
Simpler and Faster Static AC

0

Dictionaries

?

Torben Hagerup

Max-Planck-Institut f�ur Informatik, D{66123 Saarbr�ucken, Germany

torben@mpi-sb.mpg.de

Abstract. We consider the static dictionary problem of using O(n) w-

bit words to store n w-bit keys for fast retrieval on a w-bit AC

0

RAM, i.e.,

on a RAM with a word length of w bits whose instruction set is arbitrary,

except that each instruction must be realizable through an unbounded-

fanin circuit of constant depth and w

O(1)

size, and that the instruction

set must be �nite and independent of the keys stored. We improve the

best known upper bounds for moderate values of w relative to n. If

w=log n = (log log n)

O(1)

, query time (log log log n)

O(1)

is achieved, and

if additionally w=log n � (log log n)

1+�

for some �xed � > 0, the query

time is constant. For both of these special cases, the best previous upper

bound was O(log log n).

1 Introduction

The static dictionary problem is one of the most fundamental data-structuring

problems. Informally, an instance of the problem is given by a set X of keys, each

with associated satellite data, and the task is to store X in a way that allows

rapid retrieval of the satellite data of a given key. Formally, we �x a universe U

of possible key values and consider an instance of the problem to be given by a

�nite subset X � U , called the key set. A static dictionary for the key set X is a

data structure D that supports searches for elements of U , as follows: If x 2 X,

a search for x in D returns �(x), called the index of x, where � is an arbitrary

but �xed bijection from X to f1; : : : ; jXjg; if x 2 U n X, a search for x in D

may return an arbitrary element of f1; : : : ; jXjg. The static dictionary problem

is to realize a static dictionary D for a given key set X, parameters of interest

being the space occupied by D and the query time, the time needed to carry out

a search in D, but not the time needed to construct D from X.

Since our formal de�nition of the static dictionary problem is somewhat

nonstandard and, at �rst glance, may appear rather di�erent from the informal

description, we argue that the two are, in fact, quite close. In order to obtain

a static dictionary in the formal sense from one in the informal sense, we can

simply store the index of each key as its associated satellite data. And to go the

other way, we can support satellite data by interpreting each index as a pointer

into a table of satellite data or, if the keys have di�erent amounts of associated

satellite data, as a pointer into a table that in turn contains pointers to the

satellite data (see Fig. 1).

?

Part of this work was carried out while the author held a visiting position at the

Department of Computer Science, University of Copenhagen, Denmark.

static

dictionary

�

satellite

data

Fig. 1. A static dictionary augmented with satellite data.

The model of computation used in this paper is the word RAM. This model

is related to the classic unit-cost RAM of Cook and Reckhow [3], the main

di�erence being that, for a certain integer parameter w � 1 called the word

length, all values stored in memory cells are nonnegative w-bit integers (i.e.,

elements of f0; : : : ; 2

w

� 1g), sometimes identi�ed with strings of w bits each

and called words. As for the classic RAM, we assume a word RAM to have

constant-time instructions for executing direct and indirect loads and stores as

well as conditional and unconditional jumps. In addition, the instruction set of

a word RAM contains a �nite number of constant-time arithmetic instructions,

each of which maps a constant number of operand words (usually two words)

to a single result word. We always assume the arithmetic instruction set to

be a superset of the restricted instruction set, which comprises addition and

subtraction modulo 2

w

, left and right shifts (with zero �lling) by a variable

number of bit positions, as well as the bitwise Boolean operations and, or,

and not. Additional instructions will be speci�ed in the following. Specializing

the static dictionary problem to the word RAM with word length w, we �x the

universe U of possible keys to be the set f0; : : : ; 2

w

�1g. We focus on linear-space

dictionaries, ones that store n keys using �(n) w-bit words. We will assume that

w � 2 logn (all logarithms in the paper are to base 2), so that we can actually

address �(n) words of storage.

A class H of functions from U to a �nite set S is said to be universal if

there is a constant c > 0 such that for all x; y 2 U with x 6= y, jfh 2 H :

h(x) = h(y)gj � cjHj=jSj (several related de�nitions are common). In a cele-

brated result, Fredman et al. [5] showed that if for each integer s � 1 there is

a universal class H

s

of functions from U to f0; : : : ; s� 1g (such that the classes

share a common value of the implicit constant c), each of whose functions can

be represented in a constant number of words and evaluated in constant time

when s is bounded by the size of the key set, then the static dictionary problem

has a linear-space solution with constant query time. Such families of univer-

sal classes actually exist. E.g., the original formulation of Fredman et al. used

H

s

= fx 7! (kx mod p) mod s j 1 � k < pg, for s = 1; 2; : : : ; where p is an

2

arbitrary prime larger than s. While the resulting static dictionary is a very ap-

pealing data structure, it yields constant query time only under the assumption

that constant-time multiplication and integer division are available. It has been

argued that this assumption is not realistic for large word lengths because the

operations of multiplication and integer division are not AC

0

operations [6,8],

i.e., they cannot be realized with unbounded-fanin circuits of constant depth and

polynomial size (which, in the present context, means w

O(1)

size). Motivated by

such concerns, Andersson et al. [1] studied the problem of implementing static

AC

0

dictionaries, static dictionaries whose search operations use only AC

0

in-

structions. We continue this study. For reasons of possible practical relevance

as well as not to trivialize the problem, the set of AC

0

instructions used is re-

quired to be �nite and independent of the key set stored. All instructions in the

restricted instruction set are AC

0

instructions.

Many families of universal classes of functions other than the one described

above have been proposed; in particular, Dietzfelbinger et al. [4] showed how to

eliminate the need for integer division and get by with multiplication as the only

instruction outside the restricted instruction set. However, none of these classes

consists of functions that can be evaluated in constant time using only AC

0

instructions and, indeed, Mansour et al. [9, Theorem 6.3(1)] proved that such a

class cannot exist (for a slightly di�erent notion of universality). While this does

not in itself imply anything about the existence of fast static AC

0

dictionaries,

it does suggest that maybe universal classes are not the way to go. It turns out,

however, that a modi�cation of a well-known universal class yields an e�cient

construction.

Carter and Wegman, who introduced the concept of a universal class, proved

that for any two �nite-dimensional vector spaces V and W over the two-element

�eld, the class of all linear mappings from V to W is universal [2, Proposition 9].

Thus if r and b are positive integers and M

r�b

is the set of all r � b matrices

with entries in f0; 1g, then the class H = fx 7! Ax mod 2 j A 2 M

r�b

g is

universal. (Recall that we identify integers with bit strings, which here in turn

are identi�ed with 0-1 column vectors in the obvious way). Premultiplication

with arbitrary matrices in M

r�b

modulo 2 is not an AC

0

operation. However,

Andersson et al. [1] constructed a static AC

0

dictionary based on the following

two observations: (1) If A is sparse, i.e., if each row of A contains only a small

number of entries equal to 1, then premultiplication with A may be easy (de-

pending on the representation of A). (2) Although two keys may be very likely to

collide (be mapped to the same value) under premultiplication with a randomly

chosen sparse matrix, this happens only for keys whose binary representations

largely coincide, and collisions between such keys are easier to handle. The static

AC

0

dictionary of Andersson et al. has query time

O

min

(

logw(log log logn � log log logw)

log logw

;

s

logn

log logn

)!

and uses linear or near-linear space (a linear space bound is claimed, but does

not appear obvious from the (recursive) construction).

3

We reuse some of the building blocks of Andersson et al. [1], in particular,

those underlying what is here called sampling and block compression, but im-

plement one of them more e�ciently and put them together in a simpler and

cleaner way that achieves a stronger result. Taking z = w=logn, we achieve a

query time of

O

�

min

�

(log z)

log 3=log(3=2)

;

�

1 +

log z

log logw

�

� 2

2 log z=log(2+z=logw)

; 1 +

logn

logw

��

together with a linear space bound. The exponent log 3=log(3=2) is approxi-

mately 2:71.

If we eliminate the parameter w to obtain a bound that depends only on n

(thus, for every value of n, w is chosen in a worst-case manner), the bound of

Andersson et al. [1] and the new bound both simplify to O(

p

logn=log logn),

which matches a lower bound of
(

p

logn=log logn) of Andersson et al. For

moderate values of w, however, namely as long as w = 2

(logn)

o(1)

, the new bound

is stronger than the bound of Andersson et al., and it is never weaker. E.g., for

z = (log logn)

O(1)

, the new query time is always O((log log logn)

2:71

), and if

additionally z � (log logn)

1+�

for some �xed � > 0, the query time is constant.

In both cases, the bound of Andersson et al. is O(log logn). For this range of

w of arguably greatest practical relevance|in realistic situations, w is larger

than logn, but not much larger|we thus achieve what is sometimes called an

\exponential improvement". Just as for the data structure of Andersson et al.,

standard methods can be used to derive from our static dictionary a dynamic

randomized dictionary with the same query time and deletion and expected

amortized insertion bounds of the same order.

2 Overview

In this section we �rst cite two previous results to which we will appeal repeatedly

and then give an overview over our construction.

Multiplication and integer division of b-bit integers can be carried out by

looking up the result in tables of O(2

2b

b) bits, and multiplication and integer

division of O(b)-bit integers reduce to multiplication and integer division of b-bit

integers via standard algorithms for multiple-precision arithmetic. The result of

Fredman et al. [5] discussed in the introduction therefore implies the following.

Lemma 1 ([1]). For w = O(logn), there is a linear-space static AC

0

diction-

ary for n keys with constant query time.

The following result, in contrast, provides a linear-space static dictionary

with constant query time for su�ciently large values of w relative to n.

Lemma 2. There is a linear-space static AC

0

dictionary for n keys with query

time O(1 + logn=logw).

4

Proof. Hagerup showed that there is even a linear-space dynamic AC

0

dictionary

with the stated time bound [7, Theorem 6]. ut

In light of Lemma 2, we can assume without loss of generality that w � n. In

particular, a pointer into a block of O(nw) bits can be stored in O(logn) bits. We

shall frequently need such pointers to locate various parts of a static dictionary.

Since O(logn) bits will always be a negligible amount of storage, however, such

pointers will not be mentioned explicitly.

Suppressing a few details, we can describe the task of a static dictionary

as that of mapping a key set X injectively to the set f1; : : : ; jXjg. We solve

this problem by �rst mapping X = X

0

injectively to a set X

1

of keys of fewer

bits, then mapping X

1

to a set X

2

of still shorter keys, and so on, until �nally

X

k

is mapped injectively to f1; : : : ; jXjg, for some k � 0. For i = 1; : : : ; k, the

mapping of X

i�1

to X

i

is called a reduction, and each reduction will access its

own auxiliary data stored as part of the complete static dictionary.

Each reduction is composed of three mappings that are applied successively

to the keys under consideration, the sampling, the block compression, and the

cleanup mapping. We next describe these three mappings in turn, assuming that

we are dealing with a key set X of n b-bit keys. Let s and t be parameters that

will be �xed later as squares of positive integers and take r = 8tdlogne.

The sampling maps each b-bit key to an r-bit signature concatenated with

a b-bit o�set. Call a matrix with entries in f0; 1g a sampling pattern. The r-

bit signature of a b-bit key x is obtained as Ax mod 2, where A is an r � b

sampling pattern, bit strings are identi�ed with column vectors, and the modulo

operation is applied separately to each component. In the context of a particular

r � b sampling pattern A, we de�ne a cluster (with respect to X and A) to be

an equivalence class of the equivalence relation � on X de�ned by x � y ,

Ax � Ay (mod 2), i.e., two keys belong to the same cluster if and only if they

have the same signature. In general, the signature alone will not be enough to

distinguish all keys in X, i.e., some clusters may contain more than one key. The

o�set serves to distinguish the keys within each cluster and simply measures the

bitwise di�erence, modulo 2, to a �xed key in the cluster called the representative

of the cluster. If the representative of a cluster containing a key x is the key x

0

,

the b-bit o�set of x is thus computed as x � x

0

, where � denotes the bitwise

exclusive-or operation, i.e., bitwise addition modulo 2. The sampling is clearly

injective.

In order to compute the o�set of a given key, we need to know the repre-

sentative of the cluster de�ned by the signature of the key. We therefore store

all signatures of keys in X in a separate static dictionary|realized either recur-

sively or according to Lemma 1|and store the representatives as their satellite

data. We can also use this to replace each signature by a signature index of

dlogne bits, another obviously injective mapping.

The sampling replaces the original keys by longer keys, which may seem

counterproductive. The point is, however, that the o�sets will have small Ham-

ming norms, where the Hamming norm of a bit string x, denoted jjxjj, is the

number of occurrences of a 1 in x. Informally, the reason for this is that if two

5

keys x and y belong to the same cluster and thus fail to be distinguished by their

signatures, x and y will agree on many bits, so that their Hamming distance,

jjx� yjj, will be small; in particular, the Hamming distance of each key x from

the representative of its cluster, which is the Hamming norm of the o�set of x,

will be small. More precisely, we will ensure that the Hamming norm of each

o�set is bounded by b=(st). The block compression capitalizes on this fact.

The block compression operates on the transformed keys consisting of signa-

ture indices and o�sets. It leaves the signature indices unchanged, but replaces

each o�set by a directory concatenated with a compressed o�set. The details are

as follows (see Fig. 2): The b-bit o�set is viewed as a sequence of db=

p

ste blocks of

signature index o�set

signature index directory compressed o�set

1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1

Fig. 2. The block compression.

p

st consecutive bits each, except that the last block may be smaller (recall that

st is a perfect square). The directory consists of db=

p

ste bits, the ith of which,

for i = 1; : : : ; db=

p

ste, has the value 1 if and only if the ith block is nonzero, i.e.,

contains at least one bit with a value of 1. The directory thus speci�es the set of

nonzero blocks in a straightforward manner, and the compressed o�set is simply

the concatenation of the nonzero blocks in their original order. The block com-

pression is clearly injective. Since the Hamming norm of each o�set is bounded

by b=(st), the number of nonzero blocks is bounded by the same quantity, and

thus each compressed o�set consists of at most b=(st) �

p

st = b=

p

st bits; we

append zeros as necessary to make the number of bits be exactly bb=

p

stc.

It turns out that we can compute a compressed o�set e�ciently from the

corresponding o�set only if we have access to certain \magic numbers" that

depend on the relevant directory. For this reason we store the directories in yet

another separate static dictionary|realized recursively|and store the \magic

numbers" as their satellite data. As above, we can then replace each directory

by a directory index of dlogne bits.

The sampling and block compression together replace each b-bit key by a

signature index of dlogne bits, a directory index of dlogne bits, and a compressed

o�set of bb=

p

stc bits, a total of q = 2dlogne+bb=

p

stc bits. The cleanup mapping

reduces the number of bits in the keys further to bb=

p

stc by replacing the

leftmostminf3dlogne; qg bits of each key by an index of dlogne bits by means of a

static dictionary realized according to Lemma 1. The net e�ect of the three parts

6

of a reduction is to reduce the number of bits in the keys from b to at most b=

p

st.

As part of the reduction we must realize two auxiliary static dictionaries, each

of which contains at most n keys. One of these dictionaries (for the signatures)

contains r-bit keys, while the other (for the directories) contains keys of db=

p

ste

bits, which we can reduce to bb=

p

stc bits as in the cleanup mapping. In addition,

we must deal with the transformed keys of bb=

p

stc bits each. When executing

a query, we must carry out one search in each of the two auxiliary dictionaries

and one search for the transformed key.

In the following sections we will argue the existence of sampling patterns

that cause the Hamming norms of all o�sets to be su�ciently small, discuss the

implementation of the sampling and block compression, realize a complete static

dictionary as a cascade of successive reductions, and �nally estimate the query

time and the space requirements of the complete static dictionary.

3 A Reduction: The Details

For s � 0, let us call a sampling pattern A s-sparse if no row in A contains more

than s bits with a value of 1. We will employ only s-sparse sampling patterns

for relatively small values of s because such sampling patterns can be stored and

applied e�ciently. The following lemma is instrumental in showing the existence

of suitable s-sparse sampling patterns.

Lemma 3. Let Z be binomially distributed with parameters s and p, where s is

odd. Then Pr(Z is odd) �

1

2

(1� Pr(Z = 0)).

Proof. Consider the Markov chain in Fig. 3, in which state 0 is the initial state

and each state has a transition to itself (not shown) with probability 1 � p,

and denote by q

(k)

i

the probability of being in state i after 2k + 1 transitions,

0 1 2

p

p

p

Fig. 3. A Markov chain for repeated coin tosses.

for i = 0; 1; 2 and k = 0; 1; 2; : : : Our task is to show that q

(k)

1

� q

(k)

2

, for

k = 0; 1; 2; : : : For k = 0; 1; 2; : : :; we have

q

(k+1)

1

= 2(q

(k)

0

+ q

(k)

2

)p(1� p) + q

(k)

1

(p

2

+ (1 � p)

2

)

q

(k+1)

2

= q

(k)

0

p

2

+ 2q

(k)

1

p(1� p) + q

(k)

2

(p

2

+ (1� p)

2

)

and hence

q

(k+1)

1

� q

(k+1)

2

= q

(k)

0

p(2� 3p) + (q

(k)

1

� q

(k)

2

)(2p� 1)

2

:

7

If p � 2=3, q

(k)

1

� q

(k)

2

� 0 clearly implies q

(k+1)

1

� q

(k+1)

2

� 0. Since q

(0)

1

= p and

q

(0)

2

= 0, the claim follows by induction. If p > 2=3, we prove by induction that

for k = 0; 1; 2; : : :;

q

(k)

1

� q

(k)

2

� p(2p� 1)

2k

(1� u+ u

2k+1

);

where u = (1� p)=(2p� 1); note that 0 � u � 1. The induction basis, for k = 0,

follows as above. As for the inductive step from k to k + 1, for k � 0, we use

q

(k)

0

= (1� p)

2k+1

and the induction hypothesis to conclude that

q

(k+1)

1

� q

(k+1)

2

� p(2p� 1)

2k+2

(1� u+ u

2k+1

) � (1� p)

2k+1

p(3p� 2)

= p(2p� 1)

2k+2

�

1� u+ u

2k+1

�

1�

3p� 2

2p� 1

��

= p(2p� 1)

2k+2

(1� u+ u

2k+2

)

� p(2p� 1)

2(k+1)

(1� u+ u

2(k+1)+1

): ut

A lemma similar to Lemma 4 below was stated without proof by Andersson

et al. [1, Lemma 12].

Lemma 4. Let n, b, s and t be positive integers, where s is odd, take r =

8tdlogne and let X be a set of n strings of b bits each. Then there is an s-

sparse r � b sampling pattern A with the property that for all x; y 2 X with

jjx� yjj � b=(st), we have Ax 6� Ay (mod 2).

Proof. We use the probabilistic method and exhibit a random process that, with

nonzero probability, yields a sampling pattern with the property mentioned in

the lemma. The random process is simple: Starting from an all-zero sampling

pattern, we process the r rows independently of each other. For each row, we

s times in succession choose a position in the row at random from the uniform

distribution over the set of all b positions and independently of all other such

choices and invert the bit stored in that position.

Fix two arbitrary elements x and y of X with jjx� yjj � b=(st) and consider

a particular row a of A, viewed as a random quantity. Since (ax+ ay) mod 2 =

a(x� y) mod 2, we will have ax 6� ay (mod 2) and hence Ax 6� Ay (mod 2) if

a contains an odd number of bits equal to 1 in positions in which x � y holds

a 1. The latter is the case exactly if the number Z of inversions of bits of a

carried out in such positions is odd (even though the two numbers may not

coincide, due to cancellations). The random variable Z is binomially distributed

with parameters s and jjx� yjj=b � 1=(st), and we can apply Lemma 3. Pr(Z =

0) � (1�1=(st))

s

� e

�1=t

� 1�

1

2t

, where in the last step we used the inequality

e

�u

� 1� u=2, valid for 0 � u � 1. Thus Pr(Z is odd) �

1

4t

. In other words, a

�xed row of A distinguishes between x and y with probability at least

1

4t

, and

the probability that none of the r = 8tdlogne rows of A distinguishes between

x and y is bounded by (1 �

1

4t

)

r

� e

�(8=4)dlogne

< 1=n

2

. The number of pairs

x; y 2 X with jjx� yjj � b=(st) is bounded by n

2

, and therefore the probability

that some such pair is not distinguished by A is strictly below 1. ut

8

We next discuss the implementation of the sampling in terms of AC

0

instruc-

tions. We will represent sampling patterns in two di�erent ways, the bit-vector

representation and the sparse-row representation, which we consider separately.

The bit-vector representation. The suitability of a sampling pattern, its having

the property mentioned in Lemma 4, is not a�ected by an arbitrary permutation

of its rows or by the replacement of all but one occurrence of a particular row by

all-zero rows. We can therefore assume without loss of generality that the rows

of a sampling pattern are sorted in nonincreasing lexicographic order and that

the nonzero rows are all distinct. This is useful in the case of a 1-sparse r � b

sampling pattern A, which, if it is of this restricted kind, can be represented

simply by a b-bit vector whose ith bit is 1, for i = 1; : : : ; b, exactly if the ith

column of A contains a (single) 1. We will call a bit vector used in this way a

sampling vector and speak of the bit-vector representation (see Fig. 4).

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

Fig. 4. A sorted 1-sparse sampling pattern and the corresponding sampling vector.

The mapping represented by a sampling vector can be visualized in a partic-

ularly simple way (see Fig. 5): The sampling vector speci�es a set of bit positions

1

1

1

1

0

0

0

1

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

1

0

1

0

0

0

1

1

1

0

0

sampling vector

argument key

signature

Fig. 5. The mapping represented by a sampling vector.

to be \sampled", and the bits of the argument key in these positions are extracted

and concatenated in their original order. In order to realize this operation by

means of AC

0

instructions, we begin by connecting each input \conditionally" to

9

each output. More precisely, we consider a circuit that maps the b bits of a key

to the r bits of its signature and in which each of the r output bits is obtained

as the disjunction of b bits, each of which is the conjunction of a di�erent input

bit and a control bit. What is still missing is circuitry to compute values for

the br control bits that precisely establish the desired connections from input

bits to output bits. Let us number the input and output bits as well as the bits

of the sampling vector from the right starting at 1 and denote the ith bit of

the sampling vector by v

i

, for i = 1; : : : ; b. It is easy to see that the control

bit that establishes a connection from the ith input bit to the jth output bit

should have the value 1 exactly if (v

i

= 1) ^ (d

i

= j), where d

i

=

P

i

l=1

v

l

, for

i = 1; : : : ; b and j = 1; : : : ; r. Provided that d

1

; : : : ; d

b

are available, the control

bits are very easy to compute with an AC

0

circuit. The pre�x sums d

1

; : : : ; d

b

cannot be computed from v

1

; : : : ; v

b

with an AC

0

circuit; however, just as we

store the sampling vector as part of the static dictionary, we can store also its

pre�x sums. One complication is that we need �(b log b) bits to represent all of

d

1

; : : : ; d

b

, whereas we want to get by with O(b) bits|in particular, the pre�x

sums should �t in a single word. We can get around this complication by using

the following well-known fact.

Lemma 5. Every Boolean function of dlog(w + 1)e bits can be computed with

an unbounded-fanin circuit of constant depth and w

O(1)

size.

To see that the fact is true, simply imagine a circuit that directly re
ects the

truth table of the function under consideration. We use the fact as follows: We

divide the bits of the sampling vector into groups of dlog(w+1)e consecutive bits

each, except that the rightmost group may be smaller, and record only the pre�x

sums of the groups. In more detail, if the number of groups is g, we store as part

of the static dictionary a sequence of g � 1 global pre�x sums of dlog(w + 1)e

bits each, where the ith global pre�x sum is the total number of bits equal to 1

in the i rightmost groups, for i = 1; : : : ; g � 1. The number of bits needed to

store the sequence of global pre�x sums is clearly bounded by b, and each of the

b original pre�x sums can be obtained as the sum of a global pre�x sum and a

local pre�x sum computed with respect to a single group. By Lemma 5, the local

pre�x sums can be computed from the sampling vector with an AC

0

circuit, and

the addition of global and local pre�x sums is also an AC

0

operation. We have

thus shown how to execute the sampling mapping with a single AC

0

instruction,

the sampling instruction, that takes as arguments a key, the sampling vector,

and the sequence of global pre�x sums. The storage required is at most 2b bits.

The sparse-row representation. In the sparse-row representation, also used by

Andersson et al. [1], we store an s-sparse sampling pattern A as a sequence of

r groups of s integers of m = dlog(w + 1)e bits each. For i = 1; : : : ; r, the s

integers in the ith group specify the at most s positions in the ith row of A

that contain a 1, a special bit pattern reserved to denote \no position" (in case

the row contains fewer than s occurrences of a 1). We will later ensure that

rsm = O(w), so that the entire sampling pattern �ts in a constant number of

10

words, and we analyze the time needed to apply the sampling pattern under this

assumption.

The application of the sampling pattern can be decomposed into two sub-

tasks: Extracting the at most rs bits speci�ed in the sampling pattern from

the argument key and storing them in consecutive positions of a word (they

will �t, except for n bounded by a constant); and forming the sum, modulo 2,

of the bits within each of the r groups of s consecutive bits. The �rst subtask

can be carried out in constant time using a \multiselect" instruction that is

easy to devise and shown explicitly in [7, Fig. 11]. If s = m

k

for some integer

k � 1, the second subtask can be carried out by k successive applications of a

one-argument operation that views its argument as composed of segments of m

bits each and replaces the bits in each segment by their sum, modulo 2 (storing

the resulting bits in consecutive positions); by Lemma 5, this operation can be

realized via an AC

0

instruction. If s is not a power of m, it is necessary �rst

to reduce the number of bits within each group to the nearest smaller power

of m. For each �xed value of s, this can be done with an AC

0

circuit C

s

, much

as above, and the circuits C

1

; : : : ; C

w

can be combined into a single circuit that

takes s as a second argument and uses the value of s to select the output of the

correct circuit C

s

. The combined circuit still realizes an AC

0

operation. Sum-

ming up, we can execute the sampling using the sparse-row representation in

O(1 + log s=logm) = O(1 + log s=log logw) time.

Having dealt with the sampling, we turn to the block compression. First, the

directory is very easy to compute with an AC

0

instruction. As for the computa-

tion of the compressed o�set, it is similar to the sampling according to a sampling

vector and can be carried out in constant time in the same way, provided that

a suitable b-bit \sampling vector" and its global pre�x sums are available as

satellite data of the relevant directory (these are the \magic numbers" alluded

to earlier). The \sampling vector" should have a 1 precisely in each position

belonging to a nonempty block.

4 The Main Result

Theorem 6. For all integers n � 4 and w � 2 logn and for all sets X of n

w-bit integers, there is a static dictionary for the key set X that works on a

word RAM with a word length of w bits and a �nite and �xed instruction set

containing only AC

0

instructions, uses O(n) w-bit words of storage, and has

query time

O

�

min

�

(log z)

log 3=log(3=2)

;

�

1 +

log z

log logw

�

� 2

2 log z=log(2+z=logw)

; 1 +

logn

logw

��

;

where z = w=logn.

Proof. We consider the three parts of the bound one by one. In order to show the

validity of the �rst bound, O((log z)

log 3=log(3=2)

), we take s = 1 and represent

11

all sampling patterns according to the bit-vector representation. For a reduction

that inputs keys of b � logn bits each, we choose t as the square of a positive

integer such that t = �((b=logn)

2=3

). The reduction spawns three new instances

of the static dictionary problem (for brevity: instances), and the value of t was

chosen to make all three instances involve keys of O(b

2=3

(logn)

1=3

) bits each. For

a suitable constant c > 0, this implies that the derived quantity log(cb=logn) is

reduced by a factor of at least 3=2 from each level of recursion to the next. Since

the derived quantity starts out at O(log(w=logn)) = O(log z) and we can end

the recursion according to Lemma 1 when it reaches 1, the depth of recursion

will be log log z=log(3=2) + O(1). But then both the total number of instances

spawned and the query time will be O(3

log log z=log(3=2)

) = O((log z)

log 3=log(3=2)

).

A reduction that inputs keys of b � logn bits needs O(nb) bits of storage.

Each new level of recursion triples the number of instances, but except for a

constant number of levels just before the recursion bottoms out, each recursive

level reduces the number of bits per key by a factor of more than 6. This can be

seen to imply that the total space requirements are O(nw) bits or O(n) words

of w bits each.

In order to show the validity of the second bound of Theorem 6, observe

�rst that we can assume that z=logw � 16, since otherwise the �rst bound is

surely no larger than the second bound. We take t = 1, choose s as a square

of an odd integer with s � 2 + z=logw, but s = O(z=logw), and represent

all sampling patterns according to the sparse-row representation. The condition

rsm = O(w), imposed in the discussion of the sparse-row representation, now

takes the form dlognedlog(w+ 1)es = O(w) and is easily seen to be satis�ed, so

that each reduction can be executed in O(1 + log z=log logw) time. The choice

t = 1 implies that the static dictionaries storing signatures can be implemented

directly using Lemma 1, for which reason each reduction now spawns only two

new instances. Each recursive level reduces the number of bits in the keys under

consideration by a factor of at least

p

s, so that the required depth of recursion

is log z=log

p

s + O(1) = 2 log z=log(2 + z=logw) + O(1). The total number of

instances spawned is thus O(2

2 log z=log(2+z=logw)

), and the query time is O((1 +

log z=log logw) � 2

2 log z=log(2+z=logw)

), as claimed.

A space bound of O(nw) bits follows essentially as in the case of the �rst

bound, noting that

p

s � 4. One di�erence is that each reduction now needs

O(w) bits to store its sampling pattern. Since we can assume that w � n, the

additional space requirements are negligible. The third bound of Theorem 6,

�nally, is just a restatement of Lemma 2. ut

References

1. A. Andersson, P.B. Miltersen, S. Riis, and M. Thorup, Static dictionaries on AC

0

RAMs: Query time �(

p

log n=log log n) is necessary and su�cient, in Proc. 37th

Annual IEEE Symposium on Foundations of Computer Science (FOCS 1996), pp.

441{450.

2. J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput.

System Sci. 18 (1979), pp. 143{154.

12

3. S. A. Cook and R. A. Reckhow, Time bounded random access machines, J. Com-

put. System Sci. 7 (1973), pp. 354{375.

4. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen, A reliable ran-

domized algorithm for the closest-pair problem, J. Algorithms 25 (1997), pp.

19{51.

5. M. L. Fredman, J. Koml�os, and E. Szemer�edi, Storing a sparse table with O(1)

worst case access time, J. Assoc. Comput. Mach. 31 (1984), pp. 538{544.

6. M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time

hierarchy, Math. Syst. Theory 17 (1984), pp. 13{27.

7. T. Hagerup, Sorting and searching on the word RAM, in Proc. 15th Symposium

on Theoretical Aspects of Computer Science (STACS 1998), Lecture Notes in

Computer Science, Springer, Berlin.

8. J. Hastad, Almost optimal lower bounds for small depth circuits, in Proc. 18th

Annual ACM Symposium on Theory of Computing (STOC 1986), pp. 6{20.

9. Y. Mansour, N. Nisan, and P. Tiwari, The computational complexity of universal

hashing, Theoret. Comput. Sci. 107 (1993), pp. 121{133.

13

