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Abstract

In this paper, we consider the mutual exclusion scheduling problem for comparability

graphs. Given an undirected graph G and a �xed constant m, the problem is to �nd a

minimumcoloring of G such that each color is used at most m times. The complexity of this

problem for comparability graphs was mentioned as an open problem by M�ohring (1985) and

for permutation graphs (a subclass of comparability graphs) as an open problem by Lonc

(1991). We prove that this problem is already NP-complete for permutation graphs and for

each �xed constant m � 6.

1 Introduction

The following problem arises in scheduling theory: there are n jobs that must be completed on

m processors in minimum time t. A processor can execute only one job at a time, and each job

requires one time unit for completion. The scheduling is complicated by additional resources

(e.g. I-O devices, communication links). A job can only be scheduled onto a processor in a given

time unit after it has an exclusive lock on all required resources. Problems of this form have

been studied in the Operations Research literature [6, 17, 18]. Another problem arises in load

balancing the parallel solution of partial di�erential equations (pde's) by domain decomposition

[5, 2]. The domain for the pde's is decomposed into regions where each region corresponds to a

subcomputation. The subcomputations are scheduled on m processors so that subcomputations

corresponding to regions that touch at even one point are not performed simultaneously. Other

applications are in constructing school course time tables [16] and scheduling in communication

systems [14].

1.1 Mutual exclusion scheduling

These scheduling problems can be solved by creating an undirected graph G = (V;E) with a

vertex for each of the n jobs, and an edge between every pair of con
icting jobs. In each time

�
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step, we can execute any subset U � V of jobs for which jU j � m and U is an independent

set in G. A minimum length schedule corresponds to a partition of V into a minimum number

t of such independent sets. Baker and Co�man called this graph theoretical problem Mutual

Exclusion Scheduling (short: MES). Bodlaender and Jansen [7] studied the decision problem

of a complementary scheduling problem. Their initial interest was in compatibility scheduling

(short: CS) which has the same instance and makespan objective function as MES but has a

di�erent meaning on the adjacency in G: if two tasks are adjacent in G then they can not be

executed on the same processor. Therefore, in MES an independent set is processed in a time

unit, whereas in CS an independent set is executed on one processor.

Lonc [19] showed that MES for split graphs can be solved in polynomial time. He proved

that MES is NP-complete for complements of comparability graphs and �xed m � 3 and that

MES is polynomial solvable for complements of interval graphs and every m and for cographs

and �xed m. However, Bodlaender and Jansen [7] showed that MES is NP-complete when G

is restricted to cographs, bipartite or interval graphs. They also proved the following result: if

either t or m is a �xed constant, then MES is in P for cographs; if t is a �xed constant, then the

problem is in P for interval graphs, and if m is a constant, then it is in P for bipartite graphs.

MES remains NP-complete for bipartite graphs and any �xed t � 3, and for interval graphs

and any �xed m � 4. Independently, Hansen et al. [13] proved that MES restricted to biparite

graphs and �xed m is solvable in polynomial time.

Corneil [10] reports that Kirkpatrick has shown the NP-completeness of MES restricted to

chordal graphs and �xed m � 3. For m = 2, MES is equivalent to the maximum matching

problem in the complement graph and, therefore, in P . On the other hand, for m = 3 the

complexity of MES is the same as that of the NP-complete problem partition into triangles in

the complement graph. Moreover, Baker and Co�man [2] proved that MES is in P for forests

and general t;m 2 NI. A linear time algorithm was proposed in [15] for MES restricted to graphs

with constant treewidth and �xed m. Furthermore, MES is NP-complete for complements of

line graphs and �xed m � 3 [9] and polynomial for line graphs and every �xed m [1].

In this paper, we prove the following main result.

Theorem 1.1 For each �xed constantm � 6, the problem MUTUAL EXCLUSION SCHEDUL-

ING is NP-complete for permutation graphs (and also comparability graphs).

1.2 M-machine scheduling

A partial order will be denoted by P = (V;<

P

) where V is the set of vertices and <

P

is the order

relation, i.e. an irre
exive and transitive relation whose pairs (a; b) 2<

P

are written as a <

P

b

(for a; b 2 V ). If the relation is clear, we write < instead of <

P

. Two elements a; b 2 V are

comparable in P if a < b or b < a. A set of pairwise comparable elements is called a chain, and a

set of pairwise incomparable elements is called an antichain. An element a is minimal in P , if it

has no predecessor. With each partial order P = (V;<), we may associate an undirected graph

G(P ) as follows. The vertices of G(P ) are the elements in V , and two vertices are connected

by an edge in G(P ) if they are comparable in P . G(P ) is called the comparability graph of P .

In general, an undirected graph G is called a comparability graph, if G = G(P ) for some partial

order on its vertex set. Algorithmic aspects of comparability graphs are given e.g. in [20].
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Let us consider another famous scheduling problem. The m-machine scheduling problem

with unit times can be modeled by a partition of a partial order P = (V;<) into antichains

A

1

; A

2

; : : : ; A

t

such that jA

i

j � m and

(*) each set A

i

consists of some minimal elements of V n (A

1

[ : : :A

i�1

) for i = 1; : : : ; t.

Inspite of intensive research by several scientists, the complexity status of the problem of

�nding such a partition with minimum t for each �xed constant m � 3 still remains unsolved

[4]. In fact, this problem is mentioned already in the original list of ten basic open problems in

complexity theory [11]. For an overview about di�erent classes of partial orders and complexity

results, we refer to [4, 22]. M�ohring [21] proposed 1985 a related problem. He asked for the

complexity of the problem with condition (�) dropped. This amounts to the mutual exclusion

problem restricted to comparability graphs and �xed constant m � 3. Furthermore, Lonc

[19] asked 1991 for the complexity of MES restricted to permutation graphs (a subclass of all

comparability graphs) and �xed m � 3.

In the classical m-machine scheduling problem, the jobs in antichains A

1

; : : : ; A

t

with jA

i

j �

m corresponding to a partition that satis�es property (�) can be executed on m processors one

after another in t time steps. This follows from the fact that each vertex v in an antichain A

i

has no predecessor in V n (A

1

[ : : : [ A

i�1

). The makespan of the corresponding schedule is

equal to the number of antichains. If we drop condition (�), it is possible that the antichains

can not be ordered to form a feasible schedule. Furthermore for each m � 3, there exists a

comparability graph G and a number t such that the answer to the problem MES is yes for G

and t, but the answer to the m machine scheduling problem is no for t and any partial order

P (such that G is the comparability graph of P ). However, it could be possible to modify the

graph in the construction or to extend the ideas in the proof to get a NP-completeness result

for the m - machine scheduling problem.

A linear order is a partial order without incomparable elements. A linear extension of a

partial order P = (V;<

P

) is a linear order L = (V;<

L

) on the same ground set V that extends

P , i.e. a <

P

b implies a <

L

b for all a; b 2 V . Linear orders can be written as sequences

L = x

1

: : : x

n

de�ning the order relation x

1

<

L

x

2

<

L

: : : <

L

x

n

. The dimension dim(P ) of a

partial order P is the smallest number of linear extensions L

1

; : : : ; L

k

of P , L

i

= (V;<

i

) whose

intersection is P , i.e. a <

P

b if and only if a <

i

b for i = 1; : : : ; k. A partial order is called k -

dimensional for k 2 NI, if dim(P ) � k.

Baker et al. [3] have given the following graph theoretic characterization: A partial order P

is 2 - dimensional, if and only if the complement graph G(P )

c

is also a comparability graph. This

implies that a graph G is a comparability graph of a 2 - dimensional partial order if and only if

G and its complement graph G

c

are comparability graphs. These graphs have been studied also

under the name permutation graphs [23, 12].

Let � = (i

1

; : : : ; i

n

) be a permutation of f1; : : : ; ng. We denote with �

�1

(i) the position of i

in �. A graph G = (V;E)with V = f1; : : : ; ng is a permutation graph, if there is a permutation �

such that fi; jg 2 E, if and only if (i�j) �(�

�1

(i)��

�1

(j)) < 0. Di�erent techniques for solving

algorithmic problems on a permutation graph are given in [8]. In our proof, the permutation

graph is given as a set of points fp

j

= (j;�

�1

(j))j1� j � ng in the plane NI

2

. An independent

set U = fa

1

; : : : ; a

u

g in G corresponds to the point set S

U

= f(a

1

;�

�1

(a

1

)); : : : ; (a

u

;�

�1

(a

u

))g
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in increasing order (with a

1

< : : : < a

u

and �

�1

(a

1

) < : : : < �

�1

(a

u

)). Moreover, a clique C

corresponds to a point set S

C

in decreasing order.

1.3 Main ideas

The main ideas of the NP-completeness proof are the following. First, we choose a restricted

SAT problem where each variable occurs three times (once negated and twice unnegated or once

unnegated and twice negated) and where each clause contains two or three literals. Let n be the

number of variables and r be the number of clauses. We prove that the restricted SAT problem

remains NP-complete under a separation condition: for each variable x

i

there exists an index

l

i

2 f1; : : : ; r� 1g such that x

i

appears only negated in the �rst l

i

clauses and unnegated in the

other clauses, or vice versa.

Next, we construct a pointset in a rectangle that represents the permutation graph and

that simulates the SAT formula. The rectangle can be divided into n horizontal and r vertical

stripes such that each horizontal stripe corresponds to a variable and that each vertical stripe

corresponds to a clause. If x

i

or �x

i

occurs in a clause c

j

then we place a point in the square

corresponding to the i.th horizontal and j.th vertical stripe. To simulate the variable setting,

we di�er between two parallel lines in each horizontal stripe and place the points on the upper

or lower line in dependence whether the variable is negated or unnegated.

Finally, we place some points (in two chains) around the rectangle such that each independent

set in an optimum solution of the restricted coloring problem for the permutation graph covers

only points in a horizontal or vertical stripe. Our proof was inspired by the NP-completeness

proof of K. Wagner [24].

2 A restricted satis�ability problem

To prove the main theorem, we consider the following restricted satis�ability problem:

Restricted SAT

Given: A set of unnegated variables X = fx

1

; : : : ; x

n

g and negated variables

�

X = f �x

1

; : : : ; �x

n

g,

a collection of clauses c

1

; : : : ; c

r

over X [

�

X (subsets of X [

�

X) such that

(i) each clause c

i

contains two or three literals y 2 X [

�

X ,

(ii) each variable x

j

appears either twice unnegated and once negated or twice negated

and once unnegated in the clauses,

(iii) no clause c

i

contains a pair x

j

, �x

j

.

Question: Does there exist a truth mapping for the variables such that each clause is satis�ed?

The literals of a clause c

i

are denoted by y

i;1

and y

i;2

(and y

i;3

if we have three literals).

Lemma 2.1 The restricted SAT problem is NP-complete.
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i
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�x

i
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i
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i
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i

�x

i
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Figure 1: The four cases for a variable

x

i

�a

a

�

b

�x

i

b

�x

i

x

i

! a

x

i

! b

Figure 2: The transformation for case 1

Proof: By a reduction from the NP-complete SAT problem where each clause contains exactly

three literals [11]. We may assume that each variable appears not only negated or unnegated;

otherwise we replace x

j

(or �x

j

) by the truth values TRUE and get a smaller instance. If a

clause contains only one literal y 2 fx

j

; �x

j

g (after this reduction), we replace the corresponding

variable x

j

in all clauses by TRUE if y = x

j

or by FALSE if y = �x

j

. If a clause contains a pair

x

j

and �x

j

, we can remove the clause. Then, we have to consider the following remaining cases:

Case 1: A variable x

j

appears once unnegated and once negated. In this case, we choose a

new variable a

1

, insert the clauses (x

j

_ �a

1

); ( �x

j

_ a

1

) and replace the second occurrence of x

j

in the old clauses by a

1

.

Case 2: A variable x

j

appears k � 4 times in the clauses. In this case, we choose new

variables a

1

; a

2

; : : : ; a

k�1

, insert the clauses (x

j

_ �a

1

), (a

1

_ �a

2

) ; : : : ; (a

k�1

_ �x

j

) and replace the

h.th occurrence of x

j

in the old clauses by a

h�1

for 1 < h � k.

In both cases, we obtain that the truth value x

j

is equal to a

1

= : : : = a

k�1

and that each

variable appears now in three di�erent clauses.

For our reduction, we need a further property for the restricted SAT problem. Let us assume

that the clauses are numbered by 1; : : : ; r and that the number of the j.th occurrence of variable

x

i

in the clauses is denoted by i[j]. Since each clause contains a variable x

i

at most once, we have

i[1] < i[2] < i[3]. We say that an instance I has the separation property if for each variable x

i
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i

b

a

�

b
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i
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x

i
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i

! �a

�x

i
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�
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Figure 3: The transformation for case 2

one of the following cases is true (observe that each variable appears either twice negated and

once unnegated or twice unnegated and once negated):

(1) x

i

appears negated in clauses i[1] and i[2] and unnegated in i[3],

(2) x

i

appears unnegated in clauses i[1] and i[2] and negated in i[3],

(3) x

i

appears negated in clauses i[2] and i[3] and unnegated in i[1],

(4) x

i

appears unnegated in clauses i[2] and i[3] and negated in i[1].

The separation property means that only the cases in Figure 1 are possible. This property is

necessary for our reduction in section 3. The Figure 1 illustrates how the points corresponding

to x

i

and �x

i

are placed in the horizontal stripe corresponding to variable x

i

.

Lemma 2.2 The restricted SAT problem with separation property is also NP-complete (even if

there are only case (3) or (4) variables).

Proof: By a reduction from the restricted SAT problem. For each variable x

i

consider the

following two possibilities:

Case 1: Variable x

i

appears twice unnegated and once negated in the clauses. In this case,

we choose two new variables a; b and insert the new clauses (x

i

_ �a), (a _

�

b), (b _ �x

i

) at the

beginning of the sequence of clauses. Furthermore, we replace the �rst unnegated occurrence

of x

i

by a and the second unnegated occurrence by b in the old clauses. Then, we obtain the

ordering as illustrated in Figure 2 and observe that the variables x

i

, a and b now have the desired

property.

Case 2: Variable x

i

appears twice negated and once unnegated in the clauses. We insert the

same clauses as in case 1, but we change the order as follows: ( �x

i

_ b), (

�

b_ a), �a_ x

i

). Next, we

replace the �rst negated occurrence of x

i

by �a and the second negated occurrence by

�

b. Then,

we obtain the ordering in Figure 3 and get the desired property for the variables x

i

; a and b.
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3 The proof of the main theorem

The permutation graph in our proof is represented by a set of points fp

j

= (j;�

�1

(j))j1� j � ng

in the plane NI

2

. We notice that an independent set U = fa

1

; : : : ; a

u

g in G corresponds to the

point set S

U

= f(a

1

;�

�1

(a

1

)); : : : ; (a

u

;�

�1

(a

u

))g in increasing order (with a

1

< : : : < a

u

and

�

�1

(a

1

) < : : : < �

�1

(a

u

)). Moreover, a clique C corresponds to a point set S

C

in decreasing

order. In the following, we give a proof of the main theorem with �xed constant m = 6. The

proof can be simply modi�ed such that the result is true for each �xed constant m � 6.

Proof of main theorem: The theorem is proved by a reduction from the restricted SAT

problem with separation property (and with only case (3) and (4) variables). Let I

1

be an

instance of such problem containing a collection of r clauses c

1

; : : : ; c

r

over a set of unnegated

and negated variables fx

1

; �x

1

; : : : ; x

n

; �x

n

g. Let r

2

(and r

3

) be the number of 2-clauses (3-clauses)

in I

1

. The literals of clause c

i

are denoted by y

i;1

and y

i;2

(and y

i;3

if we have three literals). We

denote with `(i) the number of literals in clause c

i

.

An instance I

2

of the mutual exclusion scheduling problem with bound 6 for each independent

set is constructed as follows. The constructed point set for the restricted SAT instance (x

1

_

�x

2

_ x

i

) ^ (�x

1

_ x

2

_ x

n

) ^ : : : ^ (�x

1

_ x

2

_ �x

n

) is given in Figure 4. In this example, x

1

and x

n

are case (3) variables and x

2

is a case (4) variable. The permutation graph G is given by the

corresponding point set

P =

S

n

i=1

[A

i

[ B

i

] [

S

r

i=1

[E

i

[D

i

[ fa

i;1

; a

i;2

g][

S

1�i�r;`(i)=3

[E

0

i

[D

0

i

[ fa

i;3

g]

where

� A

i

consists of one point and B

i

consists of three points on the increasing line as marked

in Figure 4.

� E

i

(and E

0

i

if clause c

i

contains three literals) consists of four points on the increasing line

and D

i

(and D

0

i

if c

i

contains three literals) consists of one point as marked in Figure 4.

� a

ik

is a point situated in the crossing of the decreasing line h

i

and the increasing line

marked by f

`

or g

`

for y

i;k

2 fx

`

; �x

`

g.

We choose the line f

`

or g

`

in dependence to the cases (3) and (4) for the variable x

`

(as

constructed in the proof of Lemma 2.2). We place the points as given in Figure 5. If the �rst

occurrence of variable x

`

is unnegated, we have case (3) (otherwise we have case (4)). In case

(3), the unnegated literal is placed on line f

`

and the negated literals on line g

`

. This means for

y

i;1

= x

`

that a

i;1

lies in the crossing of the lines h

i

and f

`

. In case (4), we place the negated

literal on line f

`

and the unnegated literals on line g

`

.

The maximum clique size !(G) of the constructed permutation graph is equal to

t = n+ r

2

+ 2 � r

3

:

One maximum clique is given e.g. by

K = A

1

[ : : :[A

n

[ fz

i

j1 � i � rg [ fz

0

i

jE

0

i

6= ;g
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h
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B

2

B

n

a

11

a

12

a

13

a

21
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22
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a
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E

0

1

E
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E

0
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E
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E

0
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D

0

1
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2

D

0

2

D

r
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0
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Figure 4: The point set P constructed for a restricted SAT instance (x

1

_ �x

2

_ x

i

) ^ (�x

1

_ x

2

_

x

n

) ^ : : :^ (�x

1

_ x

2

_ �x

n

).

x

`

�x

`

�x

`

case (3)

g

`

f

`

�x

`

x

`

x

`

case (4)

g

`

f

`

Figure 5: The way to place the points on the lines f

`

or g

`
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with arbitrarily choosen z

i

2 E

i

and z

0

i

2 E

0

i

(if c

i

is a 3-clause). As illustrated in Figure 4, the

point set fa

i;k

j1 � i � r; 1 � k � `(i)g can be divided into n horizontal (one stripe for each

variable) and r vertical stripes (one stripe for each clause).

We prove the following claim: I

1

is a yes - instance of the restricted SAT problem with

separation property if and only if there is a coloring of the permutation graph in instance I

2

with at most t colors where each color is used at most 6 times.

Suppose that � is a truth assignment for the variables which makes the clauses c

1

; : : : ; c

r

true. The �rst n colors cover the points of A

j

[ B

j

and all points (at most two) on f

j

if

[�(x

j

) = FALSE and x

j

is a case (4) variable] or [�(x

j

) = TRUE and x

j

is a case (3) variable]

or all points on g

j

if [�(x

j

) = FALSE and x

j

is a case (3) variable] or [�(x

j

) = TRUE and

x

j

is a case (4) variable]. Then, at least one of the points a

i;1

; : : : ; a

i;`(i)

is colored with one

of these n colors for each clause c

i

. The remaining t � n colors are used to color the points of

D

i

; D

0

i

; E

i

; E

0

i

and the remaining uncolored points in the vertical stripes. We use two colors for

a 3-clause and one color for a 2-clause. This gives us a t-coloring of G such that each color is

used at most 6-times.

Conversely, suppose that we have a t-coloring f of the permutation graph G where each

color is used at most 6 times. First, we observe that

K = A

1

[ : : :[A

n

[ fz

i

j1 � i � rg [ fz

0

i

jE

0

i

6= ;g

with arbitrarily choosen z

i

2 E

i

and z

0

i

2 E

0

i

and that

�

K = D

1

[ : : :[D

r

[ fD

0

i

j1 � i � r; `(i) = 3g [ fb

1

; : : : ; b

n

g

with arbitrarily choosen b

i

2 B

i

are cliques in G of size t. This implies that the vertices in the

cliques K (and

�

K) must be colored di�erently and that points in every chain E

i

(and E

0

i

, B

j

)

must be colored with the same color. This means e.g. that the number of colors jff(z)jz 2 E

i

gj

is equal 1. Since the cliques K and

�

K are disjoint, there must be an 1� 1 assignment between

the vertices in K and

�

K to obtain a t- coloring.

Feasible assignments: Since each color can be used at most 6 times, it is not possible to

take the same color for a E

i

chain (or E

0

i

chain) and a B

j

chain; otherwise we have 7 vertices

colored with the same color. This implies that only the following assignments (or colorings) are

possible:

(1) the color set ff(A

j

)j1 � j � ng is equal to ff(b

j

)j1 � j � n; b

j

2 B

j

g,

(2) the color set ff(z

i

); f(z

0

i

)jz

i

2 E

i

; z

0

i

2 E

0

i

; 1 � i � rg is equal to ff(D

i

); f(D

0

i

)j1 � i � rg.

W.l.o.g. we may assume that f(A

j

) = j for 1 � j � n. In the next step, we can prove that

(3) f(A

j

) = f(b

j

) = j with b

j

2 B

j

, 1 � j � n,

(4) f(z

i

) = f(D

i

) with z

i

2 E

i

and f(z

0

i

) = f(D

0

i

) with z

0

i

2 E

0

i

for a 3-clause c

i

.
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A

j

x

j

�x

j

�x

j

B

j

g

j

f

j

Figure 6: A horizontal stripe with points A

j

and B

j

For example, consider the points in the sets A

j

; B

j

. We know already that the color sets

ff(A

j

)j1 � j � ng = ff(b

j

)j1 � j � n; b

j

2 B

j

g

= f1; : : : ; ng:

Since A

1

is in con
ict to all points in the chain B

2

; : : : ; B

n

, we get f(A

1

) = f(b

1

) = 1 with

b

1

2 B

1

. For the induction step, observe that A

i

is in con
ict to the points in B

i+1

; : : : ; B

n

and

to the points A

1

; : : : ; A

i�1

. Therefore, f(A

i

) 62 ff(b

j

)j1 � j � n; j 6= i; b

j

2 B

j

g. This implies

that f(A

i

) = f(b

i

) with b

i

2 B

i

and proves property (3) above. A similar idea can be used to

prove property (4). We notice that it is possible that f(z

i

) = f(D

0

i

) and f(z

0

i

) = f(D

i

). But

we can exchange these colors without problems to obtain a coloring such that property (4) is

satis�ed.

Horizontal and vertical stripes: Finally, we look at a horizontal stripe with vertices A

j

and b

j

2 B

j

colored with the same color j.

Using the separation property for the variable x

j

we get a stripe as in Figure 6 (here given

for a case (3) variable x

j

). Since the point A

j

and the points in B

j

are colored with j, only the

point on f

j

or the two points on g

j

can be colored with color j. Notice that an independent set

must form an increasing chain of points in the point model. Let U

i

be the set of points colored

with color i, for 1 � i � t. We may assume that either the point on f

j

or both points on g

j

are

colored with color j.

We de�ne a truth assignment � for the variables x

1

; : : : ; x

n

as follows:

�(x

j

) =

8

>

<

>

:

true if U

j

contains both points on line g

j

and if x

j

is a case (4) variable

true if U

j

contains a point on line f

j

and if x

j

is a case (3) variable

false otherwise.

Since f(z

i

) = f(D

i

) with z

i

2 E

i

and f(z

0

i

) = f(D

0

i

) with z

0

i

2 E

0

i

and since the points a

i;k

lie

on a decreasing line h

i

, each independent set U

j

with n+ 1 � j � t contains at most one point

10



in a vertical stripe. Therefore, at least one point in each vertical stripe must be covered by the

sets U

1

; : : : ; U

n

. This implies that the mapping � is a truth assignment that satis�es all clauses

in I

1

.

4 Conclusion

In this paper, we have proved that mutual exclusion scheduling (MES) restricted to permutation

(and comparability graphs) is NP-complete for each �xed constant m � 6. Finding the com-

plexity of MES for smaller constants m = 3; 4; 5 could be a step to the solution of the famous

m-machine scheduling problem with unit-times. The MES problem for permutation graphs and

m = 3 is equivalent to the following problem [19]:

Problem S(3)

Given: A sequence of 3 � n distinct positive integers.

Question: Is there a partition of the sequence into n increasing subsequences each of length

three?

References

[1] N. Alon: A note on the decomposition of graphs into isomorphic matchings, Acta Mathe-

matica Hungarica 42 (1983), 221-223.

[2] B.S. Baker and E.G. Co�man: Mutual exclusion scheduling, Theoretical Computer Science

162 (1996), 225-243.

[3] K.A. Baker, P.C. Fishburn and F.S. Roberts: Partial orders of dimension 2, Networks 2

(1971), 11-28.

[4] M. Bartusch, R.H. M�ohring and F.J. Radermacher: M -machine unit time scheduling: A

report on ongoing research, in: Optimization, Parallel Processing and Applications (ed.

A. Kurzhanski), LNEMS 304, 1988, 165-213.

[5] P. Bjorstad, W.M. Coughran and E. Grosse: Parallel domain decomposition applied to

coupled transport equations, in: Domain Decomposition Methods in Scienti�c and Engi-

neering Computing (eds. D.E. Keys, J. Xu), AMS, Providence, 1995, 369-380.

[6] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt and J. Weglarz: Scheduling computer and

manufacturing processes, Springer, Heidelberg, 1996.

[7] H.L. Bodlaender and K. Jansen: On the complexity of scheduling incompatible jobs with

unit-times, Mathematical Foundations of Computer Science, MFCS 93, LNCS 711, 291-

300.

[8] A. Brandst�adt: On improved time bounds for permutation graph problems, Graph Theo-

retic Concepts in Computer Science, WG 92, LNCS 657, 1-10.

11



[9] E. Cohen and M. Tarsi: NP-completeness of graph decomposition problem, Journal of

Complexity 7 (1991), 200-212.

[10] D.G. Corneil: The complexity of generalized clique packing, Discrete Applied Mathematics

12 (1985), 233-239.

[11] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theorey of

NP-Completeness, Freeman, New York, 1979.

[12] P.C. Gilmore and A.J. Ho�man: A characterization of comparability graphs and of interval

graphs, Canadian Journal of Mathematics 16 (1964), 539-548.

[13] P. Hansen, A. Hertz and J. Kuplinsky: Bounded vertex colorings of graphs, Discrete

Mathematics 111 (1993), 305-312.

[14] S. Irani and V. Leung: Scheduling with con
icts, and applications to tra�c signal control,

SIAM Symposium on Discrete Algorithms, SODA 96, 85-94.

[15] D. Kaller, A. Gupta and T. Shermer: The �

t

- coloring problem, Symposium on Theoretical

Aspects of Computer Science, STACS 95, LNCS 900, 409-420.

[16] F. Kitagawa and H. Ikeda: An existential problem of a weight - controlled subset and its

application to school time table construction, Discrete Mathematics 72 (1988), 195-211.

[17] J. Krarup and D. de Werra: Chromatic optimization: limitations, objectives, uses, refer-

ences, European Journal of Operations Research 11 (1982), 1-19.

[18] V. Lofti and S. Sarin: A graph coloring algorithm for large scale scheduling problems,

Computers and Operations Research 13 (1986), 27-32.

[19] Z. Lonc: On complexity of some chain and antichain partition problem, Graph Theoretical

Concepts in Computer Science, WG 91, LNCS 570, 97-104.

[20] R.H. M�ohring: Algorithmic aspects of comparability graphs and interval graphs, in:

Graphs and Orders (ed. I. Rival), Reidel Publishing, Dordrecht 1985, 41-101.

[21] R.H. M�ohring: Problem 9.10, in: Graphs and Orders (ed. I. Rival), Reidel Publishing,

Dordrecht 1985, 583.

[22] R.H. M�ohring: Computationally tractable classes of ordered sets, in: Algorithms and

Orders (ed. I. Rival), Kluwer Acad. Publishing, Dordrecht 1989, 105-193.

[23] A. Pnueli, A. Lempel and W. Even: Transitive orientation of graphs and identi�cation of

permutation graphs, Canadian Journal of Mathematics 23 (1971), 160-175.

[24] K. Wagner: Monotonic coverings of �nite sets, Journal of Information Processing and

Cybernetics - EIK 20 (1984), 633 { 639.

12


