
'$�

�

'$

�

��

I N F O R M A T I K

 	

� �

A Unifying Framework for Integer

and Finite Domain Constraint

Programming

Alexander Bockmayr Thomas Kasper

MPI{I{97{2{008 August 1997

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany

Authors' Addresses

Alexander Bockmayr

Max-Planck-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�ucken, Germany

bockmayr@mpi-sb.mpg.de

Thomas Kasper

Max-Planck-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�ucken, Germany

kasper@mpi-sb.mpg.de

Publication Notes

The present report has been submitted for publication elsewhere and will be

copyrighted if accepted.

Acknowledgements

This work was partially supported by the ESPRIT Working Group 22457

(CCL II) and the Human Capital and Mobility network CONSOLE.

Abstract

We present a unifying framework for integer linear programming and �nite

domain constraint programming, which is based on a distinction of primi-

tive and non-primitive constraints and a general notion of branch-and-infer.

We compare the two approaches with respect to their modeling and solving

capabilities. We introduce symbolic constraint abstractions into integer pro-

gramming. Finally, we discuss possible combinations of the two approaches.

Keywords

Integer programming, constraint programming, combinatorial optimization,

modeling

1 Introduction

Combinatorial problems are ubiquitous in many real world applications like scheduling,

planning, transportation, assignment, and many others. Besides special purpose algo-

rithms to compute exact or approximate solutions, there exist also some general approaches

to handle these problems. We are interested here in two such approaches:

� Integer linear programming (ILP)

� Finite domain constraint programming (CP(FD))

Integer linear programming has a long tradition in operations research and has produced

a large number of impressive results during the last 40 years, see for example [28, 24].

Finite domain constraint programming is a promising new approach for solving complex

combinatorial problems, which combines recent progress in programming language de-

sign, like constraint logic programming [23] or concurrent constraint programming [30],

with e�cient constraint solving techniques from mathematics, arti�cial intelligence, and

operations research, see for example [37, 38].

The aim of this paper is to develop a unifying framework for integer linear programming

and �nite domain constraint programming. On the one hand, we want to clarify the

relationship between these two approaches and identify (some of) their strengths and

weaknesses. On the other hand, we want to show how each of the two approaches may

pro�t from the other and indicate possible ways towards their integration.

Practical problem solving usually involves two steps [31, 39, 40]:

� Model building

� Model solving

In the �rst step, we develop a model of the problem in some formal language. In the second

step, we solve this model on a computing system, possibly after translating it into a more

machine-oriented form. In order to compare integer linear programming and �nite domain

constraint programming, we ask two fundamental questions, closely related to each other:

� How expressive is the language that we can use to build a model?

(Declarative view)

� How e�cient are the algorithms that support this language when the model is solved?

(Operational view)

Very roughly, we can say that �nite domain constraint programming o�ers the more power-

ful language to express combinatorial problems, while integer linear programming supports

only a rather small language, for which however very e�cient algorithms are available.

The overall performance of the two approaches, i.e. the tradeo� between expressivity and

e�ciency, is of course problem dependent.

1

The organization of this paper is as follows. We start in Sect. 2 by comparing integer

linear programming and �nite domain constraint programming from the declarative point

of view. We formally de�ne the underlying constraint languages in the framework of �rst-

order predicate logic and give a declarative logical semantics in the standard model of

rational numbers. In Sect. 3, we compare the two approaches from the operational point

of view. To describe the operational semantics, we develop a unifying framework, branch-

and-infer, and show how this subsumes the two approaches. In the remaining sections, we

use this framework to extend ILP with concepts from CP(FD) and vice versa. In Sect. 4,

we show how the symbolic constraint concept of constraint programming might enrich

integer programming. In Sect. 5, we discuss how linear programming might enhance �nite

domain constraint solving and indicate possible ways towards an integration of the two

approaches.

2 Modeling combinatorial problems in ILP and CP(FD)

When we solve a combinatorial problem on a computer, we �rst need a language to formu-

late the problem. For example, this can be a modeling language from mathematical pro-

gramming, like ampl or gams [31], or a high-level programming language from computer

science, like chip [18], ilog solver [29], or oz [32]. In order to clarify the relationship

of the constraint languages underlying ILP and CP(FD), we propose to use �rst-order

predicate logic [9], which gives us a standard syntax and a very well-understood semantics

to compare the two approaches. There exist also higher-order notions in �nite domain

constraint programming, but we do not consider these in the present paper.

In �rst-order predicate logic, a language is de�ned by a signature � = (F; P), where F

is a set of function symbols and P is a set of predicate symbols with given arities. Function

symbols of arity 0 correspond to constants. Furthermore, we need a countably in�nite set

V = fx; y; z; x

1

; x

2

; : : : g of variable symbols. A term t is built from function and variable

symbols in the usual way, i.e. a variable or a constant symbol is a term, and if f is an n-ary

function symbol and t

1

; : : : ; t

n

; n � 1; are terms, then f(t

1

; : : : ; t

n

) is a term. The set of

all terms over F and V will be denoted by T (F; V). We always assume that F contains

the function symbols 0; 1;+;�; �; = for the standard arithmetical operations and the list

constructors [] and [�j�]. Here, [] stands for the empty list, and [hjt] for a list with head

element h and tail t. [a

1

; : : : ; a

n

] is an abbreviation for the list of elements a

1

; : : : ; a

n

.

De�nition 2.1

A constraint is a logical formula of the form p(t

1

; : : : ; t

n

), with an n-ary predicate symbol

p 2 P and terms t

1

; : : : ; t

n

2 T (F; V). An arithmetic constraint is of the form t

1

� t

2

,

with t

1

; t

2

2 T (F; V) and � 2 f=;�;�; 6=; <;>g. An integrality constraint is of the form

integral([x

1

; : : : ; x

n

]), with variables x

1

; : : : ; x

n

2 V . All other constraints are called

symbolic. The constraint language associated with a signature � is the union

L = A [I [S

of the set A of all arithmetic, the set I of all integrality, and the set S of all symbolic

2

constraints. For a constraint set C � L, we denote by V ar(C) the set of all variables

occurring in some constraint of C.

The constraint language of ILP. Let �

ILP

= (F

ILP

; P

ILP

) be de�ned by

F

ILP

= f0; 1;+;�; �; =; []; [�j�]g and P

ILP

= f�;�;=; integralg:

The constraint language L

ILP

of integer linear programming is given by

� A

ILP

= f

P

i2I

a

i

x

i

� b j a

i

; b 2 Q ; x

i

2 V g [f

P

i2I

a

i

x

i

= b j a

i

; b 2 Q ; x

i

2 V g

� I

ILP

= fintegral([x

1

; : : : ; x

n

]) j x

i

2 V g

� S

ILP

= ;.

This means that we have only linear equations and inequalities, and the integral con-

straint. There are no symbolic constraints.

The constraint language of CP(FD). Consider the signature �

FD

= (F

FD

; P

FD

),

where

F

FD

= f0; 1;+;�; �; =; []; [�j�]g and P

FD

= f�;�;=; 6=; >;<; integral; alldifferentg:

A mini constraint language L

FD

for �nite domain constraint programming is given by

� A

FD

= f

P

i2I

a

i

x

i

� b; x

i

� x

j

j a

i

; b 2 Q ; x

i

; x

j

2 V; � 2 f�;�;=; 6=; >;<gg

� I

FD

= fintegral([x

1

; : : : ; x

n

]) j x

i

2 V g

� S

FD

= falldifferent([x

1

; : : : ; x

n

]) j x

i

2 V g.

The main di�erence to L

ILP

is the presence of symbolic constraints. The mini constraint

language L

FD

contains only one symbolic constraint, alldifferent([x

1

; : : : ; x

n

]), which

intuitively says that the variables x

1

; : : : ; x

n

should take di�erent values. In traditional

integer programming, a quadratic number of constraints would be needed to express this

condition. More realistic �nite domain constraint languages will contain various other sym-

bolic constraints. For example, the constraint logic programming language chip provides

a number of so-called global constraints, e.g. cumulative, to express cumulative resource

limits over a time period (cf. Example 2.4), diffn, for non-overlapping of n-dimensional

rectangles, cycle, for the number of cycles in a directed graph, or among and sequence,

for various constraints on sequences of �nite domain variables (see [1, 11, 10] for more

details).

After introducing the syntax, we next give the declarative semantics of our formulas.

This is done by interpreting all symbols over the rational numbers. An n-ary function

symbol f 2 F corresponds to a function f : Q

n

! Q , an n-ary predicate symbol p 2 P

to a relation p � Q

n

. Variables are interpreted using an assignment � : V �! Q , which

3

can be naturally extended to an interpretation of terms � : T (F; V) ! Q . We say that a

constraint p(t

1

; : : : ; t

n

) is valid or true under the assignment �, if p(�(t

1

); : : : ; �(t

n

)) holds

in Q

n

. In particular, an arithmetic constraint t

1

�t

2

is true (under �) if �(t

1

)��(t

2

) holds in

the rational numbers, where � 2 f=;�;�; 6=; <;>g. The constraint integral([x

1

; : : : ; x

n

])

holds if �(x

1

); : : : ; �(x

n

) are integer numbers. The constraint alldifferent([x

1

; : : : ; x

n

])

holds if �(x

i

) 6= �(x

j

), for all 1 � i < j � n. A constraint set C is satis�able or feasible

if there exists an assignment � : V ! Q such that all constraints in C become true

under �, otherwise it is called infeasible. If V ar(C) = fx

1

; : : : ; x

n

g, we call the vector

(�(x

1

); : : : ; �(x

n

)) 2 Q

n

a solution of C. The set of all solutions will be denoted by

sol(C). Given two constraint sets C;C

0

we say that C entails C

0

, and write C ! C

0

, if all

assignments satisfying C also satisfy C

0

.

De�nition 2.2

Let L be a constraint language. A combinatorial problem is given by a �nite set C � L

of constraints such that for each variable x 2 Var(C) the set C contains an integrality

constraint integral([: : : ; x; : : :]) and a lower and upper bound constraint x � l; x � u,

with l; u 2 Z. Logically, a combinatorial problem C corresponds to the conjunction of the

constraints in C.

Although the constraints are interpreted over the rational numbers, the integrality and

bound constraints guarantee that the set of values that a variable can take is always a

�nite domain, i.e. a �nite set of integer numbers.

De�nition 2.3

Let C be a combinatorial problem and f : Q

n

�! Q a function. We call a problem

optff(x) j x 2 sol(C)g; with opt 2 fmax;ming

a combinatorial optimization problem. A solution x 2 sol(C) is optimal if

f(x) � f(y); for all y 2 sol(C);

with � 2 f�;�g depending on whether we are in a maximization or in a minimization con-

text. For the rest of the paper, we will assume without loss of generality that combinatorial

optimization problems are maximization problems.

Example 2.4

We illustrate the two constraint languages on a small example. The problem is to pack

6 di�erent chemicals into bins, such that the number of bins becomes minimal. The

chemicals arise in the following quantities:

Chemicals E

1

E

2

E

3

E

4

E

5

E

6

Quantities 3 2 1 5 3 4

All bins have the capacity 5. For reasons of security, the chemicals E

1

; E

2

and E

3

have to

be packed into di�erent bins. Since we have 6 chemicals that arise in quantities less than

or equal to 5, we need at most 6 bins.

In our CP(FD) model we use the alldifferent constraint and a simple form of the

cumulative constraint [1]:

4

cumulative(Start, Duration, Resource, Limit, End)

� Start is a list [S

1

; : : : ; S

n

] of variables or natural numbers.

� Duration is a list [D

1

; : : : ;D

n

] of variables or natural numbers.

� Resource is a list [R

1

; : : : ; R

n

] of variables or natural numbers.

� Limit is a natural number.

� End is a variable or natural number.

The main application of this constraint is in scheduling, where the variables S

i

denote

the starting time, D

i

the duration, and R

i

the resource consumption of a task i, for

i = 1; : : : ; n. End denotes the total end of the schedule. The constraint expresses that at

any time point t the total number of resources required by the tasks does not exceed the

given limit, i.e.

P

fijS

i

�t�S

i

+D

i

�1g

R

i

� Limit.

For bin packing, the cumulative constraint can be used in the following way. We

introduce for each chemical a variable E

i

that can take a value from f1; : : : ; 6g, which

corresponds to the bin it is assigned to. For the number of bins we use a further variable

B that can also take a value between 1 and 6. Representing the bin packing is now done

as follows. We use the variables E

1

; : : : ; E

6

as the starting time variables. Each time

point represents a bin. Thus assigning E

1

the value 2 means to pack E

1

into the second

bin. A duration of 1 for all the E

i

ensures that there will be no overlap between di�erent

bins. The quantity of the di�erent chemicals is represented by the resources, and the bin

capacity by the total resource limit, which we choose to be 5. Viewed as a schedule, the

minimal completion time is exactly the minimal number of bins required. The security

requirement is modeled by an alldifferent constraint on the variables E

1

; E

2

and E

3

.

min B

s.t. cumulative([E

1

; E

2

; E

3

; E

4

; E

5

; E

6

]; [1; 1; 1; 1; 1; 1]; [3; 2; 1; 5; 3; 4]; 5; B);

alldifferent([E

1

; E

2

; E

3

]);

1 � E

i

� 6; i 2 f1; : : : ; 6g

1 � B � 6;

integral([E

1

; E

2

; E

3

; E

4

; E

5

; E

6

; B]):

Note that the estimate on the number of bins does not a�ect the size of the model if we

use a cumulative constraint. It is only required for the upper bound of the variable B.

In integer programming, the estimate on the number of bins has much more inuence

on the size of the model. Here we use 0-1 variables x

ij

indicating that chemical i is packed

to bin j, and variables y

j

indicating that bin j is used in the packing.

min

P

6

j=1

y

j

s.t.

P

6

j=1

x

ij

= 1; i 2 f1; : : : ; 6g

3x

1j

+ 2x

2j

+ 1x

3j

+ 5x

4j

+ 3x

5j

+ 4x

6j

� 5y

j

; j 2 f1; : : : ; 6g

x

1j

+ x

2j

+ x

3j

� 1; j 2 f1; : : : ; 6g

0 � x

ij

� 1; i 2 f1; : : : ; 6g; j 2 f1; : : : ; 6g

0 � y

j

� 1; j 2 f1; : : : ; 6g

integral([x

11

; : : : ; x

66

; y

1

; : : : ; y

6

]):

5

While the integer model uses 42 0-1 variables and 18 arithmetic constraints (without

bounds and integrality constraint), the CP(FD) model needs only 7 FD variables and 2

symbolic constraints and thus is much smaller. This is a general observation. Due to the

symbolic constraints, CP(FD) models are often much more compact than corresponding

ILP models.

3 Solving combinatorial problems by branch-and-infer

After having compared the constraint languages of ILP and CP(FD) from the declarative

point of view, we now come to their operational semantics. We develop a general frame-

work, branch-and-infer, that uni�es the classical branch-and-cut approach from integer

linear programming [28] with the usual operational semantics of �nite domain constraint

programming [36].

3.1 Primitive and non-primitive constraints

We start from a common distinction in �nite domain constraint programming [36] and split

the constraint language L into a set Prim(L) of primitive constraints and a set NPrim(L)

of non-primitive constraints, such that

L = Prim(L) [NPrim(L) and Prim(L) \NPrim(L) = ;:

Intuitively, the primitive constraints are those constraints that can be easily solved. In

other words, we always assume that for a set of primitive constraints there exist e�cient,

i.e. at least polynomial, methods for satis�ability, entailment, and optimization. The non-

primitive constraints are the di�cult constraints, for which such methods do not exist (in

conjunction with a set of primitive constraints). Adding non-primitive constraints to a

problem makes it hard to solve.

Primitive constraints in ILP. Given the constraint language L

ILP

of integer linear

programming, we de�ne

� Prim(L

ILP

) = A

ILP

and

� NPrim(L

ILP

) = I.

This means that the primitive constraints are linear equations and inequalities over Q ,

while the only non-primitive constraint is integrality.

Primitive constraints in CP(FD). For the mini constraint language L

FD

of �nite

domain constraint programming, we may choose

� Prim(L

FD

) = fx � u; x � l; x 6= v; x = y; j x; y 2 V; l; u; v 2 Zg [I

� NPrim(L

FD

) = L

FD

n Prim(L

FD

).

6

On the one hand, we have only very simple equations and inequalities, where the left-

hand side and the right-hand side is either a variable or a constant. On the other hand,

we also admit certain disequalities. Moreover, integral([x

1

; : : : ; x

n

]) is also primitive

now. Therefore, in �nite domain constraint programming, the primitive constraints of a

combinatorial problem will be solved over the integers and not over the rationals.

From the viewpoint of integer programming, the set of primitive constraints Prim(C) of

a combinatorial problem C de�nes a relaxation of the problem, i.e. a constraint set rel(C)

such that C ! rel(C). We say that a relaxation rel(C) is stronger than a relaxation

rel

0

(C), if rel(C) ! rel

0

(C), and strictly stronger, if moreover rel

0

(C) 6! rel(C). Primi-

tive constraints are in general not powerful enough to express a combinatorial problem.

This can be caused by their limited expressivity or, even if their expressivity is su�cient,

by the fact that a representation of the problem in terms of primitive constraints is not

known. In �nite domain constraint programming, the primitive constraints are not ex-

pressive enough to describe, e.g., the set f(1; 0); (0; 1); (1; 1); (2; 1); (1; 2)g � Q

2

or the set

f(0; 2); (1; 1); (2; 0)g � Q

2

(see Fig. 1). In integer linear programming, it is theoretically

always possible to describe the convex hull of the integer solution set by a system of

facet-de�ning inequalities, but for most practical problems, such a representation is not

known.

0 1 2
0

1

2

0 1 2
0

1

2

Figure 1: Geometric illustration of the point sets

3.2 Inferring primitive from non-primitive constraints

In general, a combinatorial problem contains both primitive and non-primitive constraints.

Since an e�cient constraint solver is available only for the primitive constraints, the basic

idea is to reduce non-primitive constraints to primitive ones. However, as we have seen

before, a complete reduction is in general not possible, i.e. we cannot just replace a non-

primitive constraint by an equivalent set of primitive constraints. The only thing that

we can do, is a partial reduction, i.e. we can infer from the given primitive constraints

and the non-primitive constraint new primitive constraints. In the ideal case, we can

derive su�ciently many new primitive constraints so that by solving the strengthened set

of primitive constraints, we obtain a solution of the original problem.

This has two consequences. The �rst one is that each non-primitive constraint does

not only have a declarative semantics but also an operational semantics, determining how

primitive constraints can be inferred during the solution process. The second consequence

is that the inference process can stop, but still a solution of the primitive constraints is

not feasible for the whole problem. Thus we need a second technique in order to get a

7

complete solver. This is branching, which will be discussed in Section 3.3.

We now describe the computational setup for handling the inference process [30, 33].

It consists of a constraint store that contains the current set of primitive constraints and

a number of inference agents that are connected to the store, one for each non-primitive

constraint (see Fig. 2). We require that the constraint store, i.e. the set of primitive

Constraint Store

Inference Agent nInference Agent 1 . . .

Figure 2: Architecture for constraint-based solving

constraints, is always satis�able and that we can e�ciently compute a feasible solution.

For each non-primitive constraint c, the corresponding inference agent tries to infer new

primitive constraints p that follow from c and the constraint store.

To describe our branch-and-infer approach in a formal way, we will use transition rules

of the form

:

hP; Si

hP

0

; S

0

i

if Cond

saying that from a computation state hP; Si we may proceed to a computation state hP

0

; S

0

i

if the conditions in Cond are satis�ed. Here P = fC

1

; : : : ; C

m

g (resp. P

0

) denotes a set of

combinatorial (sub-)problems C

1

; : : : ; C

m

, which logically corresponds to the disjunction

C

1

_ � � � _ C

m

. The set S (resp. S

0

) denotes a set of feasible solutions. For any set T

and any element t, we will write t] T instead of ftg [T . When solving a combinatorial

problem C, the initial state is hfCg; ;i, and the �nal state is h;; fSgi. If S = ;, then the

problem is infeasible. Transition rules are a standard tool in computational logic. They

allow us to separate the logic of the constraint solving process from the control, i.e. the

actual use of the rules, which in general will depend on the implementation.

The operational behaviour of the non-primitive constraints is formalized by the rule

bi infer:

h(c] C)] P; Si

h(p] (c]C))] P; Si

if

c is non-primitive;

p is primitive;

Prim(C) ^ c! p;

Prim(C) 6! p:

We say the inference process becomes stable if the operational semantics of all the

inference agents connected to the store cannot infer more primitive constraints in order to

strengthen the relaxation.

Communication through the constraint store. If more than one non-primitive con-

straint is present, then the di�erent inference agents can communicate with each other

8

through the constraint store, i.e. the set of primitive constraints. This communication

comes for free in the constraint-based computation model because each non-primitive con-

straint can use all the primitive constraints in the store as input for its inference algorithm.

In general, communication can happen by exchanging primitive constraints between the

di�erent inference algorithms, but also by extracting some global information reecting

the interaction of all the primitive constraints in the store, e.g., by optimizing some objec-

tive function. Due to the communication through the store, we can implement inference

algorithms independently from each other and combine them freely.

Inference in ILP. Consider the constraint language L

ILP

of integer linear programming

with the primitive and non-primitive constraints de�ned before. Given a combinatorial

problem C, the relaxation obtained by the primitive constraints in C is the standard

linear programming relaxation of C. Inferring a new primitive constraint corresponds to

the generation of a cutting plane that cuts o� some part of this relaxation. Cutting plane

generation has a long history in integer programming. Two fundamental principles for

cutting plane generation of general integer programs are the Chv�atal-Gomory method and

the disjunctive method [28, 3, 4].

Inference in FD. In �nite domain constraint programming, the basic inference principle

is domain reduction. The corresponding local consistency techniques have been studied

in arti�cial intelligence for a long time [35]. For each non-primitive constraint, so-called

propagation algorithms try to remove inconsistent values from the domain of the variables

occurring in the constraint. From a logical point of view, this corresponds to the generation

of a new primitive constraint of the form x � u; x � l, which is called bound reasoning,

or x 6= v, which is called domain reasoning. Whenever the domain of a variable changes,

all propagation algorithms of the constraints in which this variable occurs may become

active and further reduce the domains of their variables.

In general, on the class of linear equations and inequalities, the propagation algorithms

of �nite domain constraint programming cannot compete with linear programming tech-

niques. The reason is that the arithmetic constraints are primitive in ILP, whereas they

are non-primitive in CP(FD). This means that in CP(FD) each arithmetic constraint is

handled individually, while in ILP all the arithmetic constraints are solved together.

3.3 Branching

As we have mentioned before, the reduction of non-primitive constraints to primitive con-

straints is in general not complete, either because the primitive constraints are not expres-

sive enough or because the complete reduction is computationally not feasible. Therefore,

we need a second technique that enforces further strengthening of the relaxation if the

inference process on a problem has become stable.

This can be achieved by splitting the problem into subproblems and to process each

subproblem independently of the others. Subproblems are obtained by setting up branch-

ing constraints and adding to each of them one copy of the problem under consideration.

9

If the branching constraints are chosen in the right way, the relaxation of a subproblem

will be strictly stronger than the relaxation of the father problem. Therefore, the inference

agents associated with the non-primitive constraints may become active again and derive

new primitive constraints.

The branching operation is described by the rule

bi branch:

hC] P; Si

hfc

1

] C; : : : ; c

k

]Cg [P; Si

if

C � C ^ (

W

k

i=1

c

i

)

c

i

primitive

Prim(C) 6! c

i

; i = 1; : : : ; k:

The constraints c

1

; : : : ; c

k

are called branching constraints, the problems fc

1

]C; : : : ; c

k

]Cg

are the new subproblems. Logically, C is equivalent to the disjunction (C^c

1

)_: : :_(C^c

k

),

which we denote by C � C ^ (

W

k

i=1

c

i

). In many applications, we will have a binary

branching of the form c

1

� c; c

2

� :c. By repeated application of the branching rule we

build up a search tree. Eventually, we will get a complete enumeration of all the solutions

in sol(C). However, this is computationally feasible only for problems with a very small

number of variables.

In practice, the division into subproblems has to be avoided as much as possible.

Splitting can be avoided if we know that the (sub-)problem is infeasible. Since deciding

the satis�ability of the whole problem is computationally not feasible, we test feasibility

only on the primitive constraints, i.e. the relaxation. The next rule describes pruning by

the infeasibility of the relaxation, which is denoted by ?.

bi clash:

hC] P; Si

hP; Si

if Prim(C)! ?

The relaxation plays a crucial role in the branch-and-infer approach. The primitive

constraints do not only allow for the communication between di�erent non-primitive con-

straints, they also link the branch and the infer component. Applying the rule bi infer

strengthens the relaxation and thus it becomes more likely that the rule bi clash can

be applied. On the other hand, applying bi branch imposes new primitive constraints

on the subproblems that may induce further applications of bi infer. Thus, branching

and inference work hand in hand in order to solve the problem more e�ciently. This will

become even more important when solving optimization problems by branch-and-relax

resp. branch-and-cut (see Sect. 3.3.2).

The transition rules bi infer, bi branch and bi clash are the basic rules in our

branch-and-infer framework. What is still missing are rules that describe when a solution

has been obtained. This depends on the type of problem to be solved, i.e. whether we

want to �nd feasible or optimal solutions.

3.3.1 Solving combinatorial problems

Solving a combinatorial problem means deciding whether the problem is satis�able and

if so computing one or more feasible solutions. We will hide the concrete method of

10

computing feasible solutions from the relaxation and the way they are represented in a

function extract. This function has to be chosen properly according to whether one

wants to compute only one solution or more. For example, if one wants to compute all

solutions, one can return the relaxation in a solved form if all non-primitive constraints

are entailed. If one is interested in only one solution, then extract can give only one

variable assignment. The function extract can be used to derive a feasible solution of

the problem even when the non-primitive constraints have not been completely reduced

to primitive constraints. All these cases are captured by the rule

bi sol:

hC] P; Si

hP; S [S

�

i

if

S

�

= extract(Prim(C))

S

�

! C:

If one wants to compute more or all solutions, then repeated application of this rule to the

di�erent subproblems will collect the di�erent solution families. Thus the task of �nding

more solutions is left to the control strategy for the application of the di�erent transition

rules.

One might think that integer linear programming cannot be used for satis�ability since

it is usually applied in an optimization context. But notice that on the one hand we can

simply take an empty objective function. Then linear programming may give us a feasible

solution of the relaxation. On the other hand, the user has often an intuition on where

feasible solutions may be. Therefore he might set up his own objective function, which

can help to direct the search into the neighborhood of a feasible solution. This leads us

to optimization problems, which we consider now.

3.3.2 Solving combinatorial optimization problems

In many applications, one would like to compute a feasible solution of a constraint set that

is optimal with respect to some objective function. Consider a maximization problem

maxff(x) j x 2 sol(C)g:

Note that feasible solutions of sol(C) yield lower bounds for the maximum value of f . To

solve optimization problems, there exist two general methods, branch-and-bound, as it is

used in �nite domain constraint programming, and branch-and-relax resp. branch-and-cut,

which are standard techniques in integer linear programming. Note that we follow here

the terminology of constraint programming, where branch-and-relax corresponds to what

is usually called branch-and-bound in integer linear programming. We now formalize the

di�erent approaches in our framework.

Branch-and-Bound. The branch-and-bound method is characterized by using only

lower bounds to �nd an optimal solution. Thus we solve a sequence of satis�ability prob-

lems leading successively to better solutions. More precisely, we repeatedly compute a

feasible solution s

�

2 sol(C) and then add the constraint f(x) � f(s

�

) + 1 to all the

subproblems of our search tree, which restricts the set of feasible solutions to those that

11

yield better objective function values. The constraint f(x) � f(s

�

) + 1 is called lower

bounding constraint. If after adding a lower bounding constraint, all the subproblems be-

come infeasible, then the last feasible solution is optimal. We require that f takes always

integral values if x is integral since otherwise feasible solutions may be lost and the global

optimum cannot be found.

To describe the lower bounding procedure, we extend the inference system consisting

of the rules bi branch, bi clash by the rule

bi climb:

hfC;C

1

; : : : ; C

n

g; fsgi

hfc]C; c] C

1

; : : : ; c]C

n

g; fs

�

gi

if

s

�

= extract(Prim(C))

f(s

�

) > f(s)

c � (f(x) � f(s

�

) + 1):

Here, the function extract is again responsible for computing a feasible solution of

the relaxation. If no feasible solution is known, we assume f(s) = �1.

Branch-and-Relax. In contrast to branch-and-bound, which uses only lower bounds,

branch-and-relax works with two bounds. In addition to the global lower bound glb ob-

tained from a feasible solution, we compute for each subproblem a local upper bound

lub. For example, this be can be done by optimizing the objective function subject to

the relaxation of a subproblem, i.e. the primitive constraints in the constraint store. We

describe branch-and-relax again by an extension of the transition system given by the

rules bi clash, bi branch. The local upper bounds allow us to introduce a new rule to

prune the search tree. If a local upper bound is smaller than the best known global lower

bound, then the corresponding subproblem cannot lead to a better solution and therefore

can be discarded.

bi bound:

hC] P; fsgi

hP; fsgi

if maxff(x) j x 2 sol(C)g � lub � f(s)

Furthermore, when computing a local upper bound, we may �nd an optimal solution

of a subproblem that yields a better feasible solution of the whole problem.

bi opt:

hC] P; fsgi

hP; fs

�

gi

if

maxff(x) j x 2 sol(Prim(C))g = f(s

�

)

s

�

2 sol(C)

f(s

�

) > f(s)

Branch-and-relax is obtained from branch-and-bound by replacing the rule bi climb

with the two rules bi bound and bi opt.

To apply branch-and-relax in practice, we must be able to compute local upper bounds

in a computationally feasible way. For example, this is possible in integer linear program-

ming, where we can obtain an upper bound by solving the linear programming relaxation.

We may even �nd a feasible solution of the whole problem, so that both rules bi bound

and bi opt possibly can be applied.

12

3.4 Branch-and-Infer

To summarize, the rule system for branch-and-infer consists of the rules

bi infer, bi branch, bi clash

together with one of the following three alternatives:

� bi sol (satis�ability)

� bi climb (branch-and-bound)

� bi bound, bi opt (branch-and-relax)

Combinatorial problems in CP(FD). The rule set of �nite domain constraint pro-

gramming for solving combinatorial problems is given by

FD SAT = f bi infer, bi branch, bi clash, bi sol g.

Combinatorial optimization problems in CP(FD). The rule set of �nite domain

constraint programming for solving combinatorial optimization problems is given by

FD OPT = f bi infer, bi branch, bi clash, bi climb g.

Combinatorial optimization problems in ILP { Branch-and-Cut. Solving com-

binatorial optimization problems in integer linear programming by branch-and-cut is de-

scribed by the rule set

ILP OPT = f bi infer, bi branch, bi clash, bi bound, bi opt g.

Here, the last four rules describe branch-and-relax, while the �rst rule bi infer allows for

the generation of cutting planes.

In branch-and-bound, the only way to prune the search space is to apply the rule bi clash.

Therefore it is of great impact whether the lower bounding constraint is primitive or non-

primitive in the underlying solver. If the lower bounding constraint is primitive, then it

can be added to the constraint store and thus has a direct e�ect on the relaxation, i.e.

the rule bi clash may be applied earlier in the solution process. If the lower bounding

constraint is non-primitive, then it may not be possible to reduce it completely to primitive

constraints. Therefore, the relaxation may be not strong enough in order to apply the rule

bi clash and more subproblems will be generated.

Example 3.1

Consider the constraint set

C = f x

1

+ x

2

+ x

3

� 1;

x

1

� 1; x

2

� 1; x

3

� 1; x

1

� 0; x

2

� 0; x

3

� 0;

integral([x

1

; x

2

; x

3

]) g

13

and the objective function f(x

1

; x

2

; x

3

) = x

1

+x

2

+x

3

; which has to be maximized. Assume

that the extract-function generates the feasible (and optimal) solution (1; 0; 0).

If we use an integer programming based solver and add the lower bounding constraint

x

1

+ x

2

+ x

3

� 2, then the linear programming relaxation Prim

LP

(C

0

) of C

0

= C [fx

1

+

x

2

+x

3

� 2g is infeasible. This can be seen by adding x

1

+x

2

+x

3

� 1 and x

1

+x

2

+x

3

� 2

resulting in the contradiction 0 � �1. However, if we use a �nite domain constraint solver,

then the �nite domain relaxation Prim

FD

(C

0

) = fx

1

� 1; x

2

� 1; x

3

� 1; x

1

� 0; x

2

�

0; x

3

� 0; integral([x

1

; x

2

; x

3

])g is feasible. In particular, no inference can be made by

the non-primitive constraints x

1

+ x

2

+ x

3

� 1 and x

1

+ x

2

+ x

3

� 2. Thus the relaxation

will stay feasible and bi clash cannot be applied. In order to detect the infeasibility of

C

0

, it is necessary to split the problem into two more subproblems.

An advantage of branch-and-bound compared to branch-and-relax is that whenever a

solver supports a non-primitive constraint of the form g(x) � b, for some function g, then

an optimization problem can be set up that uses g as objective function. Thus it is not

required to have an algorithm that can optimize g directly subject to the constraints. A

major disadvantage of branch-and-bound is that it does not provide any information on

the quality of a feasible solution, because no upper bounds are available.

4 Extending ILP by symbolic constraints

After having developed a common framework for ILP and CP(FD), we now show how

the idea of symbolic constraints from CP(FD) can be carried over to ILP. In constraint

programming, symbolic constraints have been introduced for two reasons. On the one

hand, they extend the constraint language and allow to model many problems in a much

more natural and compact way. On the other hand, they allow to incorporate e�cient

algorithms for a speci�c problem area into a general solver. A typical example is the

cumulative constraint (cf. Example 2.4). Many scheduling problems can be modeled

very naturally with this constraint. On the operational side, powerful algorithms from

operations research, e.g. edge-�nding [16], can be used in order to reduce the domain of

the variables. Thus, symbolic constraints not only increase the expressive power of the

constraint language. They are also crucial for the e�ciency of the problem solver.

In integer linear programming, symbolic constraints can play a similar role. On the

declarative side, they extend the language of linear equations and inequalities. On the

operational side, they allow to integrate specialized cutting plane algorithms based on

polyhedral combinatorics into a general solver.

4.1 Symbolic constraints in ILP

A �rst way of using symbolic constraints in integer programming is when a problem is

de�ned by a set of linear inequalities that is too large to be represented in the solver. A

typical example is the traveling salesman problem (TSP) with its exponentially many (in

the number of cities) subtour elimination constraints [25]. To handle these constraints, we

14

can extend our constraint language by a symbolic tsp constraint, e.g.

tsp(Adjacencies, Weights)

� Adjacencies: A list of 0-1 variables [x

12

; : : : ; x

(n�1)n

]

� Weights: A list of non-negative rational numbers [w

12

; : : : ; w

(n�1)n

].

The adjacency of two nodes i and j in the graph is represented by a variable x

ij

; i < j,

which has value 1 if the edge is used in a tour and 0 otherwise. The weights w

ij

represent

the cost imposed by using the edge between the nodes i and j in a tour.

From the declarative point of view, hiding the exponentially many primitive constraints

inside a new symbolic constraint gives us a clear and concise modeling. The key feature of

such symbolic constraints, however, comes from their operational semantics. In branch-

and-infer, the non-primitive tsp constraint will be realized by an inference algorithm

for primitive constraints, i.e., a separation algorithm for the problem-de�ning inequalities.

Thus, the symbolic constraint is not just an abbreviation for a huge number of constraints.

The associated inference agent will infer only selected inequalities that improve the current

formulation. In the traveling salesman problem, these are separators for the degree con-

straints and subtour elimination constraints. The e�ciency of solving such constraints can

be drastically increased, if not only separators for the problem-de�ning inequality classes

are built into the symbolic constraint, but also separators for other classes of strong valid

inequalities, e.g. facet-de�ning inequalities for the convex hull of feasible solutions. For

the tsp constraint, we could add for example separators for comb-inequalities. Problem

speci�c branch-and-cut algorithms have been extremely successful in solving hard combi-

natorial optimization problems. The concept of symbolic constraints allows us to embed

these techniques into the constraint language of a general constraint solver.

Next we show how a symbolic constraint can be used in order to increase the expres-

sivity of the constraint language. For example, we can introduce a symbolic constraint for

handling non-linear 0-1 inequalities

X

I�f1;::: ;ng

a

I

Y

i2I

x

i

� b; a

I

; b 2 Q ; x

i

2 f0; 1g: (1)

Theoretically, there exists an equivalent set of linear inequalities with the same set of

0-1 solutions, practically however, such a linear inequality description is often not known.

Instead of linearizing the non-linear constraint completely at the beginning, the idea is

again to represent it by a non-primitive constraint and to linearize it partially during the

constraint solving process, by inferring linear inequalities only if they improve the current

relaxation in the constraint store. Di�erent linearization procedures have been proposed

in the literature, see for example [5, 6]. A method in the spirit of constraint programming

has been developed in [7], which takes into account the constraints in the store during the

linearization process.

Di�erent non-primitive constraints can communicate through the primitive constraints

in the store. The symbolic constraint for non-linear inequalities already illustrates one

way of communication, where the primitive constraints in the store are used to enhance

15

the linearization. We now describe another way of communication, where di�erent non-

primitive constraints cooperate in an extended ILP solver.

Suppose we introduce a symbolic constraint for set packing. Let M be a set and

F = fM

1

; : : : ;M

n

g be a family of subsets of M . The problem of set packing consists in

selecting a set P � F such that each element of M is contained in at most one set of P .

We model this situation by a symbolic constraint

setpack(Sets)

� Sets: A list [[x

1

; [el

11

; : : : ; el

1k

1

]]; : : : ; [x

n

; [el

n1

; : : : ; el

nk

n

]]], where x

i

is a

0-1 variable and el

ij

is a name for the j-th element of subset i.

The variable x

i

takes the value 1 if the elements of set i are used in the packing, and 0

otherwise. Now consider the constraint set

setpack([x

1

; [a]]; [x

2

; [a; b]]; [x

3

; [b]]);

x

1

+ x

3

� 1 ; : : : ; integral([x

1

; x

2

; x

3

]);

and suppose that the primitive constraint x

1

+ x

3

� 1 has been inferred by some other

non-primitive constraint during the constraint solving process. The inference algorithm

of setpack can now detect that this inequality �ts into the structure of the setpack

constraint and may infer, e.g., the new primitive constraint x

1

+ x

2

+ x

3

� 1.

4.2 A symbolic constraint for assignment problems

When introducing a new symbolic constraint, one has always to keep in mind that it has to

be both expressive and e�cient. On the one hand, a symbolic constraint should be generic

enough in order to apply to many problem situations. On the other hand, there must be

enough domain-speci�c knowledge that can be exploited during the inference process, in

order to get a more e�cient solution of the problem than without the new constraint.

Finding the right balance between these two aspects is not an easy task.

To illustrate the idea of symbolic constraint abstractions in ILP, we propose a new

symbolic constraint for assignment problems, where the general task is to assign items

from one set to locations from another set. The constraint has the following form:

assign(Assignments, Weights, Capacities, Indicators)

� Assignments: A list of lists [[x

11

; : : : ; x

1n

]; : : : ; [x

m1

; : : : ; x

mn

]];m; n � 1;

of 0-1 variables x

ij

or values.

� Weights: A list of lists [[w

11

; : : : ; w

1n

]; : : : ; [w

m1

; : : : ; w

mn

]];m; n � 1; of

non-negative rational numbers w

ij

.

� Capacities: A list [c

1

; : : : ; c

n

] of non-negative rational numbers c

j

.

� Indicators: A list [y

1

; : : : ; y

n

] of 0-1 variables or values.

16

Consider a set of items indexed by M = f1; : : : ;mg and a set of locations indexed by

N = f1; : : : ; ng. Each item has to be assigned to exactly one location. An assignment of

item i 2M to location j 2 N is modeled by an assignment variable

x

ij

=

(

1 if item i is assigned to location j;

0 otherwise.

(2)

In order to give the assign constraint a broader application spectrum, we include location

indicator variables y

j

; j 2 N; with the meaning

y

j

=

(

1 if and only if

P

m

i=1

x

ij

� 1;

0 otherwise.

(3)

The assign constraint can be used to express various kinds of problems like generalized

assignment, uncapacitated warehouse location, or (one-dimensional) bin packing. It is

also possible to use this constraint for the multiple knapsack problem, if we introduce an

additional arti�cial knapsack that has su�cient capacity to take the items that do not �t

into the given knapsacks of the problem.

From the declarative point of view, the assign constraint is equivalent to the set of

constraints

P

n

j=1

x

ij

= 1; i 2M

P

m

i=1

w

ij

x

ij

� c

j

y

j

; j 2 N

x

ij

; y

j

2 f0; 1g; i 2M; j 2 N:

The assign constraint can be used in a exible way. We can �x some variables in advance

to the value 0 or 1. In combination with the location indicator variables, we can assign

items either statically to a given set of locations or use locations dynamically if they satisfy

certain side constraints.

On the operational side, the inference algorithms behind the assign constraint may

exploit various results from polyhedral combinatorics, e.g. general assignment [22, 21],

uncapacitated warehouse location [17, 15], bin packing [14] or multiple knapsack [20, 19],

in order to infer strong valid inequalities that strengthen the relaxation in the constraint

store.

Example 4.1

Consider a warehouse location problem. Suppose we have m clients, indexed by M =

f1; : : : ;mg, and n potential sites for opening a warehouse, indexed by N = f1; : : : ; ng.

The problem consists of selecting a set of locations to open a warehouse and then assigning

an open warehouse to each client. We use the assign constraint to model this problem.

The variable x

ij

; i 2M; j 2 N indicates whether client i is supplied by warehouse j or not.

The goal is to minimize the overall costs, which consist of the �xed costs f

j

for opening

17

warehouse j, and the variable costs v

ij

for supplying client i by warehouse j.

min

P

m

i=1

P

n

j=1

v

ij

x

ij

+

P

n

j=1

f

j

y

j

s.t. assign([[x

11

; : : : ; x

1n

]; : : : ; [x

m1

; : : : ; x

mn

]];

[[1; : : : ; 1]; : : : ; [1; : : : ; 1]];

[m; : : : ;m]; [y

1

; : : : ; y

n

]);

0 � x

ij

� 1; 0 � y

j

� 1; i 2M; j 2 N

integral([x

11

; : : : ; x

mn

; y

1

; : : : ; y

n

]):

Suppose now that there is the additional constraint that some customer p wants to be

supplied by the same warehouse as customer r or customer s. Using a non-linear symbolic

constraint, we can easily extend the above model to

min

P

m

i=1

P

n

j=1

v

ij

x

ij

+

P

n

j=1

f

j

y

j

s.t. assign([[x

11

; : : : ; x

1n

]; : : : ; [x

m1

; : : : ; x

mn

]];

[[1; : : : ; 1]; : : : ; [1; : : : ; 1]];

[m; : : : ;m]; [y

1

; : : : ; y

n

]);

P

n

t=1

x

pt

x

rt

+ x

pt

x

st

= 1;

0 � x

ij

� 1; 0 � y

j

� 1; i 2M; j 2 N

integral([x

11

; : : : ; x

mn

; y

1

; : : : ; y

n

]):

Although this model contains two non-primitive constraints, a feasible solution of the

whole problem can be computed due to the fact that the two non-primitive constraints

communicate over the constraint store by inferring new primitive constraints, i.e. cutting

planes.

5 Combining �nite domain and ILP techniques

In this section, we present di�erent ways for combining methods from ILP and CP(FD).

The basic idea is to handle linear equations and inequalities altogether as in ILP, and not

individually as in CP(FD). There exist various possibilities for a combination, which range

from using linear programming techniques inside the inference algorithms of non-primitive

constraints up to extending the language of primitive constraints in CP(FD) by general

linear inequalities. Our aim here is only to show how these alternatives follow naturally

from our framework. We do not want to discuss their realization, which is a topic of

further research.

5.1 Handling linear inequalities by a symbolic constraint

In a �rst step, we discuss an integration that leaves the primitive constraints of the �nite

domain language L

FD

unchanged. We introduce a new non-primitive constraint linear

that collects all the linear inequalities occurring in the problem and uses them to derive

stronger primitive constraints in Prim(L

1

FD

).

18

linear(Matrix, Variables, RightHandSide)

� Matrix: A list of lists [[a

11

; : : : ; a

1n

]; : : : ; [a

m1

; : : : ; a

mn

]];m; n � 1; of

rational numbers a

ij

.

� Variables: A list [x

1

; : : : ; x

n

] of variables x

j

.

� RightHandSide: A list [b

1

; : : : ; b

m

] of rational numbers b

i

.

specifying the system of linear inequalities

P

n

j=1

a

ij

x

j

� b

i

; i = 1; : : : ;m.

The extended �nite domain constraint language L

1

FD=LP

for handling linear arithmetic

by a symbolic constraint is de�ned as follows:

� L

1

FD=LP

= L

FD

[flinear([[a

11

; : : : ; a

1n

]; : : : ; [a

m1

; : : : ; a

mn

]],

[x

1

; : : : ; x

n

]; [b

1

; : : : ; b

m

]) j a

ij

; b

i

2 Q ; x

j

2 V g

� Prim(L

1

FD=LP

) = Prim(L

FD

)

� NPrim(L

1

FD=LP

) = NPrim(L

FD

) [flinear([[a

11

; : : : ; a

1n

]; : : : ; [a

m1

; : : : ; a

mn

]],

[x

1

; : : : ; x

n

]; [b

1

; : : : ; b

m

]) j a

ij

; b

i

2 Q ; x

j

2 V g

Note that the integrality constraint is still primitive. The transition rules in the branch-

and-infer framework are the same as for standard �nite domain constraint programming.

In addition to the usual bound propagation on each inequality, the new non-primitive

constraint linear allows to apply linear programming techniques on the whole system of

inequalities. By taking into account the bound constraints in the store, which are partly

inferred by other non-primitive constraints, linear programming can exploit the interaction

between all inequalities in order to infer stronger bounds or even to �x a variable to some

value.

Example 5.1

Consider the constraint set

C = f �3x

1

+ 2x

2

� 0; 3x

1

+ 2x

2

� 6;

x

1

� 2; x

2

� 2; x

1

� 0; x

2

� 0; integral([x

1

; x

2

]) g:

Simple bound propagation treating each inequality independently of the others cannot

detect that the greatest integral value of x

2

is 1. Now we model the same problem with

the new constraint:

C

0

= f linear([[�3; 2]; [3; 2;]]; [x

1

; x

2

]; [0; 6]]);

x

1

� 2; x

2

� 2; x

1

� 0; x

2

� 0; integral([x

1

; x

2

]) g:

The inference algorithm of linear detects (for example by maximizing x

2

subject to the

linear inequalities over the rational numbers) that the upper bound of x

2

is 1:5 and thus

can be reduced to 1. Therefore we can infer the primitive constraint x

1

� 1 and add it to

the constraint store.

19

The use of linear programming for improving bounds is discussed in [34]. In [12, 2],

linear programming is used to detect �xed variables. Linear programming can also check

global consistency over the rational numbers, which can help to detect infeasibility earlier

than by local consistency methods.

A main disadvantage of this form of integration is that the linear inequalities are

hidden inside a non-primitive constraint. Therefore, they are not visible to the other non-

primitive constraints and cannot be exploited by their inference algorithms. Furthermore,

in a branch-and-bound context, the lower bounding constraint is still non-primitive, which

results in a less powerful pruning (cf. Example 3.1).

5.2 Linear inequalities as primitive constraints

To overcome these disadvantages, we propose a second form of integration L

2

FD=LP

. We

extend the primitive constraints from CP(FD) by general linear inequalities. Thus the

constraint language L

FD

itself remains unchanged, but the de�nition of the primitive and

non-primitive constraints changes:

� L

2

FD=LP

= L

FD

� Prim(L

2

FD=LP

) = fx � u; x � l; x 6= v; x = y;

P

n

i=1

a

i

x

i

� b;

P

n

i=1

a

i

x

i

= b j

x

i

; x; y 2 V; l; u; v 2 Z; a

i

; b 2 Qg

� NPrim(L

2

FD=LP

) = I [S

FD

Since general linear inequalities are primitive now, we can no longer check in a compu-

tationally feasible way whether the store is satis�able with respect to integer solutions.

Therefore the integral constraint becomes non-primitive and satis�ability is checked over

the rational numbers, which can be done in polynomial time, although the solution set

need not be convex anymore [27].

The extension of the notion of primitive constraints allows us on the one hand to

combine symbolic constraints of CP(FD), e.g. alldifferent, with symbolic constraints

of extended ILP, e.g. assign. On the other hand, inference algorithms in existing non-

primitive constraints may be improved and new non-primitive constraints can be designed,

which use the extended primitive constraint set for more powerful inferences.

For example, the presence of disequalities allows us to set up stronger disjunctions

than the usual dichotomy on the integral numbers. These stronger disjunctions can be

used by an inference algorithm of the integral constraint that derives cutting planes by

the disjunctive method. The bound reduction algorithms that were accommodated in the

previous approach in the linear constraint can be used as a further inference algorithm

of the integral constraint. Linear inequalities allow us to express relations between

variables that are part of a non-primitive constraint directly by primitive constraints. If

the interaction between the variables is strong enough, then in conjunction with the other

primitive constraints in the store, this may lead to an earlier detection of infeasibility. In

a branch-and-bound context, handling linear inequalities as primitive constraints makes

20

it possible to place the lower bounding constraint directly into the store, which achieves

a better pruning of the search space than by treating the lower bounding constraint as a

non-primitive constraint (cf. Example 3.1).

The main drawback of the relaxation in �nite domain constraint programming is that

it can guide the solution process only in a very limited way, due to the low expressivity of

the primitive constraints. Therefore the way branching is done plays an important role. In

our extended integration, the linear relaxation may help to guide the solution process in

a better way and may lead to better branching strategies, e.g. strong branching (see [26]).

Furthermore, we can obtain better upper bounds that we can apply in a branch-and-relax

context.

6 Conclusion

We have introduced a unifying framework, branch-and-infer, to describe and compare

the languages of integer linear programming and �nite domain constraint programming,

both from the viewpoint of model building, i.e. their declarative semantics, and model

solving, i.e. their operational semantics. Finite domain constraint programming o�ers a

variety of arithmetic and symbolic constraints that allows to model and solve combinatorial

problems in many di�erent ways. Integer linear programming admits only linear equations

and inequalities, but has developed very e�cient methods to handle them. Our framework

shows how integer linear programming can be extended with symbolic constraints and how

algorithmic techniques from integer programming can be used in combination with �nite

domain methods.

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling

and placement problems. Mathl. Comput. Modelling, 17(7):57 { 73, 1993.

[2] B. De Backer and H. Beringer. Cooperative solvers and global constraints: the case of

linear arithmetic constraints. In Postconference Workshop on Constraints, Databases,

and Logic Programming, ILPS'95, 1995.

[3] E. Balas, S. Ceria, and G. Cornu�ejols. Mixed 0-1 programming by lift-and-project in

a branch-and-cut framework. Management Science, 42(9), 1996.

[4] E. Balas, S. Ceria, G. Cornu�ejols, and N. R. Natraj. Gomory cuts revisited. Operations

Research Letters, 19, 1996.

[5] E. Balas and J.B. Mazzola. Nonlinear 0-1 programming: I. Linearization techniques.

Mathematical Programming, 30:1{21, 1984.

[6] E. Balas and J.B. Mazzola. Nonlinear 0-1 programming: II. Dominance relations and

algorithms. Mathematical Programming, 30:22{45, 1984.

21

[7] P. Barth. Logic-based 0-1 constraint programming. Operations Research/Computer

Science Interfaces Series. Kluwer, 1996.

[8] P. Barth and A. Bockmayr. Finite domain and cutting plane techniques in CLP(PB).

In L. Sterling, editor, Logic Programming. 12th International Conference, ICLP'95,

Kanagawa, Japan, pages 133 { 147. MIT Press, 1995.

[9] J. Barwise. An introduction to �rst-order logic. In J. Barwise, editor, Handbook of

Mathematical Logic. North Holland, 1977.

[10] N. Beldiceanu, A. Aggoun, and E. Contejean. Introducing constrained sequences in

CHIP. Technical report, COSYTEC S.A., Orsay, France, 1996.

[11] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl.

Comput. Modelling, 20(12):97 { 123, 1994.

[12] H. Beringer and B. de Backer. Combinatorial problem solving in constraint logic

programming with cooperating solvers. In C. Beierle and L. Pl�umer, editors, Logic

programming: Formal methods and practical applications, pages 245 { 272. Elsevier,

1995.

[13] A. Bockmayr. Solving pseudo-Boolean constraints. In Constraint Programming: Ba-

sics and Trends, pages 22 { 38. Springer, LNCS 910, 1995.

[14] A. Caprara. On an integer programming formulation of a class of partitioning prob-

lems. Technical Report OR-96-8, DEIS, University of Bologna, 1996.

[15] A. Caprara and J.J. Salazar. A branch-and-cut algorithm for the index selection

problem. Technical Report OR-95-9, DEIS, University of Bologna, September 1996.

[16] Y. Caseau and C. Le Pape. Exploiting operations research results in constraint-based

scheduling. A tutorial. In Practical Application of Constraint Technology, PACT'96,

London, 1996.

[17] G. Cornu�ejols and J.-M. Thizy. Some facets of the simple plant location problem.

Mathematical Programming, 23:50{74, 1982.

[18] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The constraint

logic programming language CHIP. In Fifth Generation Computer Systems, Tokyo,

1988. Springer, 1988.

[19] C.E. Ferreira, A. Martin, and R. Weismantel. A cutting plane based algorithm for

the multiple knapsack problem. Preprint SC-93-07, Konrad-Zuse-Zentrum f�ur Infor-

mationstechnik, Berlin, 1993.

[20] C.E. Ferreira, A. Martin, and R. Weismantel. Facets for the multiple knapsack prob-

lem. Preprint SC-93-04, Konrad-Zuse-Zentrum f�ur Informationstechnik, Berlin, 1993.

22

[21] E.S. Gottlieb and M.R. Rao. (1; k)-con�guration facets for the generalized assignment

problem. Mathematical Programming, 46:53{60, 1990.

[22] E.S. Gottlieb and M.R. Rao. The generalized assignment problem: Valid inequalities

and facets. Mathematical Programming, 46:31{52, 1990.

[23] J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic

Programming, 19/20:503 { 581, 1994.

[24] E. L. Johnson, G. L. Nemhauser, and M. W. P. Savelsbergh. Progress in integer

programming: An exposition. Submitted to INFORMS J. on Computing, 1997.

[25] M. J�unger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In Handbook

on Operations Research and Management Science, volume 7, pages 225 { 330. Elsevier,

1995.

[26] M. J�unger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane

algorithms in combinatorial optimization. In W. Cook, L. Lov�asz, and P. Seymour,

editors, Combinatorial Optimization, volume 20 of DIMACS series in discrete math-

ematics and theoretical computer science, pages 111 { 152. AMS, 1995.

[27] J.-L. Lassez and K. McAloon. A canonical form for generalized linear constraints.

Journal of Symbolic Computation, 13:1{24, 1992.

[28] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley, 1988.

[29] J. F. Puget. A C++ implementation of CLP. Technical report, ILOG S. A., 1994.

http://www.ilog.com.

[30] V. A. Saraswat. Concurrent constraint programming. MIT Press, 1993.

[31] R. Sharda. Linear & discrete optimization and modeling software. UNICOM, 1993.

[32] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer Science

Today: Recent Trends and Developments. Springer, LNCS 1000, 1995.

[33] G. Smolka. Finite domain constraint programming. Draft of the chapter of the Oz

Primer, March 1997.

[34] C. Solnon. Coop�eration de solveurs lin�eaires sur les r�eels pour la r�esolution de

probl�emes lin�eaires sur les entiers. In JFPLC'97, Orl�eans. Hermes, 1997.

[35] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[36] P. van Hentenryck and Y. Deville. Operational semantics of constraint logic pro-

gramming over �nite domains. In Programming language implementation and logic

programming, PLILP'91, Passau. Springer, LNCS 528, 1991.

23

[37] P. van Hentenryck and V. Saraswat. Strategic directions in constraint programming.

ACM Computing Surveys, 28(4):701 { 726, 1996.

[38] M. Wallace. Practical applications of constraint programming. Constraints, 1:139 {

168, 1996.

[39] H. P. Williams. Model building in mathematical programming. JohnWiley, 3rd revised

edition, 1993.

[40] H. P. Williams. Model solving in mathematical programming. John Wiley, 1993.

24

���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chv�atal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite

Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in �!-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories

of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D.A. Basin, S. Matthews, L. Vigan�o Natural Deduction for Non-Classical Logics

MPI-I-96-2-005 A. Nonnengart Auxiliary Modal Operators and the

Characterization of Modal Frames

MPI-I-96-2-004 G. Struth Non-Symmetric Rewriting

MPI-I-96-2-003 H. Baumeister Using Algebraic Speci�cation Languages for

Model-Oriented Speci�cations

MPI-I-96-2-002 D.A. Basin, S. Matthews, L. Vigan�o Labelled Propositional Modal Logics: Theory and

Practice

MPI-I-96-2-001 H. Ganzinger, U. Waldmann Theorem Proving in Cancellative Abelian Monoids

MPI-I-95-2-011 P. Barth, A. Bockmayr Modelling Mixed-Integer Optimisation Problems in

Constraint Logic Programming

