
PROF. DR. Hex \La‘ki'x‘KHVGER
Max-Planck-lnstitut i'iir Informatiic.

Im Stadtwald
D-66l23 Saarbrficken

Fully Dynamic Shortest Paths and

Negative Cycle Detection on Digraphs

with Arbitrary Arc Weights

Daniele Frigioni Alberto Marchetti—Spaccamela
Umberto Nanni

MPI—I—QS—l—OOQ March 1998

Fully Dynamic Shortest Paths and Negative Cycle Detection
on Digraphs with Arbitrary Arc Weights*

Daniele Frigioni’F1 Alberto Marchetti—Spaccamelai Umberto NanniI

Abstract

We study the problem of maintaining the distances and the shortest paths from a source node
in a directed graph with arbitrary arc weights, when weight updates of arcs are performed. We
propose algorithms that work for any digraph and have optimal space requirements and query
time. If a negative—length cycle is introduced during weight-decrease operations it is detected
by the algorithms. The proposed algorithms explicitly deal with zero—length cycles. The cost
of update operations depends on the class of the considered digraph and on the number of the
output updates. We show that, if the digraph has a k-bounded accounting function (as in the
case of digraphs with genus, arboricity, degree, treewidth or pagenumber bounded by k) the
update procedures require 0(k - n - log n) worst case time. In the case of digraphs with n nodes
and m arcs k = 05/5), and hence we obtain 0(JrTi — n - logn) worst case time per operation,
which is better for a factor of Ofi/fi/logn) than recomputing everything from scratch after
each input update.

If we perform also insertions and deletions of arcs all the above bounds become amortized.

1 Introduction

We study the dynamic single source shortest path problem in a. directed or undirected graph with
real arc weights. The best known static algorithm for this problem takes 0(mn) time if the graph
has n nodes and m arcs; it either detects a negative-length cycle, if one exists, or solves the shortest
path problem (see e.g. [1]). If the arc weights are integers in [—C..C] the best static algorithm takes
0(fimlogC) time [12].

The dynamic version of the problem consists of maintaining shortest paths while changes in the
graph are performed, without recomputing them from scratch. In such a framework the most general
repertoire of update operations includes insertions and deletions of arcs, and update operations on
the weight of arcs. When arbitrary sequences of the above operations are allowed we refer to
the fully dynamic problem; if we consider only insertions (deletions) of arcs then we refer to the
incremental (decremental) problem.

In the case of positive arc weights there is a number of papers that propose different solutions
to deal with dynamic shortest paths problems [3, 4, 7, 8. 10, 11, 13, 17, 18]. However, in the general
case, neither a fully dynamic solution nor a decremental solution for the single source shortest path
problem is known in the literature that is asymptotically better than recomputing the new solution
from scratch.

'Work partially supported by the ESPRIT Long Term Research Project ALCOM-IT under c0ntract no. 20244,
and by Progetto Finalizzato Trnsporti 2 of the Italian National Research Council (CNR). The work of the first author
was done while he was visiting the Max Planck Institut fiir lnformatik, IM Stadtwald. 66123. Saarbriicken (Germany),
supported by the NATO — CNR Advanced Fellowships Program 11. 215.29 of the Italian National Research Council.

lMax Planck lnstitut fiir Informatik, 1M Stadtwald, 66123, Saarbriicken (Germany).
:Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza". Via Salaria 113 - 00198 ~ Roma,

Italy. {frigioni . alberto , nanni}@dis.uniroma1 . it

In the case of graphs with arbitrary arc weights we are not aware of any dynamic solution that
is provably better than recomputing everything from scratch. In this paper we propose a solution
with a worst case bound of Oh/fi-n-log n) when the weight of an arc is changed. This is better for
a factor of O(\/rTi/ log n) than recomputing everything from scratch after each input update using
the best known static algorithm. I

The above bounds hold in the general case; they are even better if one of (or both) the fol-
lowing conditions holds: A) the graph satisfies some structural property; B) the update operation
introduces a “small” change in the shortest path tree. We now consider the above conditions in
more detail.

A) The structural constraints that we consider have been introduced in the framework of dynamic
algorithms in [10]. An accounting function A for G is a function that for each are (r, y) determines
either node x or node 3; as the owner of that arc; A is J‘s-bounded if k is the maximum over all
nodes :13 of the cardinality of the set of arcs owned by 5:. An analogous notion, the orientation of
arcs in an undirected graph, has been introduced in [5]. An orientation of an undirected graph
G = (V, E) is a function to which replaces each edge (3:, y) E E by a directed arc :r —) y or y ——> r.
If degjh) is the out-degree of node a: under the orientation to then a; is alt-bounded if for each node
a: E V degjb) S k. The notions of k-bounded orientation and k-bounded accounting function in
an undirected graph coincide. Since we deal with directed and undirected graphs, for the sake of
clarity in the sequel we use the terminology of accounting function.

The value of parameter is defined above for any graph G can be bounded in different ways (see
e.g. [10. 11]). For example, it is immediately bounded by the maximum degree of G. Furthermore,
the value of parameter k for any graph G is bounded by the arboricity, the pagenumber and the
treewidth of G. Moreover, it is possible to show that k = O[1 + fl), where 7 is the genus of G,
by observing that the pagenumber of a genus 1 graph is 0(fi) [14]; since the genus of a graph
is always less than its number of arcs, it follows that a graph with m arcs has a O(\/rn)-bounded
accounting function.

If we assume that the graph has a k-bounded accounting function then the running times of the
algorihms proposed in this paper become 0(n - k - log n). We remark that the notion of k-bounded
accounting function is useful only to bound the running times, but does not affect the behavior of
our algorithms.

B) The analysis of dynamic algorithms using the output complexity model has been introduced
by Ramalingam and Reps in [15, 17] and it has been subsequently modified by the authors of this
paper in [10]. Other authors used similar concepts in [2]. In [15, 17] Ramalingam and Reps propose
also the only dynamic solution for shortest paths on digraphs with arbitrary arc weights known in
the literature. In this solution they assume the digraph has no negative-length cycles before and
after any input change. In addition, they do not deal with zero-length cycles. In fact, they Show
that in their model there exist no dynamic algorithm for shortest paths whose performances can be
bounded in terms of the number of output updates, if zero-length cycles are allowed. In [16] they
propose a dynamic output bounded solution for a generalization of the shortest path problem.

Following the model of [10], in the case of the single source shortest path problem for a digraph
G with source node 5, the output information consists of (i) for any node I. E V the value of the
distance of x from s, and (ii) a shortest path tree rooted in 3. Let u be an arc operation to be
performed on G (insertion, deletion, or weight update), and G’ be the new graph after that ,u has
been performed on G. The set of output updates U(G,u) to be performed on the solution of the
problem is given by the set of nodes in N that either change their distance from the source in G',
or change their parent in the shortest path tree, due to u. The number of output updates caused by
u is the cardinality of set BAG, p). This notion of output complexity can be extended to compute
amortized costs [10]. We also remark that experiments show that the output complexity is a useful

parameter to evaluate the practical efficiency of dynamic algorithms for the single source shortest
path problem with positive weights [9].

If the digraph has a k-bounded accounting function, then our algorithms require 00: log n) time
per output update in the case of weight—decrease operations. When the weight of an are (my) is
increased we observe that if (3,3,!) is an arc belonging to the shortest path tree, then the set of
output updates depends on the existence of alternative paths; in fact it does not necessarily include
all nodes belonging to the subtree of the shortest path tree rooted at y. In this case the running
time of the update procedure is 0(k log it] per output update plus time linear in the size of the
subtree of the shortest path tree rooted at y.

SOme of the results of the paper exploit techniques developed by the authors in previous papers.
Namely, the idea of lit-bounded accounting function and the one of associating a potential function
to arcs [10, 11]. Roughly speaking the potential function that is associated to each arc allows to
run a procedure similar to Dijkstra’s algorithm [6] only on the subgraph that is affected by an input
change. However the potential function used in previous papers does not allow to deal with negative
weights and negative-length cycles. The original contribution of this paper can be summarized as
follows.

1. We explicitly deal with negative-length cycles that might be introduced by an operation that
decreases the weight of an arc or that adds a new arc to the digraph. Our algorithm first
detects if a negative-length cycle has been introduced by the update operation and computes
the set of nodes affected by the input update. Then the new shortest path tree is recomputed
only on the subgraph induced by the affected nodes.

2. In the case of deletions or of weight increase operations the main difficulty is given by the
presence of zero-length cycles. Our algorithm computes the set of nodes affected by the input
update and detects the zero-length cycles that include affected nodes. Then the new shortest
path tree is recomputed only on the subgraph induced by the affected nodes. Since zero-
length cycles have never been handled before, we believe that the correctness proof of this
part is interesting on its own, regardless from the other results of the paper.

3. We introduce a new potential function that allows us to compute the new distances after an
input change to the graph without using a label correcting algorithm, but running a Dijkstra-
like algorithm after that the set of nodes affected by the input change has been determined.

In the sequel of the paper we present only the operations that decrease or increase the weight
of an arc, and we assume that the graph has been preprocessed in order to found a k—bounded
accounting function.

The extension to the general case in which also insertions and deletions of arcs are allowed is
based on techniques developed in [11], and will be presented in the full version of the paper. Let
k,- be the minimum Jr st. the graph has a k-bounded accounting function after the i-th update in
a sequence, and let k’ = max{k,-}. The techniques of [11] do not require to compute k,- after each
update operation. It is shown how to compute an upper bound on leg: that, in the worst case, can
be larger than kg, but that is dynamically modified after each update operation in such a way that,
on the average, it is at most 2k* on any sequence of update and query operations. In this way
the worst case bounds that will be presented in the paper will become amortized if insertions and
deletions of arcs are allowed.

The paper is organized as follows. After some preliminaries, given in the next section, our
algorithms for the fully-dynamic single source shortest path problem for arc weight updates are
described in Sections 3 and 4, and the worst case bounds for this case are proved. In Section 5 we
provide conclusions and open problems.

2 Preliminaries

Let G = (N, A) be a weighted directed graph (digraph) with n nodes and m arcs, and let 5 E N be
a fixed source node. For each node 2: E N, we denote as IN(z) and OUT(z), the arcs of A incoming
and outgoing 2, respectively. To each arc (as, y) E A, a real weight way is associated.

A path in G is a sequence of nodes (531,332, . . . ,x,) such that (Iigzi+1) E A, Vi = 1,2, . .. ,r —
1. The length of a path is the sum of the weights of the arcs in the path. A cycle is a path
($1,x2,...,a:r) such that (anon-+1) E A, Vi = 1,2,...,r — l and (aflrl) E A. A negative~length
(zero-length) cycle is a cycle C such that the sum of the weights of the arcs in C is negative (zero).

If the graph does not contain negative cycles then we denote as d : N —> ER the distance function
that gives, for each node a: 6 N, the length of the shortest path from s to a: in G. Given two nodes
x and y we denote as d(a:,y) the length of the shortest path between a: and y. T(s) = (NT, AT)
denotes a shortest path tree rooted at s; for any a: E N, 3 7E s, T(:.:) is the subtree of T(s) rooted
in 3:. We now recall the well known condition that states the optimality of a distance function d on
G = (N,A). For each arc (2, q) E A, the following optiinatityr condition holds: d(q) 5 d(z) + mm.

For each 2 E N, (1(2) and d’(z) denote the distance of 2 before and after an arc modification,
respectively. The new shortest path tree in the graph G" obtained from G after an arc operation,
is denoted as T'(s).

Definition 2.1 After an arc update (weight-increase or weight-decrease) in G, we define the quan—
tity 6(2) = d’(z) — (17(2) as the variation of distance of node 2: from the source.

Definition 2.2 Giuen G = (N, A) andz E N, the backwardJevel b_ieuelz(q) of arc (2,9) 6 0UT(z)
is given by d(q) — tom; the forwardJevel f.leuetz(u) of are (u, z) E IN(z) is given by d(u) + 1%,:-
After an arc update {weight-increase or weight-decrease) in G, the variation of distance of node 2
from the source is 6(2) = d'{z) — d(z).

In order to bound the number of arcs scanned by our algorithms we assume that the sets IN[z)
and OUT(z) are partioned into two subsets as follows. Any arc (any) 6 A has an owner that must
be either a: or 3;. For each a: 6 N, IN-OWN(:c) denotes the subset of IN[I) containing the arcs owned
by :s, and What) denotes the set of arcs in IN{$) not owned by 3:. Analougously, 0UT-0WN($)
and Wk) represent the arcs in OUT(::) owned and not owned by :r, respectively. We say
that G has a k-bounded accounting function if both IN-OWN[$) and OUT-OWNLr) contain at most
is arcs.

In addition to the standard representation of digraph G we use the following data structures.
For each node x, D(:.c) and P[:e) store the distance and the parent of x in the shortest path tree,
respectively. D[:r) satisfies the following properties: i) D($) = d{.r) before the execution of any
of the algorithms proposed in the paper; ii) D(:c) = d’(rs) after the execution of the algorithms.
Furthermore, A(z) stores the computed value of 6(2); before and after the execution of any update
procedure its value is 0 and 13(2) = 6(2). Finally, we use two additional variables D’(z) and P’(z)
that stores the temporary value of 9(2) and P(z) during the execution of the algorithms.

The arcs in IN-0WN(I) and in OUT—OWN(:L‘) are stored in two linked lists, each containing at
most 1: arcs. The arcs in WW) and in was) are stored in two priority queues as
follows:

1. IN-OWN(:c) is a min-based priority queue where the priority of arc (y, r) (of node y), denoted
as ffiy), is the computed value of fieuetfiy).

2. 0UT-OWN($) is a max-based priority queue where the priority of arc (:s, y) (of node 3;), denoted
as tidy), is the computed value of bJeuetfiy);

Before processing a sequence of arc modifications on G, we have to compute the shortest distance
d($), for each node x in G, an initial shortest path tree and an initial k-bounded ownership for
G. Then, for each node x the data structures are initialized by computing, for each arc (1,3,1) E
WM“) and for each arc (mm) 6 WEN—Mir), tidy) = blevelfly) and 13(1)) = fJeuelIw),
reapectively (we will see that both these conditiOns are restored after the execution of any procedure
proposed in the following).

3 Decreasing the weight of an are

In this section we show how to maintain a shortest path tree of a digraph G = (N, A) with arbitrary
arc weights, after decreasing the weight of an arc. We assume that the graph before the execution
of the weight-decrease operation does not contain negative—length cycles; if the weight-decrease
operation on arc (x,y) does not introduce a negative—length cycle, Procedure Decrease, shown in
Figure 1, properly updates the current shortest path tree, otherwise it detects the negative-length
cycle introduced and halts.

Assume that the weight of arc (3:,y) is decreased by a positive quantity 6. It is easy to see
that if d(3:) + 101,3, — e 2 d(y) then no node of G changes its distance from 5. On the other hand,
if d(a:) + w”. — e < d(y) then all the nodes in T(y) decrease their distance from s of the same
quantity of y. In addition, T'(y) may include other nodes not contained in T(y). Each of these
nodes decreases its distance from s of a quantity which is at most the reduction of y’s distance.
We denote as red the nodes that decrease their distance from s after a weight-decrease operation,
and define the subgraph GR = (NR,AR) of G as follows: NR g N is the set of red nodes; AR Q A
is the set of arcs of G induced by the nodes in N3 plus, for each 2 6 NR, all arcs in OUT-OWN(z).
Let it}; = {NR|. The following facts can be easily proved:

F1) If node y decreases its distance from s after decreasing the weight of (x,y), then the new
shortest paths from s to the red nodes will contain are (my); if 3,: does not decrease its
distance from s then no negative—length cycle is added to G, and all the nodes preserve their
shortest distance from .5.

F2) Node x reduces its shortest distance from s after decreasing the weight of arc (3:,y) if and
only if the weight-decrease operation introduces a negative—length cycle; in this case (x,y)
belongs to 0.

F3) If decreasing the weight of (my) introduces a negative—length cycle 0 in G, then, for each
node 2 E C, the (acyclic) shortest path from s to z, passing through (my) and the arcs of
C connecting y to z, is shorter than the shortest path from s to 2 before the weight-decrease
operation.

Let us consider the nontrivial case where d’(y) < d(y). In order to update the distances of red
nodes we adopt a strategy similar to that of Dijkstra‘s algorithm on 03. In particular, the red
nodes are inserted in a heap Q. The presence of arcs with negative weights implies that, if we want
to use a Dikstra-like algorithm, the priority of a node in Q cannot be the lenght of the path found
by the procedure. However we will see that if the priority of z in Q is A(z), that is an estimate of
the (negative) variation 6(2) = d’(z) — (1(2), then a Dijkstra’s like procedure is sufficient to update
the shortest path tree.

Namely, at the beginning of the procedure, all nodes 2: in T(y). are enqueued with variation
[3(2) = A(y). Then, in the main while loop, the nodes are dequeued from Q and, for each 2.
dequeued with priority A(z), the new distance from s is computed as D'(z) = D(z) + A(z). At
this point, both for the arcs (2, h) in 0UT—OWN(2), and for the arcs (2, h) in Wk) such that
bz(h) > D'(z), the priority ofh and v in Q is possibly updated (i.e., if D’(z)+wz‘;1 —D(h) < A(h)),

as well as the current parent. If any improvement is determined for node 3:, then by Fact F2, a
negative-length cycle is detected.

In the main while 100p, for each red node 2, the new distance from the source and the (possibly
new) parent in a shortest path tree is computed in the auxiliary variable D’ (z). Only after that this
computation is carried out successfully (i.e., without trying to update node I), the data structures
are actually updated.

procedure Decrease(z,y : node;e : positiveJeal)
begin
tau. 4— 10“, — s
13(9) *— D(x) + way » My)
if {My} < D then

begin
P'iy} 4— I
Q 4— % {initialize an empty heap Q}
for each node z 6 T(y) do

9. begin
10. if z = r then a negative cycle has been detected
11. color 2 red
12. 33(2) <—‘ A(y) {uniform variation within T(y)}
13. Enqueue(Q, (z, A(z)))
14. end
15. while NonjlmptflQ) do
16. begin
1?. (2, 43(2)) (— EztractJ‘Iin(Q)
18. D’(z) +— D(z) + A(z)
19. for each (2,}1) e OUT-OWN(z) and for each (2J1) E Wk) s.t. 6:01) > D’(z) do
20. if D'(z) + to”, — DUI) < AU!) then
21. begin
22. if h = .1: then a negative cycle has been detected
23. color h red
24. P'(h) <— z
25» AU!) 4— 17(2) + was — DUO
26. Heap-Insert_or.Improve(Q, (h, A02”)
27. end
28. end
29. for each red node 2 do
30. begin
31. uncolor z
32. [3(2) +— D'[z)
33. P(z) <— P'(z)
34. A(z) <— 0
35. for each arc (v,z) e m-ow.v(z) do b..(z) <— D(z) — mm
36. for each are (2, v) E OUT-OWN(Z) do 32(2) <— D(z) + wz‘t.
3?. end
38. end
39. end

£5
94

59
?"

£3
07

49
?“

Figure 1: Decrease by quantity 5 the weight of are (any)

In the following we prove the correctness of Procedure Decrease. It is based on the following
lemma. We assume that before the weight-decrease operation the data structures store the correct
values, i.e.1 the array of parents induces a shortest path tree rooted in s and, for each 2 E N,
am = 03(2).
Lemma 3.1 Let 2 be any node ofG with variation 6(2) = d'(z) — d(z) < 0 after a weight—decrease
operation an arc (Ly). If (y = 20,21,251D = z) is the fragment of any shortest path from s to z
in G” starting from y, then fori = 1, 2. . . . ,p, we have: 6(zz-_1) 3 6(a).

Proof. By contradiction, let us suppose that, in the hypotheses of the lemma. there exist a node
2 E N and an index i such that Meg-4) > 6(a). Since arc (z,_1,z,-} belongs to a shortest path in
G’ from s to 25,-, then (fizz--1) + wad,“ = d’(zi). By combining the two relationships above, we
Obtain:

d'(z,-_1)— d(Zi—1l = 5(Zi—il > 5(32} = d'(z,-_1) + wz,_1,z,- — (1(n

and hence d(z,-] > d(z,_1) + w2,_,,z,, which contradicts the optimality conditions on are (z,_1,z,;)
before the update. D

Theorem 3.2 Let G = (N,A) be a digraph with arbitrary arc weights, if the weight of are (mg)
is decreased by quantity 5, then Procedure Decrease{:c,y;e) is correct, i.e., either it detects the
introduction of a negative—length cycte, or after its execution
a) for each node z E N, D(z) = d’(z), and
b) the parent array induces shortest path tree rooted in s.

Proof. A crucial point of the algorithm is the order in which nodes are dequeued from Q in line 17,
and the updates that are performed on the priorities of nodes in Q. To prove the theorem we need
to state some preliminary properties.

P1) All the red nodes are extracted from Q in nondecreasing order of priority.
When a node 2 is extracted from Q with priority 23(2) < 0, any node h such that (z,h) E
OUT(z) may decrease its priority in Q to a value A(h) not smaller than Adz). In fact, from
lines 25—26, we have:

A(h) = D'(z) + wz‘h - D(h) = A(z) + D(z) +11)”, — D{h) = A(z} + d{z} + was}, — d(h) Z A[z)

where the last inequality is due to the optimality condition on are (2, h] before the arc update.

P2) Ifz E Q, then P'(z) locates a possible path {non necessarily optimal) to the source.
In fact, as can be easily proved by induction, one of two possibilities arises: i] z E y and
P’(z) E 3:; ii) P'(z) has been already dequeued from Q and. in turn, it has found a path to
the source through P’{P'(z}). Note that this property, actually weaker than statement (b) of
the theorem, shows that all the red nodes will be possibly appended to some tree rooted in 3.

P3) If a node 2 has a priority A{z] in the queue, then this is an upper bound to the. actual variation
of its distance from the source, i.e., A(2) 2 6(z).
This can be easily proved by induction on the number of changes made on the priorities in
Q and on the basis of property P2.

P4) Us is degueued with priority A[z), for each neighbor h ofz stitt in the queue, its priority is
subject to the constraint: A{h) g D’(z] + wz‘h — d(h).
It is sufl‘icient to check that, as soon as a node 2 is dequeued, all the arcs (2, h) leaving 2 that
produce possible improvements are scanned (see lines 19—27).

Now we prove the theorem by contradiction. Two possible mistakes may arise:

a) a node 2 is enqueued, but its distance from the source is not correctly computed;

h) a node 2 changes its distance from the source but it is not enqueued in Q.

Case a) Let 2 be the first dequeued node whose computed distance from s is wrong, i.e.,

d'(z) < D’(z) = dfz) + [3(2) (1)

in fact, as a consequence of property P3, D’(z) must be an upper bound of the actual distance of
z from s.

Let us consider any shortest path from 2 to the source, and let p be the parent of z in this
optimal path. Two possibilities arise, according on whether p is still in the queue or not when 2 is
dequeued.

1. p is still in the queue when 2 is dequeued. Let us consider the optimal path from s to 2. In
particular, since (a, 3;) belongs to any shortest path from the source to a red node, we consider
only the fragment of that path between 3 and z: (a: = 29,21, . . . ,zh_1,z;,, . . .,z) where 2h,
possibly coincident with p, is the first node in such a path which is still in the queue. In
turn, its parent zh_1 is either a nonred node, or has already been dequeued: in both cases its
distance from the source has been correctly computed, i.e., D’ (2h-1) = d’(zh_1). Therefore,
by property P4, when 2 is dequeued, the priority of 2;, in Q is subject to the constraint

AW) S d'(Zt*1)+ with,“ - d(2h) = 5(Zhl-

Since A[zh) 2 6(2),) by property P3, we have that A(zh) = 6(zh). By inequality (1), we know
that 6(2) = d’[z) — (1(2) < 13(2). On the other side 2 is dequeued from Q before 2:5, and then,
by Property P1: 6(2) < 13(2) 3 A{z;,) = 5(zh). This contradicts Lemma 3.1, that states that
the values of (i must be monotone nondecreasing along any optimal path from the source to
node 2.

2. 30 has already been dequeued or, as a special case, it is coincident with node x. In this case the
distance ofp from s has been correctly computed, i.e., D'(p) = d’(p}. Hence, by property P4,
A(z) S d’(p) +1ez —d[z). By combining this inequality with inequality (1) above, we obtain:
d’(z) < d(z} + A(z} g d’(p) + iz, which contradicts the fact that p is an Optimal parent of
2.

Case (3) Let 2 be the closest node to the source (in terms of number of arcs) that should be
enqueued, but it is not. Hence the parent p of z in such a path is either z, or it was enqueued and,
as proved above, its distance from the source has been correctly computed.

On the other side, when node p was dequeued, all the arcs (7., h] leaving 2 that may produce
possible improvements to the priority of it have been scanned (see lines 19—27), in the inductive
hypothesis that the data structures store correct information before the updates take place. D

The following theorem gives the output complexity bounds of Procedure Decrease.

Theorem 3.3 Let G = (N,A) be a digraph with arbitrary arc weights. If G has a lat-bounded
accounting function, then it is possible to update T(s) and the distances of nodes from s, or to
detect the introduction of a negative—length cycle in G after the execution of a weight-decrease
operation, in 0(nR - k - log n) time.

Proof. Each red node 2 is enqueued in Q exactly once, as it can be easily shown using the
monotonicity of the priorities in Q. When 2 is dequeued, an arc [2,h) E 0UT(z} is scanned
(see line 19) only if: i) (z,h) E 0UT-OWN[z]: in this case the arc is scanned by ownership; ii)
(2, h) 6 mo) and sl.) > D'(z): in this case the arc is scanned by priority.

At most is - n R arcs are scanned by ownership. In order to find out the arcs to be scanned by
priority, for each red node 2 Procedure Decrease traverses only the arcs (z, u) in o‘er-"mm such
that bz{v) > D’(z), i.e., such that also i: is red, plus the first arc in W04) not satisfying this
property. Therefore, the algorithm will scan by priority only arcs between red nodes, plus it}: arcs
that do not satisfy this property. Since the subgraph induced by the red nodes has a k-bounded
accounting function, then at most (k + 1) - n3 arcs are scanned by priority by the algorithm.

In the worst case, each arc scanned by priority requires O[log n) time to be selected in its
owner’s local priority list and it requires a possible insertion or decrease-priority operation in the
global priority queue Q (line 26. In this queue there will be exactly 713 node insertions and at most
I: - n3 decrease—priority operations. These operations require at most 00: - n3 . log n) worst case
time.

In the last phase (lines 29—37), the updates to the local priority queues W andm
of all the nodes (each requiring O(log n) time) are performed by scanning again the lists IN-OWN
and OUT-OWN of the red nodes (lines 35—36), leading to an overall worst case time of 0(h-nR-Iog n)
for this phase.

Note that, if decreasing the weight of arc (3,3,1) introduces a negative-length cycle 0, then by
Fact F1 (1', y) E C, and by Fact F3 all nodes in C are red. Hence, the above bounds hold also when
a negative-length cycle is detected by the algorithm. E]

Corollary 3.4 In a general digraph l: = (Db/E), and hence it is possible to update T(s) and the
distances of nodes from s after the execution of a weight-decrease operation, in O[n - {rh- log n)
worst case time.

Note that. in a fully dynamic sequence of operations, it is not possible to amortize the decrease
operations in the local priority queues W, since these are interleaved with weight-increase
operations. Though, to deal with a monotone sequence of weight—decrease operation, by using
Fibonacci heaps both in the global queue Q and in the local priority queues, the bound can be
improved to O{n,q[lc + log 11)) worst case time.

4 Increasing the weight of an are

In the following we assume that before the weight—increase operation the data structures store the
correct values, i.e., the array P induces a shortest path tree rooted in s and, for each z E N,
D(z) = d(z). If the weight of an arc (say) 6 A is increased, no negative—length cycle can be
introduced in G as a consequence of that operation. 0n the other hand we allow the presence of
zero—length cycles and deal explicitly with them. Furthermore, it is easy to see that: i) for each
node 2 a? T(y), d’(z) = d(z); ii) there exists a new shortest path tree T'(s) such that, for each
2 e T(y) the old parent in T(s) is preserved.

We define a coloring of the nodes of G, depending on the algorithm, in order to distinguish how
nodes are affected by the execution of a weight-increase operation, as follows:

9 E N is white if and only if 9 changes neither the distance from 3 nor the parent in T(s);
q E N is red if and only if q increases the distance from the source, i.e., d’(q) > (1(9),
9 E N is pink if and only if q maintains its distance from s, but changes the parent in T(s).
q E N is blue if (3 belongs to a zero-length cycle that is detected by the algorithm.
It is easy to verify that, ifq is red then all the children of q in T(s) must be updated and will be

either pink or red; furthermore, if q is pink or white then all nodes in T{q) are white. Observe that a
node is colored pink depending on the possibility of finding alternative paths with the same lenght
of the shortest path before the weight-increase operation; it follows that a node q can be colored
white even if the shortest path from s to (3 before the weight-increase Operation is not a shortest
path after the update operation; it is sufficient that there exists one shortest path from s to q of
the. same length of the shortest path from s to 9 before the weight—increase operation, where node g
has the same parent as before. We also observe that a node colored blue will be later colored again
with a different color; on the other side when a node is colored white, pink or red the color will not
be changed anymore.

In this case the output complexity is given by nodes colored red and pink. We remark that
in the case of a dynamic update it that increases the weight of an arc the cardinality of U(G,n)
depends on the solution found by the algorithm. In fact, a nonred node might be colored either
pink or white depending on the specific shortest path that is found by the algorithm. Hence it is
possible to have different sizes for the set of output updates, due to the input modification pt.

Algorithm Increase (Figure 4). works in two phases. In the first phase it uses Procedure Color,
shown in Figure 2. that colors the nodes in T(y) after increasing the weight of are (I. 3;}. according
to the above described rules, and gives a new parent in the shortest path tree to each node which is
colored pink. This is done by inserting the nodes in a heap M. extracting them in non-decreasing
order of their distance from the source, and searching an alternative shortest path from the source.
Since Procedure Color can also modify the shortest path tree. we denote as Tc(s] the tree after the
execution of Color. In the second phase Procedure Increase properly updates the information on
the shortest paths from s for all the nodes that have been colored red, by performing a computation
analogous to Dijkstra‘s algorithm.

Definition 4.1 Let G = (N,A) be a digraph. in which the weight of arc (x. y} has been increased.
A node q is a candidate parent of a node p if arc (q,p) belongs to a shortest path from s to p in G
(i.e., d(p) = d(q) + wq‘p). Node q is an equivalent parent forp if it is a candidate parent ofp and
d’(q) = d(v)-

procedure Color(y : node)
begin

M <— B {M is an heap}
Enqueue’I, (y. D(y)))
while NonhptflM) do

begin
(2:, 13(2)) = ExtractJ‘linUU)
if z is uncolored then

Searchjquivalentjathb, y)

rl
e

e
e

w
w

e

end
color red each arc with both endpoints red

endH
H

to
o

o
H

D
'

'

Figure 2: Color the nodes in T(y) after increasing the weight of arc (as. y)

Procedure Color uses Procedure Searchjquivalentfath, shown in Figure 3, which searches
for a path from s to a node 2 in G" whose length is equal to D(z). In order to achieve this goal
Procedure SearchJEquivalenLPath uses a stack Q which is initialized with node 2:. During the
execution of the procedure Q contains a set of nodes 91, qg, . . . ,qk (q;r = Top(Q)) such that 91- is a
candidate parent of fit—1s for i = 21 3. . . . , k. The nodes in Q are either uncolored or blue. and hence
they represent nodes that are waiting that their current candidate parent is correctly colored.

Let us define the best nonred neighbor of a node z as the node q such that («9.2) E IN(z), q is
nonred, and the shortest path from s to 2 passn through q is the minimum among those passing
through the nonred neighbors of 2:. After having initialized Q with z, Searchfiquivalentfath
searches the best nonred neighbor of z in IN-OWN(z) and in WU}, respectively; finally. it
chooses node q as the best between the two neighbors found. If 9 belongs to T[z] or to the subtree
of T(y) rooted at some node currently in the stack= then a zero—length cycle has been detected:
then the procedure colors blue the nodes in that cycle (this is done in order to avoid multiple visits
of the same node) and considers another candidate parent of z.

A number of cases may arise once we have found the best nonred neighbor q of e. If q is not a
candidate parent of z, and z is not blue. then there is no alternative path from s to z in G“ with

10

length D(z) and, therefore, 2 is colored red. Then all the children of z in T(y) are inserted in the
heap M and they will be colored later either red or pink. On the other hand, if q is not a candidate
parent of z and z is blue, then 2 belongs to a zero—length cycle. In this case we cannot give a final
color to 2; hence z is deleted from Q, and it will be given a final color later.

If q is a candidate parent of z and 9 does not belong to T{y) or it has been already colored
either pink or white then it is an equivalent parent for 2. In fact, in this case we have found a
shortest path from s to z passing through 9 whose length is D(z): 2: must be colored either white
or pink, depending on whether or not node q was the parent of z in T(s) before the weight-increase
operation.

If g is blue or q E Q then a zero—length cycle has been detected, and therefore all nodes currently
in Q are colored blue. Finally, if q is uncolored, then q represents a candidate parent of 2, but the
algorithm is not able to determine whether q is an equivalent parent of 2, because it could change
its distance later. In this case the search continues, node q is pushed in Q, and the algorithm looks
for an equivalent parent of 9, that now is the top node in the stack.

Observe that a blue node will be colored again; in fact, when the node on the top of Q is colored
either pink or white, then all the nodes in the stack and all the blue nodes have found a path from s
of the same length of the previous one, and hence they are colored either pink or white, depending
on whether or not they change their parent in T(s). Moreover the last step of the procedure colors
red all remaining blue nodes.

In the sequel we show the correctness of Procedures Color and Searchfiquivalentfath. It is
based on the following two lemmas.

Lemma 4.1 Let G = (N,A) be a digraph with arbitrary arc weights, and assume that a weight
increase operation is performed on arc (any). Hg) and q are two nodes in T(y) such that p and q
belong to a zero—length cycle, then p and q are colored either both red or both nonred by Procedure
Searchjquivalentj’ath.

Proof. First observe that if an arc (a,b) belongs to a zero—length cycle, then a is a candidate
parent of b.

Let p and g be two nodes in a zeroecycle, and assume that the lemma is not true. Without loss
of generality, we can assume that there exists are (q, p), and that q is nonred and p is red. Node p
is colored red either at line 12 or at line 37 of Procedure Search£quivalentjath Note that ifp
is red then the algorithm has surely considered node q as a candidate parent for p before coloring
p red. Since the red color given to p is not changed, then three cases may arise depending on the
color of g at the time it was considered as a candidate parent for p.
1. q was either pink or white: in this case the algorithm colors p nonred (either white or pink) either

in line 23 or in line 25. This contradicts the hypothesis that p is colored red.
2. g was blue: in this case p is colored blue at line 34. Since both q and p are now colored blue,

and q is a candidate parent for p, then they will be colored later, either both nonred at line 31
or both red at line 37, contradicting the hypothesis that they have different colors.

3. g was uncolored: two subcases may arise. i) If g E Q,then a zero-length cycle has been detected
containing both q and p, both the nodes are colored blue by the algorithm at line 34, and the
same reasoning of case 2 above can be applied. ii) If g e’ Q then q is pushed on the stack Q
after p (line 35). When q is colored nonred by the algorithm, the loop at lines 20—30 colors
either white or pink all the nodes in the stack and all the blue nodes, and therefore also p; this
contradicts the hypothesis that p is colored red.

Since in any case we have derived a contradiction, then the lemma follows. E]

11

procedure Searchjquivalentjathkw : node)
begin

Q {— lb {Q is a stack}
Push(Q, 2.)
repeat

p := T°p(Q)
let g be the best nonred neighbor of p
if q does not exist or q is not a candidate parent for p

then begin
9013(6))
ifp is not blue then

begin
color(p) <— red
for each u E children(p) do Heap-Insert(M, (v. D(v)))

end

9
9

7
4

5
3

5
.“

:“
9

3
‘3

'7
'

w
H

i—
Iv

—
Ii—

It
o

P
W

N
E

‘P
'

end
else ifq E T(y) or q is pink or q is white

then
begin

to := 9
repeat

v ;= T°P(Q)
P°P(Q)
if (my) 6 T{s] then caloric) <— white

else begin
coior(u) +— pink
10(1)) := to

end
color white all nodes in T(u)
w := 1;

until Q becomes empty
color white or pink all remaining btue nodes

end
else if q E Q or q is blue {3. zero—length cycle has been detected}

then color blue all nodes in Q
else Push(Q,q) {q E T(y) and q is uncolored}w

w
w

w
m

m
w

u
u

m
m

m
m

m
m

m
u

r
—

u
—

u
—

n
w

P
P

M
N

H
P

P
W
flP

’F
—

"P
W

P
E

P
P

W
‘IP

‘P
‘

36. until Q becomes empty
3?. color red all blue nodes
38. end

Figure 3: Search an alternative parent for node 2 in T(s)

Lemma 4.2 Let G = (N, A) be a digraph with arbitrary arc weights, if a weight-increase operation
is performed on are (:r,y) and node 2 is colored red, then all the nodes q E T(y) such that D(g) +
d(q,z} = 13(2) are colored red as well.

Proof. Let q E T(y) such that D(q) + d(q,z) = 19(2), and q = go,q1,q2,....qk_1,qk = 2 be the
path between q and 2 whose length is d[q, z}. The proof is by induction on 1%.
Base step. it = 1: in this case there exists arc [q,z), d(q, z) = wq‘z, and D(q) + Log; 2 D(z). If
q and z belong to a zero-length cycle then by Lemma 4.1 they receive the same color, and hence,
since 2 is red, then they are both colored red. Otherwise, assume that the thesis is not true, i.e.,
that q is not red. Three cases may arise. Either q is white or q is pink or it is uncolored. If q
is uncolored then Procedure Searchjquivalentj‘ath finds node or as a. candidate parent of z in
linefi and pushes it on the stack Q in line 35. Note that when q is colored either pint: or white all
nodes in Q are colored either pink or white; therefore, 2 cannot be red. On the other hand, if q is
either pink or white then Procedure Searchfiquivalentf'ath finds node q as a candidate parent
of z in line 6 and colors 2 either pink or white in lines 20—30. In both cases this contradicts the

12

hypothesis that z is colored red.
Inductive step. it > 1: by inductive hypothesis aSSume that all the nodes q1,q2,.. . ,qk_1 are
colored red. Furthermore, since node Q1 is on a shortest path from s to z peasing through node q,
then 13011] = DUI) + wwr Now, if we suppose that the color of q is not red, then we can use the
same reasoning used in the base step to derive a contradiction. El

Theorem 4.3 Let G = (N, A) be a digraph with arbitrary arc weights. if a weight-increase oper—
ation is perfomed on are (:r,y), then Procedure Color caters a node 2 e T(y) red if and only if
d'(z) > d(z).

Proof. We prove the lemma by contradiction. Let 2: be a node that receives a wrong color during

the execution of Procedure Color such that: (i) all nodes that belong to the path in Tc(s) between

3 and z are correctly colored; (ii) 2 is the first one to receive a wrong color among the nodes that

satisfy (i) above. If the lemma is not true then such a node exists. We distinguish three cases
depending on the color given by the algorithm to z.
1. z is colored white. If the color of z is white this implies that it has the same parent w in T(s)

and in T43) and that w is white or pink; therefore, if the color of z is wrong, the color of w is
wrong as well, and should be red, contradicting condition (i) above.

2. z is colored pink. In this case it is sufficient to show that 2 cannot be colored red by the

algorithm. Let to be the new parent of z in Tc(s). If both w and z belong to a zero-length cycle

then, by Lemma 4.1, 2 and w are colored either both red or both non red. If the color of z is

wrong, i.e., 2 should be red, then also the color of w is wrong, contradicting (i) above.
If both w and 2 do not belong to a zero—length cycle, let v1,e2,...,ek = z, k 2 1. be the nodes

extracted from Q in the loop at lines 20-30 of SearchJSquivalentPath, before coloring 2 pink.

Let v0 be the neighbor of 1:1 selected by the procedure as the parent of v1 in 219(5), then either

190 does not belong to T(y) or it has been previously colored pink or white. By (i) above on is

correctly colored and hence d’(o1) = d(v1). Now observe that the arcs of the path from s to no
stored in Tc(s), together with arcs (vg,v1),(v1,u2),.. . , (nk_1,z) determine a path P from s to
Z.

We distinguish two cases. a) If k = 1 and z is colored pink then (fine) + rum: 2 (1(2); since
d(vg) = d’fuo) then P is a shortest path from s to z of length d(z); hence 2 cannot be red.

b) If k > 1 then observe that all the nodes 1)],112, . . . ,vk_1 are colored either pink or white, and

that the subpath of P from s to Up; is a shortest path in G” with length d'(ek-1) = d[uk_1).
Furthermore, since 2 is colored pink, we have d(vk_1) + wvh,‘z = d(z). If 2 was red then

by Lemma 4.2 vk_1 has to be red. Therefore the color of 1%-] is wrong, and this contradicts

conditions (i) and (ii) above.
3. z is colored red. Let g and w be the parent of z in T(s) and Tc(s), respectively. First observe

that, before coloring 2 red, 9 has been surely colored red [in fact 2 is pushed in the stack after g

has been colored red); by condition (ii) above the color of q is correct and. therefore, 2 cannot
be white. It remains to show that 2 cannot be pink. We distinguish three cases.
a) If to E T(y) and both 2 and to belong to a zero—length cycle then, since the algorithm has
colored 2 red, by Lemma 4.1 also w is colored red. If the color of z is wrong, i.e., z is pink, then

the color of w is wrong contradicting condition (i) above.
b) If in E T(y) and 2 does not belong to a zero—length cycle then, since the algorithm has
colored 2 red, by Lemma 4.2 all nodes ‘U 6 T(y) such that d(u) + 03(1), 2) 2 (11(2) have already
been colored red. By condition (ii) above the color of these nodes is correct. This implies that

w is correctly colored red, and hence that 2 cannot be pink.
c) If w (z T(y) then note that z is deleted from stack Q after that all its possible candidate
parent have been considered. It follows that the algorithm colors 2 red after that all the possible

13

candidate parents of z in T(y) have been correctly colored red (by condition (ii) above), and
there exists no candidate parent for 2 outside T(y). Therefore, an is not a candidate parent for
z, 3 cannot be colored pink, and it is correctly colored red. C}
We now present procedure Increase, that, roughly speaking is Dijkstra’s algorithm applied to

the subgraph of 0’ induced by red arcs. Initially, the red nodes are inserted in a heap H. The
main difference with respect to the stand Dijkstra’s algorithm is the priority given to each
red node 2 in H, which is 23(2) instead of D(z). Then the procedure repeatedly extracts node
2: with minimum priority from H and updates its distance label. In this case, for each red are
(ah) E 0UT(z), Procedure Heap_Improve updates the priority associated to h in H (if required),
in order to restore the optimality condition.

procedure Increase(r,y : node;c : positiveJeal)
begin

w,,,, <— wz_y + e
if (2:, y) is not a tree arc

then update either 131(3)) or 33(1) (depending on the owner of (z,y)) and EXIT
Color(y)
H <— B {initialize an empty heap H]
for each red node z do

begin
let p be the best nonred neighbor of z

10. ifp 96 Null
11. then begin
12. Pl(z) <— p
13. D'(p) <— DLp)
14. 13(2) (— D'(p) + w“ — 0(2)
15. end;
16. else A(z) (—— +00
17. Enqueue(H, (z, A(z)))
18. end
19. while Non.Empty(H) do
20. begin
21. (z, A(z)) (— EztractJIin(H)
22. 0"(2) (—— D(z) + 13(2)
23. for each red arc (z, k) leaving z do
24. if D'(z) + w”. — DUI) < A01)
25. then begin
26. P'(h) <— z
27. A(h) <— D’(z) + was — D(h)
28. Heap-Improve(H, (h, A(h)))
29. end
30. uncolor all the red arcs (q, z) entering z
31. end
32. for each red node 2 do
33. begin
34. uncolor z
35. 19(2) <—— D'(z)
35. P(z) (— P’(::)
37. (3(2) (— D
38. for each arc (11,2) €1N-0WN(Z) do bv(z) :: D(z) — w”
39. for each arc (2,11) E OUT-OWN(z) do 3(2) :: 13(2) + w”
40. end
41. end

P
W
fl
P

‘P
‘F

‘P
N

!‘

Figure 4: Increase by quantity e the weight of arc (x, y)

In order to prove the correctness of procedure Increase we need the following lemma, analogous
to the one we have shown for a weight-decrease operation.

14

Lemma 4.4 Let 2 be any node of G with variation 6(2) = d'[z) — d(z] > 0 after that a weight
increase operation is performed on G. If (s = 20,21, . . . , 2? = z) is a shortest path from s to z in
G", then for i = 1,2,...,p, we have: d(z,-_1] S 6(a).

Proof. By contradiction, let us suppose that, there exists a node 2 E N and an index i such that
5[Zg_1) > 6(a). Note that arc (2,-_1,z,-] belongs to a shortest path from s to z,— in G', and therefore
d’(z,-_1} —+- w: = d’(z,-]. By combining the two relationships above, we obtain:

i—lizi

(Hit—1) — d(zz'-1l = 5(Zt—1)> 5(a) = (“Zr—1) + 1325-1,“ — dlztl

and hence d(z,-) > d(z,-_1) + randy“ which contradicts the optimality condition on arc (2,4, 21-)
before the arc update. [3

Theorem 4.5 Procedure Increase(z,y;e) is correct, i.e., after its execution
a) for each node 2 E N, D'(z) = d’(z), and
b) the parent array induces a shortest path tree rooted in s.

Proof. After coloring all the nodes, the red arcs are colored, too. Then each rat node 2 is
enqueued in H (lines 7—18) with priority given by the difference between the length of the shortest
path passing through a non-red neighbor of z and 03(2). The nodes that will get an initial priority
in H smaller than +00 have at least a nonred neighbor.

We first prove that D(z] 2 d’(z) and that the parent array induces a single source path tree
rooted in s. In fact, if during the execution of the procedure a node 2 has a non-null pointer
P’(z] E p and priority A(z) then there is a path form .3 to z passing through p of length d(z) + A(z).
In fact, as can be easily proved by induction, either p is nonred, or it has been already dequeued
from H and, therefore, there is a path to the source by using its pointer P’(p). In both cases it
follows that A(z) 2 6(2) and, therefore, D’(z) 2 d’(z). This also implies that 23(2) 2 (5(z}.

In order to prove the optimality of the distances computed by the algorithm we need the
following property.
Claim. If z is either a nonred node (with A(z) = 6(2) = O) or a node that has been atready
dequeued with priority A(z], for each neighbor h of z still in the queue, its priority satisfies:
A(h) _<_ D'{z) + wl — d(h).
To prove the claim it is sufficient to check that, as soon as a node 2: is dequeued, all the remaining
red arcs (z,h) leaving 2 are scanned for possible improvements of the red neighbors still in the
queue (see lines 23—29]. After that, the priority of nodes in the heap can only decrease.

We now show that the computed distances are optimal by contradiction; namely, let 2 be the
first dequeued node whose computed distance from the source is wrong, i.e..

d'(z) < D'(z} = d(z) + 23(2). (2)

Let us consider a shortest path from s to z, and let p be the parent of z in this optimal path.
Two possibilities arise.

1. p is still in the queue when 2 is dequeued. Let us consider the optimal path from s to z:
(s : 20,21, . . . ,zh_1,zh. . . . ,2) where zh, possibly coincident with p, is the first node in such a
path which is still in the queue. In turn. its parent zh_1 is either a nonred node, or has already
been dequeued: in both cases its distance from the source has been correctly computed, i.e.,
D’(z;,_1) = d’(zh_1). Therefore. by the above claim, when 2 is dequeued, the priority of 2;,
in H is subject to the constraint

Ali/1h] S di(lh_1)+ wzh_1,zh — 01291] = 5M1)-

15

Since A(z,z,) _>_ 6(2),), we have that A(zh) = 6(2),). By inequality (2) above, we know that
5(2) = d’(z) — d(2:) < 13(2). We will now show that A(z) s 13(2),) and, hence, 6(2) < A(z) S
A(z;,) = 5(2),). This contradicts Lemma 4.4, that states that the values ofé must be monotone
nondecreasing along any optimal path from the source to node 2:.
In order to prove that A{z) S A(zh) it is sufficient to prove that all red nodes are extracted
from H in nondecreasing order of priority.
In fact after that all red nodes have been inserted in the queue, and node 2 is extracted from
Q with priority A[z) > 0, a neighbor h of 2: may improve its priority in H to a value AU!)
not smaller than A(z). In fact, from lines 2T—28, we have:

AUI) = D'[z) + way, — DUI) = AL?!) + D(z) +1.9”, — DUI) = {3(2) + d(z) + 103‘), — dUi) 2 A(z)

where the last inequality is due to the optimality condition on (2, h) before the update.

2. 33 has already been dequeued or is nonred. In this case D’(p) has been correctly computed,
i.e., DTP) = d'(p). Hence, by the claim, A(z) g d’(p) + tum —- (1(2). By combining this
inequality with inequality [2) above, we obtain:

a”(2) < 65(2) + NZ) S fN10) + wp,z
which contradicts the fact that p is parent of z in an Optimal path. B

Let n3, rip and nw be the number of nodes that have been colored red, pink, and white,
respectively, at the end of Procedure Color, and let mg, m3 3 k - n3, be the number of red arcs,
i.e., arcs whose both endpoints are red. In the following, we first evaluate the complexity of Color
in terms of parameters 113, np, and nw; then we bound the running time of Increase as a function
of the same parameters.

Lemma 4.6 Let G = (N,A) be a digraph with arbitrary arc weights. If G has a k—bounded ac-
counting function and a weight-increase operation is performed on are (I, y), then it is possible to
color nodes in T(y) in O{(nR + np)k logn + nw) totai time.

Proof. First we observe that, every time an uncolored node z on the top of Q is considered during
the execution of Procedure Searchlquivalentfath, we first select the old parent or of z as a
possible candidate parent for z. This is done in order to avoid to traverse the arcs in IN(z) when
z is a node that will be colored white. If g is uncolored then we push it on the stack and find a
candidate parent for it.

Observe now that a node is inserted in M at most once and only red and pink nodes are
inserted in M. Hence, the total cost of Color (without the cost of Searchjquivalentj’ath), is
O{(nR + np)k logn).

In order to bound the cost of all calls to Procedure Searchjquivalentfath, we observe that
a node is inserted at most once in Q; since all nodes inserted in Q are colored it follows that the
total cost of stack operations is 0(nR + np + my). Now observe that the total cost. of executing
lines 20— 30 [for all calls to the procedure) is bounded by 0(np + nw) (in fact at each iteration of
the loop a node is colored either white or pink). Analogously the total cost of line 37 is 0(nR).

The total cost of the remaining part of the code can be bounded as follows: let 6;, and EF be
the total number of arcs [q,p) in IN-OWN[p) and men), respectively, such that node q has
been considered as candidate parent for p when p is on t0p of Q. It is immediate to see that.
with the exclusion of line 6, lines 20— 30 and line 37, the total cost of all calls to the procedure is
0(v(cp + Ep + 1)). Now we observe that if p is white then cp + Ep 2 1. Up is either pink or red

16

then Cp 3 k (in fact we assume that the graph admits a k-bounded accounting function). It follows
that SWAG}, + 5,, +1) 2 0(nw + 3601;: + 713)) + vf‘p.

In order to bound the last term of the right hand side, observe that Ep is bounded by one
plus the number of arcs in WW) to a pink or a red node; since the head node that owns

the arc is colored, then the hypothesis that the graph has a k—bounded function implies that

EVpEp=O((k+1)(np+nR)). El

Theorem 4.7 Let G = (N,A) be a digraph with arbitrary arc weights. If G has a lat-bounded

accounting function, then it is possible to update T{s) and the distances of nodes from s after the

execution of a weight-increase operation, in 0((nR + np)k logn + my) time.

Proof. By Lemma 4.6, the running time of Color and Searchfiquivalentj'ath is 0((nR +
np)klogn + nw). The red arcs can be colored in 00%: - nR) time; the same time is required to
uncolor such arcs (line 30).

All the red nodes are enqueued in H (lines 7—18) with priority given by the difference between

the length of the shortest path passing through a nonred neighbor of z and d(z): in order to find

the best nonred neighbor of each red node the algorithm scans in the worst case all the k - my red
arcs plus, for each red node 2, k arcs in IN-OWN(2) and the first nonred arc in WV). This
requires OUc - n3 log n) worst case time.

In the main while loop {lines 19—31), mg red nodes are dequeued. Observe that each time that

a red node 2 is extracted from H, and therefore it improves its distance from the source, Procedure

Increase traverses all red arcs in 0UT(z). This means that mR = k - n R red arcs are scanned, and

hence, the total cost of the calls to Heaplmprove is OUc - n3 - log n). The above discussion implies

that the worst case cost of the while loop is equal to 00: - n3 - log n).
In the last phase (lines 32—40), the updates to the local priority queuesmandWof

all the red nodes (each requiring O(log n) time) are performed by scanning again the lists IN-OWN
and OUT-OWN of the red nodes (lines 38—39), leading to an overall worst case time bound of
DU: - nR - log n)) for this phase. E1

Corollary 4.8 It is possibie to update T(s) and the distances of nodes from s in a general digraph
after the execution of a weight-increase operation, in O(n - fi-log n) worst case time.

5 Conclusions and open problems

We have proposed algorithms for the fully dynamic single source shortest path problem on general
graphs with positive and negative arc weights that are better by a factor of O(\/r—ri/ log it) than

recomputing the new solution from scratch. We are currently implementing the algorithms and we

believe that they might be of practical interest; this is partly based on the experiments performed

in the case of positive arc weights [9].
An interesting problem is to extend the bounds proposed in the paper to the batch problem, in

which an input update is a set of arc modifications, instead of a single arc modification. Another
problem is to extend the technique to maintain the all pairs shortest paths in a graph with arbitrary
arc weights.

References

[1] R. K. Ahuia, T. L. Magnanti and J. B. Orlin. Network Flows: Theory, Algorithms and Appli-
cations, Prentice Hall, Englewood Cliffs, NJ (1993).

17

[2] B. Alpern, R. Hoover, BK. Rosen, PF. Sweeney and F.K. Zadeck. Incremental Evaluation
of Computational Circuits. Proc. 1st ACM-SIAM Symposium on Discrete Algorithms, 32—42,
1990.

[3] G. Ausiello, G. F. Italiano, A. Marchetti-Spaccamela and U. Nanni. Incremental algorithms
for minimal length paths. Journal of Atgorithms, 12, 4 (1991), 615—638.

[4] S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small treewidth. Proc.
Int. Coll. on Automata Languages and Programming. Lecture Notes in Computer Science 944,
244—255, 1995.

[5] M. Chrcibak and D. Eppstein, Planar orientations with low out—degree and compaction of
adjacency matrices, Theoretical Computer Science, 86 (1991), 243—266.

[6] E. W. Dijkstra. A note on two problems in connection with graphs. Num. Mathematik, 1
(1959), 269—271.

[7] S. Even and H. Gazit. Updating distances in dynamic graphs. Methods of Operations Research,
49 (1985}, 37'1—387.

[8] P. G. Franciosa, D. Frigioni, R. Giaccio. Semi dynamic shortest paths and breadth-first search
on digraphs. Proc. Annual Symposium on Theoretical Aspects of Computer Science. Lecture
Notes in Computer Science 1200, 26—40, 1997.

[9] D. F‘rigioni, M. Ioffreda, U. Nanni, G. PaSqualone. Experimental analysis of dynamic algorithms
for the single source shortest path problem. Proc. Ist Work. on Algorithm Engineering, pp.
54—63, 1997.

[10] D. Fi'igioni, A. Marchetti-Spaccamela and U. Nanni. Semi dynamic algorithms for maintaining
single source shortest path trees. Algorithmica — Special Issue on Dynamic Graph Algorithms,
to appear.

[11] D. Frigioni, A. Marchetti-Spaccamela, U. Nanni. Fully dynamic output bounded single source
shortest path problem. Proc. ACM-SIAM Symposium on Discrete Algorithms, 212—221, 1996.

[12] A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comp, 24 (1995),
494—504.

[13] P. N. Klein, S. Rao, M. Ranch and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Proc. ACM Symposium on Theory of Computing, 27—37, 1994.

14 S. M. Malitz. Genus g raphs have pagenumber 0 9'}. Journal Of Algorithms, ll (1994),g

[15] G. Ramalingam. Bounded incremental computation. Lecture Notes in Computer Science 1089,
1996.

[16] G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the shortest
path Problem. Journal of Algorithms, 21, (1996), 267—305.

[17] G. Ramalingam and T. Reps, On the computational complexity of dynamic graph problems.
Theoretical Computer Science, 158, (1996), 233—277.

[18] H. Rohnert. A dynamization of the all-pairs least cost path problem. Proc. 2nd Annual Sym-
posium on Theoreticat Aspects of Computer Science. Lecture Notes in Computer Science 182,
279—286.

18

