
Robustness and Precision Issues

in Geometric Computation

�

Stefan Schirra

Max-Planck-Institut f�ur Informatik

Saarbr�ucken, Germany

Abstract

This is a preliminary version of a chapter that will appear in the Handbook on Com-

putational Geometry, edited by J.R. Sack and J. Urrutia.

We give a survey on techniques that have been proposed and successfully used to attack

robustness and precision problems in the implementation of geometric algorithms.

�

Work on this survey was partially supported by the ESPRIT IV Long Term Research Project No. 21957

(CGAL).

1 Introduction

We give a survey

1

on techniques that have been proposed and successfully used to attack

robustness problems in the implementation of geometric algorithms. Our attention is directed

to precision

2

, more precisely, on how to deal with the notorious problems that imprecise

geometric calculations can cause in the implementation of geometric algorithms. Precision

problems can make implementing geometric algorithms very unpleasant [36, 37, 49, 50, 94],

if no appropriate techniques are used to deal with imprecision.

1.1 Precision, Correctness, and Robustness

Geometric algorithms are usually designed and proven to be correct in a computational model

that assumes exact computation over the real numbers. In implementations of geometric

algorithms, exact real arithmetic is mostly replaced by the fast �nite precision
oating-point

arithmetic provided by the hardware of a computer system. For some problems and restricted

sets of input data, this approach works well, but in many implementations the e�ects of

squeezing the in�nite set of real numbers into the �nite set of
oating-point numbers can cause

catastrophic errors in practice. Due to rounding errors many implementations of geometric

algorithms crash, loop forever, or in the best case, simply compute wrong results for some of

the inputs for which they are supposed to work. Fig. 1 gives an example.

Figure 1: Incorrect Delaunay triangulation. The error was caused by precision problems, see

[130] for more details. The correct Delaunay triangulation is given in Fig. 2. Courtesy of

J. R. Shewchuk [130, 132].

The conditionals in a program are most critical because they determine the
ow of control.

If in every test the same decision is made as if all computations would have been done over

the reals, the algorithm is always in a state equivalent to that of its theoretical counterpart.

1

This survey is based on Precision and Robustness in Geometric Computations, Chapter 9 of Algorithmic

Foundations of Geographic Information Systems, Lecture Notes in Computer Science 1340, Springer-Verlag,

1997.

2

The terms precision and accuracy are often used interchangeably. We mainly adopt the terminology used

in [63]. Accuracy refers to the relationship between reality and the data representing it. Precision refers to

the level of detail with which (numerical) data is represented.

1

Figure 2: Correct Delaunay triangulation. Courtesy of J. R. Shewchuk [130, 132].

In this case, the combinatorial part of the geometric output of the algorithm will be correct.

Numerical data, however, computed by the algorithm might still be imprecise. In a branching

step of a geometric algorithm, numerical values are compared. Without loss of generality we

can assume that one of the values is zero, i.e. that the branching is on the sign of the value of

an arithmetic expression. In the theoretical model of computation a real-valued expression is

evaluated correctly for all real input data, but in practice only an approximation is computed.

Thus a wrong sign might be computed and hence the algorithm might branch incorrectly. Such

a wrong decision has been made in the computation of the \triangulation" shown in Fig. 1.

An incorrect result is one possible consequence of an incorrect decision. Program crashing

is the other possibility. Decisions made in branching steps are usually not independent.

Mutually contradicting decisions violating basic laws of geometry may take the algorithm to

a state which could never be reached with correct decisions. Since the algorithm was not

designed for such states, it crashes. Therefore segmentation faults and bus errors are

more likely than incorrect results.

In general, robustness is a measure of the ability to recover from error conditions, e.g.,

tolerance of failures of internal components or errors in input data. Often an implementation

of an algorithm is considered to be robust if it produces the correct result for some perturbation

of the input. It is called stable if the perturbation is small. This terminology has been

adopted from numerical analysis where backward error analysis is used to get bounds on

the sizes of the perturbations. Geometric computation, however, goes beyond numerical

computation. Since geometric problems involve not only numerical but also combinatorial

data it is not always clear what perturbation of the input, especially of the combinatorial part,

means. Perturbation of the input is justi�ed by the fact that in many geometric problems the

numerical data are real world data obtained by measuring and hence known to be inaccurate.

1.2 Attacks on the Precision Problem

There are two obvious approaches for solving the precision problem. The �rst is to change

the model of computation: design algorithms that can deal with imprecise computation. For

a small number of basic problems this approach has been applied successfully but a general

theory of how to design algorithms with imprecise primitives or how to adopt algorithms

2

designed for exact computation with real numbers is still a distant goal [67]. The second

approach is exact computation: compute with a precision that is su�cient to keep the theo-

retical correctness of an algorithm designed for real arithmetic alive. This is basically possible,

at least theoretically, in almost all cases arising in practical geometric computing. The sec-

ond approach is promising, because it allows exact implementations of numerous geometric

algorithms developed for real arithmetic without modi�cations of these algorithms. However,

exact computation slows down the computation and the overhead in running time can be

tremendous, especially in cascaded computations, where the output of one computation is

used as input by the next.

2 Geometric Computation

A geometric problem can be seen as a mapping from a set of permitted input data, consisting

of a combinatorial and a numerical part, to a set of valid output data, again consisting of a

combinatorial and a numerical part. A geometric algorithm solves a problem if it computes

the output speci�ed by the problem mapping for a given input. For some geometric problems

the numerical data of the output are a subset of the data of the input. Those geometric

problems are called selective. In other geometric problems new geometric objects are created

which involve new numerical data that have to be computed from the input data. Such

problems are called constructive. Geometric problems might have various facets, even basic

geometric problems appear in di�erent variants.

We use two classical geometric problems for illustration, convex hull and intersection of

line segments in two dimensions. In the two-dimensional convex hull problem the input is a

set of points. The numerical part might consist of the coordinates of the input points; the

combinatorial part is simply the assignment of the coordinate values to the points in the

plane. The output might be the convex hull of the set of points, i.e., the smallest convex

polygon containing all the input points. The combinatorial part of the output might be the

sorted cyclic sequence of the points on the convex hull in counterclockwise order. The point

coordinates form the numerical part of the output. In a variant of the problem only the

extreme points among the input points have to be computed, where a point is called extreme

if its deletion from the input set would change the convex hull. Note that the problem is

selective according to our de�nition even if a convex polygon and hence a new geometric

object is constructed.

In the line segment intersection problem the intersections among a set of line segments

are computed. The numerical input data are the coordinates of the segment endpoints, the

combinatorial part of the input just pairs them together. The combinatorial part of the

output might be a combinatorial embedding of a graph whose vertices are the endpoints

of the segments and the points of intersection between the segments. Edges connect two

vertices if they belong to the same line segment l and no other vertex lies between them on l.

Combinatorial embedding means that the set of edges incident to a vertex are given in cyclic

order. The numerical part is formed by the coordinates of the points assigned to the vertices

in the graph. Since the intersection points are in general not part of the input, the problem is

constructive. A variant might ask only for all pairs of segments that have a point in common.

This version is selective.

3

2.1 Geometric Predicates

Geometric primitives are the basic operations in geometric algorithms. There is a fairly

small set of such basic operations that cover most of the computations in computational

geometry algorithms. Geometric primitives subsume predicates and constructions of basic

geometric objects, like line segments or circles. Geometric predicates test properties of basic

geometric objects. They are used in conditional tests that direct the control
ow in geometric

algorithms. Well-known examples are: testing whether two line segments intersect, testing

whether a sequence of points de�nes a right turn, or testing whether a point is inside or on

the circle de�ned by three other points.

Geometric predicates involve the comparison of numbers which are given by arithmetic

expressions. The operands of the expressions are numerical data of the geometric objects

that are tested and constants, usually integers. Expressions di�er by the operations used, but

many geometric predicates involve arithmetic expressions over +;�; � only, or can at least be

reformulated in such a way.

2.2 Arithmetic Expressions in Geometric Predicates

One can think of an arithmetic expression as a labeled binary tree. Each inner node is labeled

with a binary or unary operation. It has pointers to trees de�ning its operands. The pointers

are ordered corresponding to the order of the operands. The leaves are labeled with constants

or variables which are placeholders for numerical input values. Such a representation is called

an expression tree.

The numerical data that form the operands in an expression evaluated in a geometric

predicate in the execution of a a geometric algorithm might be again de�ned by previously

evaluated expressions. Tracing these expressions backwards we �nally get expressions on

numerical input data whose values for concrete problem instances have to be compared in

the predicates. Since intermediate results are used in several places in an expression we get

a directed acyclic graph (dag) rather than a tree.

Without loss of generality we may assume that the comparison of numerical values in

predicates is a comparison of the value of some arithmetic expression with zero. The depth

of an expression tree is the length of the longest root-to-leaf path in the tree. For many

geometric problems the depth of the expressions appearing in the predicates is bounded

by some constant [151]. Expressions over input variables involving operations +;�; � only

are called polynomial, because they de�ne multivariate polynomials in the variables. If all

constants in the expression are integral, a polynomial expression is called integral. The degree

of a polynomial expression is the total degree of the resulting multivariate polynomial. In

[19, 91] the notion of the degree of an expression is extended to expressions involving square

roots. An expression involving operations +;�; �; = only is called rational.

2.3 Geometric Computation with Floating-Point Numbers

Floating-point numbers are the standard substitution for real numbers in scienti�c computa-

tion. In some programming languages the
oating-point number type is even called real [81].

Since most geometric computations are executed with
oating-point arithmetic, it is worth

taking a closer look at
oating-point computation. Goldberg [62] gives an excellent overview.

A �nite-precision
oating-point system has a base b, a �xed mantissa length l (also called

4

signi�cand length or precision), and an exponent range [e

min

::e

max

].

�d

0

:d

1

d

2

� � �d

l�1

� b

e

;

0 � d

i

< b, represents the number

�(d

0

+ d

1

� b

�1

+ d

2

� b

�2

+ � � �+ d

l�1

b

�l+1

) � b

e

:

A representation of a
oating-point number is called normalized i� d

0

6= 0. For example,

the rational number 1=2 has representations 0:500 � 10

0

or 5:000 � 10

�1

in a
oating-point

system with base 10 and mantissa length 4 and normalized representation 1:00 � 2

�1

in a

oating-point system with base 2 and mantissa length 3.

Since an in�nite set of numbers is represented by �nitely many
oating-point numbers,

rounding errors occur. A real number is called representable if it is zero or its absolute

value is in the interval [b

e

min

; b

e

max

+1

]. Let r be some real number and f

r

be a
oating-point

representation for r. Then jr � f

r

j is called absolute error and jr � f

r

j=jrj is called relative

error. The relative error of rounding a representable real toward the nearest
oating-point

number in a
oating-point system with base b and mantissa length l is bounded by

b

2

� b

�l

,

which is called machine epsilon. Calculations can under
ow or over
ow, i.e., leave the range

of representable numbers.

Fortunately, the times where the results of
oating-point computations could drastically

di�er from one machine to another, depending on the precision of the
oating-point machinery,

seem to be coming to an end. The IEEE standard 754 for binary
oating-point computation

[133] is becoming widely accepted by hardware-manufacturers. The IEEE standard 754 re-

quires that the results of +;�; �; = and

p

are exactly rounded, i.e., the result is the exact

result rounded according to the chosen rounding mode. The default rounding mode is round

to nearest. Ties in round to nearest are broken such that the least signi�cant bit becomes 0.

Besides rounding toward nearest, rounding toward zero, rounding toward 1, and rounding

toward -1 are rounding modes that have to be supported according to IEEE standard 754.

The standard makes reasoning about correctness of a
oating-point computation machine-

independent. The result of the basic operations will be the same on di�erent machines if both

support IEEE standard and the same precision is used. Thereby code becomes portable.

The IEEE standard 754 speci�es
oating-point computation in single, single extended,

double, and double extended precision. Single precision is speci�ed for a 32 bit word, double

precision for two consecutive 32 bit words. In single precision the mantissa length is l = 24 and

the exponent range is [�126::127]. Double precision has mantissa length l = 53 and exponent

range [�1022::1023]. Hence the relative errors are bounded by 2

�24

and 2

�53

. The single and

double precision formats usually correspond to the number types float and double in C

++

.

Floating-point numbers are represented in normalized representation. Since the zeroth bit

is always 1 in normalized representation with base 2, it is not stored. There are exceptions to

this rule. Denormalized numbers are added to let the
oating-point numbers under
ow nicely

and preserve the property \x � y = 0 i� x = y". Zero and the denormalized numbers are

represented with exponent e

min

� 1. Besides these
oating-point numbers there are special

quantities +1, �1 and NaN (Not a Number) to handle exceptional situations. For example

�1:0=0:0 = �1, NaN is the result of

p

�1, and 1 is the result of over
ow in positive range.

Due to the unavoidable rounding errors,
oating-point arithmetic is inherently imprecise.

Basic laws of arithmetic like associativity and distributivity are not satis�ed by
oating-point

arithmetic. Section 13.2 in [108] gives some examples. Since the standard (almost) �xes

5

.37

.38

.42

.46

.48

y

x
.73 .75 .83 .89 .95

4.3x/8.3

1.4x/2.7

Figure 3: Evaluation of the line equations y = 4:3 �x=8:3 and y = 1:4 �x=2:7 in a
oating-point

system with base 10 and mantissa length 2 and rounding to nearest suggests that the lines

have several intersection points besides the true intersection point at the origin.

the layout of bits for mantissa and exponent in the representation of
oating-point numbers,

bit-operations can be used to extract information.

Naively applied
oating-point arithmetic can set axioms of geometry out of order. A

classical example is Ramshaw's braided lines (see Fig. 3 and [108, 109]).

Rewriting an expression to get a numerically more stable evaluation order can already

help a lot: Goldberg [62] gives the following example due to Kahan. Consider a triangle with

sides of length a � b � c respectively. The area of a such a triangle is

q

s(s � a)(s� b)(s� c)

where s = (a+ b + c)=2. For a = 9:0, b = c = 4:53 the correct value of s in a
oating-point

system with base 10, mantissa length 3 and exact rounding is 9:03 while the computed value

~s is 9:05. The area is 2.34, the computed area, however, is 3.04, an error of nearly 30%. Using

the expression

q

(a+ (b+ c)) � (c� (a� b)) � (c+ (a� b)) � (a+ (b� c))=4

one gets 2.35, an error of less than 1%. For a less needle-like triangle with a = 6:9, b = 3:68,

and c = 3:48 the improvement is not so drastic. Using the �rst expression, the result computed

by a
oating-point system with base 10, mantissa length 3 and exact rounding is 3.36. The

second expression gives 3.3. The exact area is approximately 3:11. One can show that the

relative error of the second expression is at most 11 times machine epsilon [62].

Rewriting also helps with the braided lines. If the abscissae are computed as (4:3=8:3) � x

and (1:4=2:7) �x, there is no braiding anymore. The lines still do have more than one point in

common, but besides the crossing at the origin there are no further crossings anymore. As the

6

examples above show, the way a numerical value is computed in
uences its precision. Sum-

mation of
oating-point numbers is another classical example for such e�ects. Rearranging

the summands can helps to reduce imprecision due to extinction.

2.4 Heuristic Epsilons

A widely used method to deal with numerical inaccuracies is based on the rule of thumb

If something is close to zero it is zero.

Some trigger-value "

magic

is added to a conditional test where a numerical value is compared

to zero. If the computed approximation is smaller than "

magic

it is treated as zero. Adding

such epsilons is popular folklore. What should the "

magic

be? In practice, "

magic

is usually

chosen as some �xed tiny constant and hence not sensitive to the actual sizes of the operands

in a concrete expression. Furthermore, the same epsilon is often taken for all comparisons,

no matter which expression or which predicate is being evaluated. Usually, no proof is given

that the chosen "

magic

makes sense. "

magic

is guessed and adjusted by trial and error until the

current value works for the considered inputs, i.e., until no catastrophic errors occur anymore.

Yap [150] suggests calling this procedure epsilon-tweaking.

Adding epsilon is justi�ed by the following reasoning: If something is so close to zero, then

a small modi�cation of the input, i.e., a perturbation of the numerical data by a small amount,

would lead to value zero in the evaluated expression. There are, however, severe problems with

that reasoning. The size of the perturbation causes a problem. The justi�cation for adding

epsilons assumes that the perturbation of the (numerical) input is small. Even if such a small

perturbation exists for each predicate, the existence of a global small perturbation of the

input data is not guaranteed. Fig. 4 shows a polyline, where every three consecutive vertices

are collinear under the \close to zero is zero" rule. In each case, a fairly small perturbation

Figure 4: A locally straight line

of the points exists that makes them collinear. There is, however, no small perturbation that

makes the whole polyline straight. The example indicates that collinearity is not transitive.

Generally, equality is not transitive under epsilon-tweaking. This might be the most serious

problem with this approach. Another problem is that di�erent tests might require di�erent

perturbations, e.g., predicate P

1

might require a larger value for input variable x

56

while test

P

2

requires a smaller value, such that both expressions evaluate to zero. There might be

no perturbation of the input data that leads to the decisions made by the \close to zero is

zero" rule. Finally, a result computed with \close to zero is zero" is not the exact result for

the input data but only for a perturbation of it. For some geometric problems this might

cause trouble, since the computed output and the exact output can be combinatorially very

di�erent [22].

7

3 Exact Geometric Computation

An obvious approach to the precision problem is to compute \exactly". In this approach the

computation model over the reals is mimicked in order to preserve the theoretical correctness

proof. Exact computation means to ensure that all decisions made by the algorithm are

correct decisions for the actual input, not only for some perturbation of it. As we shall see, it

does not mean that in all calculations exact representations for all numerical values have to

be computed. Approximations that are su�ciently close to the exact value can often be used

to guarantee the correctness of a decision. Empirically it turns out to be true for most of the

decisions made by a geometric algorithm that approximations are su�cient. Only degenerate

and nearly degenerate situations cause problems. That is why most implementations based

on
oating-point numbers work very well for the majority of the considered problem instances

and fail only occasionally. This is made possible by the fact that the numerical input data

for geometric algorithms are hardly arbitrary real numbers. In almost all cases the numerical

input data are rationals given as
oating-point numbers or even integers.

If an implementation of an algorithm does all branchings the same way as its theoretical

counterpart, the control
ow in the implementation corresponds to the control
ow of the

algorithm proved to be correct under the assumption of exact computation over the reals,

and hence the validity of the combinatorial part of the computed output follows. Thus, for

selective geometric problems, it is su�cient to guarantee correct decisions, since all numerical

data are already part of the input.

For constructive geometric problems, new numerical data have to be computed \exactly".

A representation of a real number r should be called exact only if it allows one to compute

an approximation of r to whatever precision, i.e. no information has been lost. According

to Yap [150] a representation of a subset of the reals is exact if it allows the exact compar-

ison of any two real numbers in that representation. This re
ects the necessity for correct

comparisons in branchings steps in the exact geometric computation approach. Examples

of exact representations are the representation of rationals by numerator and denominator,

where both are arbitrary precision integers, and the representation of algebraic numbers by

an integral polynomial P having root � and an interval that isolates � from the other roots

of P . Further examples are symbolic and implicit representations. For example, rather than

compute the coordinates of an intersection point of line segments explicitly, one can repre-

sent them implicitly by maintaining the intersecting segments. Another similar example is

the representation of a number by an expression dag, which re
ects the computation history.

Allowing symbolic or implicit representation can be seen as turning a constructive geometric

problem into a selective one.

As suggested in the discussion above, there are di�erent
avors of exact geometric compu-

tation. In the last decade, much progress has been made in improving the e�ciency of exact

geometric computation (see also [151] and [150] for an overview).

3.1 Exact Integer and Rational Arithmetic

A number of geometric predicates in basic geometric problems include only integral expres-

sions in their tests. Thus, if all numerical input data are integers, the evaluation of these

predicates involves integers only. With the integer arithmetic provided by the hardware only

over
ow may occur, but no rounding errors. The problem with over
ow in integral computa-

tion is abolished if arbitrary precision integer arithmetic is used. There are several software

8

packages for arbitrary or multiple precision integers, e.g., BigNum [129], GNUMP [65], LiDIA

[90], or the number type integer in LEDA [95, 96]. Fortune and Van Wyk [57, 58] report on

experiments with such packages.

Since the integral input data are usually bounded in size, e.g., by the maximal repre-

sentable int, there is not really a need for arbitrary precision integers. Multiple precision

integer arithmetic with a �xed precision adjusted to the maximum possible integer size in

the input and the degree of the integral polynomial expression arising in the computation is

adequate. If the input integers have binary representation with at most b-bits, then an integer

arithmetic for integers with db+ logm+O(1) bits su�ces to evaluate an integral polynomial

expression with m monomials of degree at most d, where we assume that the coe�cients of

the monomials are bounded by a constant. If v is the number of numerical input data involved

in a polynomial expression, then m is bounded by (v + 1)

d

.

The degree of polynomial expressions in geometric predicates has recently gained atten-

tion as an additional measure of algorithmic complexity in the design of geometric algo-

rithms. Liotta et al. [91] investigate the degree involved in some proximity problems in 2-

and 3-dimensional space, Boissonnat and Preparata [15] investigate the degree involved in

line segment intersection.

Many predicates include only expressions involving operations +;�; �; =. In most of the

problems discussed in textbooks on computational geometry [16, 31, 40, 85, 88, 92, 107, 112,

117] all predicates are of this type. Such problems are called rational [151].

A rational number can be exactly stored as a pair of arbitrary precision integers represent-

ing numerator and denominator respectively. Let us call this exact rational arithmetic. The

intermediate values computed in rational problems are often solutions to systems of linear

equations like the coordinates of the intersection point of two straight lines.

Division can be avoided in rational predicates, e.g., exact rational arithmetic postpones

division. With exact rational arithmetic, numerator and denominator of the result of the

evaluation of a rational expression are integral polynomial expressions in the numerators and

denominators of the rational operands. A sign test for a rational expression can be done by two

sign tests for integral polynomial expressions. Hence rational expressions in conditional tests

in geometric predicates can be replaced by tests involving integral polynomial expressions.

Homogeneous coordinates known from projective geometry and computer graphics can be

used to avoid division, too. In homogeneous representation, a point in d-dimensional a�ne

space with Cartesian coordinates (x

0

; x

1

; : : : ; x

d�1

) is represented by a vector (hx

0

; hx

1

; : : :

: : : ; hx

d�1

; hx

d

) such that x

i

= hx

i

=hx

d

for all 0 � i � d � 1. Note that the homogeneous

representation of a point is not unique; multiplication of the homogeneous representation

vector with any � 6= 0 gives a representation of the same point. The homogenizing coordinate

hx

d

is a common denominator of the coordinates. For example, homogeneous representation

allows division-free representation of the intersection point of two straight lines given by

a �X + b � Y � c = 0 and d �X + e � Y + f = 0. The intersection point can be represented by

homogeneous coordinates (b � f � c � e; a � f � c � d; a � e � b � d).

A test including rational expressions in Cartesian coordinates transforms into a test in-

cluding only polynomial expressions in homogeneous coordinates after multiplication with

an appropriate product of homogenizing coordinates. Since all monomials appearing in the

resulting expressions have the same degree in the homogeneous coordinates, the resulting

polynomial is a homogeneous polynomial. For example, the test \a � x

0

+ b � x

1

+ c = 0?",

which tests whether point (x

0

; x

1

) is on the line given by the equation a �X + b � Y + c = 0,

transforms into \a � hx

0

+ b � hx

1

+ c � hx

2

= 0?".

9

Many geometric predicates that do not obviously involve only integral polynomial expres-

sions can be rewritten so that they do. Above, we have illustrated this for rational problems.

Even sign tests for expressions involving square roots can be turned into a sequence of sign

tests of polynomial expressions by repeated squaring [21, 91]. Therefore, multiple or arbi-

trary precision integer arithmetic is a powerful tool for exact geometric computation, but

such integer arithmetic has to be supplied by software and is therefore much slower than the

hardware-supported integer arithmetic. The actual cost of an operation on arbitrary preci-

sion integers depends on the size of the operands, more precisely on the length of their binary

representation. If expressions of large depth are involved in the geometric calculations the size

of the operands can increase drastically. In the literature huge slow down factors are reported

if
oating-point arithmetic is simply replaced by exact rational arithmetic. Karasick, Lieber,

and Nackman [84] report slow-down factors of about 10 000.

While in most rational problems the depth of the involved rational expressions is a small

constant, there are problems where the size of the numbers has a linear dependence on the

problem size. An example is computing minimum link paths inside simple polygons [82].

Numerator and denominator of the knick-points on a minimum link path can have super-

quadratic bitlength with respect to the number of polygon vertices [82]. This is by the way a

good example of how strange the assumption of constant time arithmetic operations in theory

may be in practice.

Fortune and Van Wyk [57, 58] noticed that in geometric computations the sizes of the

integers are small to medium compared to those arising in computer algebra and number

theory. Multiple precision integer packages are mainly used in these areas and hence tuned

for good performance with larger integers. Consequently Fortune and Van Wyk developed LN

[56], a system that generates e�cient code for integer arithmetic with fairly \little" numbers.

LN takes an expression and a bound on the size of the integral operands as input. The

generated code is very e�cient if all operands are of the same order of magnitude as the

bound. For much smaller operands the generated code is clearly not optimal. LN can be

used to trim integer arithmetic in an implementation of a geometric algorithm for special

applications. On the other hand, LN is not useful for generating general code. Chang and

Milenkovic report on the use of LN in [27].

For integral polynomial expressions, modular arithmetic [2, 86] is an alternative to arbi-

trary precision integer arithmetic. Let p

0

; p

1

; : : : ; p

k�1

be a set of integers that are pairwise

relatively prime and let p be the product of the p

i

. By the Chinese remainder theorem

there is a one-to-one correspondence between the integers r with �b

p

2

c � r < d

p

2

e and the

k-tuples (r

0

; r

1

; : : : ; r

k�1

) with �b

p

i

2

c � r

i

< d

p

i

2

e. By the integer analog of the Lagrangian

interpolation formula for polynomials [2], we have

r =

k�1

X

i=0

r

i

s

i

q

i

mod p

where r

i

= r mod p

i

, q

i

= p=p

i

, and s

i

= q

�1

i

mod p

i

. Note that s

i

exists because of the

relative primality and can be computed with an extended Euclidean gcd algorithm [86]. To

evaluate an expression, a set of relatively prime integers is chosen such that the product of the

primes is at least twice the absolute value of the integral value of the expression. Then the

expression is evaluated modulo each p

i

. Finally Chinese remaindering is used to reconstruct

the value of the expression.

Modular arithmetic is frequently used in number theory, but not much is known about

10

its application to exact geometric computation. Fortune and Van Wyk [57, 58] compared

modular arithmetic with multiple precision integers provided by software packages for a few

basic geometric problems without observing much of a di�erence in the performance. Recently,

however, Br�onnimann et al. reported on promising results concerning the use of modular

arithmetic in combination with single precision
oating-point arithmetic for sign evaluation

of determinants [17] and Emiris reported on the use of modular arithmetic in the computation

of general dimensional convex hulls [42].

Modular arithmetic is particularly useful if intermediate results can be very large, but the

�nal result is known to be relatively small. The drawback is that a good bound on the size of

the �nal result must be known in order to choose su�ciently many relatively prime integers,

but not too many.

3.2 Adaptive Evaluation

Replacing exact arithmetic, on which the correctness of a geometric algorithm is based, by

imprecise �nite-precision arithmetic usually works in practice for many of the given input

data and fails only occasionally. Thus always computing exact values would put a burden on

the algorithm that is rarely really needed.

Adaptive evaluation (also called lazy evaluation) is guided by the rule

Why compute something that is never used,

so why compute numbers to high precision, before you know that this precision is actually

needed.

The simplest form of adaptive evaluation is a
oating-point �lter. The idea of
oating-

point �lters is to �lter out those computations where
oating-point computation gives the

correct result. This technique has been successfully used in exact geometric computation

[34, 57, 58, 84, 93, 94]. Floating-point �lters make use of the fast hardware-supported
oating-

point arithmetic. A �lter simply takes a bound on the error of the
oating-point computation

and compares the absolute value of the computed numerical value to the error bound. If the

error bound is smaller, the computed approximation and the exact value have the same sign.

Only if it is not certi�ed by the error bound that the
oating-point evaluation has led to a

correct decision, the expression considered in the branching step is reevaluated, for instance,

with exact arithmetic.

Error bounds can be computed a priori if speci�c information on the input data is available,

e.g., if all input data are integers from a bounded range, for instance, the range of integers

representable in a computer word. Such so-called static �lters require only little additional

e�ort at run time, just one additional test per branching, plus the re�ned reevaluation in

the worst case. Dynamic �lters compute an error bound on the
y parallel to the evaluation

in
oating-point arithmetic. Since they take the actual values of the operands into account

and not only bounds derived from the bounds on the input data, the estimates for the error

involved in the
oating-point computation can be much tighter than in a static �lter. In

the error computation one can put emphasis on speed or on precision. The former makes

arithmetic operations more e�cient while the latter lets more
oating-point computations

pass a test. Semi-dynamic �lters partially precompute the error bound a priori. Mehlhorn

and N�aher [93] use such semi-dynamic �lters in their implementation of the Bentley-Ottmann

plane sweep algorithm [13] for computing the intersections among a set of line segments in

the plane.

11

Note the di�erence between static �lters and heuristic epsilons. In both cases approxima-

tions to a numerical values are compared to some small values. If the computed approximation

is larger than the error bound or "

magic

, respectively, the behavior is identical. The program

continues based on the (in the former case veri�ed) assumption that the computed
oating-

point value has the correct sign. If, however, the computed approximate value is too small,

the behavior is completely di�erent. Epsilon-tweaking assumes that the actual value is zero,

which might be wrong, while a
oating-point �lter invokes a more expensive computation

�nally leading to a correct decision.

Using only error bounds, a
oating-point �lter rarely works for expressions whose value

is actually zero, because both the computed approximation and the error bound have to be

zero to certify sign zero. To detect sign zero, one can use \certi�ed epsilons" described in

Section 3.5, or use a special procedure to test an expression for zero, e.g. [14], or one might

use exact arithmetic.

If a �lter fails, a re�ned �lter can be used. A re�ned �lter might compute a tighter

error bound or use a
oating-point arithmetic with larger mantissa and thereby get better

approximations and smaller error bounds. This step can be iterated. Composition of more

and more re�ned �lters leads to an adaptive evaluation scheme. Such schemes are called

adaptive, because they adapt the used precision to the size of the value of the expression to

be evaluated.

For orientation predicates and incircle tests in two- and three-dimensional space Shewchuk

[130, 131] presents such an adaptive (or lazy) evaluation scheme. It uses an exact

3

representa-

tion of values resulting from expressions over
oating-point numbers involving only additions,

subtractions, and multiplications as a symbolic sum of
oating-point numbers. Computa-

tion with numbers in this representation, called expanded doubles in [130], is based on the

interesting results of Priest [118, 119] and Dekker [33] on extending the precision of
oating-

point computation. An adapted combination of these techniques allows one to reuse values

computed in previous �ltering steps in later �ltering steps.

For integral expressions scalar products delivering exactly rounded results can be used in

oating-point �lters to get best possible
oating-point approximations. Ottmann et al. [113]

�rst used exactly rounding scalar products to solve precision problems in geometric compu-

tation.

Number representations supporting recomputation with higher precision are very useful for

adaptive evaluation. The LEA

4

system [12] provides lazy evaluation for rational computation.

In this system, numbers are represented by intervals and expression dags that re
ect their

creation history. Initially only a low precision representation is calculated using interval

arithmetic, cf. Section 3.3. Only if decisions can't be made with the current precision,

repeatedly representations with increased precision are computed by redoing the computation

along the expression dag with re�ned intervals for the operands. If the interval representation

can't be re�ned anymore with
oating-point evaluation, exact rational arithmetic is used to

solve the decision problem.

Another approach based on expression dags is described by Yap and Dub�e [39, 150, 151].

In this approach the precision used to evaluate the operands is not systematically increased,

but the increase is demanded by the intended increase in the precision of the result. The data

type real in LEDA [23] stores the creation history in expression dags, too, and uses
oating-

3

if neither under
ow nor over
ow occurs

4

LEA [12] should not to be confused with LEDA [95, 96]

12

point approximations and errors bounds as �rst approximations. The strategy of repeatedly

increasing the precision is similar to [39, 150, 151]. In both approaches software-based multi-

ple precision
oating-point arithmetic with a mantissa length that can be arbitrarily chosen

and an unbounded exponent is used to compute representations with higher precision. Fur-

thermore, both approaches include square root operations besides +;�; �; =. The reals now

provide k-th root operations as well [96].

3.3 Interval Arithmetic

Approximation and error bound de�ne an interval that contains the exact value. Interval

arithmetic [3, 104, 105] is another method to get an interval with this property. In inter-

val arithmetic real numbers are represented by intervals, whose endpoints are
oating-point

numbers. The interval representing the result of an operation is computed by
oating-point

operations on the endpoints of the intervals representing the operands. For example, the lower

endpoint of the interval representing the result of an addition is the sum of the lower end-

points of the intervals of the summands. Since this
oating-point addition might be inexact,

either the rounding mode is changed to rounding toward �1 before addition or a correction

term is subtracted. For interval arithmetic, rounding modes toward 1 and toward �1 are

very useful. See, for example, [106, 137] for applications of interval methods to geometric

computing. The combination of exact rational arithmetic with interval arithmetic based on

fast
oating-point computation has been pioneered by Karasick, Lieber and Nackman [84] to

geometric computing.

A re�nement of standard interval arithmetic is the so-called a�ne arithmetic proposed

by Comba and Stol� [30]. While standard interval arithmetic assumes that the unknown

values of operands and subexpressions can vary independently, a�ne arithmetic keeps track

of �rst-order dependencies and takes these into account. Thereby error explosion can often

be avoided and tighter bounds on the computed quantities can be achieved. An extreme

example is computing x� x where for x some interval [x:lo; x:hi] is given. Standard interval

arithmetic would compute the interval [x:lo� x:hi; x:hi� x:lo], while a�ne arithmetic gives

the true range [0; 0].

3.4 Exact Sign of Determinant

Many geometric primitives can be formulated as sign computations of determinants. The

classical example of such a primitive is the orientation test, which in two-dimensional space

determines whether a given sequence of three points is a clockwise or a counterclockwise turn

or whether they are collinear. Another example is the incircle test used in the construction

of Voronoi diagrams of points.

Recently some e�ort has been focused on exact sign determination. Clarkson [29] gives

an algorithm to evaluate the sign of a determinant of a d � d matrix with integer entries

using
oating-point arithmetic. His algorithm is a variant of the modi�ed Graham-Schmidt

orthogonalization. In his variant, scaling is used to improve the conditioning of the matrix.

Since only positive scaling factors are used, the sign of the determinant does not change.

Clarkson shows that only b+O(d) bits are required, if all entries are b-bit integers. Hence, for

small dimensional matrices his algorithm can be used to evaluate the sign of the determinant

with fast hardware
oating-point arithmetic.

Avnaim et al. [5] consider determinants of small matrices with integer entries, too. They

13

present algorithms to compute the sign of 2� 2 and 3� 3 matrices with b-bit integer entries

using precision b and b+1 only, respectively. Br�onnimann and Yvinec [18] extend the method

of [5] to d � d matrices and present a variant of Clarkson's method. The new version of

Clarkson's method allows for a simpli�ed analysis. Furthermore, Shewchuk's work on adaptive

evaluation [131] is focussed on predicates evaluated by sign of determinant computation. We

already mentioned the use of modular arithmetic combined with
oating-point arithmetic to

compute the sign of determinants of integer matrices [17].

3.5 Certi�ed Epsilons

While the order of two di�erent numbers can be found by computing su�ciently close ap-

proximations, it is not so straightforward to determine whether two numbers are equal or,

equivalently, whether the value of an expression is zero. From a theoretical point of view

arithmetic expressions arising in geometric predicates are expressions over the reals. Hence

the value of an expression can in general get arbitrarily close to zero if the variable operands

are replaced by arbitrary real numbers. In practice the numerical input data originate from

a �nite, discrete subset of the reals, namely a �nite subset of the integers or a �nite set of

oating-point numbers, i.e., a �nite subset of the rational numbers. The �niteness of such

input excludes arbitrarily small absolute non-zero values for expressions of bounded depth.

There is a gap between zero and other values that a parameterized expression can take on.

A separation bound for an arithmetic expression E is a lower bound on the size of this gap.

Besides the �niteness of the number of possible numerical inputs, the coarseness of the input

data can generate a gap between zero and other values taken on. A straightforward example

is integral expressions. If all operands are integers the number 1 is clearly a separation bound.

Once a separation bound is available it is clear how to decide whether the value of an

expression is zero or not. Representations with repeatedly increased precision are computed

until either the error bound on the current approximation is less than the absolute value of

the approximation or their sum is less than the separation bound. In the phrasing of interval

arithmetic, it means to re�ne the interval until neither zero nor the separation bound nor its

negative are contained in the interval.

How can we get separation bounds without computing the exact value or an approximation

and an error bound? Most geometric computations are on linear objects and involve only basic

arithmetic operations over the rational numbers. In distance computations and operations on

nonlinear objects like circles and parabolas, square root operations are used as well. For the

rational numerical input data arising in practice, expressions over the operations +;�; �; =;

p

take on only algebraic values.

Let E be an expression involving square roots. Furthermore we assume that all operands

are integers. We use �(E) to denote the algebraic value of expression E. Computer algebra

provides bounds for the size of the roots of polynomials with integral coe�cients. These

bounds involve quantities used to describe the complexity of an integral polynomial, e.g.,

degree, maximum coe�cient size, or less well-known quantities like height or measure of

a polynomial. Once an integral polynomial with root �(E) is known the root bounds from

computer algebra give us separation bounds. In general, however, we don't have a polynomial

having root �(E) at hand. Fortunately, all we need to apply the root bounds are bounds on the

quantities involved in the root bounds. Upper bounds on these quantities for some polynomial

having root �(E) can be derived automatically from an expression E.

Recursive formulas leading to separation bounds for an expression involving square root

14

M(E) deg(E)

integer n jnj 1

E

1

+E

2

2

deg(E

1

)deg(E

2

)

M(E

1

)

deg(E

2

)

M(E

2

)

deg(E

1

)

deg(E

1

) � deg(E

2

)

E

1

�E

2

2

deg(E

1

)deg(E

2

)

M(E

1

)

deg(E

2

)

M(E

2

)

deg(E

1

)

deg(E

1

) � deg(E

2

)

E

1

�E

2

M(E

1

)

deg(E

2

)

M(E

2

)

deg(E

1

)

deg(E

1

) � deg(E

2

)

E

1

=E

2

M(E

1

)

deg(E

2

)

M(E

2

)

deg(E

1

)

deg(E

1

) � deg(E

2

)

p

E

1

M(E

1

) 2 � deg(E

1

)

Table 1: Automatic computation of separation bounds for expressions involving square roots

based on the measure of a polynomial

operations are given in [151]. The formulas deliver a bound on the maximum absolute value

of the coe�cients of an integral polynomial having root �(E). By a result of Cauchy, this

gives a separation bound. In [151], this bound is called height-degree bound.

Mignotte discusses identi�cation of algebraic numbers given by expressions involving

square roots in [97]. The measure of a polynomial [98] can also be used for automatic compu-

tation of a root bound. Table 1 gives the rules for (over)estimating measure and degree of an

integral polynomial having root �(E). We have �(E) = 0 or j�(E)j �M(E)

�1

. This bound,

called degree-measure bound, is never worse than the height-degree bound.

In [24] Canny considers isolated solutions of systems of polynomial equations in several

variables with integral coe�cients. He gives bounds on the absolute values of the non-zero

components of an isolated solution vector. The bound depends on the number of variables,

the maximum total degree d of the multivariate integral polynomials in the system and their

maximum coe�cient size c. Canny shows that the absolute value of a component of an isolated

solution of a system of n integral polynomial equations in n variables is either zero or at least

(3dc)

�nd

n

[24, 25]. Although Canny solves a much more general problem, his bounds can be

used to get fairly good separation bounds for expressions involving square roots, cf. [20].

Burnikel et al. [20] have shown that

�(E) �

�

u(E)

2

2k(E)�1

l(E)

�

�1

where k(E) is the number of (distinct) square root operations in E and the quantities u(E)

and l(E) are de�ned as given in Table 2. Note that u(E) and l(E) are simply the numerator

and denominator of an expression obtained by replacing in E all + by � and all integers by

their absolute value. If E is division-free and �(E) is non-zero, then �(E) � u(E)

1�2

k(E)�1

.

It is shown in [20] that this bound is never worse than the degree-measure bound and the

polynomial system bound for division-free expressions.

The bound given in [20] as well as the bound given in [151] involve square root operations.

Hence they are not easily computable. In practice one computes ceilings of the results to get

integers [151] or maintains integer bounds logarithmically [20, 23].

The number type real [23, 96] in LEDA and the Real/Expr-package [38, 114] provide

exact computation (in C++) for expressions with operations +, �, �, = and

p

and initially

integral operands, using techniques described above. In particular, the recent version of the

reals in LEDA [96] uses the bounds given in [20].

15

u(E) l(E)

integer n jnj 1

E

1

+ E

2

u(E

1

) � l(E

2

) + l(E

1

) � u(E

2

) l(E

1

) � l(E

2

)

E

1

� E

2

u(E

1

) � l(E

2

) + l(E

1

) � u(E

2

) l(E

1

) � l(E

2

)

E

1

�E

2

u(E

1

) � u(E

2

) l(E

1

) � l(E

2

)

E

1

=E

2

u(E

1

) � l(E

2

) l(E

1

) � u(E

2

)

p

E

1

p

u(E

1

)

p

l(E

1

)

Table 2: Recursive formulas for quantities u(E) and l(E) of an arithmetic expression involving

square roots.

Note the di�erence between separation bounds and "

magic

s in epsilon tweaking. In epsilon-

tweaking a test for zero is replaced by the test \j

~

Ej < "

magic

?". With separation bounds it

becomes \j

~

Ej < sep(E)�E

error

?" where sep(E) is a separation bound and E

error

is a bound

on the error accumulated in the evaluation of E. The di�erence is that the latter term is

self-adjusting, it is based on an error bound, and justi�ed; it is guaranteed that the result

is zero, if the condition is satis�ed. While "

magic

is always positive, it might happen that

the accumulated error is so large that sep(E) � E

error

is negative. Last but not least, the

conclusion is di�erent if the test is not satis�ed. Epsilon-tweaking concludes that the number

is non-zero if it is larger than "

magic

while the use of separation bounds allows this conclusion

only if j

~

Ej � E

error

.

4 Geometric Computation with Imprecision

In this section we look at the design and implementation of geometric algorithms with im-

precision calculations. With potentially imprecise computations we cannot hope to always

get the exact result. But even if the result is not the exact result for the considered problem

instance, it still can be meaningful. An algorithm that computes the exact result for a very

similar problem instance can be su�cient for an application, since the input data might be

known not to be accurate either. This observation motivates the de�nition of robustness

given in Section 1.1 and below Section 4.1. In addition to the existence of a perturbation of

the input data, for which the computed result is correct, Fortune's de�nition of robustness

and stability [51] requires that the implementation of an algorithm would compute the exact

result, if all computations were precise. His de�nition re
ects the attempt to save the (theo-

retical) correctness proof. It implies that all degenerate cases have to be handled. In contrast

to this, Sugihara [140] avoids handling degenerate cases at all, see also Section 4.3. Even if a

degeneracy is detected it is treated like a non-degeneracy by changing the sign from zero to

positive or negative. The justi�cation for this approach is again inaccuracy of the input data.

The output of an algorithm might be useful although it is not a correct output for any

perturbation of the input. In some situations it might be feasible to allow perturbation

of the output as well. For example, for some applications it might be su�cient that the

output of a two-dimensional convex hull algorithm is a nearly convex polygon while other

applications require convexity. Sometimes requirements are relaxed to allow \more general"

perturbations of the input data. Robustness and stability are then de�ned with respect to

16

Figure 5: Pappus theorem is an example where the result of some orientation tests for points

in the plane is determined by the result of other orientation tests. Collinearity of the points

on the top line and the bottom line implies collinearity of the three intersection points in the

middle.

the weaker problem formulation, cf. Section 4.1. For example, Fortune's and Milenkovic's

line arrangement algorithm [55] computes a combinatorial arrangement that is realizable by

pseudolines but not necessarily by straight lines. Shewchuk [130] suggests calling an algorithm

quasi-robust if it computes useful information but not a correct output for any perturbation

of the input.

For many implementations of geometric primitives it is easy to show that the computed

result is correct for some perturbation of the input. The major problem in the implemen-

tation with imprecise predicates is their combination. The basic predicates evaluated in an

execution of an algorithm operate on the same set of data and and hence might be dependent.

Furthermore, the results of dependent geometric predicates might be mutually exclusive, i.e.,

there might be no small perturbation leading to correctness for all predicates. Hence an

algorithm might get into an inconsistent state, a state that could not be reached from any

input with correct evaluation. That is where a relaxation of the problem helps. An illegal

state can be a legal state for a similar problem with weaker restrictions, e.g., a state illegal

for an algorithm computing an arrangement of straight lines can be legal for arrangements of

pseudolines.

Avoiding inconsistencies among the decisions is a primary goal in achieving robustness in

implementations with imprecise predicates. Consistency is a non-issue if an algorithm never

evaluates a basic predicate whose outcome is implied by the results of previous evaluations of

basic predicates. Such an algorithm is called parsimonious [51, 87].

In general it can be very hard to achieve consistency with previous decisions by detecting

whether the outcome of a predicate can be deduced from previously evaluated predicates. A

well known illustration for this fact is Pappus theorem, cf. Fig. 5. Indeed, checking whether

the outcome of an orientation test is implied by previous tests on the given set of points is as

hard as the existential theory of the reals [51, 67].

The following sections present some design principles for robustness under computation

with imprecision.

17

4.1 Representation and Model Approach

The representation and model view formalizes the "compute the correct solution for a related

input" idea. It distinguishes real mathematical objects, the models, and their computer

representations. A geometric problem P de�nes a mapping between models, while a computer

program A leads to a mapping between representations. For instance, subtraction maps a pair

of real numbers to a real number while its counterpart on a computer maps a pair of computer

representations of the mathematical object real number, namely
oating-point numbers, to a

representation, a
oating-point number.

For the ideal one-to-one correspondence between representations and models a computer

algorithm is correct if the model corresponding to the computed output representation is the

solution to the problem for the model corresponding to the input representation. As with real

numbers and
oating-point numbers, the correspondence between mathematical models and

computer representations is normally not one-to-one because of the �nite nature of computer

representations. To take this approximation behavior into account correctness is replaced

by robustness as follows: A computer algorithm A : I

rep

! O

rep

for a geometric problem

P : I ! O is called robust, if for every computer representation x

rep

in the set of inputs

I

rep

, there is a model x in I corresponding to x

rep

, such that P(x) is among the models

in O corresponding to the computed output A(x

rep

), see Fig. 6. The obvious way to prove

P

O

rep

O

A

I

rep

I

Figure 6: A geometric problem is de�ned on models, while a computer algorithm works on

representations.

robustness of a computer algorithm in the sense above is to show that there is always a model

for which the computer algorithm takes the correct decisions. But this is often a highly

non-trivial task.

Of course, this de�nition of robustness depends to a large extent on the interpretation

of "correspondence" between representations and models for the input and the output part.

Generous de�nitions of correspondence in the output part make it easier to prove \robust-

ness" of an algorithm. Following Shewchuk's suggestion, algorithms with a fairly generous

interpretation of robustness should rather be called quasi-robust, because the output they

compute might be less useful than expected.

Ho�mann, Hopcroft, and Karasick introduced the "representation and model" formaliza-

tion in [74], our exposition follows Stewart [136]. Ho�mann, Hopcroft, and Karasick gave an

algorithm for intersection of polygons and proved its robustness. However, the underlying

correspondence between computer representations and models of polygons was fairly loose.

The edges of a model need not be close to the edges of the representation. Furthermore, both

simple and non-simple polygons could model a representation. Thus for simple polygons the

computed intersection polygon(s) need not be simple. In [77] Hopcroft and Kahn consider

robust intersection of a convex polyhedron with a halfspace. Again, the computed output can

18

be arbitrarily far away from the real intersection polyhedron.

Milenkovic's hidden variable method [99] �ts into the representation and model scheme

as well. In the hidden variable method the representation provides a structure with certain

topological properties (plus �nite precision approximations of the numerical values). A cor-

responding model provides the hidden (in�nite precision) numerical data and has the same

topological structure as the representation. In [99], Milenkovic applies the hidden variable

method to the computation of line arrangements. An arrangement representation in O

rep

consists of combinatorial data describing the topology of the arrangement and approximate

representations for the vertices of the arrangement. A model has the same topology as the

corresponding representation, but may have di�erent vertex locations. Since the computed

topology might not be realizable by straight lines, the lines in a model need not be straight,

but they must have certain monotonicity properties and be close to the straight lines in I

rep

.

In [136] Stewart proposes local robustness as an alternative for problems for which robust-

ness (in the representation and model sense) is inherently di�cult to achieve. Local robustness

no longer requires that an algorithm is robust with respect to all problem instances. An al-

gorithm is called locally robust for a set of features, if it is robust for all inputs consisting

of exactly those features. Stewart claims, that appropriate feature sets can be chosen such

that algorithms which are locally robust algorithms with respect to these feature sets are very

unlikely to fail in practice. He presents locally robust algorithms for polyhedral intersection

and polyhedral arrangements.

4.2 Epsilon Geometry

An interesting theoretical framework for the investigation of imprecision in geometric compu-

tation is epsilon geometry introduced by Guibas, Salesin, and Stol� [69]. Instead of a Boolean

value, an epsilon predicate returns a real number that gives some information \how much"

the input satis�es the predicate. Epsilon geometry assumes that the size of a perturbation

can be measured by a non-negative real number and that only the identity has size zero.

If an input does not satisfy a predicate, the \truth value" of an epsilon predicate is the

size of the smallest perturbation producing a perturbed input that satis�es the predicate. If

the input satis�es a predicate, the \truth value" is the non-positive number % if the predicate

is still satis�ed after applying any perturbations of size at most �%. In [69] epsilon predicates

are combined with interval arithmetic. Imprecise evaluations of epsilon predicates compute

a lower and an upper bound on the \truth value" of an epsilon predicate. Guibas, Salesin,

and Stol� compose basic epsilon predicates to less simple predicates. Unfortunately epsilon

geometry has been applied successfully only to a few basic geometric primitives [69] and the

computation of planar convex hulls [70]. Reasoning in the epsilon geometry framework seems

to be di�cult.

4.3 Topology-Oriented Approach

In order to avoid inconsistent decisions the topology-oriented approach places higher priority

on topological and combinatorial data than on numerical values. Whenever numerical com-

putations would lead to decisions violating topology, the decision is replaced by a topology-

conforming decision. Usually, violation of topology is not tested directly, but a set of rules

is given and it is shown that following these rules ensures the desired topological properties.

This approach guarantees topologically consistent output, i.e. valid combinatorial data of

19

the output, but the computed numerical values of the output might not be corresponding to

the combinatorial data. For instance, in [144] the computed graph structure representing the

Voronoi diagram will always be planar, but the computed coordinates of the vertices might

not give a planar embedding.

Typically topology-oriented approaches do not treat degeneracies explicitly. They assume

sign computations not to produce sign zero. If the numerical value computed in a sign

computation is zero, it is replaced by a positive or a negative value, whatever is consistent

with the current topology.

The topology-oriented approach can lead to amazingly robust algorithms. The algorithms

never crash or loop for ever and they compute output having essential combinatorial prop-

erties. For instance, the Voronoi diagram algorithm presented in [144] produces some planar

graph even if in all decision steps involving sign computations the sign is chosen at random!

Of course, \closeness" of the computed output to the correct solution is not guaranteed in this

case. Usually it is argued that the computed output comes closer to the correct one if higher

precision is used, and, furthermore, that it is the correct one, if the precision is su�ciently

high and there are no degeneracies.

Sugihara et al. used the topological-oriented approach in several algorithms for computing

Voronoi diagrams [79, 111, 144, 145, 146], polyhedral modeling problems [141, 142, 143], and

3-dimensional convex hull [103].

Results on computation with imprecision are usually not unequivocally classi�able under

the set of design principles described in Sections 4.1 to 4.5. For example, Milenkovic's hidden

variable method can be seen as an topology-oriented approach, too, because the topological

structure of the output representation has to be respected by every model corresponding to

this representation. Thereby, topology gets priority over numerical data, which is character-

istic for the topology-oriented approach as well.

4.4 Axiomatic Approach

In [122, 123] Schorn proposes what he calls the axiomatic approach. The idea is to investigate

which properties of primitive operations are essential for a correctness proof of an algorithm

and to �nd algorithm invariants that are based on these properties only.

One of the algorithms considered in [122] is computing a closest pair of a set of points S

by plane sweep [72]. Instead of a closest pair, the distance �

S

of a closest pair is computed.

In his implementation Schorn uses distance functions d(p; q), d

x

(p; q), d

y

(p; q), and d

0

y

(p; q) on

points p = (p

x

; p

y

) and q = (q

x

; q

y

) in the plane. In an exact implementation these functions

would compute

q

(p

x

� q

x

)

2

+ (p

y

� q

y

)

2

, p

x

� q

x

, p

y

� q

y

, and q

y

� p

y

, respectively. Schorn

lists properties for these functions that are essential for a correctness proof: First, they must

have some monotonicity properties. d

x

must be monotone with respect to the x-coordinate

of its �rst argument, i.e., [p

x

� p

0

x

) d

x

(p; q) � d

x

(p

0

; q)] holds, and inverse monotone in the

x-coordinate of its second argument, i.e. [q

x

� q

0

x

) d

x

(p; q) � d

x

(p; q

0

)] holds. Similarly,

[q

y

� q

0

y

) d

y

(p; q) � d

y

(p; q

0

)] and [q

y

� q

0

y

) d

0

y

(p; q) � d

0

y

(p; q

0

)] must hold for d

y

and d

0

y

,

respectively. Second, d

x

, d

y

, and d

0

y

must be \bounded by d", more precisely, [p

x

� q

x

)

d(p; q) � d

x

(p; q)], [p

y

� q

y

) d(p; q) � d

y

(p; q)], and [p

y

� q

y

) d(p; q) � d

0

y

(p; q)] must

hold. Finally, d must be symmetric, i.e., d(p; q) = d(q; p). These properties, called axioms in

[122], are su�cient to prove that for the � computed by Schorn's plane sweep implementation

� = min

s;t2S

d(s; t)

20

p

1

p

2

p

3

Figure 7: Coincidence inconsistency of points with tolerance regions. If points are considered

to be coincident if there tolerance regions overlap, then p

1

and p

2

are coincident and so are

p

2

and p

3

, but p

1

and p

3

are not.

holds. No matter what d, d

x

, d

y

, and d

0

y

are, as long as they satisfy all axioms, min

s;t2S

d(s; t)

is computed by the sweep. In particular, if exact distance functions are used, the correct

distance of a closest pair would be computed. Schorn uses
oating-point implementations of

the distance functions d, d

x

, d

y

, and d

0

y

. He shows that they have the desired properties and

that they guarantee a relative error of at most 8"

prec

in the computed approximation for �

S

,

where "

prec

is machine epsilon.

Further geometric problems to which the axiomatic approach is applied in [122, 123] to

achieve robustness are: �nding pairs of intersecting line segments and computing the winding

number of a point with respect to a not necessarily simple polygon. The latter involves point

in polygon testing as a special case.

4.5 Tolerance-Based Approach

This approach associates tolerances to geometric objects in order to represent uncertainties.

This is a generalization of the representation of a numerical value by an approximation and an

error bound or an interval. Tolerance-based approaches can be seen as a special variant of the

representation and model design principle. The tolerances associated with geometric objects

restrict the correspondence between representation and model. A model can correspond to a

representation only if it satis�es the tolerance constraints associated to the representation.

A goal in processing geometric data with a tolerance-based approach is to keep the data

in a consistent state in order to ensure the existence of a model. For example, points with

associated tolerance regions should have a coincidence relation that is re
exive and transitive,

see Fig. 7. If inconsistencies arise, the tolerance regions have to be adjusted, either by shrink-

ing them through recomputation of the relevant data with higher precision, or by splitting

or merging objects and their tolerance regions. Tolerance-based approaches usually main-

tain additional neighborhood information on the location of the objects to enable consistency

checking. In the example given in Fig. 8 one has to detect that after merging points p

2

and

p

3

into one point with an enlarged tolerance region an inconsistency with p

1

arises.

Pullar [120] discusses consequences of using tolerance circles to point coincidence and point

clustering problems. Segal [125] uses a tolerance-based approach in the boundary evaluation

in constructive solid geometry. Fang and Br�uderlin [48] consider polyhedral modeling as well.

They present two versions, a more strict version called the linear model where the models

corresponding to a representation must be linear as well, and the less strict curve model that

allows for curved models as well and hence requires less e�orts to ensure consistency.

21

p

3

p

2

p

1

Figure 8: Processing points with tolerance regions requires backtracking if points p

2

and p

3

are merged after p

1

has been processed.

4.6 Further and More Speci�c Approaches

For modeling polygonal regions in the plane Milenkovic [99] uses a technique called data

normalization to modify the input such that it can be processed with imprecise arithmetic,

more precisely such that all �nite precision operations on the normalized data give the correct

result. The permitted modi�cation operations are vertex shifting (given a polygon P and a

vertex v, move all vertices of P with distance less than a certain " onto v) and edge cracking

(given a segment s = AB and a set V of points, each point with distance at most a certain "

to s, replace s = AB by a polyline from A to B whose vertex set is V [fA;Bg).

For some basic geometric problems there are stable, robust, or quasi-robust computer

algorithms. In Table 3 we group results on robustness with imprecise computation in a

problem-oriented way.

Convex Hull:

2-dimensional [28] [59] [70] [80] [89]

3-dimensional [103]

d-dimensional [9, 10]

Operations on Polygonal Objects:

line arrangements [55] [99] [100]

intersection of polygons [74]

intersection of polyhedra [75] [77] [136] [142]

2-d modeling [48] [99] [101]

3-d modeling [83] [125] [127] [135] [141] [143]

polyhedral decomposition [6, 7] [126]

point location [11] [49] [122] [134]

line segment intersection [66] [100] [113] [122] [139]

triangulation [51]

Delaunay and Voronoi Diagrams:

points in 2-d [53] [78] [79] [111] [140] [144, 145] [146]

points in 3-d [35] [79]

Table 3: Some robustness results for basic geometric problems with imprecise computation.

Note that exact methods are not listed here.

22

The techniques used in the algorithms cited in this section and the reasoning processes

used to prove robustness are fairly problem speci�c and it seems unlikely that they can be

easily transferred to other geometric problems.

5 Related Issues

In this section we �rst look at some issues that are closely related to precision and robust-

ness: degeneracies, inaccurate data, and rounding. Finally, we brie
y address precision and

robustness in computational geometry libraries.

5.1 Degeneracy

Degeneracy is closely related to precision and robustness, since precision problems are caused

by degenerate and nearly degenerate con�gurations in the input. Typical cases of degener-

acy are four cocircular points, three collinear points, or two points with the same ordinate.

Theoretical papers on computational geometry often assume the input in general position

and leave the \straightforward" handling of special cases to the reader. This might make the

presentation of an algorithm more readable, but it can put a huge burden on the implementor,

because the handling of degeneracies is often less straightforward than claimed.

In Section 2 we viewed a geometric problem as a mapping from a set of permitted input

data, consisting of a combinatorial and a numerical part, to a set of valid output data,

consisting of a combinatorial and a numerical part. We now assume that the combinatorial

part of the input is trivial, i.e. just a sequencing of data or so, such that we can view a

geometric problem P as a function from IR

nd

to C

out

� IR

m

, where n, m, and d are integers

and C

out

is some discrete space, modeling the combinatorial part of the output, e.g., a planar

graph or a face incidence lattice. A problem instance x 2 IR

nd

, which for concreteness we

view as n points in d-dimensional space, is called degenerate if P is discontinuous at x. For

example, if d = 2 and P(x) is the Voronoi diagram of x, i.e., a straight-line planar graph

together with coordinates for its vertices, then x is degenerate i� x contains four cocircular

points. An instance x is called degenerate with respect to some algorithm A if the computation

of A on input x contains a sign test with outcome zero. Clearly

5

, if A solves P and x is a

degenerate problem instance then x is also degenerate for A.

Symbolic perturbation schemes introduced to computational geometry by Edelsbrunner

and M�ucke [41], re�ned by Emiris and Canny [44, 43] and Emiris, Canny, and Seidel [45]

and extended by Yap [147, 148], have been proposed to abolish the handling of degeneracies,

see also [128]. With these schemes, the input is perturbed symbolically, e.g., Emiris and

Canny [43] propose to replace the j-th coordinate x

ij

of the i-th input point by x

ij

+ " � i

j

,

where " is a positive in�nitesimal, and the computation is carried out on the perturbed

input. All intermediate results are now polynomials in ". It can be shown that the Emiris

and Canny scheme removes many geometric degeneracies, e.g., collinearity of three points,

at only a constant factor increase in running time. The same statement holds for the other

perturbation schemes, although with a larger constant of proportionality. Exact computation

is a prerequisite for applying these techniques [151].

The handling of degeneracies and the use of symbolic perturbation schemes are a point of

controversy in the computational geometry literature, see [22, 124, 128]. Symbolic perturba-

5

This assumes all functions evaluated in sign tests to be continuous functions of the inputs.

23

tion is a fairly general technique that abolishes the handling of degenerate cases and it can

be very useful [45]. However, for degenerate input x, not P(x), but the limit of P(x(")) for

� ! 0 is computed. This may or may not be su�cient. The complexity of the postprocessing

required to retrieve the answer P(x) for a degenerate input x from the answer P(x(")) to

the perturbed input x(") can be signi�cant. Burnikel et al. claim in [22] that for many geo-

metric problems algorithms handling degeneracies directly are only moderately more complex

than algorithms assuming non-degenerate inputs. Furthermore, they show that perturbation

schemes may incur a signi�cant loss in e�ciency, since the computed output for the symboli-

cally perturbed input may be signi�cantly larger than the actual solution. Burnikel et al. use

line segment intersection and convex hull (in arbitrary dimensions) as examples.

Halperin and Shelton [71] combine a (non-symbolic) perturbation scheme with
oating-

point arithmetic to compute an arrangement of circles on a sphere, where the circles on the

sphere result from intersection of the sphere with other spheres. They use their algorithm

in molecular modeling. Since the given sphere locations are not accurate anyway in the

molecular modeling application, perturbation doesn't harm.

Sometimes, the term robustness is also used with respect to degeneracies. Dey et al.

[35] de�ne robustness as the ability of a geometric algorithm to deal with degeneracies and

\inaccuracies" during various numerical computations. The de�nition of robustness in [122]

is similar.

5.2 Inaccurate Data

In practice, many geometric data is known to be inaccurate, for instance geometric data

obtained by measuring real world data. Since imprecise arithmetic also introduces uncertainty,

processing geometric objects computed with imprecise computation and processing of real

world data known to be potentially inaccurate are highly related issues.

Treating inaccurate data as exact data works with exact geometric computation as long

as the input data are consistent. If not, we are in a situation similar to computation with

imprecision. An algorithm might get into states it was not supposed to get in and which it

therefore cannot handle. This similarity has led researchers to advocate imprecise computa-

tion and to attack both inconsistencies arising from imprecise computation and inconsistencies

due to inaccurate data uniformly. In this approach, however, it is not clear whether errors

in the output are caused by precision problems during computation or inaccuracies in the

data. Source errors and processing errors become indistinguishable. Exact computation, on

the other hand, only assures that inconsistencies are due to faulty data. But knowing that an

error was caused by a source error does not at all tell you how to proceed. Tolerance-based

approaches discussed in Section 4.5 are a natural choice to deal with inaccurate data. As

with computation with imprecision, a lot of research on modeling and handling uncertainty

in geometric data is still needed.

5.3 Rounding

The complexity, e.g., the bit-length of integers, of numerical data in the output of algorithms

for constructive geometric problems is usually higher than that of the input data. Thus

cascading geometric computations can result in expensive arithmetic operations. If the cost

caused by increased precision resulting from cascaded computation is not tolerable, precision

must be decreased by rounding the geometric output data. The goal in rounding is not to

24

Figure 9: Snap-rounding line segments

deviate too much from the original data both with respect to geometry and topology while

reducing the precision. Rounding geometric objects is related to simultaneous approximation

of reals by rationals [138]. However, rounding geometric data is more complicated than

rounding numbers and can be very di�cult [102], because combinatorial and numerical data

have to be kept consistent.

An intensively studied example is rounding an arrangement of line segments. Greene and

Yao [66] were the �rst to investigate rounding line segments consistently to a regular grid.

Note that simply rounding each segment endpoint to its nearest grid point can introduce new

intersections and hence signi�cantly violate the original topology. Greene and Yao break line

segments into polylines such that all endpoints lie on the grid and the topology is largely

preserved. Largely means, incidences not present in the original arrangement might arise,

but it can be shown that no additional crossings are generated. Currently the most promising

structure is \snap-rounding", also called \hot-pixel" rounding, usually attributed to Greene

and Hobby. A pixel in the regular grid is called hot if it contains an endpoint of an original

line segment or an intersection point of the original segments. In the rounding process all line

segments intersecting a hot pixel are snapped to the pixel center, cf. Fig. 9. Snap-rounding is

used in [64, 68, 73]. Rounding can be done as a postprocessing step after exact computation,

but it can also be seen as part of the problem and be incorporated into the algorithmic

solution, as e.g. in [64] and [68].

5.4 Robustness in Geometric Algorithms Libraries

Library components should come with a precise description what they compute and for which

inputs they are guaranteed to work. Correctness means that a component behaves according

to such a speci�cation. Exactness should not be confused with correctness in the sense of

reliability. There is nothing wrong with approximation algorithms or approximate solutions

as long as they do what they profess to do. Correctness can have unlike appearances: An

algorithm handling only non-degenerate cases can be correct in the above sense. Also, an

algorithm that guarantees to compute the exact result only if the numerical input data are

integral and smaller than some given bound can be correct as well as an algorithm that

computes an approximation to the exact result with a guaranteed error bound. Correctness

in the sense of reliability is a must for (re)usability and hence for a geometric algorithms

library.

Among the library and workbench e�orts in computational geometry [4, 32, 61, 46, 96, 110]

the XYZ-Geobench and LEDA deserve special attention concerning precision and robustness.

25

In XYZ-Geobench [110, 121] the axiomatic approach to robustness, described in section 4.4,

is used. In LEDA [95, 96] arbitrary precision integer arithmetic is combined with the
oating-

point �lter technique to yield e�cient exact components for rational problems. Recently, in

Europe and the US, new library projects called CGAL (Computational Geometry Algorithms

Library) [26, 47, 115] and GeomLib [1, 8] have been started. The goal of both projects is to

enhance the technology transfer from theory to practice in geometric computing by providing

reliable, reusable implementations of geometric algorithms.

6 Conclusion

Over the past decade much progress has been made on the precision and robust problem,

but no satisfactory general-purpose solution has been found. If exact predicates or exact

number types are available, exact geometric computation is the more convenient approach.

Algorithms designed for the real RAM model [117] can be implemented in a straightforward

way; a redesign to deal with imprecision is not necessary. Moreover, exact computation is

a prerequisite for the use of symbolic perturbation schemes. However, even with adaptive

evaluation, exact geometric computation has its costs. Concerning e�ciency, practitioners

often ask for the impossible. Reliable algorithms based on exact geometric computation are

requested to be competitive in performance to algorithms that sometimes crash or exhibit

otherwise unexpected behavior. It should be clear, however, that one has to pay for the

detection of degenerate and nearly degenerate situations in order to get reliability.

Exact geometric computation is not a panacea; it has limits. For cascaded computations

with large depth, i.e. computations where the result of an arithmetic operation is an operand

in another arithmetic operation many times in a row, the increase on required precision

with the depth of computation makes exact geometric computation less suited. In this case,

rounding intermediate results becomes important. Next, there are applications where speed

is much more an issue than accuracy. As long as the computed outputs are useful, a fast ro-

bust algorithm dealing with imprecise computation will be more appropriate. Unfortunately,

implementation with imprecision is much less straightforward. There is no general, widely

applicable theory on how to deal with imprecision.

Related surveys on the problem of precision and robustness in geometric computation are

given by Fortune [52], Ho�mann [76], and Yap [149]. Yap [150] and Yap and Dub�e [151]

address exact geometric computation. Franklin [60] especially discusses cartographic errors

caused by precision problems. Dobkin and Silver [36] illustrate the e�ect of cascading geomet-

ric computation on the numerical accuracy of the computed result. Furthermore, robustness

and precision issues were discussed at the ACM Workshop on Applied Computational Geom-

etry at FCRC'96 in Philadelphia, see [54, 67, 116].

Acknowledgment: The author would like to thank Christoph Burnikel, Kurt Mehlhorn, Greg

Perkins, and Michael Seel for their comments on earlier versions of this survey.

26

References

[1] P. K. Agarwal, M. T. Goodrich, S. R. Kosaraju, F. P. Preparata, R. Tamassia, and J. S. Vitter.

Applicable and robust geometric computing, 1995. see http://www.cs.brown.edu/cgc/.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[3] G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic Press, New York,

1983.

[4] F. Avnaim. C++GAL: A C++ Library for Geometric Algorithms. INRIA Sophia-Antipolis, 1994.

[5] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of

determinants using single-precision arithmetic. Algorithmica, 17:111{132, 1997.

[6] C. L. Bajaj and T. K. Dey. Robust decompositions of polyhedra. In Proc. 9th FSTTCS, volume

405 of Lecture Notes Comput. Sci., pages 267{279. Springer Verlag, 1989.

[7] C. L. Bajaj and T. K. Dey. Convex decomposition of polyhedra and robustness. SIAM J.

Comput., 21:339{364, 1992.

[8] J. E. Baker, R. Tamassia, and L. Vismara. GeomLib: Algorithm engineering for a geometric

computing library, 1997. (Preliminary report).

[9] C. B. Barber. Computational geometry with imprecise data and arithmetic : Phd thesis. Tech-

nical Report CS-TR-377-92, Princeton University, 1992.

[10] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM

Trans. Math. Software, 22(4):469{483, Dec. 1996.

[11] C. B. Barber and M. Hirsch. A robust algorithm for point in polyhedron. In Proc. 5th Canad.

Conf. Comput. Geom., pages 479{484, 1993.

[12] M. Benouamer, P. Jaillon, D. Michelucci, and J.-M. Moreau. A lazy solution to imprecision in

computational geometry. In Proc. 5th Canad. Conf. Comput. Geom., pages 73{78, 1993.

[13] J.L. Bentley and T.A. Ottmann. Algorithms for reporting and counting geometric intersections.

IEEE Trans. Comput., C-28:643{647, 1979.

[14] J. Bl�omer. Computing sums of radicals in polynomial time. In Proc. 32nd Annu. IEEE Sympos.

Found. Comput. Sci., pages 670{677, 1991.

[15] J.-D. Boissonnat and F. Preparata. Robust plane sweep for intersecting segments. Technical

Report 3270, INRIA, Sophia-Antipolis, France, September 1997.

[16] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, Cam-

bridge, UK, 1997.

[17] H. Br�onnimann, I.Z. Emiris, V.Y. Pan, and S. Pion. Computing exact geometric predicates

using modular arithmetic with single precision. In Proc. 13th Annu. ACM Sympos. Comput.

Geom., pages 174{182, 1997.

[18] H. Br�onnimann and M. Yvinec. E�cient exact evaluation of signs of determinants. In Proc.

13th Annu. ACM Sympos. Comput. Geom., pages 166{173, 1997.

[19] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D

thesis, Universit�at des Saarlandes, March 1996.

[20] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable sepa-

ration bound for arithmetic expressions involving square roots. In Proc. of the 8th ACM-SIAM

Symp. on Discrete Algorithms, pages 702{709, 1997.

27

[21] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments:

Theoretical and experimental results. In Proc. 2nd Annu. European Sympos. Algorithms, volume

855 of Lecture Notes Comput. Sci., pages 227{239. Springer-Verlag, 1994.

[22] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In Proc.

5th ACM-SIAM Sympos. Discrete Algorithms, pages 16{23, 1994.

[23] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report

MPI-I-96-1-001, Max-Planck-Institut f�ur Informatik, 1996.

[24] J. F. Canny. The Complexity of Robot Motion Planning. ACM Doctoral Dissertation Award

1987. MIT Press, 1987. PhD thesis.

[25] J. F. Canny. Generalised characteristic polynomials. J. Symbolic Computation, 9:241{250, 1990.

[26] CGAL project. see http://www.cs.ruu.nl/CGAL/.

[27] J. Chang and V. Milenkovic. An experiment using LN for exact geometric computations. In

Proc. 5th Canad. Conf. Comput. Geom., pages 67{72, 1993.

[28] W. Chen, K. Wada, and K. Kawaguchi. Parallel robust algorithms for constructing strongly

convex hulls. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 133{140, 1996.

[29] K. L. Clarkson. Safe and e�ective determinant evaluation. In Proc. 33rd Annu. IEEE Sympos.

Found. Comput. Sci., pages 387{395, 1992.

[30] J. L. D. Comba and J. Stol�. A�ne arithmetic and its applications to computer graphics, 1993.

Presented at SIBGRAPI'93, Recife (Brazil), October 20-22.

[31] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry.

Springer Verlag, 1997.

[32] P. de Rezende and W. Jacometti. Geolab: An environment for development of algorithms in

computational geometry. In Proc. 5th Canad. Conf. Comput. Geom., pages 175{180, Waterloo,

Canada, 1993.

[33] T. J. Dekker. A
oating-point technique for extending the available precision. Numerische

Mathematik, 18:224 { 242, 1971.

[34] O. Devillers and F. P. Preparata. A probabilistic analysis of the power of arithmetic �lters.

Technical Report CS-96-27, Center for Geometric Computing, Dept. Computer Science, Brown

Univ., 1996.

[35] T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions with

�nite precision arithmetic. Comput. Aided Geom. Design, 9:457{470, 1992.

[36] D. P. Dobkin and D. Silver. Applied computational geometry: Towards robust solutions of basic

problems. J. Comput. Syst. Sci., 40:70{87, 1989.

[37] D. Douglas. It makes me so CROSS. In D.J. Peuquet and D.F. Marble, editors, Introductory

Readings in Geographic Information Systems, pages 303{307. Taylor & Francis, London, 1990.

[38] T. Dub�e, K. Ouchi, and C. K. Yap. Tutorial for Real/Expr Package, 1996.

[39] T. Dub�e and C. K. Yap. A basis for implementing exact computational geometry. extended

abstract, 1993.

[40] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986.

[41] H. Edelsbrunner and E. M�ucke. Simulation of simplicity: A technique to cope with degenerate

cases in geometric algorithms. ACM Trans. on Graphics, 9:66{104, 1990.

[42] I. Emiris. A complete implementation for computing general dimensional convex hulls. Research

Report 2551, INRIA, Sophia-Antipolis, France, 1996.

28

[43] I. Emiris and J. Canny. An e�cient approach to removing geometric degeneracies. In Proc. of

the 8th ACM Symp. on Computational Geometry, pages 74{82, 1992.

[44] I. Emiris and J. Canny. A general approach to removing degeneracies. SIAM J. Comput.,

24:650{664, 1995.

[45] I. Z. Emiris, J. F. Canny, and R. Seidel. E�cient perturbations for handling geometric degen-

eracies. Algorithmica, 19(1{2):219{242, September 1997.

[46] P. Epstein, J. Kavanagh, A. Knight, J. May, T. Nguyen, and J.-R. Sack. A workbench for

computational geometry. Algorithmica, 11:404{428, 1994.

[47] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Sch�onherr. The CGAL kernel : a

basis for geometric computation. In M. C. Lin and D. Manocha, editors, Applied Computational

Geometry : Towards Geometric Engineering (WACG96), pages 191{202. Springer LNCS 1148,

1996.

[48] S. Fang and B. Br�uderlin. Robustness in geometric modeling | tolerance-based methods. In

Computational Geometry | Methods, Algorithms and Applications: Proc. Internat. Workshop

Comput. Geom. CG '91, volume 553 of Lecture Notes Comput. Sci., pages 85{101. Springer-

Verlag, 1991.

[49] A. R. Forrest. Computational geometry in practice. In R. A. Earnshaw, editor, Fundamental

Algorithms for Computer Graphics, volume F17 of NATO ASI, pages 707{724. Springer-Verlag,

1985.

[50] A. R. Forrest. Computational geometry and software engineering: Towards a geometric com-

puting environment. In D. F. Rogers and R. A. Earnshaw, editors, Techniques for Computer

Graphics, pages 23{37. Springer-Verlag, 1987.

[51] S. Fortune. Stable maintenance of point set triangulations in two dimensions. In Proc. 30th

Annu. IEEE Sympos. Found. Comput. Sci., pages 494{505, 1989.

[52] S. Fortune. Progress in computational geometry. In R. Martin, editor, Directions in Geometric

Computing, pages 81 { 128. Information Geometers Ltd., 1993.

[53] S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J.

Comput. Geom. Appl., 5(1):193{213, 1995.

[54] S. Fortune. Robustness issues in geometric algorithms. In M. C. Lin and D. Manocha, editors,

Applied Computational Geometry : Towards Geometric Engineering (WACG96), pages 9{14.

Springer LNCS 1148, 1996.

[55] S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrangements. In Proc.

7th Annu. ACM Sympos. Comput. Geom., pages 334{341, 1991.

[56] S. Fortune and C. van Wyk. LN user manual, 1993.

[57] S. Fortune and C. J. Van Wyk. E�cient exact arithmetic for computational geometry. In Proc.

9th Annu. ACM Sympos. Comput. Geom., pages 163{172, 1993.

[58] S. Fortune and C. J. van Wyk. Static analysis yields e�cient exact integer arithmetic for

computational geometry. ACM Trans. Graph., 15(3):223{248, July 1996.

[59] P. G. Franciosa, C. Gaibisso, G. Gambosi, and M. Talamo. A convex hull algorithm for points

with approximately known positions. Internat. J. Comput. Geom. Appl., 4(2):153{163, 1994.

[60] W. R. Franklin. Cartographic errors symptomatic of underlying algebra problems. In Proc.

Internat. Sympos. Spatial Data Handling, volume 1, pages 190{208, 20{24 August 1984.

[61] G.-J. Giezeman. PlaGeo, a library for planar geometry, and SpaGeo, a library for spatial geom-

etry. Utrecht University, 1994.

29

[62] D. Goldberg. What every computer scientist should know about
oating-point arithmetic. ACM

Comput. Surv., 32(1):5{48, March 1991.

[63] M. F. Goodchild. Issues of quality and uncertainty. In J.C. Muller, editor, Advances in Cartog-

raphy, pages 113{139. Elsevier Applied Science, London, 1991.

[64] M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding line segments

e�ciently in two and three dimensions. In Proc. 13th Annu. ACM Sympos. Comput. Geom.,

pages 284{293, 1997.

[65] T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 edition, June

1996.

[66] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proc. 27th Annu.

IEEE Sympos. Found. Comput. Sci., pages 143{152, 1986.

[67] L. Guibas. Implementing geometric algorithms robustly. In M. C. Lin and D. Manocha, editors,

Applied Computational Geometry : Towards Geometric Engineering (WACG96), pages 15{22.

Springer LNCS 1148, 1996.

[68] L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc. 11th Annu. ACM

Sympos. Comput. Geom., pages 190{199, 1995.

[69] L. Guibas, D. Salesin, and J. Stol�. Epsilon geometry: building robust algorithms from imprecise

computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208{217, 1989.

[70] L. Guibas, D. Salesin, and J. Stol�. Constructing strongly convex approximate hulls with in-

accurate primitives. In Proc. 1st Annu. SIGAL Internat. Sympos. Algorithms, volume 450 of

Lecture Notes Comput. Sci., pages 261{270. Springer-Verlag, 1990.

[71] D. Halperin and C. Shelton. A perturbation scheme for spherical arrangements with application

to molecular modeling. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 183{192,

1997.

[72] K. Hinrichs, J. Nievergelt, and P. Schorn. An all-round sweep algorithm for 2-dimensional

nearest-neighbor problems. Acta Informatica, 29:383{394, 1992.

[73] J.D. Hobby. Practical line segment interscetion with �nite precision output. Technical Report

93/2-27, Bell Laboratories (Lucent Technologies), 1993.

[74] C. M. Ho�mann, J. E. Hopcroft, and M. Karasick. Towards implementing robust geometric

computations. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 106{117, 1988.

[75] C. M. Ho�mann, J. E. Hopcroft, and M. T. Karasick. Robust set operations on polyhedral

solids. IEEE Comput. Graph. Appl., 9(6):50{59, November 1989.

[76] C.M. Ho�mann. The problem of accuracy and robustness in geometric computation. IEEE

Computer, pages 31{41, March 1989.

[77] J. E. Hopcroft and P. J. Kahn. A paradigm for robust geometric algorithms. Algorithmica,

7:339{380, 1992.

[78] H. Inagaki and K. Sugihara. Numerically robust algorithm for constructing constrained Delaunay

triangulation. In Proc. 6th Canad. Conf. Comput. Geom., pages 171{176, 1994.

[79] H. Inagaki, K. Sugihara, and N. Sugie. Numerically robust incremental algorithm for construct-

ing three-dimensional Voronoi diagrams. In Proc. 4th Canad. Conf. Comput. Geom., pages

334{339, 1992.

[80] J. W. Jaromczyk and G. W. Wasilkowski. Computing convex hull in a
oating point arithmetic.

Comput. Geom. Theory Appl., 4:283{292, 1994.

30

[81] K. Jensen and N. Wirth. PASCAL- User Manual and Report. Revised for the ISO Pascal

Standard. Springer Verlag, 3rd edition, 1985.

[82] S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths: Superquadratic

algorithms for problems solvable in linear time. In Proc. 12th Annu. ACM Sympos. Comput.

Geom., pages 151{158, 1996.

[83] M. Karasick. On the Representation and Manipulation of Rigid Solids. Ph.D. thesis, Dept.

Comput. Sci., McGill Univ., Montreal, 1989.

[84] M. Karasick, D. Lieber, and L. R. Nackman. E�cient Delaunay triangulations using rational

arithmetic. ACM Trans. Graph., 10:71{91, 1991.

[85] R. Klein. Algorithmische Geometrie. Addison-Wesley, 1997. (in German).

[86] D. E. Knuth. The Art of Computer Programming Vol. 2: Seminumerical Algorithms. Addison-

Wesley, 2nd edition, 1981.

[87] D. E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer Science. Springer-

Verlag, Heidelberg, Germany, 1992.

[88] M. J. Laszlo. Computational geometry and computer graphics in C
++
. Prentice Hall, Upper

Saddle River, NJ, 1996.

[89] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or rounded arithmetic.

Algorithmica, 8:345{364, 1992.

[90] LiDIA -Group, Fachbereich Informatik Institut f�ur Theoretische Informatik TH Darmstadt.

LiDIA Manual A library for computational number theory, 1.3 edition, April 1997.

[91] G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: An illustration of degree-

driven algorithm design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 156{165,

1997.

[92] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and Computa-

tional Geometry. Springer Verlag, 1984.

[93] K. Mehlhorn and S. N�aher. Implementation of a sweep line algorithm for the straight line

segment intersection problem. Report MPI-I-94-160, Max-Planck-Institut Inform., Saarbr�ucken,

Germany, 1994.

[94] K. Mehlhorn and S. N�aher. The implementation of geometric algorithms. In Proc. 13th World

Computer Congress IFIP94, volume 1, pages 223{231, 1994.

[95] K. Mehlhorn and S. N�aher. LEDA, a platform for combinatorial and geometric computing.

Communications of the ACM, 38:96{102, 1995.

[96] K. Mehlhorn, S. N�aher, and C. Uhrig. The LEDA User manual, 3.5 edition, 1997. see

http://www.mpi-sb.mpg.de/LEDA/leda.html.

[97] M. Mignotte. Identi�cation of algebraic numbers. Journal of Algorithms, 3:197{204, 1982.

[98] M. Mignotte. Mathematics for Computer Algebra. Springer Verlag, 1992.

[99] V. Milenkovic. Veri�able implementations of geometric algorithms using �nite precision arith-

metic. Artif. Intell., 37:377{401, 1988.

[100] V. Milenkovic. Double precision geometry: a general technique for calculating line and segment

intersections using rounded arithmetic. In Proc. 30th Annu. IEEE Sympos. Found. Comput.

Sci., pages 500{505, 1989.

[101] V. Milenkovic. Robust polygon modeling. Comput. Aided Design, 25(9), 1993. (special issue on

Uncertainties in Geometric Design).

31

[102] V. Milenkovic and L. R. Nackman. Finding compact coordinate representations for polygons

and polyhedra. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 244{252, 1990.

[103] T. Minakawa and K. Sugihara. Topology oriented vs. exact arithmetic - experience in imple-

menting the three-dimensional convex hull algorithm. In ISAAC97, 1997.

[104] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, NJ, 1966.

[105] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

[106] S. P. Mudur and P. A. Koparkar. Interval methods for processing geometric objects. IEEE

Computer Graphics and Applications, 4(2):7{17, 1984.

[107] K. Mulmuley. Computational Geometry : An Introduction through Randomized Algorithms.

Prentice Hall, Englewood Cli�s, NJ, 1994.

[108] J. Nievergelt and K. H. Hinrichs. Algorithms and Data Structures: With Applications to Graphics

and Geometry. Prentice Hall, Englewood Cli�s, NJ, 1993.

[109] J. Nievergelt and P. Schorn. Das R�atsel der verzopften Geraden. Informatik Spektrum, (11):163{

165, 1988. (in German).

[110] J. Nievergelt, P. Schorn, M. de Lorenzi, C. Ammann, and A. Br�ungger. XYZ: Software for

geometric computation. Technical Report 163, Institut f�ur Theorische Informatik, ETH, Z�urich,

Switzerland, 1991.

[111] Y. Oishi and K. Sugihara. Topology oriented divide and conquer algorithm for Voronoi diagrams.

Graphical Models and Image Processing, 57(4):303{314, 1995.

[112] J. O'Rourke. Computational geometry in C. Cambridge University Press, Cambridge, 1994.

[113] T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric algorithms. In Proc.

of the 3rd ACM Symp. on Computational Geometry, pages 119{125, 1987.

[114] K. Ouchi. Real/Expr: Implementation of exact computation. Courant Institute, New York

University, 1997. Master thesis.

[115] M. Overmars. Designing the computational geometry algorithms library CGAL. In M. C. Lin

and D. Manocha, editors, Applied Computational Geometry : Towards Geometric Engineering

(WACG96), pages 53{58. Springer LNCS 1148, 1996.

[116] F. Preparata. Robustness in geometric algorithms. In M. C. Lin and D. Manocha, editors,

Applied Computational Geometry : Towards Geometric Engineering (WACG96), pages 23{24.

Springer LNCS 1148, 1996.

[117] F. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag, 1985.

[118] D. M. Priest. Algorithms for arbitrary precision
oating point arithmetic. In 10th Symposium

on Computer Arithmetic, pages 132 { 143. IEEE Computer Society Press, 1991.

[119] D. M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and the Cost of

Accurate Computations. PhD thesis, Department of Mathematics, University of California at

Berkeley, 1992.

[120] D. Pullar. Consequences of using a tolerance paradigm in spatial overlay. In Proc. of Auto-Carto

11, pages 288{296, 1993.

[121] P. Schorn. An object-oriented workbench for experimental geometric computation. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 172{175, 1990.

[122] P. Schorn. Robust Algorithms in a Program Library for Geometric Computation, volume 32 of

Informatik-Dissertationen ETH Z�urich. Verlag der Fachvereine, Z�urich, 1991.

32

[123] P. Schorn. An axiomatic approach to robust geometric programs. J. Symbolic Computation,

16:155{165, 1993.

[124] P. Schorn. Degeneracy in geometric computation and the perturbation approach. The Computer

Journal, 37(1):35{42, 1994.

[125] M. Segal. Using tolerances to guarantee valid polyhedral modeling results. Comput. Graph.,

24(4):105{114, August 1990.

[126] M. Segal and C. H. Sequin. Partitioning polyhedral objects into nonintersecting parts. IEEE

Comput. Graph. Appl., 8(1):53{67, January 1988.

[127] M. G. Segal and C. H. Sequin. Consistent calculations for solids modelling. In Proc. 1st Annu.

ACM Sympos. Comput. Geom., pages 29{38, 1985.

[128] R. Seidel. The nature and meaning of perturbations in geometric computations. In STACS94,

1994.

[129] B. Serpette, J. Vuillemin, and J.C. Herv�e. BigNum, a portable and e�cient package for arbitrary-

precision arithmetic. Technical Report 2, Digital Paris Research Laboratory, 1989.

[130] J. R. Shewchuk. Adaptive precision
oating-point arithmetic and fast robust geometric predi-

cates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon Univer-

sity, 1996.

[131] J. R. Shewchuk. Robust adaptive
oating-point geometric predicates. In Proc. 12th Annu. ACM

Sympos. Comput. Geom., pages 141{150, 1996.

[132] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator.

In M. C. Lin and D. Manocha, editors, Applied Computational Geometry : Towards Geometric

Engineering (WACG96), pages 203{222. Springer LNCS 1148, 1996.

[133] IEEE Standard. 754-1985 for binary
oating-point arithmetic. SIGPLAN, 22:9{25, 1987.

[134] A. J. Stewart. Robust point location in approximate polygons. In Proc. 3rd Canad. Conf.

Comput. Geom., pages 179{182, 1991.

[135] A. J. Stewart. The theory and practice of robust geometric computation, or, how to build robust

solid modelers. Ph.D. thesis, Dept. Comput. Sci., Cornell Univ., Ithaca, NY, August 1991.

Technical Report TR 91-1229.

[136] A. J. Stewart. Local robustness and its application to polyhedral intersection. Internat. J.

Comput. Geom. Appl., 4(1):87{118, 1994.

[137] K. G. Su�ern and E. D. Fackerell. Interval methods in computer graphics. Computers &

Graphics, 15(3):331{340, 1991.

[138] K. Sugihara. On �nite-precision representations of geometric objects. J. Comput. Syst. Sci.,

39:236{247, 1989.

[139] K. Sugihara. An intersection algorithm based on Delaunay triangulation. IEEE Comput. Graph.

Appl., 12(2):59{67, March 1992.

[140] K. Sugihara. A simple method for avoiding numerical errors and degeneracy in Voronoi diagram

construction. IEICE Trans. Fundamentals, E75-A(4):468{477, April 1992.

[141] K. Sugihara. Topologically consistent algorithms related to convex polyhedra. In Proc. 3rd

Annu. Internat. Sympos. Algorithms Comput., volume 650 of Lecture Notes Comput. Sci., pages

209{218. Springer-Verlag, 1992.

[142] K. Sugihara. A robust and consistent algorithm for intersecting convex polyhedra. Comput.

Graph. Forum, 13(3):45{54, 1994. Proc. EUROGRAPHICS '94.

33

[143] K. Sugihara and M. Iri. A solid modelling system free from topological inconsistency. J. Inform.

Proc., 12(4):380{393, 1989.

[144] K. Sugihara and M. Iri. Construction of the Voronoi diagram for `one million' generators in

single-precision arithmetic. Proc. IEEE, 80(9):1471{1484, September 1992.

[145] K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi diagrams.

Internat. J. Comput. Geom. Appl., 4:179{228, 1994.

[146] K. Sugihara, Y. Ooishi, and T. Imai. Topology-oriented approach to robustness and its applica-

tions to several Voronoi-diagram algorithms. In Proc. 2nd Canad. Conf. Comput. Geom., pages

36{39, 1990.

[147] C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. In Proc. of

the 4th ACM Symp. on Computational Geometry, pages 134{141, 1988.

[148] C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput., 10:349{370,

1990.

[149] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors, CRC

Handbook in Computational Geometry, pages 653{668. CRC Press, 1997.

[150] C. K. Yap. Towards exact geometric computation. Computational Geometry: Theory and

Applications, 7(1-2):3{23, 1997. Preliminary version appeared in Proc. of the 5th Canad. Conf.

on Comp. Geom., pages 405-419, (1993).

[151] C. K. Yap and T. Dub�e. The exact computation paradigm. In D.-Z. Du and F. K. Hwang,

editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on Computing,

pages 452{492. World Scienti�c Press, Singapore, 2nd edition, 1995.

34

