w; c)

T ;; w

�

 1

repeat

Find the weight �w of the d

1

2

jEjeth smallest element in E.

(r

1

; c

1

) up to weight(�w;E;w; c)

if r

1

� r then

E E

< �w

w

�

 �w

else

T T [fe j w(e) � �w and c(e) < rg

E E

> �w

end if

until jEj = 0

c

T

 cost of increasing the weights of the elements in T to w

�

.

w

n

 weight of the nth smallest element in E according to the modi�ed weights

Output c

T

and w

n

.

Figure 21: Algorithm up to rate.

Lemma 6.6 Algorithm up to rate �nds in linear time the cost of the weight increases determined

by

�

�(r) and the weight of the nth smallest element according to the increased weights.

Proof. By the above discussion, up to rate correctly computes the weight increases de-

termined by

�

�(r). Each iteration of the repeat-loop takes linear time, and in each iteration the

size of E is reduced by at least one half. Therefore, the total time needed by the algorithm is

O(jEj). 2

We describe in Figure 22 a recursive algorithm for evaluating the robustness function F

U

of

a uniform matroid U = (E; I; w; c) at a given budget value b � 0. We let w

B

be the weight of a

minimum weight base of U according to the initial weights. In each recursive call the algorithm

reduces in linear time the number of elements in E by a fraction of at least one third, hence

the overall time complexity of the algorithm is linear in the number of elements. The essential

component of each iteration is a pair of tests that allow the algorithm either to �nd at least one

third of the elements in E that have weights or costs that are too large (and, thus, that can be

discarded), or to identify at least one third of the elements in E that will end up having the

same �nal weight (and, thus, that can be contracted to a single meta-element).

Function contract uniform, described in Figure 23, identi�es a set S [T � E of size at

least djEj=3e formed by elements that will experience exactly the same weight increases during

the computation of F

U

(b). Instead of keeping track of the individual weight changes of these

elements, they are contracted to a single meta-element ê and the algorithm computes only the

weight increases for ê. After robustness uniform has computed the �nal weight increases, it is

easy to expand the meta-elements to determine the �nal weight for each element in E.

Observe that every call that algorithm robustness uniform makes to contract uniform is

preceded by a call to up to rate, which determines the cost ~c of optimally increasing the weights

53

Algorithm robustness uniform (E;w; c; b)

if jEj = 1 then

Let E = feg. Set w(e) w(e) + b=c(e).

Let w

�

B

be the weight of a minimum weight base of U according to the increased

weights.

Output w

�

B

� w

B

.

else

Compute w

t

, the weight of the d

2

3

jEjeth smallest element in E.

(c

t

; r

t

) up to weight(w

t

; E; w; c)

if c

t

� b then

E E � fe j w(e) � w

t

g

Output (robustness uniform (E;w; c; ; b))

else

Compute �c, the upper median cost among the elements e 2 E of weight w(e) � w

t

.

(~c; ~w

n

) up to rate (�c; E; w; c)

if ~c � b then

E E � fe j w(e) � ~w

n

and c(e) � �cg

return (robustness uniform (E;w; c; b))

else

(E;w; b) contract uniform (E;w; c; b;~c; ~w

n

; �c)

if b = 0 then

Let w

�

B

be the weight of a minimum weight base of U according to the

increased weights.

Output w

�

B

� w

B

.

else Output (robustness uniform (E;w; c; b)) end if

end if

end if

end if

Figure 22: Algorithm robustness uniform.

54

Algorithm contract uniform (E;w; c; b;~c; ~w

n

; �c)

Let S = fe j w(e) � ~w

n

and c(e) < �cg, and T = fe j w(e) � ~w

n

and c(e) = �cg.

for each e 2 S do w(e) ~w

n

end for

b b� ~c

for each e 2 T do

(w(e); b) (minf ~w

n

; w(e) + b=c(e)g; maxf0; b� (~w

n

� w(e)) � c(e)g)

if b = 0 then exit the for-loop end if

end for

if b > 0 then

E (E � S � T) [fêg, where ê is meta-element with w(ê) = ~w

n

and c(ê) = c(S [T).

end if

Output (E;w; b).

Figure 23: Algorithm contract uniform.

of the elements in E to the point at which the following weight increase would be made over

a set of rate at least �c. Algorithm contract uniform continues these optimal weight increases

by lifting to ~w

n

the weights of the elements in sets S and T . If the budget is exhausted while

performing these increases, then the algorithm stops since it has computed the weight function

needed to determine F

U

(b). Otherwise, the budget is decreased to account for the new weight

increases.

If any budget remains after increasing the weights of the elements in S[T , then all elements

of weight at most ~w

n

and cost at most �c are contracted. Note that these elements belong to the

�rst set formed by elements of weight ~w

n

that a canonical sequence of increases would select,

and thus, by Property 6.1, they can be replaced by a meta-element.

To illustrate how algorithm robustness uniform works, consider the following example. Let

U = (E; I; w; c) be a uniform matroid of rank 4 with set E = fa; b; c; d; e; f; gg. The initial

weights of the elements are 1; 1; 2; 3; 4; 5, and 6, respectively, and their costs are 1; 3; 5; 1; 3; 1,

and 3. The value of w

B

is 1 + 1 + 2 + 3 = 7. We wish to evaluate F

U

(9). The algorithm

�rst computes w

t

= 4, and invokes routine up to weight. This routine returns (c

t

; r

t

) = (4; 2).

The value of c

t

is the cost of increasing the weights of the elements to 4; 1; 2; 4; 4; 5, and 6,

respectively; with these weights the next set of smallest rate is fa; dg and it has rate r

t

= 2.

Since c

t

< 9, robustness uniform computes �c = 3, and invokes routine up to rate. This routine

returns (~c; ~w

n

) = (6; 5). The value of ~c is the cost of increasing the weights of the elements

to 5; 1; 2; 5; 4; 5, and 6. Since ~c < 9, then contract uniform is invoked, and it exhausts the

budget by increasing the weights of the elements to 5; 2; 2; 5; 4; 5, and 6. Since upon return from

contract uniform b is zero, robustness uniform outputs F

U

(9) = (2 + 2 + 4+ 5)� 7 = 6.

Lemma 6.7 Algorithm robustness uniform computes F

U

(b), for any given b � 0, in O(jEj)

time.

Proof. Each call to algorithm robustness uniform takes linear time and, as we show below,

55

reduces the size of E by at least a fraction of one third. Therefore, the overall time complexity

is linear on the number of elements.

In each recursive call, robustness uniform invokes routine up to weight, which computes the

weight increases of the canonical sequence �(w

t

). If the cost of these weight increases exceeds

b, then all elements with weight at least w

t

are discarded from E. There are at least d

1

3

jEje of

these elements, and so, in this case the size of E is reduced to at most b

2

3

jEjc.

If the cost of the weight increases is smaller than b, then robustness uniform invokes up to rate

to �nd the weight increases de�ned by

�

�(�c). If the cost of these new increases surpasses the

budget, then all elements of weight at most ~w

n

and cost at least �c are discarded. Since ~w

n

� w

t

,

this step removes at least d

1

3

jEje elements from E. However, if the cost of the last weight

increases is smaller than b, then robustness uniform invokes routine contract uniform. This

routine either makes optimal weight increases that exhaust the budget, or it replaces all elements

of weight at most ~w

n

and cost at most �c by a meta-element. These elements represent at least

one third of E. Note that if jEj < 4 the size of E is still reduced by a fraction of at least one

third, even when a meta-element is added to E. The reason for this is that either d

2

3

jEje rounds

up (in the computation of w

t

), or d

1

2

d

2

3

jEjee rounds up (in the computation of �c). 2

6.2.2 Partition Matroid

We turn our attention now to the problem of evaluating in linear time F

P

(b) for a partition

matroid P with ` blocks, and ` > 1. This problem is more di�cult than the problem for uniform

matroids since we have to determine simultaneously how the weights of the elements change

in all the blocks E

i

. As for the case of a uniform matroid, we compute F

P

(b) by a recursive

prune-and-search process that combines searches on weights with searches on costs. However,

our new algorithm reduces the size E by a fraction of only one tenth in each recursive call. This

decrease in performance, compared to robustness uniform, is due to the additional di�culty that

multiple blocks E

i

impose on �nding good probe values.

The algorithm, described in Figure 24, uses an array upper of size `, and it stores in upper (i)

an upper bound on the maximum weight that can be assigned to any element in E

i

. Each entry

of upper is initialized to 1. We let w

B

be the weight of a minimum weight base of P according

to the initial weights.

Note the correspondence between the structure of robustness uniform and the structure

of robustness partition. The part of robustness partition preceding the test \

P

`

i=1

c

0

i

� b" is

more complex than the corresponding part of algorithm robustness uniform. The reason is that

robustness partition has to consider all blocks E

i

, and the weights of the elements in all the

blocks are not increased at the same rate. This makes the computation of good probe values

more di�cult than for the case of a uniform matroid. Observe also that the probe values w

i

and

�c are di�erent from the corresponding probe values chosen by robustness uniform. These values

were selected to ensure that each call to robustness partition decreases the size of E by a �xed

fraction.

56

Algorithm robustness partition (E;w; c; b;upper)

if jEj = 1 then

Let E = feg. Set w(e) w(e) + b=c(e).

Let w

�

B

be the weight of a minimum weight base of P according to the increased

weights.

Output w

�

B

� w

B

.

else

for i = 1; 2; : : : ; ` do

Compute w

i

, the weight of the d

4

5

jE

i

jeth smallest element in E

i

.

(c

i

; r

i

) up to weight (w

i

; E

i

; w; c)

end for

Compute r

0

, the weighted median of the rates r

i

using, for each i, jE

i

j as the

weight for r

i

.

for i = 1; 2; : : : ; ` do (c

0

i

; w

0

i

) up to rate (r

0

; E

i

; w; c) end for

if

P

`

i=1

c

0

i

� b then

for i = 1; 2; : : : ; ` do

E

i

 E

i

� fe j w(e) � w

0

i

g

upper(i) w

0

i

end for

Output (robustness partition (E;w; c; b;upper))

else

Let S = [

fijr

i

�r

0

g

fe j e 2 E

i

and w(e) < w

0

i

g

Compute �c, the cost of the d

3

4

jSjeth smallest cost element in S.

for i = 1; 2; : : : ; ` do (~c

i

; ~w

n

i

) up to rate (�c; E

i

; w; c) end for

if

P

`

i=1

~c

i

� b then

for i = 1; 2; : : : ; ` do E

i

 E

i

� fe j w(e) � ~w

n

i

and c(e) � �cg end for

Output (robustness partition (E;w; c; b;upper))

else

(E;w; b) contract partition (E;w; c; b;

P

`

i=1

~c

i

; f ~w

n

i

; : : : ; ~w

n

`

g; �c; upper)

if b = 0 then

Let w

�

B

be the weight of a minimum weight base of P according to the

increased weights.

Output w

�

B

� w

B

.

else Output (robustness uniform (E;w; c; b;upper)) end if

end if

end if

end if

Figure 24: Algorithm robustness partition.

57

Algorithm contract partition (E;w; c; b;~c; f ~w

n

1

; : : : ; ~w

n

`

g; �c; upper)

Let S

i

= fe j e 2 E

i

; w(e) � ~w

n

i

and c(e) < �cg, and

T

i

= fe j e 2 E

i

; w(e) < ~w

n

i

and c(e) = �cg, for all i = 1; 2; : : : ; `.

for i = 1; 2; : : : ; ` do

Increase to ~w

n

i

the weight of every element in S

i

.

end for

b b� ~c

for i = 1; 2; : : : ; ` do

if jE

i

j > 1 then

for every e 2 T

i

do

(w(e); b) (minf ~w

n

i

; w(e) + b=c(e)g; maxf0; b� (~w

n

i

� w(e)) � c(e)g)

if b = 0 then exit the inner for-loop end if

end for

if b = 0 then exit the for-loop

else E

i

 (E

i

� S

i

� T

i

) [fêg, where meta-element ê has w(ê) = ~w

n

i

,

and c(ê) = c(S

i

[T

i

).

end if

else

Let E

i

= feg.

if c(e) � �c then

(w(e); b) (minfupper(i); w(e)+ b=c(e)g;

maxf0; b� (upper(i)� w(e)) � c(e)g)

if b = 0 then exit the for-loop

else E E �E

i

end if

end if

end if

end for

Output E,w, and b.

Figure 25: algorithm contract partition.

Algorithm contract partition, shown in Figure 25, is similar to contract uniform, but it has

to deal with one situation that does not appear for the case of uniform matroids. If any set E

i

has only one element, then it cannot be further contracted. In this case, contract partition does

the following. If the unique element e 2 E

i

has cost at most �c, then contract partition increases

its weight to upper(i) if the budget is large enough and then it discards block E

i

. This can

be done, since the weight of e cannot be increased above upper(i), and when it reaches such

weight robustness partition does not have to consider it any more. But, if the remaining budget

is too small to perform the weight increase, then the weight of e is increased only as much as

the budget allows. Since the budget is exhausted, no more weight increases are possible.

Theorem 6.2 Given a partition matroid P = (E; I; w; c) and a positive budget b, the value of

F

P

(b) can be computed in O(jEj) time.

Proof. To show that the algorithm runs in O(jEj) time, it su�ces to show that each it-

58

eration of the while-loop reduces the size of E by at least

1

10

jEj. The value r

0

computed by

robustness partition is such that the weight increases de�ned by

�

�(r

0

) do not a�ect the weights

of at least

1

2

� (1 �

4

5

)jEj =

1

10

jEj elements of E. Hence, if the cost of these weight increases

exceeds b, robustness partition discards those elements and reduces the size of E by at least

d

1

10

jEje. If the cost of the weight increases is smaller than b, robustness partition makes a test

on �c, the d

3

4

jSje smallest element cost in S. It is not di�cult to see that jSj �

2

5

jEj. If the cost of

the new weight increases is at least b, then robustness partition discards at least d

1

4

jSje � d

1

10

jEje

elements form E.

If

P

`

i=1

~c

i

< b, then contract partition contracts in each E

i

all elements from S of cost at

most �c. Let S

i

= E

i

\ S. There is one situation in which the algorithm cannot contract the

elements in S

i

of cost at most �c. Suppose that set S

i

has only two elements, one of cost at

most �c and the other of cost larger than �c, then contract partition cannot reduce the size of E

i

(since it would try to contract the element of cost at most �c to a meta-element). Since �c is the

d

3

4

jSjeth smallest element cost, then there are at most b

1

4

jSjc elements of cost larger than �c.

Hence, there are at most b

1

4

jSjc sets S

i

of two elements for which the algorithm cannot contract

their sizes as described above. These sets include at most b

1

2

jSjc elements. The other d

1

2

jSje

elements must belong to sets S

j

that contract partition contracts to at most half of their sizes.

Therefore, contract partition contracts the size of E by at least d

1

4

jSje � djEj=10e elements. 2

7 Conclusions

7.1 Summary of results

We have developed the concept of a robustness function for combinatorial optimization problems,

that generalizes the notion of sensitivity analysis. This function can be used to assess the quality

of solutions when there are expected changes in the values of the parameters of the problem, or

when such values are not known and estimates have to be used.

We have studied the concept of a robustness function using two di�erent models. The discrete

model that allows removals of elements from the input of the problem, and the continuous model

that permits only �nite changes in the weights of these elements. We have shown that the

discrete robustness problem is NP-hard even for seemingly simple optimization problems, while

the continuous version is polynomially solvable for a large class of combinatorial optimization

problems.

We have presented a 2-approximation algorithm for the maximum components problem,

that is used as a subroutine in the design of a O(logk)-approximation algorithm for the discrete

robustness problem for minimum spanning trees. Given a maximization optimization problem

P in which the weights of the elements are 0 or 1, let A be an �-approximation algorithm for

it. The techniques presented here can be used to design an O(� logn)-approximation algorithm

for problem P when the elements have arbitrary non-negative weights. This algorithm uses A

as a key subroutine.

59

Interestingly, we have been able to design an algorithm for solving the continuous robustness

problem for arbitrary matroids. This algorithm has the nice property that all partial solutions

that it builds are optimal for some budget value. The complexity of the algorithm inherently

depends on that of an oracle to test independence for the matroid. If such an oracle runs in

strongly polynomial time, then our algorithm can compute all the breakpoints of its robustness

function in strongly polynomial time.

We have studied some interesting classes of matroids. We have presented di�erent tech-

niques, that exploit the special structure of each one of these classes of matroids to design

faster algorithms for computing their robustness functions. Speci�cally, we have designed an

O(n

3

m

2

log(n

2

=m)) time algorithm for graphic matroids, an O(mn(m+n

2

)jEj log(m

2

=jEj+2))

time algorithm for transversal matroids, an O(m

2

n

2

) time algorithm for scheduling matroids,

and an O(m logm) time algorithm for partition matroids.

We have also studied the problem of evaluating the robustness function of a matroid at a

single point, as opposed to generating all the breakpoints. For the case of partition matroids we

have designed an optimal algorithm that solves the problem in O(m) time.

7.2 Directions for Future Research

Some problems that remain open are the following. For the case of the discrete robustness

problem for minimum spanning trees it would be interesting to �nd out if it is possible to design

a constant factor approximation algorithm for it. A related problem is to �nd an approximation

algorithm for computing the discrete robustness function for the shortest distance between two

distinguished vertices. It is not di�cult to �nd a k-approximation algorithm for the latter

problem, but one would suspect the existence of an algorithm with a better performance ratio.

The problem of designing a general approximation algorithm for arbitrary matroids resisted

our attempts for �nding it. A starting point would be to design an approximation algorithm

for the problem of �nding the smallest number of elements that need to be removed from the

ground set of a matroid to reduce its rank. This problem is an interesting generalization of the

minimum cut problem.

We have proved that the discrete robustness problem for graphic matroids when the elements

have unit destruction cost is NP-hard, but it is polynomially solvable for partition matroids.

We also have some preliminary results showing that the problem on some classes of scheduling

matroids can be solved e�ciently. It would be interesting to �nd a characterization of the

\simplest" matroid for which the problem is NP-hard. This characterization would give us

insight on the inherent complexity of the problem.

Our algorithm for computing the continuous robustness function for minimum spanning trees

uses as a subroutine an algorithm for computing the strength of a graph. The currently fastest

algorithm for solving this latter problem needs to solve n maximum ow computations. It would

be interesting to see if a faster algorithm can be designed for the problem.

Our bound for the number of breakpoints of a graphic matroid does not seem to be tight.

So far we have not found an example in which the number of breakpoints exceeds m. A tight

bound for this number would be reected in the corresponding reduction of the time complexity

of the algorithm for �nding the robustness function. The same can be said about the number

of breakpoints in the robustness function of arbitrary matroids.

Another way of improving the time complexity of the algorithm for the continuous robustness

function for minimum spanning trees would be to design algorithms for e�ciently updating

maximum ows when some edges of the graph are deleted or new edges are added. This is an

interesting problem in its own right.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms,

Addison-Wesley, 1974.

[2] R.K. Ahuja, J.B. Orlin, C. Stein, and R.E. Tarjan, Improved algorithms for bipartite network

ow, SIAM Journal on Computing, 23 (1994), pp. 906{933.

[3] K.R. Baker, Introduction to Sequencing and Scheduling, John Wiley, New York, 1974.

[4] M.O. Ball, B.L. Golden, and R.V. Vohra, Finding the most vital arcs in a network, Opera-

tions Research Letters, 8 (1989), pp. 73{76.

[5] F. Bauer and A. Varma, Distributed algorithms for multicast path setup in data networks,

IEEE/ACM Transactions on Networking, 1 (1996), pp. 181{191.

[6] O. Berman, Improving the location of minisum facilities through network modi�cation, An-

nals of Operations Research, 40 (1992), pp. 1{16.

[7] K. Bharat-Kumar and J.M. Ja�e, Routing to multiple destinations in computer networks,

IEEE Transactions on Communications, COM31 (1983), pp. 343{351.

[8] R.E. Bixby, Matroids and operations research, pp. 333{458, in Advanced techniques in the

practice of operations research, edited by H.J. Greenberg, F.H. Murphy, and S.H. Shaw,

North-Holland, 1985.

[9] R.E. Bixby and W.H. Cunningham, Matroid optimization and algorithms, pp. 551{609, in

Handbook of Combinatorics, Vol. 1, edited by R.L. Graham, M. Gr�otschel, and L. Lov�asz,

The MIT Press, 1995.

[10] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, Time bounds for selection,

Journal of Computer and System Sciences, 7 (1973), pp. 448{461.

[11] O. Boruvka, O jistem problemu minimalnim, Praca Moravske Prirodovedecke Spolcnosti, 3

(1926), pp. 37{58.

[12] O.P. Burdakov, On using the minimum spanning tree algorithm for optimal secant approx-

imation of derivatives, Zeitschrift f�ur Angewandte Mathematik und Mechanik, 76 (1996),

pp. 389.

[13] L. Cai, NP-completeness of minimum spanner problems, Discrete Applied Mathematics, 48

(1994), pp. 187.

60

[14] L. Cai and D.G. Corneil, Tree spanners, SIAM Journal on Discrete Mathematics, 8 (1995),

pp. 359{387.

[15] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph span-

ners, Proceedings of the 8th Symposium on Computational Geometry, 1992, pp. 192{201.

[16] E. Cheng and W.H. Cunningham, A faster algorithm for computing the strength of a net-

work, Information Processing Letters, 49 (1994), pp. 209{212.

[17] N. Christo�des, Worst-case analysis of a new heuristic for the traveling salesman problem,

Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University,

1976.

[18] E.G. Co�man Jr., P. Chr�etienne, J.K. Lenstra, and Z. Liu, editors, Scheduling theory and

its applications, John Wiley & Sons, 1995.

[19] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t, Proceedings

of the 34th Annual Symposium on Foundations of Computer Science, 1993, pp. 648{658.

[20] J. Cong, A. Khang, G. Robins, M. Sarrafzadeh, and C.K.Wong, Provably good performance-

driven global routing, IEEE Transactions on Computer-Aided Design, 11 (1992), pp. 739{

752.

[21] W. Cook, L. Lov�asz, and P. Seymour, editors, Combinatorial optimization, DIMACS Series

in Discrete Mathematics and Theoretical Computer Science Vol. 20, American Mathemat-

ical Society, 1995.

[22] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to algorithms, The MIT Press,

1992.

[23] W.H. Cunningham, Testing membership in matroid polyhedra, Journal of Combinatorial

Theory, Series B, 36 (1984), pp. 161{188.

[24] W.H. Cunningham, Minimum cuts, modular functions and matroid polyhedra, Networks,

15 (1985), pp. 205{215.

[25] W.H. Cunningham, Optimal attack and reinforcement of a network, Journal of the ACM,

32 (1985), pp. 549{561.

[26] E. Dalhaus, D.S. Johnson, C.H. Papadimitriou, P. Seymour, and M. Yannakakis, The com-

plexity of the multiway cuts, SIAM Journal on Computing, 23 (1994), pp. 864{894.

[27] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik,

1 (1959), pp. 269{271.

[28] K.U. Drangmeister, S.O. Krumke, M.V. Marathe, H. Noltemeier, and S.S. Ravi, Modifying

edges of a network to obtain short subgraphs, manuscript, 1996.

[29] J. Edmonds, Submodular functions, matroids and certain polyhedra, pp. 69{87, in Combi-

natorial Structures, edited by R.K. Guy, Gordon and Beach, New York, 1970.

[30] M.J. Eisner and D.G. Severance, Mathematical techniques for e�cient record segmentation

in large shared databases, Journal of the ACM, 23 (1976), pp. 619{635.

61

[31] A. Federgruen and P. Zipkin, Solution techniques for some allocation problems, Mathemat-

ical Programming, 25 (1983), pp 13{24.

[32] R.W. Floyd, Algorithm 97 (shortest path), Communications of the ACM, 5 (1962), pp. 345.

[33] L.R. Ford Jr. and D.R. Fulkerson, Flows in networks, Princeton University Press, 1962.

[34] G.N. Frederickson, Scheduling unit-time tasks with integer release times and deadlines, In-

formation Processing Letters 16 (1983), pp. 171{173.

[35] G.N. Frederickson and D.J. Guan, Preemptive ensemble motion planning on a tree, SIAM

Journal on Computing, 21 (1992), pp. 1130{1152.

[36] G.N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning trees,

Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 1996,

pp. 539{546.

[37] G.N. Frederickson and R. Solis-Oba, E�cient algorithms for robustness in matroid opti-

mization, Proceedings of the Eight Annual ACM-SIAM Symposium on Discrete Algorithms,

1997, pp. 659{668.

[38] G.N. Frederickson and R. Solis-Oba, E�cient algorithms for robustness in resource alloca-

tion and scheduling problems, manuscript, 1997.

[39] G.N. Frederickson and R. Solis-Oba, Algorithms for robustness in matroid optimization,

manuscript, 1997.

[40] M. Fredman and D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees

and shortest paths, Journal of Computer and System Sciences, 48 (1994), pp. 533.

[41] S. French, Sequencing and scheduling, Ellis Horwood Ltd., 1982.

[42] D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path subject to a

budget constraint, Mathematical Programming, 13 (1977), pp. 116{118.

[43] H.N. Gabow and R.E. Tarjan, E�cient algorithms for a family of matroid intersection

problems, Journal of Algorithms, 5 (1984), pp. 80{131.

[44] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set

union, Journal of Computer and System Sciences, 30 (1985), pp. 209{221.

[45] H.N. Gabow, Z. Galil, T.H. Spencer, and R.E. Tarjan, E�cient algorithms for �nding

minimum spanning tree in undirected and directed graphs, Combinatorica, 6 (1986), pp.

109{122.

[46] H.N. Gabow, Algorithms for graphic polymatroids and parametric s-sets, Proceedings of the

6th Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 88{97.

[47] H.N. Gabow,Matroid approach to �nding edge connectivity and packing arborescences, Jour-

nal of Computer and System Sciences, 50 (1995), pp. 259{273.

[48] G. Gallo, M.D. Grigoriadis and R.E. Tarjan, A fast parametric maximum ow algorithm

and applications, SIAM Journal on Computing, 18 (1989), pp. 30{55.

62

[49] M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of NP-

completeness, W.H. Freeman, 1979.

[50] M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan, Scheduling unit-time tasks with

arbitrary release times and deadlines, SIAM Journal on Computing, 10 (1981), pp. 256{269.

[51] M.X. Goemans and R. Ravi, The constrained minimum spanning tree problem, Lecture

Notes in Computer Science number 1097, 1996, pp. 66.

[52] B. Golden, A problem in network interdiction, Naval Research Logistics Quarterly.

[53] O. Goldschmidt and D.S. Hochbaum, Polynomial algorithm for the k-cut problem, Mathe-

matics of Operations Research, 19 (1994), pp. 24{37.

[54] R.L. Graham and P. Hell, On the history of the minimum spanning tree problem, Annals

of the History of Computing, 7 (1985), pp. 43{57.

[55] R.L. Graham, M. Gr�otschel, and L. Lov�asz, Handbook of Combinatorics, The MIT Press,

1995.

[56] D.M. Gus�eld, Sensitivity analysis for combinatorial optimization, Ph.D. thesis, University

of California, Berkeley, 1980.

[57] D. Gus�eld, Computing the strength of a graph, SIAM Journal on Computing, 20 (1991),

pp. 639{654.

[58] D. Gus�eld, L. Wang, and P. Stelling, Graph traversals, genes and matroids: an e�cient

special case of the traveling salesman problem, Technical Report No. CSE-96-3, University

of California, Davis, 1996.

[59] P. Hage, F. Harary, and B. James, The minimum spanning tree problem in archaeology,

American Antiquity, 61 (1996), pp. 149.

[60] F. Harary, Graph theory, Addison Wesley, 1969.

[61] F.S. Hillier, Introduction to operations research, McGraw Hill, New York, 1995.

[62] J.E. Hopcroft and R.M. Karp, An n

5=2

algorithm for maximum matching in bipartite graphs,

SIAM Journal on Computing, 2 (1973), pp. 225{231.

[63] L. Hsu, R. Jan, Y. Lee, and C. Hung, Finding the most vital edge with respect to minimum

spanning tree in weighted graphs, Information Processing Letters, 39 (1991), pp. 277{281.

[64] L. Hsu, P. Wang and C. Wu, Parallel algorithms for �nding the most vital edge with respect

to minimum spanning tree, Parallel Computing, 18 (1992), pp. 1143{1155.

[65] F.K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM Journal of Applied

Mathematics, 30 (1976), pp. 104{114.

[66] F.K. Hwang and D.S. Richards, Steiner tree problems, Networks, 22(1992), pp. 55{89.

[67] F.K. Hwang, D.S. Richards, P. Winter, and P. Widmayer, The Steiner tree problem, Annals

of Discrete Mathematics, 53 (1995), pp. 382.

63

[68] T. Ibaraki and N. Katoh Resource allocation problems: algorithmic approaches, Cambridge

Massachusets, MIT Press, 1988.

[69] M. Iri, Applications of matroid theory, Mathematical Programming: The State of the Art,

Springer, Berlin, 1983, pp. 158{201.

[70] K. Iwano and N. Katoh, E�cient algorithms for �nding the most vital edge of a minimum

spanning tree, Information Processing Letters, 48 (1993), pp. 211{213.

[71] J.R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Re-

port 43, (1955) Management Science Research Project, University of California, Los Ange-

les.

[72] D.R. Karger, P.N. Klein, and R.E. Tarjan, A randomized linear-time algorithm to �nd

minimum spanning trees, Journal of the ACM, 42 (1995), pp. 321.

[73] D. Karger, C. Stein, and J. Wein, Scheduling algorithms, to appear in CRC Handbook of

Theoretical Computer Science.

[74] R. Karp, Reducibility among combinatorial problems, in R.E. Miller and J.W. Tatcher,

editors, Complexity of Computer Computations, pp. 85{103. Plenum Press, 1972.

[75] W. Karush, A general algorithm for the optimal distribution of e�ort, Management Science,

9 (1962), pp. 50{72.

[76] K. Kayser, K. Sandau, G. Bohm, and K.D. Kunze, Analysis of soft tissue tumors by an

attributed minimum spanning tree, Analytical and Quantitative Cytology and Histology, 13

(1991), pp. 329{334.

[77] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, Journal of

the ACM, 41 (1994), pp. 214{235.

[78] S. Khuller, A. Bar-Noy, B. Schieber, The complexity of �nding most vital arcs and nodes,

Technical Report CS-TR-3539 University of Maryland, 1995.

[79] S. Khuller, B. Raghavachari, and N. Young, Balancing minimum spanning trees and

shortest-path trees, Algorithmica, 14 (1995), pp. 305.

[80] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, Multicasting for multimedia applications,

Proceedings of IEEE INFOCOM 1992.

[81] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman prob-

lem, Proceedings of the American Mathematical Society, 7 (1956), pp. 48{50.

[82] D. Krznaric and C. Levcopoulos, Computing hierarchies of clusters from the Euclidean

minimum spanning tree in linear time, Lecture Notes in Computer Science, Number 1026,

1995, pp. 443.

[83] E.L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Win-

ston, 1976.

[84] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling

Salesman Problem, John Wiley & Sons, 1985.

64

[85] J. Lee and J. Ryan, Matroid applications and algorithms, ORSA Journal of Computing, 4

(1992), pp. 70{98.

[86] A. Lehman, A solution to the Shannon switching game, SIAM Journal on Applied Mathe-

matics, 12 (1964), pp. 687{725.

[87] V.G. Leon, S.D. Wu, and R.H. Storer, Robustness measures and robust scheduling for job

shops, IIE Transactions, 26 (1994), pp. 32{43.

[88] M. Libura, Sensitivity analysis for minimum weight base of a matroid, Control and Cyber-

netics, 20 (1991), pp. 7{24.

[89] K. Lin and M. Chern, The most vital edges in the minimum spanning tree problem, Infor-

mation Processing Letters, 45 (1993), pp. 25{31.

[90] L. Lov�asz, Matching theory, North Holland, 1986.

[91] K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path problem,

Operations Research Letters, 8 (1989), pp. 223{227.

[92] M. Mansour, S. Balemi, and W. Troul (editors), Robustness of dynamic systems with pa-

rameter uncertainties, Birkhauser Verlag, 1992.

[93] M.V. Marathe, R. Ravi, R. Sundaram, and S.S. Ravi, Bicriteria network design problems,

Lecture Notes in Computer Science Number 944, 1995, pp. 487.

[94] P. Michael, Scheduling: theory, algorithms, and systems, Englewood Cli�s, New Jersey

1995.

[95] B.M.E. Moret and H.D. Shapiro, Algorithms from P to NP, The Benjamin/Cummings

Publishing Company, 1991.

[96] H. Narayanan, A rounding technique for the polymatroid membership problem, Linear Al-

gebra and its Applications, 221 (1995), pp. 41{57.

[97] H. Nagamochi, K. Nishimura, and T. Ibaraki, Computing all small cuts in an undirected net-

work, in Proceedings of the 5th International Symposium on Algorithms and Computation,

Number 834 in Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 190{198.

[98] J.G. Oxley, Matroid theory, Oxford University Press, 1992.

[99] C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complex-

ity, Prentice-Hall, New Jersey 1982.

[100] C.A. Phillips, The network inhibition problem, Proceedings of the 25th Annual ACM

Symposium on Theory of Computing, 1993, pp. 776{785.

[101] R.C. Prim, Shortest connection networks and some generalizations, Bell Systems Technical

Journal, 36 (1957), pp. 1389{1401.

[102] R. Rado, Note on independence functions, Proceedings of the London Mathematical Soci-

ety, 7 (1957), pp. 300{320.

[103] A. Recski, Matroid theory and its applications, Springer Verlag, Berlin, 1989.

65

[104] H. Saran and V.V. Vazirani, Finding k-cuts within twice the optimal, SIAM Journal on

Computing, 24 (1995), pp. 101{108.

[105] M. Schwartz and T.E. Stern, Routing techniques used in computer communication net-

works, IEEE Transactions on Communications, 28 (1980), pp. 539{552.

[106] D. Shier, Arc tolerances in shortest path and network ow problems, Networks, 10 (1980),

pp. 277-291.

[107] H.S. Stone, Critical load factors in two-processor distributed systems, IEEE transactions

on Software Engineering, 4 (1978), pp. 254{258.

[108] H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in

graphs, Mathematica Japonica, 24 (1980), pp. 573{577.

[109] R.E. Tarjan, Finding optimal branchings, Networks, 1 (1971), pp. 265{272.

[110] R.E. Tarjan, E�ciency of a good but not linear set union algorithm, Journal of the ACM,

22 (1975), pp. 215{225.

[111] R.E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path trees, In-

formation Processing Letters, 14 (1982), pp. 30{33.

[112] R.E. Tarjan, Data structures and network algorithms, Society for Industrial and Applied

Mathematics, 1983.

[113] W.T. Tutte, Matroids and graphs, Transactions of the American Mathematical Society, 90

(1959), pp. 527{552.

[114] G.M. Weber, Sensitivity analysis of optimal matchings, Networks, 11 (1981), pp. 41{56.

[115] D.J.A. Welsh, Matroid Theory, Academic Press, London 1976.

[116] H. Whitney, On the abstract properties of linear dependence, American Journal of Math-

ematics, 57 (1935), pp. 509{533.

[117] A. Zelikovsky, A series of approximation algorithms for the acyclic directed Steiner tree

problem, Algorithmica, 18 (1997), pp. 99.

66

