
MAX-PLANCK-INSTITUT

F

�

UR

INFORMATIK

 	

� �

Complexity of Nonrecursive Logic

Programs with Complex Values

Sergei Vorobyov and Andrei Voronkov

MPI{I{97{2{010 November 1997

���

�

��

k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

i

ii

Author's Address

Sergei Vorobyov: Max-Planck Institut f�ur Informatik, Im Stadt-

wald, D-66123, Saarbr�ucken, Germany, sv@mpi-sb.mpg.de,

http://www.mpi-sb.mpg.de/~sv.

Andrei Voronkov: Computing Science Department, Uppsala Univer-

sity, Box 311, S-75105, Uppsala, Sweden, voronkov@csd.uu.se,

http://www.csd.uu.se/~voronkov.

Publication Notes

Part of this report was written while the second author visited MPI in 1997.

The second author is partially supported by a TFR grant.

Acknowledgements

We thank Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Gabriel Ku-

per.

iii

Abstract

We investigate complexity of the SUCCESS problem for logic

query languages with complex values: check whether a query

de�nes a nonempty set. The SUCCESS problem for recur-

sive query languages with complex values is undecidable, so

we study the complexity of nonrecursive queries. By com-

plex values we understand values such as trees, �nite sets,

and multisets. Due to the well-known correspondence be-

tween relational query languages and datalog, our results

can be considered as results about relational query languages

with complex values. The paper gives a complete complex-

ity classi�cation of the SUCCESS problem for nonrecursive

logic programs over trees depending on the underlying sig-

nature, presence of negation, and range restrictedness. We

also prove several results about �nite sets and multisets.

Keywords

Logic programming, complexity of query languages, complex values.

iv

Contents

1 Introduction 2

2 Preliminaries 5

3 Nonrecursive logic programs and term algebras 10

4 Programs without function symbols 14

5 Programs with binary function symbols 16

6 Programs with unary function symbols 17

6.1 De�nite programs . 17

6.2 Normal programs . 25

7 Range-restricted programs 27

7.1 Programs with unary function symbols 28

7.2 Arbitrary range-restricted programs 28

7.3 Boundedly quanti�ed theory of bounded concatenation 29

7.4 Reduction of the theory of bounded concatenation 32

8 Other kinds of complex values 36

8.1 Formalizations of �nite sets 36

8.2 Typed universe . 38

8.3 Untyped universe . 40

9 Summary of results 41

1

1 Introduction

A number of complexity results have been established for logic query lan-

guages. They are surveyed in (Schlipf 1995, Dantsin, Eiter, Gottlob &

Voronkov 1997). The major themes in these results are the complexity and

expressive power of extensions of datalog: the logic query language for de-

scribing relation over tuples of simple, non-structured objects. Due to the

well-known correspondence between datalog and relational algebra, the com-

plexity results about nonrecursive datalog can be restated as results about

relational query languages, for example, SQL-92 or its fragments.

New relational query languages, for example SQL-3, extend traditional

languages in several directions. One of them is the introduction of complex

values, like sets. There is no uniform convention on how complex values

should be handled in relational query languages. Indeed, the introduction

of any new type of values requires addition of new operations on the corre-

sponding algebras.

In logic query languages, stemming from logic programming, there seems

to be a uniform viewpoint on how complex values should be treated. There

are two major approaches.

1. In constraint logic programming (Maher 1992, Maher 1993) and con-

straint databases (Kanellakis, Kuper & Revesz 1995) any value is iden-

ti�ed by the set of constraints true on this value. The addition of a

new type of values requires the addition of new constraint predicates.

A similar approach to relational query languages was also considered

in (Benedikt & Libkin 1997).

2. Another approach to adding complex values, which can be called struc-

tural, requires that values be represented by means of their structure.

For example, to represent sets one may enrich the language with con-

stant ; to denote the empty set and the set constructor fsjtg denoting

the addition of an element s to the set t. Then the set ft

1

; : : : ; t

n

g

will be denoted by the term ft

1

j : : : ft

n

j;g : : :g. The only changes

to the semantics of logic programming are the changes in the treat-

ment of equality, since new predicate symbols are not free construc-

tors. Such an approach is considered in a number of papers, for ex-

ample (Gallier & Raatz 1989, Kuper 1990, Beeri, Naqvi, Schmueli &

Tsur 1991, Schmueli, Tsur & Zaniolo 1992, Dovier, Omodeo, Pontelli

& Rossi 1996, Dantsin & Voronkov 1997b, Dantsin & Voronkov 1997a).

2

Of course, a combination of the two approaches is also possible.

This paper studies complexity of nonrecursive query answering in logic

databases with complex values. Nonrecursive queries in logic databases are

represented by nonrecursive logic programs. Among nonrecursive logic pro-

grams we distinguish range-restricted ones, as of special interest for data-

bases. By complex values we understand various versions of trees, �nite

multisets and sets. For example, we give a complete classi�cation of com-

plexity for nonrecursive logic programs with trees depending on the signature,

range-restrictedness and presence of negation.

It is possible to reformulate our complexity results in terms of some rela-

tional query languages with complex values, using suitable algebraic formal-

izations corresponding to nonrecursive logic programs, see, e.g., (Abiteboul

& Beeri 1995).

Results of this paper show that nonrecursive query languages for com-

plex values are highly intractable. It will be interesting to investigate these

classes in terms of �xed-parameter complexity similar to the analysis done

in (Papadimitriou & Yannakakis 1997, Vardi 1995).

We briey mention some results on the complexity of recursive logic pro-

grams. These (and other results) are surveyed in (Dantsin et al. 1997).

De�nite programs. For de�nite programs without function symbols, the

following results are known. The SUCCESS problem isDEXPTIME -complete

for recursive programs (Vardi 1982, Immerman 1986) and PSPACE -complete

for nonrecursive programs (Vardi 1982, Dantsin 1986, Immerman 1987).

With function symbols, it is r.e.-complete (Andr�eka & N�emeti 1978, T�arnlund

1977).

Normal programs. For logic programs with negation, several nonmono-

tonic semantics exist. In the case of strati�ed programs most of these seman-

tics coincide with the perfect model semantics. For this semantics the follow-

ing results are known. The SUCCESS problem for programs without function

symbols is PSPACE -complete (Vardi 1982, Dantsin 1986, Immerman 1987)

in the case of nonrecursive programs and NEXPTIME -complete in the case

of recursive programs (Apt & Blair 1988b). In the case of arbitrary func-

tion symbols, (Apt & Blair 1988a) prove that the SUCCESS problems for

programs with n levels of strati�ed negation is �

0

n

-complete. (Blair, Marek

& Schlipf 1995) address the expressive power of locally strati�ed recursive

3

programs and show that every hyperarithmetic (that is �

1

1

) set is de�nable

by a strati�ed program over a perfect model.

This paper studies the complexity of nonrecursive logic programs over

complex values, such as trees, �nite sets and multisets. We do not study

the expressive power of languages with complex values. We do not consider

recursive query languages or aggregation.

4

2 Preliminaries

Logic and signatures. By �rst-order logic we mean �rst-order logic with

equality. Formulas are constructed using all standard connectives, except

the equivalence �. The equality predicate is denoted �. We denote by

�

h

i

='

i

i

m

i=1

the formula obtained from � by simultaneous replacement of all

occurrences of subformulas '

i

by formulas

i

.

Our results will depend on the signature in which programs are written.

We shall only consider functional signatures, consisting of �nite or countable

sets of function symbols.

If a signature � consists of k constants, l unary function symbols, and m

function symbols of arity � 2, we shall denote such a signature by (k; l;m).

We shall also use ordinals and wildcards in the notation for signatures. For

example, (!; ; 3) denotes any signature with in�nitely many constants, any

number of unary function symbols, and 3 function symbols of arity � 2.

Similarly, (< !; 0; 0) denotes a signature with any �nite number of constants

and no function symbols of arity � 1.

Proviso. We always assume that signatures have at least two

symbols, including at least one constant.

Other signatures can also be considered but are not interesting for our aims.

Logic programming. We assume knowledge of standard facts about se-

mantics of logic programming. They may be found in, e.g., (Apt 1990) or

(Lloyd 1987). Clauses will be written as

P (t

1

; : : : ; t

n

) L

1

; : : : ; L

m

.

We shall consider both normal clauses where each L

i

is a literal and de�nite

clauses where each L

i

is an atomic formula. We assume that the equality

predicate � does not occur in clauses. A normal (respectively, de�nite)

program is a �nite set of normal (respectively, de�nite) clauses. A clause is

called range-restricted, if all variables occurring in the clause also occur in a

positive literal in the body.

Instead of considering a logic program P, it will be convenient to work

with Clark's completion (Clark 1978) of P, that is a set of predicate de�ni-

tions of the form

5

P

0

(�x

0

) � �

0

,

� � �

P

n

(�x

n

) � �

n

,

(1)

where all P

i

are di�erent predicates and each �

i

is a �rst-order formula whose

free variables are contained in �x

i

.

For example, the set of two clauses

P (a; x) R(x; z)

P (f(y); x) :R(x; z)

can be rewritten as the following de�nition:

P (u; x) � 9z(u � a ^R(x; z)) _ 9y9z(u � f(y) ^ :R(x; z))

We only consider nonrecursive logic programs. In Clark's completion

(1) of any nonrecursive logic program, each formula �

i

may only contain

predicate symbols among �; P

0

; : : : ; P

i�1

. When a program is de�nite, the

formulas �

i

are constructed using only 9;_;^.

Semantics and term algebras. There are several approaches to de�ning

semantics of normal logic programs. However, in the nonrecursive case the

semantics can be described by using the so-called term algebras.

De�nition 2.1 The term algebra of a signature �, denoted TA(�), is the

algebra in which the carrier set is the set of ground terms of �, any ground

term is interpreted by itself and any two distinct ground terms are nonequal.

2

Such algebras are also called absolutely free algebras (Ma

�

lcev 1961a). In

view of our proviso on signatures, term algebras considered in this paper

have at least two elements.

Proviso. In this article we consider two formulas equivalent, if

they are equivalent in any term algebra with at least two elements.

By Th(TA(�)) we denote the �rst-order theory of TA(�), i.e., the set of all

sentences of the signature � with equality true in TA(�). The decidability of

Th(TA(�)) for �nite signatures was proved in (Ma

�

lcev 1961b, Ma

�

lcev 1961a)

6

by quanti�er elimination. Later (Kunen 1987b, Maher 1988, Hodges 1993)

proved it again for the case of �nite and in�nite signatures, also by using

quanti�er elimination. The PSPACE -completeness of Th(TA(� 2; 0; 0)) is

due to (Stockmeyer & Meyer 1973, Stockmeyer 1977). The LATIME(2

O(n)

)-

completeness

1

of Th(TA(1; 2; 0)) is due to (Volger 1983b). (Kunen 1987a)

asserted PSPACE -completeness of Th(TA(!; !; !)), but it was proved non-

elementary recursive with a linearly growing stack of twos as a lower bound

in (Vorobyov 1996).

Nonrecursive de�nitions (1) can be regarded as explicit de�nitions of new

predicates over a term algebra TA(�), where � contains all symbols occur-

ring in (1). The predicate P

0

is de�ned directly in terms of equality �, and

each P

i+1

is de�ned in terms of P

0

; : : : ; P

i

. Thus, by eliminating explicit def-

initions, each P

i

is explicitly de�ned by a formula of Th(TA(�)). This gives

a straightforward semantics to nonrecursive logic programs. However, this

semantics may depend on � (this fact is usually called domain-dependence).

For example, the formula 8x(x � a _ x � b) is true in TA(fa; bg) and false

in TA(fa; b; cg). It is well known (Abiteboul, Hull & Vianu 1995) that the

semantics of P

i

is domain-independent in the case of range-restricted clauses.

For any nonrecursive program P, we shall refer to the extension of TA(�)

by new predicates P

i

explicitly de�ned by P, as to the perfect model of P in

� (Przymusinski 1988, Van Gelder 1988, Lifschitz 1988).

The SUCCESS problem. By the SUCCESS(�) problem for a class of logic

programs C of the signature � we mean the following decision problem: given

a logic program P 2 C and a goal G, does G succeed with respect to P, where

the de�nitions are understood as over TA(�)? When G succeeds with respect

to P we can also say that the pair (P; G) de�nes a nonempty query.

Instead of checking whether G succeeds with respect to P, we can intro-

duce a new predicate success, add the clause success G to P, and ask

whether success is true in the prefect model of the new program. This means

that the last predicate P

n

in (1) is success and we have to check whether

the sentence de�ned by success with respect to (1) is true in TA(�). The

complexity of the SUCCESS problem is similar to what is called the combined

complexity in (Vardi 1982).

1

LATIME(2

O(n)

) is the class of problems solvable by alternating Turing machines in

linear exponential time with linear number of alternations.

7

A standard form of logic programs. Since we assume at least two

symbols in the signature, we may assume to have terms or sequences of

terms representing natural numbers less than or equal to some �xed number

N in the size O(logN). Let 0 and 1 be any two distinct ground terms. We

encode any natural number n < N as a sequence of terms 0 and 1 that forms

the binary representation of n. For example, if N = 6, we need only 3 digits

to represent numbers up to 6 and the number 2 can be represented as the

sequence of arguments (0; 1; 0) to some predicate P .

Now, we show that we can restrict ourselves to de�nitions (1) in which

P

i+1

is de�ned solely in terms of P

i

, i.e., �

i+1

uses only P

i

and � as predicate

symbols. Without loss of generality we can assume that all P

i

have the

same number of arguments since we can always add dummy arguments to

P

i

. Consider predicates Q

0

; : : : ; Q

n

having the same number of arguments

as P

i

plus enough arguments to represent natural numbers up to n. Our

intention is to make Q

i

(j; �x) equivalent to P

j

(�x) for all j � i.

Introduce formulas 	

i

= �

i

h

Q

j

(j;

�

t)=P

j

(

�

t)

i

n

j=1

and de�ne Q

i

as follows:

Q

0

(u; �x) � u � 0 ^	

0

;

Q

i+1

(u; �x) �

(u � i+ 1 ^ 	

i+1

)_

(

W

i

j=1

u � j ^Q

i

(u; �x)) for all 0 < i < n;

success � 9�xQ

n

(n; �x).

The equivalence of Q

i

(j; �x) and P

j

(�x) is straightforward. Therefore (see the

de�nition of success in terms of Q

n

), we conclude that the SUCCESS prob-

lem for the de�nitions of predicates P

i

is equivalent to that for the de�nitions

of predicates Q

i

.

Note that the de�nitions of Q

i

's can be constructed from the de�nitions

of P

i

's in polynomial time.

Complex values. Here we briey consider what kind of data are repre-

sented by �rst-order terms. The discussion of multisets and sets is postponed

until Section 8. Terms of standard (unsorted) �rst-order logic represent trees.

For example, the term f(a; f(b; c)) represents the following tree

8

f

a

f

b

c

Trees may have an arbitrary depth.

Some formalizations of complex values in databases use embedded tuples.

Embedded tuples correspond to sorted �rst-order logic, where every function

symbol belongs to some sort. If all atomic domains are �nite, every sort

contains only a �nite number of values, while trees allow one to construct

an in�nite number of values from a �nite atomic domain. We shall consider

both typed and untyped versions.

We pay special attention to signatures consisting of unary function sym-

bols. Terms in such signatures can be understood as representing lists

of atomic values. For example, the term f(g(g(h(a)))) represents the list

[f; g; g; h].

9

3 Nonrecursive logic programs and term al-

gebras

In this section we show that the SUCCESS problem for nonrecursive logic pro-

grams with negation is polynomial time equivalent to the underlying theory

of term algebra. Thus, results on the complexity of Th(TA(�)) for various

� are directly applicable to nonrecursive logic programming.

Theorem 3.1 For every signature � with at least two symbols, the theory

Th(TA(�)) is polynomial-time equivalent to SUCCESS(�). 2

A polynomial time reduction of Th(TA(�)) to SUCCESS(�) is well-known

and described in, e.g., (Lloyd 1987). It can be traced to Clark's completion.

Thus, it remains to prove polynomial time reducibility of SUCCESS(�) to

Th(TA(�)).

The proof is divided into two lemmas. An auxiliary Lemma 3.2 describes

a succinct way to write polynomially short formulas (which otherwise would

be exponentially long) by replacing multiple positive occurrences of the same

predicate with just one such occurrence. Lemma 3.3 gives a required reduc-

tion.

Lemma 3.2 Given a quanti�er-free formula � containing m positive occur-

rences

P (

�

t

i

); for i = 1; : : : ; m

of the same predicate P with di�erent parameters

�

t

i

, and no negative oc-

currences P , one can construct in polynomial time an equivalent formula �

containing just one positive occurrence and no negative occurrences of P .

Proof. Take fresh variables x

1

; y

1

; : : : ; x

m

; y

m

and consider the formula

�

0

= �

h

x

i

� y

i

=P (

�

t

i

)

i

m

i=1

:

Let us show that � is equivalent to

	 = 9x

1

y

1

: : : x

m

y

m

�

�

0

^

m

^

i=1

(x

i

� y

i

� P (

�

t

i

))

�

:

10

We must prove that for every interpretation � of the free variables of � (or,

equivalently, of), �(�) is true i� �() is true.

Let �(�) be true. We may choose equal values for x

i

, y

i

if P (

�

t

i

) is true,

and di�erent values for x

i

, y

i

otherwise. Then �() is true.

Suppose �() is true for some interpretation � of its free variables. Then

for this interpretation and some values of x

1

; y

1

; : : : ; x

m

; y

m

the following

subformulas of 	 are true:

�

0

= �

h

x

i

� y

i

=P (

�

t

i

)

i

m

i=1

; (2)

m

^

i=1

(x

i

� y

i

) P (

�

t

i

)): (3)

Recall that � is positive in P (

�

t

i

), hence, by construction, �

0

is positive in

x

i

� y

i

. Therefore, �

0

is monotone in x

i

� y

i

. This and (3) imply that

�

0

h

P (

�

t

i

)=x

i

� y

i

i

m

i=1

is true. But this formula coincides with �.

The formula 	 still contains m occurrences of P . Take fresh variables u,

v, and �z (vector of length equal to the arity of P). The subformula

 =

m

^

i=1

(x

i

� y

i

� P (

�

t

i

))

of 	 containing m occurrences of P is equivalent to

� = 8uv�z

�

m

_

i=1

(u � x

i

^ v � y

i

^ �z �

�

t

i

) � (u � v � P (�z))

�

;

which contains just one occurrence of P . The proof of the equivalence of

and � is a routine.

Finally, let � be obtained from 	 by replacement of the occurrence of

with �. Clearly, � is equivalent to �, can be constructed in polynomial time,

and contains just one positive and no negative occurrences of P , as needed.

2

We are ready to prove

Lemma 3.3 SUCCESS(�) for nonrecursive normal programs is polynomial

time reducible to Th(TA(�)).

11

Proof. As described in Section 2, instead of a nonrecursive logic program we

can consider a set of explicit de�nitions

P

0

(�x) � �

0

,

� � �

P

k

(�x) � �

k

,

such that each �

i

contains only the predicate P

i�1

and equality.

Denote byM the perfect model of P. We must demonstrate that one can

construct in time polynomial in the size of P a sentence � such that

TA(�) ` � , M j= 9�xP

k

(�x): (4)

Since P is nonrecursive, the predicate P

k

is explicitly de�ned in terms of

P

k�1

; : : : ; P

1

, and equality; thus, ultimately, can be explicitly de�ned in terms

of equality only. Therefore, we can write down an explicit de�nition for P

k

and existentially quantify it. The resulting sentence � of TA(�) will satisfy

(4). The only drawback of this reduction is that it is exponential. This is

because an explicit de�nition of P

i

may contain several occurrences of the

predicate P

i�1

with di�erent arguments, which gives an exponential blow-up.

Let us �rst modify the program P into a new program P

0

, in which every

predicate P

i

will get an additional argument meaning \the value of P

i

" or

\the value of :P

i

". With this transformation we will get rid of negative

occurrences of P

i

in the bodies of de�nitions.

Transform the de�nition for P

0

in P into:

P

0

0

(0; �x) � �

0

,

P

0

0

(1; �x) � :�

0

,

and then combine them into just one de�nition:

P

0

0

(v; �x) � (v � 0 _ v � 1) ^ (v � 0 � �

0

) ^ (v � 1 � :�

0

)

(recall that �

0

does not contain occurrences of P

i

by de�nition).

To transform the de�nition P

i+1

(�x) � �

i+1

of P, where �

i+1

may contain

both positive and negative occurrences of P

i

, proceed as follows. Obtain the

body �

0

i+1

by replacing every positive occurrence of P

i

(

�

t) with P

0

i

(0;

�

t), and

every negative occurrence of P

i

(�s) with :P

0

i

(1; �s). Note that �

0

i+1

contains

only positive occurrences of P

0

i

.

12

Obtain �

00

i+1

by negating �

0

i+1

and replacing every occurrence of P

0

i

(v;

�

t)

with :P

0

i

((v + 1) mod 2;

�

t). Note that �

00

i+1

obtained that way also contains

only positive occurrences of P

0

i

.

Now write the resulting de�nition for P

0

i+1

:

P

0

i+1

(v; �x) � (v � 0 _ v � 1) ^ (v � 0 � �

0

i+1

) ^ (v � 1 � �

00

i+1

).

Denote the program obtained that way by P

0

and its perfect model by M

0

.

Clearly, the program P

0

may be constructed in polynomial time and satis�es

the following property easily provable by induction:

M j= 9�xP

k

(�x) ,M

0

j= 9�xP

0

k

(0; �x):

By Lemma 3.2, we may rewrite in polynomial time the program P

0

into

a new program P

00

in such a way that the body of each de�nition for P

0

i+1

contains just one positive occurrence of P

0

i

. Now the unfolding of the explicit

de�nition of P

0

k

in terms of equality by using the program P

00

, will yield in

polynomial time a formula � satisfying (4), as required. 2

13

4 Programs without function symbols

The following fact has been observed in, e.g., (Stockmeyer & Meyer 1973,

Stockmeyer 1977, Kunen 1987a):

Theorem 4.1 The theory Th(TA(; 0; 0)) is PSPACE -complete. 2

This fact and Theorem 3.1 give

Theorem 4.2 SUCCESS(; 0; 0) is PSPACE -complete for nonrecursive logic

programs. 2

In order to characterize the complexity of special cases of programs with-

out function symbols, we prove one result that is probably a folklore in logic

programming/deductive database community.

Lemma 4.3 SUCCESS(; 0; 0) is PSPACE -hard for nonrecursive range-res-

tricted de�nite logic programs.

Proof. We shall use reduction from the theory Th(TA(2; 0; 0)). Two con-

stants of this theory will be denoted by 0 and 1. Given any formula '(�x)

of TA(2; 0; 0), we shall construct a logic program P de�ning the predicate

P

'

(�x; y) such that TA(2; 0; 0) j= '(

�

t) if and only if P

'

(

�

t; 1) is true in the

perfect model of P; and TA(2; 0; 0) j= :'(

�

t) if and only if P

'

(

�

t; 0) is true in

the perfect model of P. We de�ne P

'

by induction on ', leaving details for

the reader. First, we de�ne predicates T

:

, T

^

and P

x�y

, de�ning truth tables

for :, ^ and truth of equalities x � y, respectively:

T

:

(0; 1) ; T

^

(0; 0; 0) ; P

x�y

(0; 0; 1) ;

T

:

(1; 0) ; T

^

(0; 1; 0) ; P

x�y

(0; 1; 0) ;

T

^

(1; 0; 0) ; P

x�y

(1; 0; 0) ;

T

^

(1; 1; 1) ; P

x�y

(1; 1; 1) :

Without loss of generality we can assume that '(�x) is constructed from

equalities s � t using :;^ and 9. We de�ne truth for non-atomic formulas

as follows:

P

:'

(�x; y)

P

'

(�x; z),

T

:

(z; y);

14

P

'

1

^'

2

(�x; z)

P

'

1

(�x

1

; y

1

),

P

'

2

(�x

2

; y

2

),

T

^

(y

1

; y

2

; z);

P

9y'

(�x; 0)

P

'

(�x; 0; 0),

P

'

(�x; 1; 0);

P

9y'

(�x; 1)

P

'

(�x; y; 1).

Evidently, this program is nonrecursive, de�nite, range-restricted and can be

constructed in time polynomial in the size of '. 2

By Theorem 4.2 and Lemma 4.3 we have

Theorem 4.4 SUCCESS(; 0; 0) is PSPACE -complete for the following clas-

ses of nonrecursive programs: (i) de�nite programs; (ii) normal programs;

(iii) de�nite range-restricted programs; (iv) normal range-restricted

programs. 2

15

5 Programs with binary function symbols

The complexity of the SUCCESS problem for de�nite programs (range-restric-

ted or not) is characterized by the following theorem proved in (Dantsin &

Voronkov 1997b, Dantsin & Voronkov 1997c).

Theorem 5.1 SUCCESS(; ;� 1) is NEXPTIME -complete for nonrecur-

sive de�nite programs. The same result holds for range-restricted nonrecur-

sive de�nite programs. 2

To characterize the complexity of arbitrary nonrecursive logic pro-

grams, de�ne functions e

0

(n) = n, e

k+1

(n) = 2

e

k

(n)

, and e

1

(n) = e

n

(0).

Recall that a problem is called elementary recursive, if it can be de-

cided within time bounded by e

k

(n) for some �xed k 2 !. Denote by

NONELEMENTARY(f(n)) the class of problems with lower and upper time

bounds of the form e

1

(f(cn)) and e

1

(f(dn)) for some c; d > 0.

The following result is proved in (Vorobyov 1996):

Theorem 5.2 The theories Th(TA(; ;� 1)) are not elementary recursive

with the lower bound e

1

(cn) for some c > 0. 2

The standard quanti�er elimination for TA(; ;� 1) (Ma

�

lcev 1961b,

Ma

�

lcev 1961a, Hodges 1993) gives the upper bound e

1

(dn) of the same

kind. Hence, the theory of TA(; ;� 1) is in NONELEMENTARY(n).

Theorems 3.1 and 5.2 give

Theorem 5.3 SUCCESS(; ;� 1) is in NONELEMENTARY(n) for non-

recursive normal programs. 2

16

6 Programs with unary function symbols

In this section we prove two complexity results for de�nite and normal pro-

grams in monadic signatures.

6.1 De�nite programs

Surprisingly, the SUCCESS problem has the same complexity for nonrecursive

de�nite programs also in the absence of binary function symbols.

It is easy to prove that for de�nite programs the SUCCESS(�) problem

does not depend on �, see, e.g., (Falashi, Levi, Martelli & Palamidessi 1989).

Hence, for de�nite programs we can always assume that � consists of the

symbols occurring in the program (plus one constant if the program contains

no constants).

Theorem 6.1 SUCCESS(;� 2; 0) is NEXPTIME -complete for nonrecur-

sive de�nite programs.

The proof will be given below, after a series of lemmas. To prove NEX-

PTIME -hardness, we shall use the reduction of the TILING problem known

to be NEXPTIME -complete, see, e.g., (Papadimitriou 1994, page 501).

TILING is the problem of covering the square of size 2

n

� 2

n

by tiles

(squares of size 1 � 1). There is a �nite set ff

1

; : : : ; f

K

g of tiles and there

are two binary relations on and to de�ned on the tiles. Tiles f

i

and f

j

are

said to be vertically compatible if on(f

i

; f

j

) holds and, similarly, horizontally

compatible if to(f

i

; f

j

) holds. A tiling of the rectangle of size m � n is a

function f from f1; : : : ; mg � f1; : : : ; ng into ff

1

; : : : ; f

K

g such that:

1. f(i; j) and f(i + 1; j) are vertically compatible, for all 1 � i < m and

1 � j � n;

2. f(i; j) and f(i; j + 1) are horizontally compatible, for all 1 � i � m

and 1 � j < n.

We also say that such f is a tiling with f

i

at the top left corner if f(1; 1) is

f

i

. The TILING problem is de�ned as follows.

Given a set ff

0

; : : : ; f

K

g of tiles, compatibility relations on and

to, and a number N (written in unary notation), whether there

is a tiling of the square of size 2

N

� 2

N

with f

0

at the top left

corner.

17

The reduction we describe is a polynomial-time algorithm that transforms

every instance I of the TILING problem into a nonrecursive de�nite program

P such that I has a tiling if and only if success succeeds with respect to P.

We think of tiles f

1

; : : : ; f

K

in I as all unary function symbols of �. Let c be

any �xed constant in � and N be any �xed positive integer.

We shall use the reverse Polish notation for unary terms in the signature

�. For example, the term f

1

(f

2

(f

3

(c))) will be written as cf

3

f

2

f

1

. Thus,

any term with the constant c can be written as cW , where W is a word on

the alphabet �. We shall identify any word V on � with the term cV . The

constant c then corresponds to the empty word, denoted ".

We shall encode rectangles m� n consisting of tiles in the following way.

The rectangle

� � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � �

n tiles

z }| {

m

t

i

l

e

s

z

}

|

{

g

1

1

g

n

1

g

1

m

g

n

m

will be represented by the word

g

1

1

: : : g

n

1

g

1

2

: : : : : : : : : g

n

m�1

g

1

m

: : : g

n

m

:

The compatibility relations on and to are represented in P by the corre-

sponding predicates. Namely, P contains the clauses

on(cf

i

; cf

j

)

to(cf

l

; cf

m

)

for all pairs of compatible tiles.

18

Before representing the TILING problem, we show how to represent con-

catenation of words of the length 2

i

for all i � 2N using a de�nite program

of size polynomial in N .

Consider the de�nite program P

1

consisting of the clauses

conc

1

(x; xf

i

; y; yf

j

; z; zf

i

f

j

)

for all 1 � i; j < K and the clause

conc

n+1

(x

4

; z

4

; z

7

; v

7

; x

3

; v

8

)

conc

n

(x

1

; y

1

; y

2

; z

2

; x

3

; z

3

);

conc

n

(x

1

; y

1

; y

2

; z

2

; x

4

; z

4

);

conc

n

(z

5

; u

5

; u

6

; v

6

; z

7

; v

7

);

conc

n

(z

5

; u

5

; u

6

; v

6

; z

3

; v

8

):

for all 1 < n � 2N .

The di�erence between words U and V , denoted U � V , is the word

de�ned as follows. If V is a pre�x of U , i.e., VW = U for some word W ,

then U � V =W , otherwise the di�erence is unde�ned.

Lemma 6.2 Let r

1

; r

2

; s

1

; s

2

; t

1

; t

2

be ground terms of the signature �. Then

the atom

conc

n

(r

1

; r

2

; s

1

; s

2

; t

1

; t

2

)

is true in the perfect model of P

1

if and only if

1. r

1

is a pre�x of r

2

, s

1

is a pre�x of s

2

, t

1

is a pre�x of t

2

; and

2. r

2

� r

1

and s

2

� s

1

are of length 2

n�1

and t

2

� t

1

is of length 2

n

; and

3. (r

2

� r

1

)(s

2

� s

1

) = t

2

� t

1

.

Proof. For n = 1 the proof is straightforward because conc

1

is de�ned by

the clauses

conc

1

(x; xf

i

; y; yf

j

; z; zf

i

f

j

) :

Suppose now n > 1. By induction hypothesis, we assume that the statement

holds for conc

n

and prove that it holds for conc

n+1

. The proof is illustrated

by the following picture:

19

2

n+1

tiles

z }| {

x

y

z u v

U V W Z

) We have to prove that conc

n+1

(r

1

; r

2

; s

1

; s

2

; t

1

; t

2

) implies conditions (1{

3) of the lemma. Suppose conc

n+1

(r

1

; r

2

; s

1

; s

2

; t

1

; t

2

). Then there exist

terms x

1

; y

1

; y

2

; z

2

; z

3

; z

5

; u

5

; u

6

; v

6

such that the following conjunction

is true:

conc

n

(x

1

; y

1

; y

2

; z

2

; t

1

; z

3

) ^

conc

n

(x

1

; y

1

; y

2

; z

2

; r

1

; r

2

) ^

conc

n

(z

5

; u

5

; u

6

; v

6

; s

1

; s

2

) ^

conc

n

(z

5

; u

5

; u

6

; v

6

; z

8

; t

2

)

We shall use properties of conc

n

given by the induction hypothesis.

Since conc

n

(x

1

; y

1

; y

2

; z

2

; r

1

; r

2

)^conc

n

(z

5

; u

5

; u

6

; v

6

; s

1

; s

2

), there exist

words U; V andW;Z of the length 2

n�1

such that r

2

= r

1

UV , y

1

= x

1

U ,

z

2

= y

2

V and u

5

= z

5

W , v

6

= u

6

Z and s

2

= s

1

WZ. Then we have

conc

n

(x

1

; x

1

U; y

2

; y

2

V; t

1

; z

3

). This implies z

3

= t

1

UV . Then we have

conc

n

(z

5

; z

5

W;u

6

; u

6

Z; t

1

UV; t

2

). This implies t

2

= t

1

UVWZ. Now it

is easy to check that conditions (1{3) hold.

(Suppose that words r

1

; r

2

; s

1

; s

2

; t

1

; t

2

satisfy conditions (1{3) of the lem-

ma. Let U; V be words of length 2

n�1

such that r

2

= r

1

UV and W;Z

be words of length 2

n�1

such that s

2

= s

1

WZ. Note that we have

t

2

= t

1

UVWZ. Consider the following ground instance of the clause

de�ning conc

n+1

:

conc

n+1

(r

1

; r

1

UV; s

1

; s

1

WZ; t

1

; t

1

UVWZ)

conc

n

(c; cU; c; cV; t

1

; t

1

UV);

conc

n

(c; cU; c; cV; t

1

; r

1

; r

1

UV);

conc

n

(c; cW; c; cZ; s

1

; s

1

WZ);

conc

n

; (c; cW; c; cZ; t

1

UV; t

1

UVWZ).

20

Since arguments of conc

n

satisfy conditions (1{3) of the lemma, by the

induction hypothesis the body of the clause is true. Therefore the head

is also true. But the head is conc

n+1

(r

1

; r

2

; s

1

; s

2

; t

1

; t

2

).

2

Consider the de�nite program P

2

obtained from P

1

by adding the clauses

concat

n

(x; y; z) conc

n

(c; x; c; y; c; z)

for all 1 < n � 2N . The following lemma is an obvious consequence of

Lemma 6.2:

Lemma 6.3 Let U; V;W be words on �. Then the atom

concat

n

(cU; cV; cW) is true in the perfect model of P

2

if and only if

U; V have length 2

n�1

and UV = W . 2

We call a hypertile of rank n any tiling of the square 2

n

� 2

n

. We shall

now show how to represent hypertiles of rank n by de�nite programs of size

polynomial in n.

To this end, we de�ne predicates hypertile

n

(s; t) for 1 � n � N denoting

that t is a word encoding a hypertile of rank n with the tile s in the top left

corner.

A hypertile of rank 1 is a square of size 2� 2

1 2

3 4

satisfying the compatibility conditions on tiles. Therefore we de�ne the pred-

icate hypertile

1

by the clause

hypertile

1

(x

1

; x)

concat

1

(x

1

; x

2

; x

12

);

concat

1

(x

3

; x

4

; x

34

);

concat

2

(x

12

; x

34

; x);

21

on(x

1

; x

3

);

on(x

2

; x

4

);

to(x

1

; x

2

);

to(x

3

; x

4

):

For n > 1 we make the following observation. Consider any square of

tiles of size 2

n+1

� 2

n+1

, where n � 1:

2

n+1

tiles

z }| {

2

n

+

1

t

i

l

e

s

z

}

|

{

1 2 3 4

5 6 7 8

9

a

b

c

d

e

f

g

This square is a tiling of size 2

n+1

if and only if the following nine subsquares

are tilings of size 2

n

:

22

1 2

5 6

2 3

6 7

3 4

7 8

5 6

9

a

6 7

a

b

7 8

b

c

9

a

d

e

a

b

e

f

b

c

f

g

In view of this observation, we de�ne hypertile

n+1

by the clause (where

each occurrence of denotes a unique fresh variable)

hypertile

n+1

(y; x)

concat

2n+2

(x

12345678

; x

9abcdefg

; x);

concat

2n+1

(x

1234

; x

5678

; x

12345678

);

concat

2n+1

(x

9abc

; x

defg

; x

9abcdefg

);

concat

2n

(x

12

; x

34

; x

1234

);

concat

2n

(x

56

; x

78

; x

5678

);

concat

2n

(x

9a

; x

bc

; x

9abc

);

concat

2n

(x

de

; x

fg

; x

defg

);

concat

2n�1

(x

1

; x

2

; x

12

);

concat

2n�1

(x

3

; x

4

; x

34

);

concat

2n�1

(x

5

; x

6

; x

56

);

concat

2n�1

(x

7

; x

8

; x

78

);

concat

2n�1

(x

9

; x

a

; x

9a

);

concat

2n�1

(x

b

; x

c

; x

bc

);

concat

2n�1

(x

d

; x

e

; x

de

);

concat

2n�1

(x

f

; x

g

; x

fg

);

23

concat

2n�1

(x

2

; x

3

; x

23

);

concat

2n�1

(x

6

; x

7

; x

67

);

concat

2n�1

(x

a

; x

b

; x

ab

);

concat

2n�1

(x

e

; x

f

; x

ef

);

concat

2n

(x

12

; x

56

; x

1256

);

concat

2n

(x

23

; x

67

; x

2367

);

concat

2n

(x

34

; x

78

; x

3478

);

concat

2n

(x

56

; x

9a

; x

569a

);

concat

2n

(x

67

; x

ab

; x

67ab

);

concat

2n

(x

78

; x

bc

; x

78bc

);

concat

2n

(x

9a

; x

de

; x

9ade

);

concat

2n

(x

ab

; x

ef

; x

abef

);

concat

2n

(x

bc

; x

fg

; x

bcfg

);

hypertile

n

(y; x

1256

);

hypertile

n

(; x

2367

);

hypertile

n

(; x

3478

);

hypertile

n

(; x

569a

);

hypertile

n

(; x

67ab

);

hypertile

n

(; x

78bc

);

hypertile

n

(; x

9ade

);

hypertile

n

(; x

abef

);

hypertile

n

(; x

bcfg

):

Let the program P

3

be obtained from P

2

by adding the de�nitions of the

predicates hypertile

n

for all 1 � n � N . By the analysis of the construction

of these de�nitions and using Lemma 6.3, we obtain

Lemma 6.4 The atom hypertile

n

(s; t) is true in the perfect model of P

3

if and only if t represents a tiling of size 2

n

� 2

n

with the tile s in the top

left corner.

Now we can prove Theorem 6.1. Inclusion in NEXPTIME follows from

Theorem 5.1. NEXPTIME -hardness follows from Lemma 6.4, since the pro-

gram P

3

can be constructed in time polynomial in N and the tiling program

is NEXPTIME -complete.

Our proof used a signature that contained symbols for all tiles. By using

the standard encoding of arbitrary alphabets by a two-letter alphabet, we

can restrict the signature by two unary symbols.

24

6.2 Normal programs

In this section we show that the complexity of the SUCCESS problem for

nonrecursive logic programs with negation and function symbols of arity at

most one is complete for a complexity class intermediate between NEXP-

TIME and EXPSPACE. The following key theorem is due to (Ferrante &

Racko� 1979, Chapters 4 and 9):

Theorem 6.5 Th(TA(1; 2; 0)) can be decided in DSPACE(2

O(n)

) and is

NTIME(2

O(n)

)-hard w.r.t. loglin reducibility

2

. 2

(Volger 1983b, Volger 1983a) improved it

3

to

Theorem 6.6 Th(TA(1; 2; 0)) is LATIME(2

O(n)

)-complete. 2

LATIME(2

O(n)

) is a class of problems solvable by alternating Turing ma-

chines in time 2

O(n)

with linear number of alternations

4

. By (Chandra, Kozen

& Stockmeyer 1981), LATIME(2

O(n)

) � DSPACE(2

O(n)

). Also, obviously,

NTIME(2

O(n)

) � LATIME(2

O(n)

). Both inclusions are presumably proper.

Theorem 6.6 and our Theorem 3.1 imply the following

Corollary 6.7 SUCCESS(1; 2; 0) is LATIME(2

O(n)

)-complete for nonrecur-

sive normal problems. 2

The lower bound for the nonrecursive SUCCESS(� 1;� 2;) with nega-

tion also follows immediately:

Corollary 6.8 SUCCESS(;� 2;) is LATIME(2

O(n)

)-hard for nonrecur-

sive normal programs.

The upper bound appears to be of the same kind:

Theorem 6.9 SUCCESS(;� 2; 0) is in LATIME(2

O(n)

) for nonrecursive

logic programs with negation.

2

Consequently, NEXPTIME -hard w.r.t. polynomial reducibility, cf., (Johnson 1990).

3

At the time when (Ferrante & Racko� 1979) was written, the complexity classes

de�ned simultaneously in terms of time, space, and alternations were not yet well known.

They �rst appeared in (Berman 1977, Bruss & Meyer 1980, Berman 1980).

4

(Johnson 1990) calls this class TA(2

O(n)

; n), which clashes with our usage of TA() for

`term algebras'

25

Proof. The proof of (Volger 1983b) is a straightforward corollary of the proof

of (Ferrante & Racko� 1979), and is based on the simple observation that

Th(TA(1; 2; 0)) may be decided within LATIME(2

O(n)

).

In fact, the DSPACE(2

O(n)

) upper bound of (Ferrante & Racko� 1979)

is a consequence of their technically di�cult result based on application of

complexity-tailored Ehrenfeucht-Fra��ss�e games, which is as follows.

The depth of a term t, denoted depth(t), is de�ned inductively as follows:

depth(a) = 0; if a is a constant

depth(f(t

1

; : : : ; t

n

)) = 1 + max(depth(t

1

); : : : ; depth(t

n

)):

Lemma 6.10 (Ferrante & Racko� 1979) In TA(1; 2; 0) a quanti�ed prenex

sentence is true if and only if the corresponding boundedly quanti�ed sen-

tence, where each quanti�er runs over ground terms of depth at most expo-

nential of the length of the sentence. 2

From this it is immediate that a decision algorithm can be implemented

in LATIME(2

O(n)

). Indeed, it is clear that the brute-force test of the validity

of a boundedly quanti�ed sentence of TA(1; 2; 0) can be performed by an

alternating Turing machine within exponential time with linear number of

alternations (corresponding to the alternations of quanti�ers in the sentence).

The analysis of the proof in (Ferrante & Racko� 1979) shows that it

works not only for two successors, but also for arbitrary signatures containing

symbols of arity at most one. Lemma 6.10 above generalizes to

Lemma 6.11 In TA(;� 2; 0) a quanti�ed prenex sentence � is true if

and only if the corresponding boundedly quanti�ed sentence, where each

quanti�er runs over ground terms of a �nite unary signature (whose size is

linear in the size of �) of depth at most exponential of the length of �. 2

This lemma gives us the LATIME(2

O(n)

) upper bound for Th(TA(� 1;�

2; 0)), and by Theorem 3.1, also for SUCCESS(;� 2;). 2

Summarizing, the complexity of the SUCCESS problem in unary signa-

tures is as follows:

Theorem 6.12 The SUCCESS(;� 2;) problem for nonrecursive logic

programs with negation is LATIME(2

O(n)

)-complete. 2

26

7 Range-restricted programs

We start with two general statements about range-restricted programs. The

�rst one asserts that in the range-restricted case only symbols occurring in

the program matter.

Lemma 7.1 Let P be a nonrecursive range-restricted program of signature

�, P be a predicate di�erent from equality, and t

1

; : : : ; t

n

be ground terms

of � such that P (t

1

; : : : ; t

n

) is true in the perfect model of P in �. Then

t

1

; : : : ; t

n

are built of symbols occurring in P. 2

The proof of this theorem is straightforward.

Lemma 7.2 Let P be a nonrecursive range-restricted program in a signature

�, P be a predicate di�erent from equality, and t

1

; : : : ; t

n

be ground terms

of � such P (t

1

; : : : ; t

n

) is true in the perfect model of P in �. Let K be the

maximal number of occurrences of function symbols in clauses of P, and N

be the number or predicates de�ned in P. Then depth(t

i

) � NK for all i.

Proof. We assume, without loss of generality, that the program de�nes pred-

icates P

0

; : : : ; P

N�1

and each P

i+1

is de�ned in terms of P

i

. We prove, by

induction on i, that whenever P

i

(t

1

; : : : ; t

m

) is true in the perfect model, we

have depth(t

j

) � (i+ 1)K, for all j.

Indeed, let

C

0

= (P

i+1

(t

1

; : : : ; t

m

) L

1

; : : : ; L

k

)

be any ground instance of a clause C 2 P. By induction hypothesis and

using the fact that C is range-restricted, we get that all terms occurring as

arguments in literals L

j

have depth � (i + 1)K.

Since every variable occurring in the head of C also occurs in the body,

and the head of C contains at most K occurrences of function symbols, we

conclude that any term in the head of C

0

has depth � (i + 2)K. Since this

is true for all clauses de�ning P

i+1

, it proves the statement for i+ 1. 2

The case of programs without function symbols was already considered

in Section 4. We now proceed to range-restricted programs in the case of

unary and then arbitrary function symbols.

27

7.1 Programs with unary function symbols

The de�nition of the predicates conc

n

in Section 6 uses non-range-restricted

clauses. Interestingly, the SUCCESS problem for monadic signatures and

range-restricted clauses is essentially simpler, even in presence of negation.

Theorem 7.3 SUCCESS(;� 2; 0) is PSPACE -complete for nonrecursive

range-restricted normal programs.

Proof. PSPACE -hardness follows from Theorem 4.4. In order to prove in-

clusion in PSPACE, we show how to decide the truth using an alternating

polynomial time algorithm.

Let a program P of a signature (;� 2; 0) de�ne predicates P

0

; : : : ; P

N

so that each predicate P

i+1

is de�ned in terms of P

i

.

We show, by induction on i, how to decide whether P

i

(t

1

; : : : ; t

n

) is true

(or false) for ground terms t

1

; : : : ; t

n

. Let K be the maximal number of

occurrences of function symbols in clauses of P. By Lemma 7.2, we can

assume that the depth of each t

i

is bound by a polynomial in the size of P.

Find all clauses in P that have an instance

P

i

(t

1

; : : : ; t

n

) A

1

; : : : ; A

k

;:B

1

; : : : ;:B

m

;

where A

j

; B

l

are atoms. By Lemmas 7.2 and 7.1, each atom A

j

can only

be true on ground terms of depth � (i+ 2)K built from atoms occurring in

P. Since the signature is monadic, we can guess all such terms using non-

deterministic OR-branching with polynomial time on each branch. After we

guess such terms, all A

j

become ground. Since the clause is range-restricted,

all B

l

also become ground. Using AND-branching, we check whether each

A

1

; : : : ; A

k

;:B

1

; : : : ;:B

m

is true in the perfect model of P.

Note that the algorithm makes at most 2N alternations. 2

7.2 Arbitrary range-restricted programs

In the rest of this section we consider range-restricted programs with nega-

tion. The complexity of this case is characterized by the following theorem.

Theorem 7.4 SUCCESS(; ;� 1) is LATIME(2

O(n)

)-complete for nonre-

cursive range-restricted programs. 2

28

Inclusion in LATIME(2

O(n)

) uses the same proof as Theorem 7.3. The only

di�erence is that when we guess ground terms of polynomial depth using non-

deterministic OR-branching, we have to make an exponentially deep number

of guesses. Thus, the algorithm runs in exponential time, but still with a

linear number of alternations.

The proof LATIME(2

O(n)

)-hardness will use reduction from the theory of

bounded concatenation discussed in the next section.

7.3 Boundedly quanti�ed theory of bounded concate-

nation

We give the de�nition following (Bruss & Meyer 1980).

Fix a �nite alphabet A with at least two symbols. Let L(A) be the �rst-

order language with equality, with constants a for each a 2 A, and whose

only atomic formulas (other than equalities) are of the form bcat(x; y; z;n),

where n is the unary numeral for the nonnegative integer n. Then for any

function t : N ! N , we de�ne t-bounded concatenation theory t-BCT(A)

as the set of true sentences in L(A) under the following interpretation: the

underlying domain is the set A

�

of words over A, the constant symbols denote

the elements a 2 A, and for all words U , V , W , bcat(U; V;W;n) is true if (i)

U is the concatenation of V and W , and (ii) the length of U is at most t(n).

Without loss of generality one may suppose that the alphabet A consists

of two symbols, 0 and 1. (Volger 1983b) basing on (Ferrante & Racko� 1979)

proved LATIME(2

O(n)

)-completeness of 2

n

-BCT(A).

Since formulas of t-BCT(A) may contain equalities, one cannot directly

claim that a sentence of t-BCT(A) with arbitrarily quanti�ed variables is

equivalent to a boundedly quanti�ed sentence. This is because the sizes

of values of variables in equalities are unbounded. We need the following

lemma allowing us to bound quanti�ed variables in sentences of 2

n

-BCT(A).

For Q 2 f8; 9g let Qx � 2

cn

means that a quanti�ed variable ranges over

words of length at most 2

cn

.

Lemma 7.5 In 2

n

-BCT(A), given a quanti�ed prenex sentence

F = Q

1

x

1

: : : Q

k

x

k

�

of length n one can construct in polynomial time a boundedly quanti�ed

sentence

29

F

b

= Q

1

x

1

� 2

cn

: : : Q

r

x

r

� 2

cn

�

true i� F is true.

Proof. First, we show that the theory of 2

n

-bounded concatenation

2

n

-BCT(A) is polynomial time reducible to the �rst-order theory of two suc-

cessors

Th(hf0; 1g

�

; r

0

; r

1

i) with r

0

(x) = x0 and r

1

(x) = x1. Second, we use once

again Lemma 6.10 due to (Ferrante & Racko� 1979), showing that any sen-

tence of Th(hf0; 1g

�

; r

0

; r

1

i) is true i� the corresponding boundedly quanti-

�ed sentence (with exponential bounds) is true. Third, we reduce boundedly

quanti�ed sentences of Th(hf0; 1g

�

; r

0

; r

1

i) to boundedly quanti�ed sentences

of 2

n

-BCT(A). This gives the desired conclusion.

Let empty(u) = :9v(u � r

0

(v) _ u � r

1

(v)) be the formula of

Th(hf0; 1g

�

; r

0

; r

1

i) expressing that u has no predecessor, i.e., u is the empty

word.

We need to write explicit de�nitions for the predicates bcat(x; y; z;n) in

Th(hf0; 1g

�

; r

0

; r

1

i). To do this we start by de�ning auxiliary predicates

bc(x; y; z;n) meaning that the length of y is at most 2

n

and x is the concate-

nation of y and z:

bc(x; y; z; 0) = 9u(empty(u) ^ ((x � r

0

(z) ^ y � r

0

(u)) _

(x � r

1

(z) ^ y � r

1

(u)) _ (x � z ^ y � u)));

bc(x; y; z; sn) = 9y

1

y

2

z

0

9u(empty(u) ^ bc(y

2

; y

2

; u;n) ^

bc(y; y

1

; y

2

;n) ^ bc(z

0

; y

2

; z;n) ^ bc(x; y

1

; z

0

;n)):

By Lemma 3.2, we can write an explicit de�nition for bc(x; y; z;n) of size

polynomial (even linear) in n.

Using bc(x; y; z;n), we can explicitly de�ne bcat(x; y; z;n) as follows:

bcat(x; y; z;n) = 9u(empty(u) ^ bc(x; x; u;n) ^ bc(x; y; z;n)):

Now, given a prenex sentence

F = Q

1

x

1

: : : Q

k

x

k

�

of 2

n

-BCT(A) we can construct in polynomial time a prenex sentence

30

G = Q

1

x

1

: : : Q

k

x

k

Q

k+1

x

k+1

: : : Q

k+l

x

k+l

	

of Th(hf0; 1g

�

; r

0

; r

1

i) true i� F is true. Note that additional quanti�ers will

result from empty, bcat and Lemma 3.2.

By Lemma 6.10, G is true in Th(hf0; 1g

�

; r

0

; r

1

i) i� for some c > 0 inde-

pendent of n the boundedly quanti�ed sentence

G

b

= Q

1

x

1

� 2

cn

: : : Q

k

x

k

� 2

cn

Q

k+1

x

k+1

� 2

cn

: : : Q

k+l

x

k+l

� 2

cn

	

is true in Th(hf0; 1g

�

; r

0

; r

1

i), where n is the length of sentence G.

We can now translate the sentence G

b

of Th(hf0; 1g

�

; r

0

; r

1

i) back into a

sentence F

b

of 2

n

-BCT(A) by modifying the matrix 	 of G

b

as follows:

� adding three boundedly quanti�ed variables 9e; u; v � 1,

� adding conjunctively bcat(e; e; e; 0) (to mean that e is the empty word),

� adding conjunctively bcat(u; u; e; 0) ^ :bcat(u; u; u; 0) (to mean that u

is of length 1),

� adding conjunctively bcat(v; v; e; 0) ^ :bcat(v; v; v; 0) ^ :bcat(u; v; e; 0)

(to mean that v is also of length 1, but di�erent from u; thus u = 0

and v = 1, or vice versa, it does not matter for our purposes),

� replacing in 	 each y � r

0

(x) with bcat(y; u; x; cn) (since we know that

all quanti�ed variables are bounded in G

b

),

� likewise, replacing in 	 each y � r

1

(x) with bcat(y; v; x; cn),

� likewise, replacing in 	 each y � x with bcat(y; e; x; cn).

Clearly, the resulting boundedly quanti�ed sentence F

b

of 2

n

-BCT(A) is true

i� G

b

is true in Th(hf0; 1g

�

; r

0

; r

1

i).

We now have the following chain of reductions: given a sentence F of

2

n

-BCT(A) we constructed in polynomial time the boundedly quanti�ed sen-

tence F

b

of 2

n

-BCT(A) true in 2

n

-BCT(A) if F is true, as needed. 2

31

7.4 Reduction of the theory of bounded concatenation

In this section we complete the proof of Theorem 7.4. To prove

LATIME(2

O(n)

)-hardness, we reduce 2

n

-BCT(A) to the SUCCESS problem

for nonrecursive range-restricted programs in any signature � with a function

symbol of arity � 2. For simplicity, we assume that the signature � consists

of three constants 0; 1; " and a binary function symbol f .

First, we choose a representation of nonempty words on f0; 1g by binary

trees (or terms) constructed using f; 0; 1. For any such term t we de�ne the

corresponding word w(t) as follows:

w(0) = 0

w(1) = 1

w(f(s; t)) = w(s)w(t)

Note that words do not have a unique representation.

Let us �x some positive integer N . Consider the following nonrecursive

clauses de�ning predicates nonempty word

n

:

nonempty word

0

(0)

nonempty word

0

(1)

and the clauses

nonempty word

n+1

(f(x; y)) nonempty word

n

(x); nonempty word

n

(y)

nonempty word

n+1

(x) nonempty word

n

(x)

for all n < N . Evidently, we have nonempty word

n

(t) if and only if t is a

ground term of depth � n built from f; 0; 1, encoding a nonempty word.

We recursively de�ne the notion a tree T

0

is obtained from a tree T by

removing the leftmost leaf. This holds if

1. T = f(a; t), a is a constant and T

0

= t;

2. T = f(t

1

; t

2

), t

1

is not a constant, t

0

1

is obtained from t

1

by removing

the leftmost leaf and T

0

= f(t

0

1

; t

2

).

The removal of the leftmost leaf is illustrated by the following picture.

32

0

f

1

f

1

f

0

f

0

f

1

T :

1

f

1

f

0

f

0

f

1

T

0

:

Now we de�ne two other series of predicates:

� weq

n

(x; y) for all n � N mean that x; y are terms of depth � n and

w(x) = w(y);

� diff

n

(x; y; z) for all n � N mean that x; y; z are terms of depth � n,

w(y)w(z) = w(x) and z is obtained from x by a sequence of removals

of leftmost leaves.

The de�nition of weq

0

is obvious:

weq

0

(0; 0) ;

weq

0

(1; 1) .

The de�nition of diff

0

is empty, because diff

0

(x; y; z) is never true.

In order to de�ne weq

n+1

for trees f(x; y) and f(u; v) we should consider

three possible cases: (i) w(x) = w(u); (ii) w(x) is a pre�x of w(u); and (iii)

w(u) is a pre�x of w(x). This gives rise to the following three clauses:

weq

n+1

(f(x; y); f(u; v)) weq

n

(x; y); weq

n

(u; v);

weq

n+1

(f(x; y); f(u; v)) diff

n

(u; x; z); diff

n

(y; z; v

0

); weq

n

(v

0

; v);

weq

n+1

(f(x; y); f(u; v)) diff

n

(x; u; z); diff

n

(v; z; y

0

); weq

n

(y

0

; y).

Finally, we add a self-explaining clause:

weq

n+1

(x; y) weq

n

(x; y).

In order to de�ne diff

n+1

for trees f(x; y) and f(u; v) we should consider

�ve possible cases: (i) w(x) is a pre�x of w(u); (ii) w(x) = w(u); (iii) w(u) is

a pre�x of w(x) and w(x) is a pre�x of w(u)w(v); (iv) w(x) = w(u)w(v); and

(v) w(u)w(v) is a pre�x of w(x). This gives rise to the following �ve clauses.

33

diff

n+1

(f(x; y); f(u; v); w) diff

n

(u; x; z); diff

n

(y; z; w);

diff

n+1

(f(x; y); f(u; v); w) weq

n

(x; u); diff

n

(y; v; w);

diff

n+1

(f(x; y); f(u; v); w) diff

n

(x; u; z

1

); diff

n

(v; z

1

; z

2

); diff

n

(y; z

2

; w);

diff

n+1

(f(x; y); u; y) weq

n

(x; u); nonempty word

n

(y);

diff

n+1

(f(x; y); u; f(z; y)) diff

n

(x; u; z); nonempty word

n

(y).

Note that the last two clauses also cover the case when the second argument

of diff

n

is a constant. As before, we have to add

diff

n+1

(x; y; z) diff

n

(x; y; z).

Before, we only encoded nonempty words by terms using f; 0; 1. Now we

also assume that " encodes the empty word, i.e. w(") is the empty word, and

de�ne the 2

n

-bounded concatenation:

� for each n � N , conc

n

(x; y; z) means that x; y; z are terms of depth

� n and w(x)w(y) = w(z).

First, we de�ne predicates word

n

de�ning terms of depth � n denoting

(maybe empty) words:

word

n

(") ;

word

n

(x) nonempty word

n

(x);

Then we use the clauses

conc

n

("; x; x) word

n

(x);

conc

n

(x; "; x) word

n

(x);

conc

n

(x; y; z) diff

n

(z; x; y

0

); weq

n

(y

0

; y):

Note that all these clauses are nonrecursive, range-restricted, and can be

constructed in time polynomial in N .

Now we show how to reduce the theory of bounded concatenation to the

SUCCESS problem for nonrecursive range-restricted clauses.

By Lemma 7.5 we can assume that all quanti�ers in formulas of

2

n

-BCT(A) are bounded by 2

cn

. Let ' be any formula of size � n whose

free variables are �x. De�ne N as cn and build the de�nition of conc

m

for

all m � N as above. By induction on ' we construct a nonrecursive logic

program P de�ning a predicate P

'

(�x) with the following property.

34

Lemma 7.6 For all ground terms t

1

; : : : ; t

n

of depth � n, the formula

P (t

1

; : : : ; t

n

) is true in the perfect model of P if and only if '(w(t

1

); : : : ; w(t

n

))

is true in 2

n

-BCT(A).

We can assume that ' is constructed using only :;^, and 9. If ' is an

atomic formula bcat(x; y; z;n), we de�ne P

'

as follows:

P

'

(x; y; z) conc

n

(y; z; x)

The cases of conjunction and existential quanti�er are obvious:

P

'

1

^'

2

(�x)

P

'

1

(�x

1

),

P

'

2

(�x

2

).

P

9y�2

cn

'

(�x)

P

'

(�x; y),

word

N

(y)

Finally, the negation is handled in the following way:

P

:'

(x

1

; : : : ; x

m

)

:P

'

(x

1

; : : : ; x

m

),

word

N

(x

1

),

: : :,

word

N

(x

m

).

The proof of Lemma 7.6 is straightforward. Note that the program de�n-

ing P

'

is range-restricted, nonrecursive and can be constructed in time poly-

nomial in the size of '. Thus, 2

n

-BCT(A) is polynomial time reducible to the

SUCCESS problem for nonrecursive range-restricted normal programs which

completes the proof of Theorem 7.4. 2

35

8 Other kinds of complex values

In this section we briey consider various formalizations of �nite sets and

multisets. The complexity of the corresponding nonrecursive fragment of

logic programming with complex values depends on this formalization and

the signature, i.e., the set of operations available on the values. We consider

1. colored �nite sets (Dovier et al. 1996);

2. untyped �nite sets (Dantsin & Voronkov 1997a, Dantsin & Voronkov

1997b);

3. typed �nite sets (Abiteboul & Beeri 1995).

The de�nitions and subsequent results can be straightforwardly generalized

to �nite multisets.

8.1 Formalizations of �nite sets

Universe with colored sets. In order to construct the domain of colored

sets (Dovier et al. 1996), we need to add to a signature � a binary function

symbol f: : : j : : :g, called the set constructor. A color is any term whose

top function symbol is not f j g. A term fs

1

j : : : fs

n

j tgg, where t is a color,

represents the colored set with elements s

1

; : : : ; s

n

and the color t. Two

colored sets are equal when they have the same elements and the same color.

To represent the empty set, any color can be used. Note that a color may be

a complex term whose subterms can be colored sets.

Universe with untyped sets. Untyped sets (Dantsin & Voronkov 1997a,

Dantsin & Voronkov 1997b) are de�ned similarly to colored sets, but the only

color is the constant ;, representing the empty set. In order to formalize

untyped sets, a two-sorted signature must be used. (In fact, colored sets

were introduced in order to have completely unsorted language.)

Universe with typed sets. We shall present a typed universe for complex

values containing �nite sets following (Abiteboul & Beeri 1995).

We assume a set of domain names

c

D

1

;

c

D

2

; : : : and an in�nite set

of attributes A

1

; A

2

; : : : The domain names are associated with domains

D

1

; D

2

; : : :, i.e., non-empty sets whose elements are called atomic values.

36

Complex values are constructed from atomic ones using constructors. A

type is associated with each value.

De�nition 8.1 Types and values for this domain are de�ned as follows:

1. If

b

D is a domain name, then

b

D is an atomic type. For each a 2 D, the

element a is a value of this type.

2. If T

1

; : : : ; T

n

, where n � 0, are types and A

1

; : : : ; A

n

are distinct at-

tributes, then [A

1

: T

1

; : : : ; A

n

: T

n

] is a tuple type. If v

1

; : : : ; v

n

are

values of types T

1

; : : : ; T

n

, respectively, then [A

1

: v

1

; : : : ; A

n

: v

n

] is a

value of the type.

3. If T is a type, then fTg is a set type. Any �nite set of values of type

T is a value of type fTg.

Syntactic representation of values from the typed domain is similar to

that for the untyped domain (in particular, we have the set constructor), but

with the following changes.

1. Since the atomic domains are typed, the corresponding constants of

the language are also typed.

2. We have tuple terms [A

1

: t

1

; : : : ; A

n

: t

n

] made of terms t

1

; : : : ; t

n

with

the natural interpretation.

3. The constants for the empty set and the set constructor satisfy the

natural restrictions on their types.

In order to de�ne semantics of nonrecursive logic programs over these

universes, we need only one change compared to page 7. Instead of consider-

ing nonrecursive logic programs as sets of explicit de�nitions over the term

algebra, we consider them over the corresponding universe.

(Dantsin & Voronkov 1997a, Dantsin & Voronkov 1997b) proved

Theorem 8.2 The SUCCESS problem for de�nite programs is NEXPTIME -

complete for the following domains:

1. universe with colored sets and/or bags;

2. universe with untyped sets and/or bags;

37

3. universe with typed sets and/or bags.

The same holds for range-restricted de�nite programs. 2

In the remaining part of the paper we address the complexity of nonre-

cursive logic programs over the three domains de�ned in this section.

8.2 Typed universe

Evidently, universes with typed and untyped sets correspond to two versions,

typed and untyped, of the domain of hereditarily �nite sets, see e.g., (Barwise

1975). In this section we settle complexity bounds for the typed universe.

We need some background material on the theory of typed hereditarily �nite

sets.

Type theory
 is a rudimentary fragment of L. Henkin's theory of propo-

sitional types (Henkin 1963). The language of
 is a language of set theory,

where every variable has a natural number type (written as a binary super-

script) and there are two constants 0, 1 of type 0. The theory has a countable

number of predicate symbols 2

n

, for every natural number n. The interpre-

tation of
 is as follows: 0 denotes 0, 1 denotes 1, elements of type 0 are 0

and 1 and elements of types n + 1 are sets of elements of type n.

For complexity considerations let us �x any reasonable encoding of for-

mulas of
 as binary strings and agree that a variable of
 be represented by

its type and its identi�cation number within a type, both written in binary.

The validity problem for
 is trivially decidable, because every quanti�er

runs over a �nite domain, but is not elementary recursive. Even stronger,

(Vorobyov 1997):

Theorem 8.3 Any Turing machine deciding
 makes a number of steps

exceeding

exp

1

(2

cj�j

) = 2

2

�

�

�

2

)

height 2

cj�j

for some constant c > 0 and in�nitely many sentences � of
. 2

This improves the previously known lower bound (Meyer 1974, pp. 478{

479), which was a logarithmically growing tower of twos.

38

Reduction of
 to nonrecursive logic programs over the typed uni-

verse of sets. Here we apply the strong lower bound from Theorem 8.3 by

polynomially reducing
 to the SUCCESS problem for the typed universe. It

follows that the latter problem has the same lower complexity bound.

We consider the following typed universe S of �nite sets. There is only

one atomic type with constants 0 and 1. We construct all set types as in

Section 8.1, i.e., using constants for empty sets and set constructors for all

set types.

For a sentence � of the theory
 its polynomial-time translation to the

SUCCESS problem for nonrecursive logic programs over S is de�ned exactly

as in the proof of Theorem 3.1, except for the case of atomic formulas. The

membership predicates 2

n

can be de�ned by the following clause:

member

n

(x; fx j yg) :

Henceforth, Theorem 8.3 yields

Theorem 8.4 The SUCCESS problem for nonrecursive logic programs over

S is not elementary recursive. Even stronger: any algorithm solving the

problem should necessarily spend time exceeding

2

2

�

�

�

2

)

height 2

cjPj

for some constant c > 0 and in�nitely many instances P of the problem. 2

It is not di�cult to show that the SUCCESS problem is decidable, and

the upper bound is of the same kind. Summarizing, we get

Theorem 8.5 The SUCCESS problem for nonrecursive logic programs over

S is in the complexity class NONELEMENTARY(2

n

). 2

To our knowledge, this is a most complicated (in complexity-theoretic

sense) of all decidable problems for which any upper bound is currently

known.

It is easy to see that the complexity remains the same for any typed

universe, where atomic domains contain a �nite number of elements, since in

this case all types will still have a �nite number of elements.

Consider now the typed universe S

0

de�ned as S, but with an in�nite

atomic domain. In this case we have the following fact.

39

Theorem 8.6 The SUCCESS problem for nonrecursive logic programs over

S

0

is undecidable. 2

We leave a detailed proof to the reader. The idea is that it is possible to

interpret the theory of a �nite binary relation (Kalmar-Traktenbrot-Vaught-

Rabin), cf., (Vaught 1960, Rabin 1964). Indeed, using the in�nite atomic

domain D we can express a �nite set of any size (as any �nite set S of

elements of D) and interpret an arbitrary binary relation as a set of pairs

fa; bg with elements in D.

Analogously, if the atomic domain is �nite, but variables and the member-

ship predicate are untyped (polymorphic or interpreted over arbitrary strata)

the theory and the problem are also undecidable.

8.3 Untyped universe

Similarly, we obtain

Theorem 8.7 The SUCCESS problems for nonrecursive logic programs over

the untyped universe and the colored universe are undecidable. 2

This follows from the undecidability of the theory of a binary relation

(Kalmar, Traktenbrot, Vaught, Rabin), cf., (Vaught 1960, Rabin 1964), or

from Gandy's theorem (Barwise 1975).

40

9 Summary of results

The complexity of the success problem for nonrecursive logic programs over

trees are summarized in the following table. In all cases we have completeness

in the corresponding complexity class, except for NONELEMENTARY (in

this case both lower and upper bounds are linearly growing towers of twos).

function symbols no unary any

not range-restricted

no negation PSPACE PSPACE NEXPTIME

with negation PSPACE LATIME(2

O(n)

) NONELEMENTARY (n)

range-restricted

no negation PSPACE PSPACE NEXPTIME

with negation PSPACE PSPACE LATIME(2

O(n)

)

We briey discuss the obtained complexity results, by comparing results

in all signatures with the simplest class: de�nite range-restricted programs.

In the case without function symbols (corresponding to nonrecursive datalog)

the complexity does not change when we add negation and remove range-

restriction. For signatures with unary function symbols, the complexity is the

same as for signatures without function symbols, except for the class without

range restriction and with negation. For arbitrary signatures, we have a

\small" increase in complexity when we either remove range restriction or

add negation. However if we do both, the complexity becomes nonelementary.

In all cases except datalog, it is the combination of negation and non-range

restrictedness that gives a big jump in complexity.

We also proved some complexity results about nonrecursive logic pro-

grams over sets. However the complexity of such programs over sets should

be further investigated. For example, it is not known what is the complexity

of the range-restricted fragment. Another interesting question is the com-

plexity for programs with a �xed �nite number of negations, both with and

without range-restriction.

41

References

Abiteboul, S. & Beeri, C. (1995), `The power of languages for the manipula-

tion of complex values', VLDB Journal 4, 727{794.

Abiteboul, S., Hull, R. & Vianu, V. (1995), Foundation of Databases,

Addison-Wesley Publishing Co.

Andr�eka & N�emeti (1978), `A generalized completeness of Horn clause logic

seen as a programming language', Acta Cybernetica 4, 3{10.

Apt, K. (1990), Logic programming, in J. Van Leeuwen, ed., `Handbook of

Theoretical Computer Science', Vol. B: Formal Methods and Semantics,

Elsevier Science, Amsterdam, chapter 10, pp. 493{574.

Apt, K. & Blair, H. (1988a), Arithmetic classi�cation of perfect models of

strati�ed programs, in R. Kowalski & K. Bouwen, eds, `Proceedings

of the Fifth Joint International Conference and Symposium on Logic

Programming (JICSLP-88)', The MIT Press, pp. 766{779.

Apt, K. & Blair, H. (1988b), Towards a theory of declarative knowledge,

in J. Minker, ed., `Foundations of Deductive Databases and Logic Pro-

gramming', Morgan Kaufmann, pp. 89{148.

Barwise, J. (1975), Admissible Sets and Structures, Springer Verlag.

Beeri, C., Naqvi, S., Schmueli, O. & Tsur, S. (1991), `Set constructors in a

logic database language', Journal of Logic Programming 10, 181{232.

Benedikt, M. & Libkin, L. (1997), Languages for relational databases over

interpreted structures, in `PODS 1997. Proceedings of the Sixteenth

ACM-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems', Tucson, Arizona, pp. 87{98.

Berman, L. (1977), Pecise bounds for Presburger arithmetic and the reals

with addition: preliminary report, in `International Conference of Foun-

dations of Computer Science', pp. 95{99.

Berman, L. (1980), `The complexity of logical theories', Theoretical Computer

Science 11, 71{77.

42

Blair, H., Marek, V. & Schlipf, J. (1995), `The expressiveness of locally

strati�ed programs', Annals of Mathematics and Arti�cial Intelligence

15(3/4), 209{229.

Bruss, A. R. & Meyer, A. R. (1980), `On time-space classes and their relation

to the theory of real addition', Theoretical Computer Science 11, 59{69.

Chandra, A., Kozen, D. & Stockmeyer, L. (1981), `Alternation', Journal of

the Association for Computing Machinery 28, 114{133.

Clark, K. (1978), Negation as failure, in H. Gallaire & J. Minker, eds, `Logic

and Data Base', Plenum Press, New York, pp. 293{322.

Dantsin, E. (1986), The complexity of Prolog without loops (in Russian), in

`Proceedings of the 4th Soviet Conference \Application of the Mathe-

matical Logic Methods"', Vol. 2, Tallinn, pp. 112{113.

Dantsin, E., Eiter, T., Gottlob, G. & Voronkov, A. (1997), Complexity and

expressive power of logic programming, in `Proceedings Twelfth An-

nual IEEE Conference on Computational Complexity', Ulm, Germany,

pp. 82{101.

Dantsin, E. & Voronkov, A. (1997a), Bag and set uni�cation, UPMAIL Tech-

nical Report 150, Uppsala University, Computing Science Department.

Dantsin, E. & Voronkov, A. (1997b), Complexity of query answering in logic

databases with complex values, in S. Adian & A. Nerode, eds, `Log-

ical Foundations of Computer Science. 4th International Symposium,

LFCS'97', Vol. 1234 of Lecture Notes in Computer Science, Yaroslavl,

Russia, pp. 56{66.

Dantsin, E. & Voronkov, A. (1997c), Complexity of query answering in logic

databases with complex data, UPMAIL Technical Report 149, Uppsala

University, Computing Science Department.

Dovier, A., Omodeo, E., Pontelli, E. & Rossi, G. (1996), `flogg: A language

for programming in logic with �nite sets', Journal of Logic Programming

28(1), 1{44.

Falashi, M., Levi, G., Martelli, M. & Palamidessi, C. (1989), `Declarative

modeling of the operational behavior of logic languages', Theoretical

Computer Science 69(3), 289{318.

43

Ferrante, J. & Racko�, C. W. (1979), The computational complexity of logical

theories, Vol. 718 of Lecture Notes in Mathematics, Springer-Verlag.

Gallier, J. & Raatz, S. (1989), `Extending SLD-resolution to equational Horn

clauses using E-uni�cation', Journal of Logic Programming 6(3), 3{44.

Henkin, L. (1963), `A theory of propositional types', Fundamenta Mathemat-

icae 52, 323{344.

Hodges, W. (1993), Model theory, Cambridge University Press.

Immerman, N. (1986), `Relational queries computable in polynomial time',

Information and Control 68, 86{104.

Immerman, N. (1987), `Languages that capture complexity classes', SIAM

Journal of Computing 16, 760{778.

Johnson, D. S. (1990), A catalog of complexity classes, in J. van Leeuwen, ed.,

`Handbook of Theoretical Computer Science', Vol. A, Elsevier Science,

chapter 8, pp. 67{161.

Kanellakis, P., Kuper, G. & Revesz, P. (1995), `Constraint query languages',

Journal of Computer and System Sciences 51, 26{52.

Kunen, K. (1987a), Answer sets and negation as failure, in `4th International

Conference on Logic Programming', Vol. 1, The MIT Press, pp. 219{228.

Kunen, K. (1987b), `Negation in logic programming', Journal of Logic Pro-

gramming 4, 289{308.

Kuper, G. (1990), `Logic programming with sets', Journal of Computer and

System Sciences 41, 44{64.

Lifschitz, V. (1988), On the declarative semantics of logic programs with

negation, in J. Minker, ed., `Deductive Databases and Logic Program-

ming', Morgan Kaufmann.

Lloyd, J. (1987), Foundations of Logic Programming (2nd edition), Springer

Verlag.

Maher, M. (1988), Complete axiomatizations of the algebras of �nite, rational

and in�nite trees, in `Proc. IEEE Conference on Logic in Computer

Science (LICS)', pp. 348{357.

44

Maher, M. (1992), A CLP view of logic programming, in `Proc. Conf. on Al-

gebraic and Logic Programming', Vol. 632 of Lecture Notes in Computer

Science, pp. 364{383.

Maher, M. (1993), A logic programming view of CLP, in `International Con-

ference on Logic Programming', pp. 737{753.

Ma

�

lcev, A. (1961a), Axiomatizable classes of locally free algebras of various

types, in B. Wells III, ed., `The Metamathematics of Algebraic Systems.

Anatoli�� Ivanovi�c Ma

�

lcev. Collected Papers: 1936{1967', Vol. 66, North

Holland, chapter 23, pp. 262{281.

Ma

�

lcev, A. (1961b), `On the elementary theories of locally free universal

algebras', Soviet Mathematical Doklady 2(3), 768{771.

Meyer, A. (1974), The inherent computational complexity of theories of or-

dered sets, in `International Congress of Mathematicians', pp. 477{482.

Papadimitriou, C. (1994), Computational Complexity, Addison-Wesley.

Papadimitriou, C. & Yannakakis, M. (1997), On the complexity of database

queries, in `ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems', pp. 12{19.

Przymusinski (1988), On the declarative semantics of deductive databases

and logic programs, in J. Minker, ed., `Foundations of Deductive Data-

bases and Logic Programming', Morgan Kaufmann, pp. 193{216.

Rabin, M. O. (1964), A simple method for undecidability proofs and some

applications, in Y. Bar-Hillel, ed., `Proc. Intern. Congress on Logic,

Methodology and Philosophy of Science', Studies in Logic and the Foun-

dations of Mathematics, pp. 58{68.

Schlipf, J. (1995), `Complexity and undecidability results in logic program-

ming', Annals of Mathematics and Arti�cial Intelligence 15(3/4), 257{

288.

Schmueli, O., Tsur, S. & Zaniolo, C. (1992), `Compilation of set terms in the

logic data language (LDL)', Journal of Logic Programming 12, 89{119.

Stockmeyer, L. J. (1977), `The polynomial-time hierarchy', Theoretical Com-

puter Science 3, 1{22.

45

Stockmeyer, L. & Meyer, A. (1973), Word problems requiring exponential

time: Preliminary report, in `Proc. ACM STOC', pp. 1{9.

T�arnlund, S.-A. (1977), `Horn clause computability', BIT 17, 215{216.

Van Gelder, A. (1988), Negation as failure using tight derivations for gen-

eral logic programs, in J. Minker, ed., `Deductive Databases and Logic

Programming', Morgan Kaufmann, pp. 149{177.

Vardi, M. (1982), The complexity of relational query languages, in `Proc.

14th ACM STOC', San Francisco, pp. 137{146.

Vardi, M. (1995), On the complexity of bounded-variable queries, in `ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems', pp. 266{276.

Vaught, R. L. (1960), `Sentences true in all constructive models', Journal of

Symbolic Logic 25(1), 39{53.

Volger, H. (1983a), `A new hierarchy of elementary recursive decision prob-

lems', Methods of Operations Research 45, 509{519.

Volger, H. (1983b), `Turing machines with linear alternation, theories of

bounded concatenation and the decision problem of �rst order theories

(Note)', Theoretical Computer Science 23, 333{337.

Vorobyov, S. (1996), An improved lower bound for the elementary theo-

ries of trees, in M. McRobbie & J. Slaney, eds, `Automated Deduction

| CADE-13', Vol. 1104 of Lecture Notes in Computer Science, New

Brunswick, NJ, USA, pp. 275{287.

Vorobyov, S. (1997), The \hardest" natural decidable theory, in `Proc. IEEE

Conference on Logic in Computer Science (LICS)', pp. 294{305.

46

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories

of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D.A. Basin, S. Matthews, L. Vigan�o Natural Deduction for Non-Classical Logics

MPI-I-96-2-005 A. Nonnengart Auxiliary Modal Operators and the

Characterization of Modal Frames

MPI-I-96-2-004 G. Struth Non-Symmetric Rewriting

MPI-I-96-2-003 H. Baumeister Using Algebraic Speci�cation Languages for

Model-Oriented Speci�cations

MPI-I-96-2-002 D.A. Basin, S. Matthews, L. Vigan�o Labelled Propositional Modal Logics: Theory and

Practice

MPI-I-96-2-001 H. Ganzinger, U. Waldmann Theorem Proving in Cancellative Abelian Monoids

MPI-I-95-2-011 P. Barth, A. Bockmayr Modelling Mixed-Integer Optimisation Problems in

Constraint Logic Programming

