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Abstract

In this paper, we give a characterization for parity graphs. A graph is a parity graph, if

and only if for every pair of vertices all minimal chains joining them have the same parity.

We prove that G is a parity graph, if and only if the cartesian product G �K

2

is a perfect

graph.

Furthermore, as a consequence we get a result for the polyhedron corresponding to an

integer linear program formulation of a coloring problem with costs. For the case that the

costs k

v;3

= k

v;c

for each color c � 3 and vertex v 2 V , we show that the polyhedron contains

only integral 0=1 extrema if and only if the graph G is a parity graph.

1 Introduction

A graph is a parity graph, if and only if for every pair of vertices all minimal chains joining

them have the same parity. Parity graphs are perfect [15] and are a subclass of the Meyniel

graphs [11]. In a parity graph, each odd cycle of length at least �ve has two crossing chords.

The class of parity graphs includes bipartite graphs and cographs. A polynomial algorithm

for the recognition of parity graphs (based on three operations) is given in [3]. Furthermore,

the problems maximum independent set, maximum clique, minimum coloring and minimum

partition into cliques can be solved in polynomial time for these graphs (see also [3]). Recently,

Cicerone and Di Stefano have given improved algorithms for the recognition, maximum weighted

independent set and clique problem [5].

In this paper, we prove that G is a parity graph, if and only if the cartesian product G�K

2

is a perfect graph. A partial characterization of the cartesian product G �K

2

has been given

already by Ravindra and Parathasarathy [13]. Independently, the characterization of parity

graphs was found also by de Werra and Hertz [6]. We give a direct proof that G � K

2

is a

perfect graph for each parity graph G. Our proof contains also an interesting algorithm to color

each induced subgraph of G � K

2

using the combinatorial structure of the parity graphs. An

indirect shorter proof (without giving an algorithm) was found by Reed [14].

�

This work was done while the author was associated with the University Trier and supported in part by

DIMACS and by EU ESPRIT LTR Project No. 20244 (ALCOM-IT).
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Furthermore, we study an integer program formulation of a special case of the general op-

timum cost chromatic partition (GOCCP) problem. The GOCCP problem can be described as

follows: An instance is given by an undirected graph G = (V;E) with n vertices and by a (n�m)

- cost-matrix (k

v;c

) with unrelated costs k

v;c

to execute job v on machine c. The problem is

to �nd a partition of the graph G into independent sets U

1

; : : : ; U

m

such that

P

m

c=1

P

v2U

c

k

v;c

is minimum. A subproblem with only machine dependent costs k

c

= k

v;c

for each v 2 V and

m = n, called the OCCP problem, has been studied in [16, 10, 9]. In this paper, we consider

the restricted case with m = n and costs k

v;c

= k

v;3

for c � 3 and v 2 V . We prove that the

polyhedron corresponding to the ILP contains only integral 0=1 extrema if and only if the graph

G in the instance is a parity graph.

The OCCP problem restricted to circle and permutation graphs, introduced by Supowit [17],

corresponds to a VLSI layout problem (see also [16]). Another application is given by Kroon et

al. [10]. The OCCP problem for interval graphs is equivalent to the Fixed Interval Scheduling

Problem (FISP) with machine dependent processing costs. In this scheduling problem each job

j 2 J must be executed during a given time interval (s

j

; f

j

). We assume that a su�cient number

of machines is available and that each job must be executed by one of the machines. If job j is

executed by machine c, then the associated processing costs are k

c

. The objective is to �nd a

feasible schedule for all jobs with minimum total processing costs.

It is not di�cult to see that the OCCP problem is NP-hard for arbitrary graphs. Sen et al.

[16] proved that the OCCP problem for circle graphs is NP-hard. Moreover, they considered an

integer linear program formulation of the OCCP problem. The polytope corresponding to the

constraints of this ILP contains only integral (0/1) vertices, if the cartesian product G�K

n

is

a perfect graph. Sen et al. [16] proved that G�K

n

is perfect if G is a tree and that there exists

a perfect graph G such that G�K

3

is not perfect.

Kroon et al. [10] studied the OCCP problem for interval graphs and trees. They showed

that the problem restricted to trees can be solved in linear time and that the problem restricted

to interval graphs is NP-hard even if there are only four di�erent values for the coloring costs.

For interval graphs G, they proved that the zero-one matrix corresponding to the constraints

of the ILP is perfect, if and only if G �K

n

does not contain an odd cycle of size 7 or more as

induced subgraph.

It is proved that the cartesian product G � K

m

for m � 3 is perfect, if and only if G is

a diamond - free chordal graph (a generalization of forests) and that the GOCCP problem is

solvable in polynomial time for these graphs [13, 9]. This implies that the polyhedron for the

GOCCP problem with m = n contains only integral extrema, if and only if the graph G in the

instance is a diamond free chordal graph. Furthermore, we showed that the OCCP problem is

NP-hard for bipartite graphs with four di�erent cost values (k

1

< k

2

< k

3

< k

4

= : : := k

n

) and

for permutation graphs with three di�erent cost values. On the other hand, the OCCP problem

is in P for cographs and the GOCCP problem is in P for graphs with constant treewidth.

2 Perfect matrices

In this section, we describe an integer linear program formulation of the restricted coloring

problem with costs. Let I be an instance of the GOCCP problem containing a graph G = (V;E)
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Figure 1: The cartesian product G�K
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.

with n vertices and a (n�m) cost matrix (k

v;c

) with m = n and k

v;c

= k

v;3

for c � 3 and v 2 V .

The objective function and the constraints of the problem can be described as follows:

min

P

v2V

[k

v;1

x

v;1

+ k

v;2

x

v;2

+ k

v;3

(1� x

v;1

� x

v;2

)] (0)

x

v;1

+ x

v;2

� 1 for each v 2 V (1)

P

v2C

x

v;c

� 1 for each clique C in G; 1 � c � 2 (2)

x

v;c

2 f0; 1g for each v 2 V; 1 � c � 2 (3)

This coloring problem amounts to the decision problem which vertices of the graph receive

colors 1 and 2. Once this is settled, the other vertices may receive colors 3; 4; : : : ; n. For each

vertex v 2 V and color i 2 f1; 2g, the variable x

v;i

is equal 1, if vertex v receives color i. The

total coloring costs are minimized by the objective function (0). The constraints (1) specify

that each vertex v receives at most one of the colors 1; 2, and the constraints (2) guarantee that

vertices that are connected by an edge are colored di�erently. Notice that the objective function

is equivalent to the linear function

min

X

v2V

[(k

v;1

� k

v;3

) x

v;1

+ (k

v;2

� k

v;3

) x

v;2

]:

The coe�cient matrix (a zero-one matrix) corresponding to the restrictions (1)�(2) is called

M . A zero - one matrix M is called perfect if the polyhedron P (M) = fxjMx � 1; x � 0g has

only integral extreme points. It follows that the GOCCP problem can be solved by applying a

linear program algorithm, if the matrixM is perfect. The goal of this paper is a characterization

of the graphs such that the polyhedron P (M) contains only integral extrema.

The cartesian product G

1

�G

2

= (V

1

�V

2

; E) of two graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

)

is de�ned by the edgeset

E = ff(u

1

; u

2

); (v

1

; v

2

)gj[u

1

= v

1

^ fu

2

; v

2

g 2 E

2

] _ [u

2

= v

2

^ fu

1

; v

1

g 2 E

1

]g:

A graph G = (V;E) is perfect, if and only if for each subset V

0

� V the chromatic number

�(G[V

0

]) of the subgraph G[V

0

] induced by V

0

is equal to the cardinality !(G[V

0

]) of a maximum

clique in G[V

0

].

The cartesian product G � K

2

of the original graph G and a complete graph K

2

with 2

vertices is illustrated in Figure 1. It is easy to see that the constraints (1); (2) for G de�ning
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Figure 2: If G = (X

1

[X

2

; A) is bipartite, then G�K

2

is bipartite.

the matrix M can be seen as the clique inequalities for G�K

2

. The constraints (1) are for the

cliques of size 2 consisting of pairs of corresponding vertices (v; 1); (v; 2) of the two copies of G.

Furthermore, the constraints (2) correspond to the cliques in each of the copies of G. Thus,

the polyhedron P (M) has only integral extreme points (or equivalent M is perfect), if and only

if G�K

2

is perfect (Chv�atal [4]). Therefore, the goal is to �nd a characterization of graphs G

such that G�K

2

is perfect. We note that G�K

2

is a bipartite graph, if G is bipartite; see also

Figure 2.

The solution x found by the linear program may not correspond directly to a solution of

the coloring problem. If k

v;3

<< min(k

v;1

; k

v;2

) for all v 2 V , then the best solution of the

linear program is x

v;1

= x

v;2

= 0 for all v 2 V . This implies that only machines 3; : : : ; n should

be used in the best solution. If �(G) � n � 2, then the solution found by the linear program

represents also a solution of the coloring problem. If �(G) > n�2, then we have to color at least

one vertex or two vertices with the colors 1; 2. If �(G) = n then G is a complete graph with n

vertices, and the optimum solution of the coloring problem can be computed using a minimum

weighted matching in a bipartite graph. If �(G) = n � 1 then the complement of G does not

contain two non-incident edges or a triangle. Using this assertion (and weighted matchings), an

optimum solution can be found in polynomial time for �(G) > n� 2.

3 Parity graphs

Let �(x) be the set of vertices adjacent to x (the neighbours of x). Two vertices x and y are

called true twins, if x and y are adjacent and have the same neighbours (that means �(x)[fxg =

�(y)[fyg). Two vertices x and y that are not adjacent but have the same neighbours are called

false twins. We de�ne the extension of a graph G by a bipartite graph B = (X

1

[ X

2

; A) the

operation that generates a new graph by identi�cation of a subset X of vertices of X

1

with a

set of false twins of G (possibly with jX j = 1).
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Figure 3: A partial list of forbidden subgraphs.

Theorem 3.1 [3] Every connected parity graph G = (V;E) is obtained from a single vertex by

the following operations:

(1) �

1

creation of a false twin,

(2) �

2

creation of a true twin,

(3) �

3

extension by a bipartite graph.

Parity graphs are also described by a list of forbidden induced subgraphs [3]. The list consists

of the odd cycles C

2k+1

(k � 2) or odd cycles having a short chord C

�

2k+1

(called generalized

house) and the cycle C

5

with two non-crossing chords C

��

5

(called gem). An interrupted line

in Figure 3 indicates that the edge may be either present (C

�

2k+1

) or not (C

2k+1

). A metric

characterization of parity graphs is given in [2] and parallel algorithms for recognition of parity

graphs are presented in [1, 12].

4 Main theorem

In this section, we prove the following result:

Theorem 4.1 The following two statements are equivalent:

(1) G�K

2

is a perfect graph.

(2) G is a parity graph.

Using this characterization and the theorem of Chv�atal [4] (see also the section about perfect

matrices), we obtain directly:
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Corollary 4.1 Let I be an instance of the GOCCP problem containing a graph G = (V;E) with

n vertices and coloring costs k

v;c

such that k

v;c

= k

v;3

for c � 3 and v 2 V . Then, we have

the following equivalence: The polyhedron P (M) corresponding to the instance I contains only

integral extrema, if and only if G is a parity graph.

The same result holds also for the OCCP problem with a sequence of coloring costs k

1

<

k

2

< k

3

= : : : = k

n

(in this case we have only a simpler objective function). Furthermore, we

note that the number of cliques is exponentional in the number of vertices even in a cograph.

Since G�K

2

is a perfect graph, the strong optimization problem to �nd a vector that minimizes

a linear function on P (M) is solvable in polynomial time [8]. This implies the following result:

Corollary 4.2 The GOCCP problem restricted to parity graphs and coloring costs k

v;c

such

that k

v;c

= k

v;3

for c � 3 and v 2 V can be solved in polynomial time.

4.1 First Direction

In this subsection, we prove the �rst part of the main theorem:

Theorem 4.2 If G is not a parity graph, then the cartesian product G�K

2

is not perfect.

Proof: To prove this, we have to consider the forbidden subgraphs. If G is no parity graph,

then G must contain one of the following induced subgraphs:

� an odd cycle C

2k+1

with k � 2,

� a generalized house C

�

2k+1

with k � 2,

� a gem C

��

5

.

In all three cases, we obtain an odd cycle in the cartesian product G � K

2

and, therefore,

we get a non-perfect induced subgraph in G�K

2

. This shows that G�K

2

is not perfect if G

is not a parity graph.

Case 1: If we have an odd cycle in G, then we have already a non-perfect induced subgraph

in G and, therefore, also in G�K

2

.

Case 2: A generalized house C

�

2k+1

generates an odd cycle C

2k+3

in G�K

2

; see also Figure

4.

Case 3: A gem C

��

5

generates an odd cycle C

7

in G�K

2

; see also Figure 5.

4.2 Second Direction

In this subsection, we prove the second part of the main theorem. An example for the algorithm

to compute the colorings is given in the next section.

Theorem 4.3 If G is parity graph, then the cartesian product G�K

2

is perfect.

6



k � 1

2

1

2k + 1

k

2k � 3

2k � 2

2k � 1

2k

house C

�

2k+1

(1; 2)

(1; 1) (2; 1) (2k� 1; 1) (2k; 1)

(2k; 2)(2k + 1; 2)

cycle C

2k+3

Figure 4: A house C

�

2k+1

generates an odd cycle C

2k+3

in G�K

2

.

5

1 2 3 4

gem C

��

5

(1; 2) (5; 2) (4; 2)

(4; 1)(3; 1)(2; 1)(1; 1)

cycle C

7

Figure 5: A gem C

��

5

generates a C

7

in G�K

2

.
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a b �

G G

�

Figure 6: The transformation for false twins a and b.

Proof: Let H = (V

H

; E

H

) be an induced subgraph of G � K

2

with maximum clique size

!(H) = k. Furthermore, let V

i

be the set of vertices fv 2 V j(v; i) 2 V

H

g in the i.th part of

G � K

2

, for 1 � i � 2. If k = 1 then H contains only isolated vertices and can be colored

with one color. Therefore, we may assume that k > 1. Moreover, we may assume that G is a

connected parity graph; otherwise we compute a coloring for each corresponding component of

G�K

2

.

In the following, we construct a k-coloring for the induced subgraph H . Simultaneously, we

compute two k-colorings f

i

for the induced subgraphs G[V

i

] (1 � i � 2) such that f

1

(v) 6= f

2

(v)

for each vertex v 2 V

1

\ V

2

. This gives a k-coloring for the graph H and proves the theorem.

Clearly, for k > 2, a maximum clique C lies either in G[V

1

] or in G[V

2

]. We compute a

k-coloring using weight functions c

(1)

; c

(2)

: V ! NI

0

. At the beginning, we de�ne

c

(i)

(v) =

(

1 if v 2 V

i

0 otherwise.

Then, the maximum weighted clique in G with weights c

(i)

(v) is equal to the maximum clique

size !(G[V

i

]), for 1 � i � 2.

By the reverse operations �

�1

1

; �

�1

2

(and also �

�1

3

), we can transform the parity graph into a

smaller parity graph. Using these reverse operations, we modify the weights of the vertices. In

general, a weight c

(i)

(�) stores the size of a maximum clique for a graph corresponding to �.

Operation �

�1

1

: False twins a and b in G. In this case, we transform G into a graph G

�

(see also Figure 6) with weights c

(i)

(�) = max(c

(i)

(a); c

(i)

(b)).

Operation �

�1

2

: True twins a and b in G. In this case, we transform G into a graph G

�

(see also Figure 7) with weights c

(i)

(�) = c

(i)

(a) + c

(i)

(b).

Operation �

�1

3

: Extension by a bipartite graph B = (X

1

[X

2

; A) (see Figure 8). In this

case, we remove the bipartite graph B and get a vertex � combining the false twins a and b

with weights c

(i)

(�) = max[c

(i)

(a); c

(i)

(b)]. Notice that we store in vertex � only the weight of

the vertices a and b (the number of colors for a and b). The cardinality of the maximum clique

in G (or the minimum number of colors to color G) is given by the maximum of

8



a b �

G G

�

Figure 7: The transformation for true twins a and b.

B

a b

G G

�

�

Figure 8: The transformation for an extension by a bipartite graph B.

(1) the weight of a maximum weighted clique in B,

(2) the weight of a maximum weighted clique in G

�

.

In general, we replace the set X � X

1

of false twins by a vertex � with weights c

(i)

(�) =

max

x2X

c

(i)

(x).

Recursively, we compute for parity graphs G

0

= (V

0

; E

0

) with weights c

(i)

(v) for v 2 V

0

colorings g

i

: V

0

! 2

f1;:::;kg

such that the following invariants are satis�ed:

(1) the cardinalities jg

i

(v)j = c

(i)

(v),

(2) if c

(1)

(v) = c

(2)

(v) = 1 then g

1

(v) 6= g

2

(v),

(3) if c

(1)

(v) = c

(2)

(v) = k � 1 then g

1

(v) 6= g

2

(v).

This means that we compute for each vertex � a color set g

i

(�) with cardinality equal to

the weight c

(i)

(�). Since the weight is equal to the size of a maximum clique corresponding

9



to �, this color set stores a coloring of the graph corresponding to �. For the original graph

G = (V;E) the weights c

(i)

(v) are zero or one. Using invariant (2) we obtain color sets g

i

(v)

with cardinalities one for the vertices v in G[V

i

] such that g

1

(v) 6= g

2

(v) for v 2 V

1

\ V

2

. The

invariant (3) is used to split color sets for operation �

3

(extension by a biparite graph).

Suppose that vertex � has the weight c

(i)

(�) = k � 1 in both graphs G[V

i

], 1 � i � 2.

Furthermore, suppose that the color sets are equal: g

1

(�) = g

2

(�). If X = fag and vertex a is

adjacent to a vertex x 2 X

2

(in the bipartite graph B) with weights c

(i)

(x) = 1, then we must

color x with the same color. To avoid such a situation, we use the invariant (3).

In what follows, we compute recursively colorings g

i

such that the invariants are satis�ed. It

must be noted that the sets g

i

(v) for the vertices v in G[V

i

] form a feasible coloring. We start

with a single vertex graph and use color sets g

i

(v) of size equal to the weights c

(i)

(v). For true

twins a, b, we distribute the color sets g

i

(�) to both twins. Since we do not use one color for

both a and b, this generates a feasible coloring. For operation �

3

, we extend the colorings of G

�

to the vertices in B such that adjacent vertices x; y in B get color sets with g

i

(x) \ g

i

(y) = ;.

For a single vertex graph, we can �nd colorings g

i

such that the invariants are satis�ed for

each k � 2. We assume now that we have such colorings g

i

for the parity graph G

�

, and apply

one of the operations �

1

, �

2

or �

3

back to get G.

Operation �

1

: False twins a and b. This is a special case of �

3

with X

2

= ; and X

1

= X =

fa; bg.

Operation �

2

: True twins a and b. In this case, we have to split the color sets g

1

(�) and

g

2

(�) such that the invariants are satis�ed for the vertices a and b.

Case 1: We have to use two color sets of size k � 1 at vertex a or b. We may assume that

c

(1)

(a) = c

(2)

(a) = k � 1.

Case 1.1: c

(1)

(b) = c

(2)

(b) = 1. In this case, c

(1)

(�) = c

(2)

(�) = k. We choose two di�erent

colors red; blue 2 f1; : : : ; kg and de�ne the color sets as follows:

g

1

(a) g

1

(b) g

2

(a) g

2

(b)

f1; : : : ; kg n fredg fredg f1; : : : ; kg n fblueg fblueg

These color sets satisfy the invariants.

Case 1.2: c

(1)

(b) = 1 and c

(2)

(b) = 0. In this case, we have jg

2

(�)j = k � 1 and know

the unique color red 2 f1; : : : ; kg n g

2

(�). Using a color blue di�erent from red, we de�ne the

following color sets:

g

1

(a) g

1

(b) g

2

(a) g

2

(b)

f1; : : : ; kg n fblueg fblueg g

2

(�) ;

Again, these color sets satisfy the invariants.

Case 1.3: [c

(1)

(b) = 0 and c

(2)

(b) = 1] or [c

(1)

(b) = c

(2)

(b) = 0]. The �rst case is symmetrical

to case 1:2 and in the second case, we can use the color sets g

i

(a) = g

i

(�).

Case 2: We have to use two color sets of size 1 at vertex a or b. We may assume that

c

(1)

(a) = c

(2)

(a) = 1.

Case 2.1: c

(1)

(b) = c

(2)

(b) = 1. If g

1

(�) \ g

2

(�) = ;, then we can split the color sets g

1

(�)

and g

2

(�) arbitrarily. Suppose that red 2 g

1

(�) \ g

2

(�). In this case, we de�ne

10



g

1

(a) g

1

(b) g

2

(a) g

2

(b)

fredg g

1

(�) n fredg g

2

(�) n fredg fredg

and obtain colorings that satisfy our invariants.

Case 2.2: c

(1)

(b) = c

(2)

(b) = k � 1. This case is symmetrical to case 1:1.

Case 2.3: c

(1)

(b) = c

(2)

(b) = 0. Here, we use the same color sets g

i

(a) = g

i

(�).

Case 2.4: c

(1)

(b) = 0 and c

(2)

(b) 6= 0. Here, we choose a color red 2 g

2

(�)ng

1

(�) and de�ne

g

1

(a) g

1

(b) g

2

(a) g

2

(b)

g

1

(�) ; fredg g

2

(�) n fredg

Case 2.5: c

(1)

(b) � 1 and c

(2)

(b) > 1 and not c

(1)

(b) = c

(2)

(b) = k � 1. In this case, we

have only a possible conict at vertex a. Here, we choose two di�erent colors red 2 g

1

(�) and

blue 2 g

2

(�) and obtain feasible color sets using

g

1

(a) g

1

(b) g

2

(a) g

2

(b)

fredg g

1

(�) n fredg fblueg g

2

(�) n fblueg

Clearly, the case c

(1)

(b) > 1 and c

(2)

(b) � 1 works as well.

Case 3: It remains the case [c

(1)

(a) 6= c

(2)

(a) OR c

(1)

(a) = c

(2)

(a) 62 f1; k � 1g] AND

[c

(1)

(b) 6= c

(2)

(b) OR c

(1)

(b) = c

(2)

(b) 62 f1; k � 1g]. In this case, we can choose an arbitrary

splitting of the color sets; e.g. take the �rst c

(i)

(a) colors of g

i

(�) for g

i

(a) and the remaining

colors for g

i

(b).

In all these cases we have obtained color sets for a and b that satisfy our invariants (1)� (3).

Operation �

3

: Extension by a bipartite graph B = (X

1

[ X

2

; A) where X � X

1

is a set

of false twins. Since the maximum clique in G[V

i

] is at most k, we can use the fact that the

weights c

(i)

(�) � k, c

(i)

(x) � k for each x 2 X

1

[X

2

and that the sums c

(i)

(x) + c

(i)

(y) � k for

each edge fx; yg 2 A.

Again, we consider by case analysis the color sets g

1

(�) and g

2

(�) and extend the coloring

of G

�

to the bipartite graph B. In all cases, (using an ordered list of colors) we color �rst

the vertices in X

1

as early as possible and, then, the vertices in X

2

as late as possible. This

implies that a vertex x 2 X

1

with c

(i)

(x) = 1 gets the �rst color and that a vertex x 2 X

2

with

c

(i)

(x) = 1 gets the last color. Each vertex x 2 X

1

[X

2

gets exactly c

(i)

(x) colors. We note that

we �rst must take the colors in g

i

(�); otherwise we can generate a conict in G

�

.

Case 1: There is a color red 2 g

1

(�) n g

2

(�). For G

1

= G[V

1

], we start with color red and,

then, take the colors in g

1

(�)nfredg and, �nally, the colors in f1; : : : ; kgng

1

(�). For G

2

= G[V

2

],

we color the vertices with colors in the order g

2

(�), f1; : : : ; kg n [fredg [ g

2

(�)], fredg.

In this case, a vertex x 2 X

1

with weights c

(1)

(x) = c

(2)

(x) = 1 gets the color sets g

1

(x) =

fredg and g

2

(x) 6= fredg. Furthermore, a vertex x 2 X

2

with c

(1)

(x) = c

(2)

(x) = 1 has the color

sets g

2

(x) = fredg and g

1

(x) 6= fredg. For a vertex x 2 X

1

with c

(1)

(x) = c

(2)

(x) = k � 1, we

have red 2 g

1

(x) n g

2

(x) (since red is the last color for G[V

2

]). The opposite statement holds for

a vertex x 2 X

2

with weights c

(1)

(x) = c

(2)

(x) = k � 1.
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Figure 9: The generation of a parity graph G = G

(0)

using the operations �

1

; �

2

and �

3

.
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The case with a color red 2 g

2

(�) n g

1

(�) works as well.

Case 2: The color sets g

1

(�) = g

2

(�) and 2 � c

(1)

(�) = c

(2)

(�) � k � 2. In this case, there

are at least two di�erent colors red; blue 2 g

1

(�) = g

2

(�). Furthermore, we have two other colors

orange; yellow 2 f1; : : : ; kg n g

1

(�) = f1; : : : ; kg n g

2

(�). For G

1

= G[V

1

], we use the following

order of the colors:

red; blue; g

1

(�) n fred; blueg;

f1; : : : ; kg n [g

1

(�) [ forange; yellowg]; orange; yellow:

On the other hand, the order

blue; red; g

1

(�) n fred; blueg;

f1; : : : ; kg n [g

1

(�) [ forange; yellowg]; yellow; orange:

is used for G

2

= G[V

2

]. Then, we obtain the following color sets (using our algorithm for the

bipartite graph):

g

1

(x) = fredg x 2 X

1

; c

(1)

(x) = 1

g

2

(x) = fblueg x 2 X

1

; c

(2)

(x) = 1

g

1

(x) = fyellowg x 2 X

2

; c

(1)

(x) = 1

g

2

(x) = forangeg x 2 X

2

; c

(2)

(x) = 1

yellow 62 g

1

(x) x 2 X

1

; c

(1)

(x) = k � 1

yellow 2 g

2

(x) x 2 X

1

; c

(2)

(x) = k � 1

red 62 g

1

(x) x 2 X

2

; c

(1)

(x) = k � 1

red 2 g

2

(x) x 2 X

2

; c

(2)

(x) = k � 1

Case 3: The color sets g

1

(�) = g

2

(�) = f1; : : : ; kg or g

1

(�) = g

2

(�) = ;. In this case, we

color the bipartite graph for G

1

in the order 1; 3; : : : ; k; 2 and for G

2

in the order 2; : : : ; k; 1.

Again, we color the vertices in X

1

as early and vertices in X

2

as late as possible. Here, we

obtain the following color sets:

g

1

(x) = f1g x 2 X

1

; c

(1)

(x) = 1

g

2

(x) = f2g x 2 X

1

; c

(2)

(x) = 1

g

1

(x) = f2g x 2 X

2

; c

(1)

(x) = 1

g

2

(x) = f1g x 2 X

2

; c

(2)

(x) = 1

g

1

(x) = f1; 3; : : : ; kg x 2 X

1

; c

(1)

(x) = k � 1

g

2

(x) = f2; : : : ; kg x 2 X

1

; c

(2)

(x) = k � 1

g

1

(x) = f2; : : : ; kg x 2 X

2

; c

(1)

(x) = k � 1

g

2

(x) = f1; 3; : : : ; kg x 2 X

2

; c

(2)

(x) = k � 1

We note that a case with g

1

(�) = g

2

(�) and c

(1)

(�) = c

(2)

(�) 2 f1; k � 1g is not possible

(otherwise the invariants are not satis�ed for �).

In all three cases, for each x 2 X

1

[X

2

the color sets g

i

(x) satisfy the invariants (1)� (3).
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5 Example

An example of a parity graph G = G

(0)

and its generation using the three operations �

1

; �

2

and

�

3

is given in Figure 9. In the next table we have illustrated the computation of the weights

for the parity graph starting with G

(0)

. We start with the orginal graph G = G

(0)

and weights

c(v) = 1 for all v 2 V . Notice that the size of a maximum clique in G is 4, and this size can be

found in G

(4)

as the weight of a weighted clique C = f2; 3g in the bipartite graph.

graph 1 2 3 4 5 6 7 8

G

(0)

1 1 1 1 1 1 1 1

G

(1)

1 1 1 1 1 1 1 -

G

(2)

1 1 1 1 1 1 - -

G

(3)

1 2 1 1 1 - - -

G

(4)

1 2 2 1 - - - -

G

(5)

1 - - - - - - -

Furthermore, in the next table, we have computed recursively two colorings for the graphs

G

(0)

1

and G

(0)

2

using the three invariants. In this computation, we use 4 colors r; b; g and s and

start with the single vertex graphs G

(5)

1

and G

(5)

2

. Observe, that the color sets g

1

(v) and g

2

(v)

of size 1 are di�erent for each vertex v in G

(i)

1

and G

(i)

2

(for 0 � i � 5). At the end, we obtain

two colorings g

1

; g

2

for G

(0)

1

and G

(0)

2

such that g

1

(x) 6= g

2

(x) for all x 2 V .

graph 1 2 3 4 5 6 7 8

G

(5)

1

frg

G

(5)

2

fbg

G

(4)

1

frg fg; sg fr; bg fsg

G

(4)

2

fbg fr; sg fb; gg frg

G

(3)

1

frg fg; sg fbg fsg frg

G

(3)

2

fbg fr; sg fgg frg fbg

G

(2)

1

frg fsg fbg fsg frg fgg

G

(2)

2

fbg frg fgg frg fbg fsg

G

(1)

1

frg fsg fbg fsg frg fgg fbg

G

(1)

2

fbg frg fgg frg fbg fsg fgg

G

(0)

1

frg fsg fbg fsg frg fgg fbg fsg

G

(0)

2

fbg frg fgg frg fbg fsg fgg frg

6 Conclusions

In this paper, we have proved that the GOCCP problem restricted to parity graphs G = (V;E)

can be solved in polynomial time using a linear program if the costs k

v;c

= k

v;3

for c � 3 and

14



v 2 V . This result follows from the characterization that G is a parity graph, if and only if

the cartesian product G � K

2

is a perfect graph. Furthermore, we can show that the OCCP

problem with three di�erent cost values k

1

= : : := k

q

< k

q+1

= : : : = k

p

< k

p+1

= : : := k

n

can

be solved in polynomial time for bipartite graphs.

The following questions are interesting for further research:

(a) give a fast combinatorial algorithm for the GOCCP problem restricted to parity graphs

and costs k

v;c

= k

v;3

for c � 3,

(b) study the polyhedron for the GOCCP problem with m = 3 colors,

(c) �nd the complexity of the OCCP problem for parity graphs with three di�erent cost values,

(d) study a modi�ed integer linear program formulation for the OCCP problem with two and

three di�erent cost values.
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