
'$�

�

'$

�


��

I N F O R M A T I K


 	

� �

On the Design of CGAL, the

Computational Geometry

Algorithms Library

Andreas Fabri Geert-Jan Giezeman

Lutz Kettner Stefan Schirra

Sven Sch�onherr

MPI{I{98{1{007 February 1998

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany





Authors' Addresses

Andreas Fabri

ABB Corporate Research Ltd.

CH-5405 Baden/D�attwil

Switzerland

andreas.fabri@chcrc.abb.ch

Geert-Jan Giezeman

Department of Computer Science

Utrecht University

N-3508 TB Utrecht

The Netherlands

geert@cs.ruu.nl

Lutz Kettner

Theoretical Computer Science

Eidgen�ossische Technische Hochschule Z�urich

CH-8092 Z�urich

Switzerland

kettner@inf.ethz.ch

Stefan Schirra

Max-Planck-Institut f�ur Informatik

D-66123 Saarbr�ucken

Germany

stschirr@mpi-sb.mpg.de

Sven Sch�onherr

Fachbereich Mathematik und Informatik

Freie Universit�at Berlin

D-14195 Berlin

Germany

sven@inf.fu-berlin.de

Publication Notes

A revised version of this paper will appear in \trends in software",

Volume on Algorithm Engineering, edited by Dorothea Wagner.

Acknowledgements

Work on this paper has been supported by ESPRIT LTR Project No. 21957

(CGAL).



Abstract

Cgal is a Computational Geometry Algorithms Library written in C
++
,

which is developed in an Esprit Ltr project. The goal is to make the

large body of geometric algorithms developed in the �eld of computational

geometry available for industrial application. In this chapter we discuss the

major design goals for Cgal, which are correctness, 
exibility, ease-of-use,

e�ciency, and robustness, and present our approach to reach these goals.

Templates and the relatively new generic programming play a central role

in the architecture of Cgal. We give a short introduction to generic pro-

gramming in C
++
, compare it to the object-oriented programming paradigm,

and present examples where both paradigms are used e�ectively in Cgal.

Moreover, we give an overview on the current structure of the library and

consider software engineering aspects in the Cgal-project.

Keywords

Software library, C
++
, generic programming, computational geometry



1 Introduction

Geometric algorithms arise in various areas of computer science. Computer graphics and virtual

reality, computer aided design and manufacturing, solid modeling, robotics, geographical informa-

tion systems, computer vision, shape reconstruction, molecular modeling, and circuit design are

best-known examples. Out of research on speci�c geometric problems in these areas the design

and analysis of geometric algorithms has been investigated in the �eld of Computational Geometry.

A lot of e�cient geometric methods and data structures have been developed in this sub�eld of

algorithm design over the past two decades. But many of these techniques have not found their

way into practice yet, mostly, because the correct implementation of even the simplest of these

algorithms can be a notoriously di�cult task [MN94]. This is mainly due to the degeneracy and

precision problem [Sch98a]: Theoretical papers assume the input to be in general position and

assume exact arithmetic with real numbers. Both assumptions hardly match the situation in prac-

tice. Advanced algorithms bring about the additional di�culty that they are frequently hard to

understand and hard to code. For these reasons it is impractical for users to implement geometric

algorithms from scratch. To remedy this situation a computational geometry library providing

correct and e�cient reusable implementations is needed. Such a library, called Cgal, Computa-

tional Geometry Algorithms Library , is developed in a common project of several universities and

research institutes in Europe and Israel. In this paper we present and discuss the design of this

C
++

software library.

The sites contributing to Cgal are Utrecht University (The Netherlands), Eth Z�urich (Switzer-

land), Free University Berlin (Germany),Martin-Luther University Halle (Germany), Inria Sophia-

Antipolis (France), Max-Planck-Institute for Computer Science and University Saarbr�ucken (Ger-

many), Risc Linz (Austria), and Tel-Aviv University (Israel). The participating sites are leading

in the �eld of computational geometry in Europe and had ample experience with the implemen-

tation of geometric algorithms [Avn94, Gie94, MN95, MNU97, NSdL

+

91, Sch91]. Work on the

Cgal-library is the central task of an Esprit iv ltr project which is called Cgal, too. It is the

goal of the Cgal-project to

make the large body of geometric algorithms developed in the �eld of computational

geometry available for industrial application.

The Cgal-library is the key tool to reach this goal. It will be the basis for implementations of geo-

metric algorithms in cooperation projects with industrial partners. These cooperations will be the

test bed for the library. Feedback from these cooperations will ensure that Cgal serves industrial

needs. Since in the Cgal-project we have to overcome the aforementioned problems arising in the

implementation of geometric algorithms as well, implementation e�ort has to be accompanied by

further research on these problems. To select best solutions for practice, experimentation is needed

as well.

Since computational geometry has so many potential application areas with di�erent needs,


exibility of the library components, especially adaptability and modularity of the library, are

important design issues for Cgal. Of course, correctness, ease-of-use, and e�ciency were design

goals of Cgal. Providing useful functionality is another design goal among a long list of many

others. Design goals for Cgal are discussed in Section 3.

We decided to design Cgal as a C
++
-library because C

++
is widely used and as it can easily

be interfaced with existing C and Fortran code. Since Cgal can be seen as part of a more global

European e�ort to provide algorithmic software to enhance the technology transfer to industry, the

decision to use C
++

was also partially motivated by corresponding decisions for related libraries,

e.g. Leda and Abacus. We consider C
++

as a compromise between aesthetic and e�ciency.

Ei�el or Smalltalk are more properly object oriented but lack acceptance. At present, Java was

considered too slow for industrial strength code. We use the template mechanism of C
++

and

the generic programming paradigm known from the C
++

Standard Template Library (STL) to

design a generic and modular library. This approach is not supported by Java. Through the

use of templates and the generic programming paradigm the code in the library gains a certain

independence. The library algorithms and components work with a variety of implementations of
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predicates and subtasks and geometric objects. This allows one to easily interchange components

as long as they have the same interface.

In the next section we regard previous and related work on computational geometry libraries

and the the roots of Cgal. After discussing the design goals we consider the generic programming

paradigm in Section 4. Section 5 discusses circulators, an extension of the iterator concept of

the Standard Template Library to circular structures. They are useful in the implementation of

geometric objects, where circular structures often arise. In the subsequent sections we discuss the

structure ofCgal and present the di�erent layers of the library. Section 7 presents the kernel, which

contains basic (constant-size) geometric objects and primitive operations on these objects. Section

8 presents the basic library, which contains standard geometric algorithms and (non constant-size)

geometric structures. Besides the design of Cgal we look at engineering aspects addressed in

the Cgal-project like manual writing, and separation between speci�cation, implementation, and

testing. These are discussed in Section 9. We conclude with an evaluation of the design. In the

more technical parts of the paper we assume that the reader is familiar with the C
++

programming

language and the basics of its Standard Template Library, see e.g. [Str97].

2 Related Work

Amenta [Ame97] gives an overview on the state of the art of computational geometry software before

Cgal and provides many references. Computational geometry software was intensively discussed

at the First ACM Workshop on Applied Computational Geometry, cf. [Lee96, Meh96, Ove96].

The design of the Cgal-kernel at that time is presented in [FGK

+

96] and the project goals in

[Ove96]. A more recent overview can be found in [Vel97]. Precision and robustness aspects of a

computational geometry library are discussed in [Sch96]. Further topics on designing combinatorial

data structures in Cgal, such as polyhedrons, are described in [Ket97].

Many implementations of computational geometry algorithms exist in loosely coupled col-

lections only. Use and combination of such algorithms usually requires some adaptation ef-

fort while components of a library are designed to seamlessly work together. First implemen-

tation e�orts for computational geometry libraries have been started already end of the Eighties

[EKK

+

94, dRJ93, NSdL

+

91, Sch91]. These libraries were integrated into workbenches allowing

animation and interaction, but were typically restricted to a particular platform.

To some extent, speci�cations of components of Cgal have their roots in Cgal's precursors

developed by members of the Cgal consortium. To a much less extent Cgal scavenged also im-

plementation techniques from its precursors. These precursors are the Xyz library, developed at

Eth Z�urich, [NSdL

+

91, Sch91] PlaGeo/SpaGeo [Gie94], developed at Utrecht University, C
++
gal

[Avn94], developed at Inria Sophia-Antipolis, and the geometric part of Leda [MN95, MNU97],

a library for combinatorial and geometric computing, developed at Max-Planck-Institut f�ur Infor-

matik, Saarbr�ucken.

In the US, an implementation e�ort with a goal similar to that of the Cgal-project has been

started at the Center for Geometric Computing, located at Brown University, Duke University,

and John Hopkins University. They state their goal as an e�ective technology transfer from Com-

putational Geometry to relevant applied �elds. Recently they started working on a computational

geometry library called GeomLib [BTV97] implemented in Java.

3 Design Goals

Computational geometry has many potential application areas with di�erent needs. As a founda-

tion for application programs Cgal is supposed to be su�ciently generic to be usable in many

di�erent areas. We expect di�erent kind of users, both in academia and industry. The users' knowl-

edge of computational geometry or C
++

programming will range from novice to expert. To capture

the di�erent requirements we have structured them in the following list of primary design goals for

the project. There are further important design goals for such a project, such as maintainability,

but we consider them as secondary for the project mission statement and do not discuss them here.
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3.1 Flexibility

The di�erent needs of the potential application areas lead to our design goal 
exibility. In order

to be useful in many di�erent situations four sub-issues of 
exibility can be identi�ed.

Modularity A clear structuring of Cgal into modules with as few dependencies as possible helps

a user in learning and using Cgal, since the overall structure can be grasped more easily and the

focus can be narrowed on those modules that are actually of interest. In continuation, only those

parts of the library could be isolated that are used in a particular situation, which keeps Cgal

from being a monolithic library. Instead, Cgal has the 
exibility to be used in smaller indepen-

dent parts. Natural examples are the distinction between two-dimensional and three-dimensional

geometry, or separate modules for convex-hull computation and point set triangulation.

Adaptability Cgal might be used in an already established environment with geometric classes

and algorithms. Most probably, the modules will need adaptation before they can be used. An

example is the application of the convex-hull algorithm to a user de�ned point type, which di�ers

from the Cgal point type. The idealistic situation would be like a theoretical paper on a convex-

hull algorithm: The algorithm is described once and can be applied to virtually any programming

language and point type. Stressing this analogy further, the ideal theoretical paper will typically

declare the operations, which are assumed to be available somehow for the point type, and will

express the algorithm in terms of these operations. Similar in the library, the adaptation e�ort

should only in
uence the declaration of the point type and operations used, not the convex-hull

algorithm itself.

Extensibility Not all wishes can be ful�lled with Cgal. So users might want to extend the

library. It should be possible to easily integrate new objects and algorithms into Cgal. For

example, it should be possible to easily add new geometric objects to the library and to provide

corresponding intersection functions similar to those existing for native Cgal objects.

Openness Cgal should be open to coexist with other libraries, or better, to work together with

other libraries and programs. The C
++

Standard de�nes with the C
++

Standard Template Library

a common foundation for all C
++

platforms. So it is easy and natural to gain openness by following

this standard. But there are important libraries besides the standard, and Cgal should be easily

adaptable to them as well, in particular Leda [MNU97] with its number types, combinatorial and

graph algorithms, the Gnu Multiple Precision Arithmetic Library [Gra96] for a number type, and

various visualization systems, some of them standardized.

3.2 Correctness

A library component is correct if it behaves according to its speci�cation. Basically, correctness is

therefore a matter of documentation and quality control that documentation and implementation

coincides. However, this is easier said than done. In a modularized program the correctness of a

module is determined by its own correctness and the correctness of all the modules it depends on.

Clearly, in order to get correct results, correct algorithms and data structures must be used. Usually

the correctness of a geometric algorithm has been proven in a theoretical context with simplify-

ing assumptions, such as exact arithmetic or general position assumptions excluding degenerate

con�gurations. See also the design goal robustness in the following subsection. If these assump-

tions, e.g. exact arithmetic, do not hold in practice, the correctness proof is not valid anymore.

Accordingly, modules using other modules, e.g. arithmetic modules, do not necessarily yield cor-

rect results anymore, if the used modules do not behave according to their speci�cation. Whether

assumptions concerning exact computation hold for a concrete problem instance in practice de-

pends on the demand of this instance on the arithmetic. Here, geometric computations impose

subtle dependencies on modules that make the combinations of modules intrinsically harder. The
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arithmetic demand of geometric computations has been studied for a few basic geometric problems

[BP97, BMS94, LPT97], but further research on the arithmetic demand as well as on an easy-to-use

documentation of this demand is still needed. Ignoring the simplifying assumptions, such as relying

on `su�cient exactness' of the built-in arithmetic, would violate our understanding of correctness.

Exactness should not be confused with correctness in the sense of reliability. There is noth-

ing wrong with approximation algorithms computing approximate solutions as long as they do

what they pretend to do. Also, an algorithm handling only non-degenerate cases can be correct

with respect to its speci�cation, although in Cgal we would like to provide algorithms handling

degeneracies at the �rst hand.

In a modularized project structure it is important to test modules independently and as early as

possible [Lak96]. One speci�c technique for quality assurance are assertions, assertions of invariants

of an algorithm and the self-checking of functions at runtime [Mag93, MNS

+

96]. They are of great

help in the implementation process and can reduce debugging e�orts drastically. The user should

be able to switch o� the checking, e.g. when code goes in production mode.

3.3 Robustness

A design goal particularly relevant for the implementation of geometric algorithms is robustness.

Many implementations of geometric algorithms lack robustness because of precision problems. De-

sign and correctness proof of geometric algorithms usually assume exact arithmetic while many

implementations simply replace it by imprecise arithmetic. Since imprecise calculations can cause

wrong and mutually contradicting decisions in the control 
ow of an algorithm, many implemen-

tations crash or at best compute garbage for some inputs. For some applications the fraction of

bad inputs compared to all possible inputs is small, but for other applications this fraction is large.

There is no perfect solution to the precision problem known, especially with respect to libraries.

Primitives based on imprecise computations are hard to combine and therefore less useful as library

components. Exact computation is possible for many geometric problems and saves the correct-

ness proof given for a theoretical model of computation to the actual code, but it slows down the

computation. Cgal allows one to choose the underlying arithmetic and thereby o�ers kind of a

trade-o� between e�ciency and robustness.

3.4 Ease of Use

Many di�erent qualities can contribute to the ease-of-use of a library and di�er according to the

experience of the user. The above mentioned correctness and robustness issues are among these

qualities. Of general importance is the learning time and how fast the library gets useful. Another

issue is the amount of new concepts and exceptions of the general rules that must be learned and

remembered. Ease-of-use tends to get in con
ict with 
exibility, but in many situations a solution

can be found to please them both. Especially the 
exibility of Cgal should not distract a novice

from the �rst steps with Cgal.

Smooth Learning Curve One major point of the success story of C
++

was its almost complete

compatibility with C and the possible smooth transition from C to C
++
: from the new style of

comments, to member functions and inheritance, up to full object-oriented programming. Each

newly learned feature could be put into practice immediately. Cgal users are supposed to have

a base knowledge of C
++

and the STL. The reader of the paper should be aware that there is a

tremendous di�erence between developing a library, such as Cgal, which this paper is about, and

the use of such a library, which is usually much simpler to understand. This has been successfully

shown with Leda, and can also be seen with the STL.

Cgal is based in many places on concepts known from STL or the other parts of the C
++

Standard Library. An example is the use of streams and stream operators in Cgal. Another

example is the use of container classes and algorithms from the STL.
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Uniformity A uniform look-and-feel of the design in Cgal will help in learning and remember-

ing. A concept once learned should be applicable in all places one would expect to. A function

name once learned for a speci�c class should not be named di�erently for another class. Exceptions

should be minimized in the design.

Complete and Minimal Interfaces Another goal with similar implications than uniformity

is a design with complete and minimal interfaces, see for example Item 18 in [Mey92]. An object

or module should be complete in its functionality, but should not provide additional decorating

functionality. Even if a certain function might look like ease-of-use for a certain class, in a more

global picture it might hinder the understanding of similarities and di�erences among classes, and

makes it harder to learn and remember.

Rich and Complete Functionality We aim for a useful and rich collection of geometric objects,

data structures and algorithms. Cgal is supposed to be a foundation for algorithmic research in

computational geometry and needs therefore a certain breadth and depth. The standard techniques

of the �eld are supposed to appear in Cgal. Completeness is related to uniformity. Examples

are distance and intersection computations that should be available for all appropriate pairs of

geometric objects, not only for an arbitrary subset. However, for certain pairs, the return-type

might not �t in the framework currently available in Cgal, or solutions might not be known yet.

Completeness is also related to robustness. We aim for general purpose solutions that are for

example not restricted by assumptions on general positions. Algorithms in Cgal should be able to

handle special cases and degeneracies. If this is expensive, additional versions are possible, which

are more e�cient but less general.

3.5 E�ciency

We consider time and space e�ciency. In situations, where a trade-o� between them will be

possible, we will provide the 
exibility to do so. With e�ciency we address the well studied,

worst-case asymptotic complexity of an algorithm, and results from empirical studies to determine

the constant factors hidden in the O-notation of theoretical results, as well as results on typical

input sets that occur in practice. Whenever possible and known, the most e�cient version of an

algorithm is used. Sometimesmultiple versions of an algorithmare supplied. For example if dealing

with degeneracies is expensive, a faster but less general version might also be supplied. Another

example is the exploitation of the characteristics of a speci�c number type within an algorithm.

E�ciency is a competing goal with respect to 
exibility, robustness, and ease-of-use. As long

as it is a small constant fraction, we are willing to sacri�ce e�ciency in favor of the other goals.

One cannot expect a library with 
exibility requirements as Cgal to provide hand-coded solutions

for all purposes. The following sections will reveal that we have taken e�ciency seriously. It is a

primary design goal for Cgal. In fact, the techniques used for 
exibility in Cgal enables us also

to achieve optimal e�ciency.

4 Generic and Object-Oriented Programming

Basically, two main techniques are available in C
++

for realizing our design goal 
exibility in Cgal:

Object-oriented programming, using inheritance from base classes with virtual member functions,

and generic programming, using class templates and function templates.

In the object-oriented programming paradigm 
exibility is achieved with a virtual base class,

which de�nes an interface, and as many derived classes as di�erent actual implementations of the

interface are present in a system. The technique of so-called virtual member functions and runtime

type information allows a user to select any of the derived classes wherever the base class is required

and that even at runtime. Also, general functionality can be programmed in terms of the base

class without knowing all possible derived implementations beforehand.
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The advantages are the clear de�nition of the interface and the 
exibility at runtime. There

are four main disadvantages: This paradigm cannot provide strong type checking at compile time,

enforces tight coupling through the inheritance relationship [Lak96], it adds additional memory to

each object derived from the base class (the so-called virtual function table pointer) and it adds an

indirection through the virtual function table for each call to a virtual member function [Lip96].

The latter one is of particular interest when considering runtime performance since virtual member

functions can usually not be made inline and are therefore not subject to code optimization within

the calling function. Modern microprocessor architectures

1

can optimize at runtime, but, besides

that runtime predictions are di�cult, these mechanisms are more likely to fail for virtual member

functions. These e�ects are negligible for larger functions, but small functions will su�er a loss in

runtime of one or two orders of magnitude. Signi�cant examples for Cgal are coordinate access

and arithmetic for low-dimensional geometric objects and traversals of combinatorial structures.

If the class hierarchy tends to be dense with long derivation chains and maybe even worse with

multiple inheritance, the system will be hard to learn, to understand, to test and maintain [Lak96].

The generic programming paradigm features what is known in C
++

as class templates and func-

tion templates. Templates are program recipes where certain types are only given symbolically, the

so called template arguments. The compiler replaces these arguments with actual types where the

program recipe is actually used, at the place of the template instantiation. The recipe transforms

to a normal part of a program. For function templates this can even be done automatically by

the compiler, since the types of the function parameters are known to the compiler. Examples are

a generic list class for arbitrary item types or a swap function exchanging variable values for all

possible types. The following de�nitions would enable us to use list<int> as a list of integers or

to swap two integer variables x and y with swap(x,y).

template <class T> class list {

// ... , uses T as item type.

};

template <class T> void swap( T& a, T& b) {

T tmp = a;

a = b;

b = tmp;

}

The example of the swap function illustrates that a template usually assumes some properties

to hold for the template arguments, here that variables of those type can be assigned to each other.

These requirements are not expressed within C
++
, but only in the accompanying documentation.

An actual type used in the template instantiation must ful�ll the requirements of the template

argument in order of the template to work properly. Requirements can be classi�ed into syntactical

ones, there must be an assignment operator, and semantical ones, the implementation of the

operator must really do what it is supposed to do. Syntactical requirements will be checked by

the compiler at instantiation time of the template. Semantical requirements cannot be checked. In

certain situations it might be wishful to stress semantical requirements with additional syntactical,

i.e. checkable, requirements, e.g. symbolical tags.

For class templates exist the special situation that di�erent member functions might impose

di�erent requirements on the template arguments, but a certain instantiation of the class template

uses only a subset of the member functions. Here, the arguments must only ful�ll the requirements

imposed by the member functions actually used. In particular, the compiler is only allowed to

instantiate those member functions of an implicit instantiation of a class template that are actually

used [C++96]. This enables us to design class templates with optional functionality that impose

additional requirements on the template arguments if and only if this functionality is used.

A good example for the generic programming paradigm is the Standard Template Library

[SL95, MS96, C++96, Sil97]. The main source of its generality and 
exibility stems from the

1

pipelining, branch prediction, speculative execution and reordering, global optimizers using runtime statistics

and the interplay with the cache architecture.
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separation of concepts and models [Sil97]. For example, an iterator is an abstract concept de�ned

in terms of requirements. A certain class is said to be a model of the concept if it ful�lls the

requirements. The iterator concept is a generalization of a pointer and the usual C-pointer is

a model of an iterator. Iterators serve two purposes: They refer to an item and they traverse

over the sequence of items in a container class. Container classes manage collections of items.

Di�erent categories are de�ned for iterators: input, output, forward, bidirectional and random-

access iterators. They di�er mainly in their traversal capabilities. The usual C-pointer is a random-

access iterator. Generic algorithms in the STL are not written for a particular container class

but for a pair of iterators instead. The so called range [first,beyond) of two iterators denotes

the sequence of all iterators obtained by starting with first and advancing first until beyond

is reached, but does not include beyond. A container is supposed to provide a type, which is a

model of an iterator, and two member functions: begin() returns the start iterator of the sequence

and end() returns the iterator referring to the `past-the-end'-position of the sequence. A generic

contains function could be written as follows and will work for any model of an input iterator.

template <class InputIterator, class T>

bool contains( InputIterator first, InputIterator beyond, const T& value) {

while ((first != beyond) && (*first != value))

++first;

return (first != beyond);

}

The advantages of the generic programming paradigm are the strong type checking at compile

time during the template instantiation, no need for extra storage or additional indirections dur-

ing function call, and full support of inline member functions and code optimization at compile

time [Str97]. One disadvantage is the lack of a formal scheme in the language for expressing the

requirements of template arguments, the equivalent to the virtual base class in the object-oriented

programming paradigm. This is left to the program documentation. Another disadvantage is that

the 
exibility is only available at compile time. Polymorphic lists at runtime cannot be implemented

in this way.

In many places we follow in Cgal the generic programming paradigm to gain 
exibility and

e�ciency. Important is the compliance of Cgal with the STL. This allows the reuse of existing

generic algorithms and container classes, but { much more important { uni�es the look-and-feel

of the design of Cgal with the C
++

Standard and is therefore easy to learn and easy to use for

users familiar with the STL. The abstract concepts used in the STL are so powerful that only

a few additions and re�nements are needed in Cgal. One re�nement is the concept of handles.

Combinatorial data structures might not necessarily possess a natural order on their items. Here,

we retract to the concept of handles

2

, which is the item denoting part of the iterator concept without

traversal capabilities. Any model of an iterator is a model for a handle. Another re�nement is the

concept of circulators, a kind of iterators with slightly modi�ed requirements that suit the needs

of circular sequences better as they occur naturally in several combinatorial data structures, such

as the sequence of edges around a vertex in a triangulation. See the next section for more details

on circulators.

In a few places we make use of the object-oriented programming paradigm. For example the

strategy pattern [GHJV95] has been applied to polyhedral surfaces to implement a protected access

to the internal representation [Ket97], which is no time critical operation compared to the work

that is supposed to be performed with the internal representation. Another example is the return-

value of the intersection of two polygons, which might contain points, segments, or polygons in

general. In Cgal, a polymorphic list is used to return the result of such intersection routines. Note

that this does not necessarily imply a common base class for all Cgal classes. In fact, Cgal has

no common base class for all objects, and its class hierarchy is very 
at, if there is any derivation

used at all. Instead, we applied an appropriate design pattern, a generic wrapper, as described in

the Section 7. This keeps the in
uence of this design decision locally.

2

Handles are already present in the STL where container classes invalidate iterators after insert or deletion

operations, but they were not explicitly named as a concept.
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5 Circulators

Our new concept of circulators re
ects in Cgal the fact that combinatorial structures often lead to

circular sequences, in contrast to the linear sequences supported with iterators and container classes

in the STL. For example polyhedral surfaces and planar maps give rise to the circular sequence of

edges around a vertex or a facet. Implementing iterators for circular sequences is possible, but not

straightforward, since no natural past-the-end situation is available. An arbitrary sentinel in the

cyclic order would break the natural symmetry in the con�guration, which is in itself a bad idea, and

will lead to cumbersome implementations. Another solution stores, within the iterator, a starting

edge, a current edge, and a kind of winding-number that is zero for the begin()-iterator and one

for the past-the-end iterator

3

. No solution is known to us that would provide a light-weight iterator

as it is supposed to be (in terms of space and e�ciency). Therefore we introduced in Cgal the

similar concept of circulators, which does allow light-weight implementations. The support library

provides adaptor classes that convert between iterators and circulators, thus integrating this new

concept into the framework of the STL.

Circulators share most of their requirements with iterators. Three circulator categories are

de�ned: forward, bidirectional and random-access circulators. Given a circulator c the operation

*c denotes the item the circulator refers to. The operation ++c advances the circulator by one

item and --c steps a bidirectional circulator one item backwards. For random-access circulators

c+n advances the circulator by n where n is a natural number. Two circulators can be compared

for equality.

Circulators develop di�erent notions of reachability and ranges than iterators. A circulator d is

called reachable from c if c can be made equal to d with �nitely many applications of the operator

++c. Due to the circularity of the data structure this is always true if both circulators refer to

items of the same data structure. In particular, c is always reachable from c. Given two circulators

c and d, the range [c,d) denotes all circulators obtained by starting with c and advancing c until

d is reached, but does not include d if d 6= c. So far it is the same range de�nition as for iterators.

The di�erence lies in the use of [c,c) for denoting all items in the circular data structure, whereas

for an iterator i the range [i,i) denotes the empty range. As long as c != d the range [c,d)

behaves like an iterator range and could be used in STL algorithms. It is possible to write just

as simple algorithms that work with iterators as well as with circulators, including the full range

de�nition, see Chapter 3.9 in [Ket98]. An additional test c == NULL is now required that is true if

and only if the data structure is empty. In this case the circulator c is said to have a singular value.

For the complete description of the requirements for circulators we refer to Chapter 3.7 in [Ket98].

We repeat the example for the generic contains function from the previous Section 4 for a

range of circulators. The main di�erence is the use of a do-while loop instead of a while loop.

template <class InputCirculator, class T>

bool contains( InputCirculator c, InputCirculator d, const T& value) {

if ( c != NULL) {

do {

if ( *c == value)

return true;

} while (++c != d);

}

return false;

}

3

This is currently implemented inCgal as an adaptor class which provides a pair of iterators for a given circulator.
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Figure 1: The structure of Cgal.

6 Library Overview

The Cgal-library is made of several modular units. In this modular structure, several bigger units

can be distinguished: a core library with basic non geometric functionality, a geometric kernel,

a basic library with more complicated geometric functionality, and a support library that o�ers

supplementary functionality. The �rst three units can be seen as layers, built on top of each other,

where the core library and the geometric kernel together are called the Cgal-kernel. The support

library stands apart from the rest.

The modular approach has several bene�ts. For the user, a modular design is easier to grasp

because it is possible to understand a small part without having any knowledge about other parts.

For building the library, the modules are a good way of organizing. They are used to divide work

among the project partners and help to assemble those pieces in a convenient way when a release of

the library is made. Testing is also easier when there is little or no coupling between parts [Lak96].

This is discussed in more detail in Section 9.

The geometric kernel contains simple geometric objects, like points, lines, segments, triangles

and tetrahedra. The criterion for simplicity is that those objects have constant size. There are

geometric predicates on those objects. Furthermore, there are operations such as computing inter-

section and distance of objects and a�ne transformations.

The geometric kernel is split in three parts, that deal with two-dimensional objects, three-

dimensional objects, and general-dimensional objects. Geometry in two and three dimensions is

well studied and has lots of applications, which is the reason for their special status. For all

dimensions there are Cartesian and homogeneous representations.

One thing that is not supplied by Cgal is number types. Deep down, all geometric objects

are represented by numbers. The precise way in which computations with those numbers are done

is very important. Especially for robustness issues, it is often preferable to use exact arithmetic

instead of 
oating point arithmetic. In order to make it possible to choose a number type, the

geometric kernel is parameterized by number types. Cgal does not provide an implementation

of number types. Instead Cgal adds some support to enable the use of number types from other

sources, e.g. from Leda. This is in line with the philosophy that libraries should be (re-)used

where possible. Because the arithmetic operations that are needed in Cgal are quite basic, every

library that supplies number types can easily be �tted in [CGAL98].

The basic library contains more complex geometric objects and data structures: polygons,

planar maps, polyhedrons and such. It also contains algorithms, such as computing the convex

hull of a set of points, triangulations, the union of two polygons and so on. The basic library is

made of mostly independent parts, independent from each other, but even independent from the

kernel.

The �rst kind of independence is the easiest to obtain and is striven for as much as possible.
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There are a few dependencies, for example, the algorithm that computes the union of two polygons

depends on the part that de�nes polygons.

The independence from the kernel is harder to obtain, but from a design point of view quite

interesting. Every algorithm de�nes in a very precise way which primitives it uses. This interface

is a template parameter of the algorithm and is called a traits class. For example, a convex-hull

algorithm can take points as input and must be able to decide if one point lies to the left of the

other and to decide when you go from one point via a second point to a third point, if you make

a left or a right turn. In this case the algorithm is parameterized by a class that has a point

type and the two predicates that work on this point type. The algorithm is implemented in terms

of the types and operations of the interface only. As a consequence, no types and operations are

hardwired into the basic library algorithms, and in this sense they are independent from the kernel.

The parameterization by traits classes o�ers great 
exibility and modularity. In order to meet

another design goal, ease-of-use, there is always a prede�ned traits class that uses types and

operations of the kernel. Where possible, this traits class is chosen by default, so the user can

totally ignore the existence of this mechanism. In this sense the basic library is a layer built on

top of the kernel.

Both the core library and the support library deal with things that are not (purely) geometric

in nature. The core library o�ers functionality that is needed in the geometric kernel or the

basic library. There is some support for coping with di�erent C
++

compilers which all have their

own limitations. Here is also the basic support for dealing with assertions, preconditions and

postconditions. Circulators and random number generators belong here, too.

The support library adds functionality that is not purely geometric and not vital for the rest

of the library. Visualization is an important aspect of the support library. There are many

languages (Vrml, PostScript) and programs (GeomView, Leda windows) that deal with 2D and

3D visualization. The support library interfaces Cgal objects with existing software. Because

there is not a single standard way of doing visualization, it is important that this part is separate

from the kernel and basic library. The adaptation of number types from other libraries is in the

support library, too.

7 Kernel

The geometric part of the Cgal-kernel contains objects of constant size, such as point, vector,

direction, line, ray, segment, triangle, iso-oriented rectangle and tetrahedron. With each type comes

a set of functions which can be applied to an object of this type. The Cgal-kernel further contains

basic operations, such as a�ne transformations, detection and computation of intersections, and

distance computations.

The current Cgal-kernel provides two families of implementations of the geometric objects in

the kernel: An implementation based on a representation of points by Cartesian coordinates and an

implementation based on representation with homogeneous coordinates. The latter representation

allows to reduce many computations involved in geometric algorithms to calculations over the

integers, since divisions can be avoided with this representation. Both families are parameterized

by the number type used to represent the (Cartesian or homogeneous) coordinates. The class

templates implementing the two families are not directly visible to the user. The classes in the

kernel, that are visible to a user, are class templates with a single template parameter, for example

template <class R> CGAL_Point_2;

Via this template argument one can choose the implementation of the geometric objects. If one

chooses CGAL Cartesian< double > one gets objects based on a representation with Cartesian

coordinates of the double precision 
oating-point number type of the C
++

programming language.

For ease-of-use typedefs can introduce shorter names for the objects, e.g.

typedef CGAL_Point_2< CGAL_Homogeneous< long > > Point_2;

for points with homogeneous coordinates of type long integer.
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The design goal robustness motivated the parameterization by a number type, which allows a

user to choose the underlying arithmetic and in
uence the precision of the computations. It opens

an easy way to overcome precision problems and resulting robustness problems by exact compu-

tation. For example, the number type leda real of Leda [BMS96, MNU97] can be used. This

number types models a subset of algebraic numbers: All integers are leda reals and leda reals

are closed under the operations +, �, �, =, and

k

p

. They use adaptive evaluation and guar-

antee that all comparison operations give the correct result. Thus the use of the leda reals via

CGAL Cartesian<leda real> guarantees exact decisions in the computations and hence guarantees

exactly the same control 
ow in the execution of the implemented algorithm as in its theoretical

counterpart. No robustness problems due to wrong and inconsistent decisions can arise with the

number type leda real. Furthermore, parameterization by a number type o�ers 
exibility. Be-

sides exact number types, e.g. arbitrary precision integer number types or rational number types

based on the former, fast but potentially imprecise 
oating-point number types float and double

can be used, if speed is more important than reliability. Floating-point number types, which allow

to choose the precision of the 
oating-point system, e.g. leda bigfloat in Leda, allow one to

balance e�ciency and accuracy. Small precision leads to faster computation, but might also lead

to less accurate results. Especially with homogeneous coordinates, one could also use integer arith-

metic with a �xed multiple precision su�ciently large for all arising results in arithmetic operations,

but this requires some knowledge on the computations carried out. Thus this kind of adaptation

is not easy to use. Cgal's requirements on a number type are kept small in order to make it easy

to make a number type compliant with Cgal [CGAL98]. Cgal provides support for the number

types of Leda [MNU97] and for the Gnu Multiple Precision Arithmetic Library [Gra96].

The user-visible class templates give a common interface to the implementations based on

homogeneous and Cartesian representation. They provide name commonality for di�erent repre-

sentations. This is used in higher-level template code. The list of requirements on the template

parameter de�nes the concept of a representation class for the Cgal-kernel. A model for the con-

cept representation class must essentially provide the names of the actual implementations. For

example, the class template for models of the concept representation class for the Cartesian types

looks like

template<class NT>

class CGAL_Cartesian {

public:

typedef CGAL_PointC2<NT> Point_2;

typedef CGAL_VectorC2<NT> Vector_2;

typedef CGAL_DirectionC2<NT> Direction_2;

typedef CGAL_SegmentC2<NT> Segment_2;

typedef CGAL_LineC2<NT> Line_2;

typedef CGAL_RayC2<NT> Ray_2;

// ...

};

Type names ending in C2 denote classes based on Cartesian representation with coordinates of

number type NT. CGAL Cartesian is itself a class template and expects a model for a number

type as an argument. Every template class obtained by instantiation of CGAL Cartesian with an

argument, which ful�lls the requirements for number types, is a proper model for a representation

class.

The technique used here is known as the `nested typedefs for name commonality'-idiom [BN94,

KL96]. In particular, the representation class tells the name of an implementation class to the

class template. The implementation is inherited:

template <class R>

class CGAL_Point_2 : public R::Point_2 {

// ...

};

The nested typedefs do not only provide the name of an actual implementation of a type, but also

the names of related types.

11



Cgal provides clean mathematical concepts to the user without sacri�cing e�ciency. For

example, Cgal strictly distinguishes points and (mathematical) vectors, i.e., it distinguishes ge-

ometry from the underlying linear algebra. Points and vectors are not the same, see [Gol85] for

a discussion of illicit computations resulting from identi�cation of points and vectors in geometric

computations. In particular, points and vectors behave di�erently under a�ne transformations

[Wal90]. We even do not provide automatic conversion between points and vectors. The geometric

concept of an origin is used instead. The symbolic constant CGAL ORIGIN acts as a point and can

be used to compute the locus vector as the di�erence between a point and the origin. Function

overloading has been used to implement this operation internally as a simple conversion without

any unnecessary operations. Note that we do not provide the geometrically invalid addition of two

points, since this might lead to ambiguous expressions: Assuming three points p, q, and r and an

a�ne transformation A, one can write in Cgal the perfectly legal expression A(p+ (q � r)). The

slightly di�erent expression A((p + q) � r) contains the illegal addition of two points, but think-

ing in terms of coordinates one might expect the same results as if the addition would have been

allowed. However, this is not true, since the expression within the a�ne transformation evaluates

to a vector, not a point as in the previous expression. Vectors and points behave di�erently under

a�ne transformations. For similar reasons, we do not provide automatic conversion between points

and vectors.

A major design decision was to avoid a dense class hierarchy and keep the classes loosely coupled.

This decision was made for the sake of e�ciency and 
exibility. Virtual functions and resulting

space and time performance penalties are largely avoided. Wherever necessary, appropriate design

pattern where applied to get polymorphic behavior. For example, intersection operations need a

polymorphic return-value. The intersection of a line and a segment might be empty, a point, or

the segment. So it would be convenient to have a common base class for all these possible return-

types. In Cgal the return-type of an intersection routine is a generic object that can contain an

object of any type. One sooner or later needs to know what the result type is in order to take

appropriate actions. Using the function CGAL assign() one can try to assign the returned object

of type CGAL Object to potential return-types:

template <class R>

void foo(CGAL_Segment_2<R> seg, CGAL_Line_2<R> line) {

CGAL_Object result;

CGAL_Point_2<R> ipoint;

CGAL_Segment_2<R> iseg;

result = CGAL_intersection(seg, line);

if (CGAL_assign(ipoint, result)) {

// handle the point intersection case.

} else if (CGAL_assign(iseg, result)) {

// handle the segment intersection case.

} else {

// handle the no intersection case.

}

}

Hidden to the user a class hierarchy is used. A CGAL Object maintains a wrapped instance of

another type. All wrapping classes have a common base:

class CGAL_Base {

public:

virtual ~CGAL_Base() {}

};

template <class T>

class CGAL_Wrapper : public CGAL_Base {

public:

CGAL_Wrapper(const T& object) : _object(object) {}
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CGAL_Wrapper() {}

operator T() { return _object; }

virtual ~CGAL_Wrapper() {}

private:

T _object;

};

class CGAL_Object {

public:

// ...

CGAL_Base* base() const { return _base; }

private:

CGAL_Base* _base;

};

The CGAL assign() function uses runtime type information to check whether the passed object

has the appropriate type to get assigned the object stored in CGAL Object.

template <class T>

bool CGAL_assign(T& t, const CGAL_Object& o) {

CGAL_Wrapper<T>* wp = dynamic_cast<CGAL_Wrapper<T>*>(o.base());

if ( wp == 0 ) { return false; }

t = *(wp);

return true;

}

The actual Cgal-code is slightly more complicated and simulates runtime type information for

compilers not yet supporting it. In those cases, where the intersection of two objects might consist of

several parts of potentially di�erent type, a list<CGAL Object> is returned in Cgal, for instance,

in the case of intersection of two polygons.

Note that a class hierarchy is used here in a very localized way. It provides a nice and extensible

solution to the return-type problem for intersections while an overall class hierarchy with its per-

formance penalties is still avoided. Class hierarchies are used whenever we felt that they provide a

more appropriate solution, for example, in Cgal a�ne transformations maintain di�erent internal

representations using a hierarchy.

Another design decision was to make the (constant-size) geometric objects in the kernel non-

modi�able. More precisely, there are no member functions to set the Cartesian coordinates of a

point. Points are viewed as atomic units (see also [DeR89]) and no assumption is made on how these

objects are represented. Especially there is no assumption that an implementation of points stores

Cartesian coordinates. It might use polar coordinates, homogeneous coordinates, or something

else. For such implementations handling member functions modifying Cartesian coordinates might

be expensive and complicated. Nevertheless, for ease-of-use access functions to the Cartesian and

homogeneous coordinates are available. Concerning generality this might be considered a weakness

of the Cgal-kernel. However, the access functions are added to make implementing own predicates

and operations more convenient. Like other libraries [BV96, Kef96, MNU97] we use a reference

counting scheme for the kernel objects. The use of reference counting (copies of an object share

a representation), see e.g. [Mey96] for motivation and use, is simpli�ed by the non-modi�ability,

but not the reason for having non-modi�ability. Using `copy on write', reference counting with

modi�able objects is possible and only slightly more involved.

8 Basic Library

The basic library of Cgal contains more complex geometric objects and data structures, such as

polygons, polyhedrons, triangulations (including Delaunay triangulations), planar maps, range and

segment trees, and kd-trees. It also contains geometric algorithms, such as convex hull, smallest

enclosing circle and ellipse, boolean operations, and generators for geometric objects.
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The two most important C
++

programming techniques used in the design of the basic library

are generic programming and traits classes, as described in the sequel.

8.1 Generic Data Structures

Following the generic programming paradigm as introduced in Section 4, Cgal is made compliant

with the STL. The interfaces of geometric objects and data structures in the basic library make

extensive use of iterators, circulators and handles, such that algorithms and data structures can be

easily combined with each other and with those provided by the STL and other compliant libraries.

Triangulations are an example for a container-like data structure in the basic library. The

interface contains, among others, member functions to access the vertices of the triangulation, e.g.,

all vertices or the vertices on the convex hull. One way to provide this functionality would be:

class Triangulation {

public:

list<Vertex*> vertices();

list<Vertex*> convex_hull();

// ...

};

There are two main disadvantages. First, the whole sequence of vertex pointers has to be computed

at once and copied into a list. Second, the vertex pointers are returned in a speci�c container,

list<Vertex*>, but the user may need them in another container, for instance vector<Vertex*>,

or in no container at all. The following approach avoids the disadvantages of the �rst sketch.

class Triangulation {

public:

Vertex* vertex();

Vertex* successor( Vertex*);

Vertex* predecessor( Vertex*);

Vertex* convex_hull_vertex();

Vertex* convex_hull_successor( Vertex*);

Vertex* convex_hull_predecessor( Vertex*);

// ...

};

Each vertex pointer is only computed when the user asks for it by calling the successor or prede-

cessor function. The user is free to choose an appropriate container for the sequence or to use the

vertex pointers directly without storing them in a container. In contrast to the �rst approach, the

functionality for storing the vertices in a container is provided, not the container itself.

However, this interface has the disadvantage, that each algorithm working on either sequence

of vertices has to know the names of the access functions, which makes it hard to implement such

an algorithm generically. The following solution chosen in Cgal avoids this disadvantage:

4

class Triangulation {

public:

Vertex_iterator vertices_begin();

Vertex_iterator vertices_end();

Convex_hull_iterator convex_hull_begin();

Convex_hull_iterator convex_hull_end();

// ...

};

4

The implementation in Cgal di�ers slightly, because the vertices on the convex hull are accessed using circulators

(see Section 5) instead of iterators.
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Here, the whole functionality for accessing vertices is factored out in separate classes, which are

models for the concept of iterators from the STL. To demonstrate the genericity of the third

approach, the following example shows the use of the generic copy function from the STL to store

the vertices in a C-array.

Triangulation t;

// ...

Vertex vertices[ /* ... */ ]; // large enough

copy( t.vertices_begin(), t.vertices_end(), vertices);

Vertex convex_hull[ /* ... */ ]; // large enough

copy( t.convex_hull_begin(), t.convex_hull_end(), convex_hull);

Like in the previous examples, geometric data structures in the basic library often contain more

than one sequence of interest, e.g., triangulations contain vertices, edges, and faces. Therefore the

names of the member functions that return iterator ranges are pre�xed with the name of the

sequence, e.g., vertices begin(), edges end(). These names are the canonical extension of the

corresponding names begin() and end() in the STL. The iterator based interfaces together with

the extended naming scheme assimilate the design of the container-like geometric data structures

in the basic library with the C
++

Standard. This guarantees a smooth learning curve for users

having a base knowledge of the STL, thus making Cgal easy to use.

8.2 Generic Algorithms

Besides geometric data structures, the basic library also contains geometric algorithms. Instead of

implementing an algorithm for a speci�c container, the geometric algorithms in the basic library

are based on iterators, circulators, and handles. This makes them generic and compliant with the

STL.

Convex hulls are an example for a geometric algorithm in the basic library. The algorithm

takes a set of points as input and outputs the sequence of points on the convex hull. The following

example gives a possible declaration, if we had �xed a certain container class in the algorithm's

interface.

template < class Point >

list<Point>

convex_hull( list<Point> points);

The input is read from the container points of type list<Point>, the output is written to

another container of the same type. Again, a major drawback is that the user is forced to provide

the input in a speci�c container. If he wants to compute the convex hull from a vector of points,

he has to copy the points from the vector into a list, before he can apply the algorithm. The same

argument holds for the output to a speci�c container.

Our solution inCgal, following the generic programming paradigm, uses iterator ranges instead

of containers.

template < class InputIterator, class OutputIterator >

OutputIterator

convex_hull( InputIterator first, InputIterator beyond,

OutputIterator result);

Here, the input is read from the iterator range [first,beyond) and the output is written

to the output iterator result. Let the return-value be result beyond, then the iterator range

[result,result beyond) contains the sequence of points on the convex hull. This design decouples

the algorithm from the container and gives the user the 
exibility to use any container, e.g. from

the STL, from other libraries or own implementations (provided they are compliant with the STL),

or to use no container at all. The latter case is illustrated in the following example.
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convex_hull( istream_iterator<Point>( cin), istream_iterator<Point>(),

ostream_iterator<Point>( cout, "\n"));

Points are taken from standard input and the points on the convex hull are written to standard

output. Here so-called stream iterators [MS96] from the STL are used. This example again

demonstrates the 
exibility gained from the STL-compliance of the geometric algorithms in the

basic library.

The following example is a complete running program. It generates 100 points at random,

uniformly distributed in a disc. The Delaunay triangulation and the convex hull of the point set

are computed and displayed in two graphical windows. The output is shown in Figure 8.2.

#include "tutorial.h"

#include "tutorial_io.h"

int main() {

Random rnd( 2);

Random_points_in_disc_2 rnd_pts( 250.0, rnd);

list<Point_2> pts;

copy_n( rnd_pts, 100, back_inserter( pts));

Delaunay_triangulation_2 dt;

dt.insert( pts.begin(), pts.end());

Polygon_2 ch;

convex_hull_points_2( pts.begin(), pts.end(), back_inserter( ch));

Window_stream window1( 512, 512, 50, 50);

window1.init( -256.0, 255.0, -256.0);

window1 << dt;

Window_stream window2( 512, 512, 600, 50);

window2.init( -256.0, 255.0, -256.0);

copy( pts.begin(), pts.end(), ostream_iterator_point_2( window2));

window2 << ch;

Point_2 p;

window2 >> p; // wait for mouse click in window2

return 0;

}

The �le tutorial.h is used in the example programs from the Cgal-tutorial [GVW98]. It

includes some Cgal header �les and uses the representation class CGAL Cartesian<double> to

parameterize the geometric objects and algorithms via typedefs, in order to hide the template

mechanism and the CGAL pre�x from the Cgal novice. The �le tutorial io.h includes Cgal

header �les related to graphical in- and output.

The class Random points in disc 2, which is provided by Cgal, is a model for an input

iterator. It generates two-dimensional points uniformly distributed in a disk. The function template

back inserter() from the STL returns a model for an output iterator that appends items to the

end of the given container. Note, that it is applied twice, once to a list from the STL, and once to

a polygon from Cgal, showing the genericity of back inserter() and the STL-compliance of the

Cgal polygon. The function template ostream iterator point 2(), provided byCgal, returns a

model of an output iterator, which writes points to the given output stream. The back inserter()

cannot be used here, since it is specialized on Standard Library streams, but the Window stream

from Cgal is not derived from these streams.

8.3 Traits Classes for Adaptability

In Section 3 the analogy to an ideal theoretical paper on a geometric algorithm was introduced,

which �rst declares geometric primitives and thereafter expresses the algorithm in terms of this
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Figure 2: The output of example Delaunay triangulation Convex hull.C

primitives. Implementing an algorithm or data structure, we collect all necessary types and prim-

itive operations in a single class, called traits class, which encapsulates such details like geometric

representations. Collecting types in a single class is a template technique that is already inten-

sively used in [BN94]. It is sometimes called `nested typedefs for name commonality'-idiom. The

approach gains much additional value by the traits technique as used in the C
++

Standard Library

[Mye95], where additional informations are associated to already existing types or built-in types.

An example is the iterator concept for which a user might wish to know the value type that a

model of an iterator refers to. This can be easily encoded as a local type for iterators implemented

as classes.

struct iterator_to_int {

typedef int value_type;

// ...

};

Since a C-pointer is a model for an iterator, this approach is not su�cient. The solution chosen

for the STL are iterator traits, i.e., class templates parameterized with a model of an iterator.

template < class Iterator >

struct iterator_traits {

typedef Iterator::value_type value_type;

// ...

};

The value type of the iterator example class above can be expressed as iterator traits<

iterator to int >::value type. For C-pointers partial specialization of the iterator traits class

can be used.

template< class T >

struct iterator_traits<T*> {

typedef T value_type;

// ...

};

Our approach with traits classes in the basic library does not attach information to built-in

types, but to our data structures and algorithms. We use them as a modularization technique
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that allows a single implementation to get interfaced to di�erent geometric representations and

primitive operations. Our traits class is therefore a single template argument for algorithms and

data structures in the basic library, e.g.,

template < class Traits >

class CGAL_Triangulation_2 {

// ...

};

Note, that each primitive could be provided by a single template parameter as well, but using traits

classes simpli�es the interface by putting all these primitives in one single argument and makes it

easier to apply already prepared implementations of traits classes.

8.4 Implementing (with) Traits Classes

A model for the concept of traits classes must provide the geometric primitives required by

the geometric data structure or algorithm. The basic library provides families of models based

on the geometric objects and predicates from the Cgal-kernel. Each family in the basic li-

brary is realized as a class template parameterized by a representation class, (see Section 7),

e.g. CGAL Triangulation euclidean traits 2< R >, Remember that via the representation class

the implementation of the objects from the kernel is chosen.

To give an example, the data structure CGAL Triangulation 2 needs, among others, points,

segments, triangles and an orientation predicate, thus one family of models for the concept of traits

classes for this data structure looks like

template < class R >

class CGAL_Triangulation_euclidean_traits_2 {

public:

typedef CGAL_Point_2<R> Point; // point type

typedef CGAL_Segment_2<R> Segment; // segment type

typedef CGAL_Triangle_2<R> Triangle; // triangle type

// ...

CGAL_Orientation // orientation predicate

orientation( const Point& p, const Point& q, const Point& r) const {

return CGAL_orientation( p, q, r);

}

// ...

};

For ease-of-use, typedefs can introduce shorter names like

typedef CGAL_Cartesian< long > R;

typedef CGAL_Triangulation_euclidean_traits_2< R > Traits;

typedef CGAL_Delaunay_triangulation_2< Traits > Triangulation;

for Delaunay triangulations with the Euclidean metric using predicates and objects from the Cgal-

kernel with Cartesian coordinates of type long integer.

Up to now, we described the interface as it is presented to the user. The following code fragment

shows some implementation details related to the concept of traits classes.

5

template < class Traits >

class CGAL_Triangulation_2 {

public:

typedef typename Traits::Point Point;

typedef typename Traits::Triangle Triangle;

Traits traits;

5

The actual Cgal-code di�ers slightly from the example, but the usage of the traits class is the same.
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insert( const Point& p) {

if ( traits.orientation( p, q, r) != CGAL_COLLINEAR) {

Triangle t( p, q, r);

// ...

}

// ...

}

// ...

};

The insert member function inserts a given point p into the triangulation. The type of p is

Traits::Point, which is the point type from the traits class. During the insertion, the orientation

of a point triple p; q; r is checked, with a call to the orientation function provided by the traits

class. If p, q, and r are not collinear, a triangle t is created from the point triple. Again, t is of type

Triangle::Traits, which is the triangle type from the traits class. Note, that an instance traits

of the traits class is stored in CGAL Triangulation 2. This allows the user to provide additional

information within this traits-class object, e.g., a direction for projecting three-dimensional points

onto a two-dimensional plane. To access the additional data, the orientation member function

is not declared static.

6

8.5 Default Traits Classes

For algorithms implemented as functions, a default traits class is chosen automatically, if not

provided in the function call. Thus the user can just ignore the traits class mechanism. The

following example demonstrates this.

typedef /* ... */ R; // some representation type

typedef CGAL_Point_2<R> Point_2;

typedef CGAL_Polygon_2<R> Polygon_2;

const int n = 100;

Point_2 pts[ n];

Polygon_2 hull;

// ... // fill pts

CGAL_convex_hull_points_2( pts, pts+n, back_inserter( hull));

In the call to the convex-hull algorithm no traits class is visible to the user, but it is chosen

silently by the compiler. How? Let us have a look at the de�nition of CGAL convex hull points 2.

template < class InputIterator, class OutputIterator >

inline

OutputIterator

CGAL_convex_hull_points_2( InputIterator first, InputIterator beyond,

OutputIterator result ) {

typedef typename iterator_traits<InputIterator>::value_type Point;

typedef typename Point::R R;

return CGAL_convex_hull_point_2( first, beyond, result,

CGAL_convex_hull_traits_2<R>());

}

The Point type of the input points is the value type of InputIterator. It is determined via

iterator traits as described in Section 8.3. Since Point is a Cgal-point, it `knows' its representation

type R. Finally, another version of CGAL convex hull points 2 taking four arguments is called.

The additional parameter is CGAL convex hull traits 2<R>(), which is a model for the traits

6

If orientation() was declared static, the call would be Traits::orientation(p,q,r), i.e., the call would not

be on a speci�c instance of Traits.
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class concept for convex-hull algorithms. The second version of the function template is de�ned as

follows.

template < class InputIterator, class OutputIterator, class Traits >

OutputIterator

CGAL_convex_hull_points_2( InputIterator first, InputIterator beyond,

OutputIterator result, const Traits& traits) {

// compute the convex hull using only primitives from the traits class

}

This mechanism works for iterator ranges with value type CGAL Point 2<R> for any representation

type R.

8.6 Examples for Adaptability through Traits Classes

The following examples demonstrate the adaptability of the basic library through the use of traits

classes. We show

� how to plug a Cgal algorithm in an existing application which has its own point type,

� how to change the underlying metric for distance computations in a Cgal data structure,

and

� how to use three-dimensional data in a two-dimensional data structure from Cgal.

Suppose a user already has a possibly large application based on an own point type, e.g.,

leda rat point from Leda, and wants to compute the convex hull of a point set with the Cgal

algorithm CGAL ch graham andrew [Sch98b]. The only thing the user has to supply is a model for

the concept of traits classes for the convex-hull algorithm. This model has to provide a point type

Point 2 and predicates Less xy and Leftturn, as shown below.

#include <CGAL/ch_graham_andrew.h>

#include <LEDA/rat_point.h>

#include <LEDA/list.h>

struct Leda_traits {

typedef leda_rat_point Point_2;

struct Less_xy {

bool operator() ( const Point_2& p, const Point_2& q) const {

return( compare( p, q) < 0);

}

};

struct Leftturn {

bool operator() ( const Point_2& p,

const Point_2& q, const Point_2& r) const {

return( left_turn( p, q, r));

}

};

};

int main() {

leda_list<leda_rat_point> pts; // input points

leda_list<leda_rat_point> ch; // convex hull

// ...

CGAL_ch_graham_andrew( pts.begin(), pts.end(),

back_inserter( ch), Leda_traits());

return 0;

}
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The functions compare and left turn used for the predicates are provided by Leda. The convex-

hull algorithm fromCgal is adapted to the user's point type through the parameter Leda traits()

in the call to CGAL ch graham andrew.

7

Another way of adaptingCgal is to change only a small part of a model for the concept of traits

classes. This allows the user to do only the necessary modi�cations, while re-using most of the

code from the library. We give an example showing the computation of the Delaunay triangulation

of a point set using the maximum metric (L

1

) instead of the Euclidean metric (L

2

).

#include <CGAL/Triangulation_euclidean_traits_2.h>

#include <CGAL/Delaunay_triangulation_2.h>

typedef /* ... */ R; // some representation type

typedef CGAL_Point_2<R> Point;

typedef CGAL_Triangulation_euclidean_traits_2<R> Euclidean_traits;

class L_infty_traits : public Euclidean_traits {

public:

CGAL_Orientation

extremal( const Point_2& p, const Point_2& q, const Point_2& test) const {

// using L_infty metric

}

CGAL_Oriented_side

side_of_oriented_circle( const Point_2& p, const Point_2& q,

const Point_2& r, const Point_2& test) const {

// using L_infty metric

}

};

int main() {

typedef CGAL_Delaunay_triangulation_2< L_infty_traits > DT_l_infty;

list<Point> pts;

// ...

DT_l_infty dt;

dt.insert( pts.begin(), pts.end());

return 0;

}

The adapted model L infty traits of a traits class is derived from the standard model for tri-

angulations provided by Cgal. Only the two predicates extremal and side of oriented circle

have to be re-de�ned for using the maximum metric. All other inherited primitives remain un-

changed, since they do not depend on the chosen metric.

8

The third example deals with the problem of using a two-dimensional data structure with three-

dimensional data. Suppose the user is given a terrain model by a set of terrain points, where a

two-dimensional point represents the position in the plane and an additional number is the level.

The user wants to compute the Delaunay triangulation for the vertical projection of the terrain

model. The predicates which are de�ned in the following traits-class model do the projection by

simply ignoring the additional number and using only the two-dimensional points.

#include <CGAL/Cartesian.h>

#include <CGAL/Point_2.h>

#include <CGAL/Triangulation_euclidean_traits_2.h>

#include <CGAL/Delaunay_triangulation_2.h>

7

Cgal already provides a traits-class model for the convex-hull algorithms using the point type leda rat point,

namely the family CGAL convex hull rat leda traits 2.

8

Cgal already provides a family of such models for the traits-class concept, namely

CGAL Triangulation l infty traits 2.
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#include <vector.h>

template < class R, class Level >

class Terrain_point {

public:

typedef CGAL_Point_2<R> Point;

Terrain_point( ) { }

Terrain_point( const Point& point, const Level& level)

: _point( point), _level( level) { }

const Point& point() const { return( _point); }

const Level& level() const { return( _level); }

private:

Point _point;

Level _level;

};

// class Terrain_segment

// class Terrain_triangle

template < class R, class Level >

struct Terrain_traits {

typedef Terrain_point< R, Level > Point;

typedef Terrain_segment < Point > Segment;

typedef Terrain_triangle< Point > Triangle;

typedef CGAL_Triangulation_vertex< Point > Vertex;

typedef CGAL_Triangulation_face< Vertex > Face;

typedef CGAL_Triangulation_euclidean_traits_2<R> Traits;

CGAL_Comparison_result

compare_x( const Point& p, const Point& q) const {

return( Traits::compare_x( p.point(), q.point()));

}

// compare_y()

CGAL_Orientation

orientation( const Point& p, const Point& q, const Point& r) const {

return( Traits::orientation( p.point(), q.point(), r.point()));

}

// extremal()

CGAL_Oriented_side

side_of_oriented_circle( const Point& p, const Point& q,

const Point& r, const Point& s) const {

return( Traits::side_of_oriented_circle( p.point(), q.point(),

r.point(), s.point()));

}

};

int main() {

typedef CGAL_Cartesian<double> R;

typedef Terrain_point < R, int > TPoint;

typedef Terrain_traits< R, int > Traits;

typedef CGAL_Delaunay_triangulation_2< Traits > Dt;

vector<TPoint> terrain;

// ...

Dt dt;

dt.insert( terrain.begin(), terrain.end());

return 0;

}
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Since the terrain points represent their positions with two-dimensional points from Cgal, all

functions provided by the standard model of the traits-class concept for triangulations can be

re-used.

9

9 Software Engineering in the Project

The birth of the Cgal-library dates back to a meeting in Utrecht in January 1995. Since then

the �ve authors started developing the kernel. The Cgal-project started o�cially in October

1996 and the team of developers had grown to circa 25 people, mostly research assistants, PhD

students and postdocs in academia, which are professionals in the �eld of computational geometry

and related areas. This amounts to a heterogeneous team of developers; some of them working

part time for Cgal, some of them full time. The Cgal release 1.0 is in preparation and consists

currently (January 1998) of approximately 70000 lines of C
++

source code

10

for the library, plus

30000 lines for accompanying sources, such as the test suite and example programs. In terms of

the elder Constructive Cost Model (COCOMO) the line counts, people involved and time schedule

amount to a big project on its way to a large project, comparable to smaller operating systems or

database management systems [Fai85]. The need for software engineering and quality control is

obvious.

The project structure of seven loosely coupled research groups needed to be taken into ac-

count for the management. The intensive use of the Internet with a project Web-server

11

and

email discussion groups are a matter of course, but major progress in the design was mostly made

on implementers meetings. An early modularization of the library, see Section 6, with as little

dependencies among the modules as possible was crucial to the project in order to keep the com-

munication needs reasonable between the project partners. The library layers, kernel and basic

library, emphasized the obvious dependencies. The basic library was subdivided into mostly in-

dependent parts and assigned to di�erent project partners. The kernel development started quite

ahead such that the �rst internal release was ready with the o�cial start of the project.

The idealized developing process in Cgal is structured into speci�cation, implementation, test,

integration and continuous regression testing. It is in
uenced by the spiral model [Fai85] and

successive iterations through this process are to be expected. The indivisible unit is the package.

Four parties are involved in the developing process: The author, the editorial committee, the tester

and the integration site, Utrecht. The author writes a speci�cation for a package in a format of a

reference manual page and submits it to the editorial committee for discussion and approval. The

editorial committee takes care about interconnections between di�erent packages and a uni�ed

look-and-feel of the design in Cgal. After approval of the speci�cation the author implements and

tests the package. Literate programming tools are recommended to structure the source code and

accompanying documentation of the implementation (but not the speci�cation) [Wil92, Knu84,

KL94, SS91]. However, the common format for source code distributions are plain C
++

source �les.

The strict separation of the speci�cation from the implementation is idealistic, but nonetheless

important. It puts the main focus on the design qualities of a package and postpones the blinders

one naturally evolves when a �rst implementation has been �xed. A further discussion can be

found in [PC86]. This separation is also supported by our manual-writing tools described below.

In the next step, the author sends the package to the external tester at a distinct project site.

Thereafter, the package gets integrated in the Cgal-library maintained and revision controlled at

the integration site. Each package is supposed to provide a test suite. On integration the test

suite needs to pass all runs on supported compiler/system combinations. Upon any internal and

external releases of the library the collected test suites will be automatically evaluated.

The developing process de�nes �ve places for quality control, although the heterogeneous,

academic environment allows only recommendations: First, the design is reviewed by the editorial

committee (or other reviewers commissioned by them). Typically this has been done on developer

9

Projections of CGAL Point 3 onto the xy-, xz-, and yz-plane for using them in triangulations are available in

Cgal, see CGAL Triangulation euclidean traits xy 2.

10

C
++

comments and empty lines are not counted.

11

http://www.cs.ruu.nl/CGAL/
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meetings. This is the most serious control, since errors or necessary changes not seen yet are the

most costly ones. Second, the speci�cation will mention pre- and postconditions for functions. They

are supposed to be tested at runtime with assertions [Mag93, Str97] placed in the implementation

12

.

Preconditions allow the early detection of usage errors by the function caller, postconditions catches

implementation errors in the function. Further assertions can be placed anywhere between. The

extension from assertions to program checkers with respect to geometric algorithms can be found

in [MNS

+

96]. Third, the author is supposed to test the implementation thoroughly and to provide

a test suite, which achieves at least code coverage of the package

13

. This can be proven with code

coverage tools, e.g. gcov of the Gnu tools. Other runtime tests are recommended, for example

bounds checker and monitoring dynamic memory allocation. Fourth, the second, external tester

reviews again speci�cation and implementation. Fifth, the integration into the library uses the

automatized test suite to check the compliance of the new package with the other parts of the

library, especially when a revised version of a module gets integrated.

Design and speci�cations are communicated with reference manual pages. First reasons are

given above with the developing process. Another reason is that the reference manual will be the

main documentation for the users of Cgal. Its quality together with the other manuals, such as

the tutorial, will determine the acceptance of Cgal. A design is not a good design if we cannot

communicate it.

In order to provide appealing, high-quality manual pages we use L

A

T

E

X. A self-written style �le

adds additional formatting capabilities as can be seen in Figure 9, which displays an excerpt of the

manual page for two-dimensional points in Cgal. The principal manual page layout is intentionally

close to the Leda user manual [MNU97], albeit the writing process and the supporting tools are

di�erent. The main goal of the layout is to provide a dense and compact presentation, which allows

a fast overview and access to the information searched, without sacri�cing correctness. A three

column layout for the member functions displays the return-type in the �rst column, the remaining

signature in the second column, and the documentation in the third column. Certain automatisms

allow 
exible layouts whenever an entry gets too long. Reduction rules remove const : : : &

declarations from function arguments (they are considered as implementation details), remove the

current class name from function arguments and rewrite operator declarations in operator notation,

see the operator examples in Figure 9. This is all done automatically using original C
++

declarations

within the L

A

T

E

X source. Summarizing, a short member function can be documented e�ciently in

a single line.

Our view on the developing process strictly separates speci�cation and implementation. The

tools provided for the manual writing share this view. A scenario how this tools can be applied

together with literate programming tools for the implementation part is shown in Figure 9. The

left side illustrates the formatting of the speci�cation with L

A

T

E

X and the style �le cc manual.sty

as well as the automatic conversion of the speci�cation to an HTML online manual with the

script cc manual to html. The HTML online manual makes full use of the hyperlinks for cross-

referencing. An index of all classes, functions, constants, enums etc. is thereby generated. The

right side illustrates the use of literate programming tools with the two possible transformation

steps, tangle and weave. In the middle the C
++

source code gets extracted partially from the

speci�cation and partially from the literate programming source. The tool cc extract extracts

the C
++

declarations written in the L

A

T

E

X-�le of the speci�cation to produce the public part of

a C
++

header �le. The tool cc check can be used in further re�nements to check whether all

declarations that are part of a speci�cation are really present in the implementation.

Other approaches feature C
++

comments to encode the reference manual within the C
++

source

code. Their advantage is that during further re�nements it is easy to update the documentation,

which is located nearby in the same �le. Our approach uses C
++

declarations within the reference

manual and provide tools to maintain integrity. The bene�t is the cleaner separation of the spec-

12

For production code the assertions can be omitted from the code. Assertions can be independently switched on

and o� for major packages. A distinction into normal and expensive checks allows even the use of computationally

non-trivial checks in these assertions without sacri�cing too much speed.

13

Note that for C
++

templates code coverage is even more important than ever, since otherwise the compiler is

not even able to check for syntactical errors within templates.
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2D Point (CGAL Point 2<R>)

De�nition

An object of the class CGAL Point 2 is a point in the two-dimensional Euclidean plane

E

2

.

Remember that R::RT and R::FT denote a ring type and a �eld type. For the representa-

tion class CGAL Cartesian<T> the two types are equivalent. For the representation class

CGAL Homogeneous<T> the ring type is R::RT == T , and the �eld type is R::FT ==

CGAL Quotient<T>.

#include <CGAL/Point 2.h>

Creation

CGAL Point 2<R> p( R::RT hx, R::RT hy, R::RT hw = R::RT(1));

introduces a point p initialized to (hx=hw;hy=hw). If the third argu-

ment is not explicitly given, it defaults to R::RT(1).

Operations

CGAL Bbox 2 p.bbox() returns a bounding box contain-

ing p. Note that bounding boxes

are not parameterized with what-

soever.

CGAL Point 2<R> p.transform( CGAL Aff transformation 2<R> t)

returns the point obtained by ap-

plying t on p.

The following operations can be applied on points:

CGAL Vector 2<R> p � q returns the di�erence vector be-

tween q and p.

CGAL Point 2<R> p +CGAL Vector 2<R> v returns a point obtained by trans-

lating p by the vector v .

CGAL Point 2<R> p �CGAL Vector 2<R> v returns a point obtained by trans-

lating p by the vector �v .

Figure 3: The shortened reference manual page for two-dimensional points

in Cgal-R1.0. The equality test, the coordinate accessors, and the example

subsection are omitted here.
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Figure 4: Overview of the developing process in Cgal. The �les and tools

involved are shown: Speci�cation on the left, implementation on the right.

i�cation and the implementation task. Furthermore, it follows the conceptual idea of the literate

programming tools to write programs embedded in their speci�cation, not comments in programs.

This slight conceptual shift puts the writing task of the speci�cation at the �rst place, in accor-

dance with the priority we gave it. The use of literate programming tools for the implementation

documentation widens the gap even further. Speci�cations that are placed in C
++

comments are

now embedded in the implementation documentation, i.e. at nesting level three. Furtheron, addi-

tional manuals can be written with our scheme without cluttering the source code and checking is

still possible.

10 Evaluation of the Design

The sections above illustrate the concepts and techniques we use in Cgal to accomplish the design

goals from Section 3. Most of the techniques described are dedicated to our design goal 
exibility.

Modularity has been achieved with the structuring of the library in layers and packages. The

approach of the generic programming paradigm to specify an interface for a template argument

in terms of a concept has led to a strongly decoupled collection of modules. The example STL

illustrates the e�ect with algorithms and container classes: Neither the container must know the

algorithms, nor the algorithm must know the container. The connection is established with the

concept of the iterator. Various �le formats and visualization tools exist. Thus, I/O functions and

visualization are not part of the geometric objects themselves, but of separate modules. Adaptability

has been addressed with the free choice of an arithmetic in the kernel, the traits classes in the basic

library, and the modularization. Kernel predicates, distance and intersection functions are so far

not adaptable to other geometric objects than those of the kernel. This will be addressed in future

work on the kernel. Extensibility is primarily based on function overloading in C
++

for the global

functions and the independence of the modules. The generic object CGAL Object can cope with

any new object, which solves the extensibility of the intersection function with its polymorphic

return-value. The decoupling of the modules through the generic programming paradigm allows

to write new algorithms or data structures that interface Cgal { similar as Cgal does interface

with the STL. Cgal is open to the standards de�ned with the STL and allows the adaptation

towards other libraries. An example is the already provided support for the Leda number types

or the wrapper class for the Gnu Multiple Precision Arithmetic Library. Support for other number

types can be added easily. The modularization of I/O functions opens Cgal for any �le format or

visualization tool.
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Correctness is addressed by the quality control in the project structure. It includes the recom-

mendation for certain tools and the use of assertions and program checkers. The strong modular-

ization and large independences help in testing and achieving correctness. Another strong point

to achieve correctness is modularity and adaptability, which allow the combination of di�erent

modules according to the need of a particular solution. For example the adaptability for number

types can be utilized for a convex-hull algorithm if the input points are known to have integer

coordinates within a certain range; an optimized arithmetic of �xed but su�cient bit precision

instead of a general purpose arithmetic still result in a correct algorithm.

Robustness is partially coupled with correctness. The choice of an exact arithmetic and homo-

geneous representation class in the kernel lead to exact and e�cient primitives which are easier to

combine to form robust algorithms.

Ease-of-use is achieved through a strong modularization and a smooth learning curve. Users

who are familiar with the iterator concept are immediately familiar with its use in many algorithms

and data structures in Cgal. The new concepts, handle and circulator, are easy to learn through

their similarity to the iterator concept. The concepts in the kernel behave similar: Once users are

used to the parameterization with a representation class and arithmetic type, the complete Cgal-

kernel can be used. Even easier, the header �le from the Cgal-tutorial uses typedefs to hide the

template instantiations, such that the C
++

novice sees only simple classes with a selected default

representation and number type. When users gets familiar with the templates in the kernel, the

representation class provides a uniform look on all geometric objects in the kernel. In the basic

library the 
exibility of Cgal is usually hidden behind a single template argument, the traits class,

for which a default class exists. For functions, even this argument can be hidden with a default

parameter. The generic programming paradigm has been applied successfully to Cgal with only

a few new concepts. It has contributed considerably to the uniform look-and-feel of the design.

A naming convention and the choice of expressive names, with abbreviations limited to standard

abbreviations in geometry, result in readable and easy memorizable interfaces.

First practical teaching experiences have been made during a summer course at ETH Zurich,

Switzerland, in 1997 with the use of the STL and the Cgal-kernel. Five students have used the

geometric primitives, intersection computations, visualization, STL container classes, and iterators

successfully within a week. Their previous knowledge had ranged fromC
++
-novices up to a medium

knowledge of the STL.

E�ciency has been tackled with the extensive use of templates and inline functions. Re-

lying on compiler optimization capabilities, the traits class technique used in the basic library

should allow optimal results. Compromises concerning e�ciency have been made for the bene�t

of other design goals in some places. For instance, for ease-of-use the intersection computation

of kernel objects uses a uni�ed interface with the generic object as return value even for rela-

tive elementary intersection computations, such as line/line intersections. Another example is the

non-modi�ability of the kernel objects. Modi�ability could lead to more e�cient computation if

we would assume points always implemented with Cartesian coordinates. However, as discussed

in Section 7, this would restrict 
exibility. An interesting issue concerning e�ciency is reference

counting, see e.g. [Mur93, Mey96]. Reference counting can be a source of e�ciency, time e�ciency

as well as space e�ciency due to fewer copies of an object. However, especially if the objects

are small and copies made rarely, there are scenarios, where reference counting slows down the

computation, especially if no memory management is used to support fast allocation of reference

counted representation objects on the heap. For example, convex-hull computation as illustrated

in Section 8 is about 40% faster with points not using reference counting, if the points coordinates

are doubles. If the coordinates are maintained as leda integer, which use reference counting as

well, but take more space than a double, reference counted points are already slightly faster. In

both experiments, Leda's memory management was used to speed up heap allocation of reference

counted objects. Currently the kernel does not o�er an alternative to reference counted objects,

but it will do so in the future. Moreover, the 
exibility of the basic library allows the use of other

kernels, if the e�ciency is not su�cient.
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