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Abstract

In this paper we discuss two hybrid languages, L(8) and L(#

0

), and pro-

vide them with axiomatisations which we prove complete. Both languages

combine features of modal and classical logic. Like modal languages, they

contain modal operators and have a Kripke semantics. In addition, however,

they contain state variables which can be explicitly bound by the binders 8

and #

0

. The primary purpose of this paper is to explore the consequences of

hybridisation for completeness theory. As we shall show, the principle chal-

lenge is to �nd ways of blending the modal idea of canonical models with the

classical idea of witnessed maximal consistent sets. The languages L(8) and

L(#

0

) provide us with two extreme examples of the issues involved. In the

case of L(8), we can combine these ideas relatively straightforwardly with

the aid of the Barcan axioms coupled with a modal theory of labeling . In the

case of L(#

0

), on the other hand, although we can still formulate a theory of

labeling, the Barcan axioms are no longer valid. We show how this di�culty

may be overcome by making use of COV

�

, an in�nite collection of addi-

tional rules of inference which has been used in a number of investigations

of extended modal logic.
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1 Introduction

Propositional modal languages are simple and attractive formalisms that

have been widely applied in computer science and other disciplines. However

their very simplicity soon leads to expressivity problems. It is unusual for

the basic modal language to be used: rather its expressivity is boosted by

the addition of various (application dependent) new modalities, such as the

universal modality, the Until operator, transitive closure operators, counting

modalities, and so on. While many of the resulting systems of extended modal

logic have proved interesting and important (Propositional Dynamic Logic

is a particularly noteworthy example) other systems seem rather ad-hoc and

many have proved di�cult to axiomatise.

This paper explores the logical consequences of following a di�erent route

to enhanced modal expressivity, namely hybridisation. Hybridisation is es-

sentially an attempt to combine the best of modal and classical logic. Hybrid

languages retain the modal operators and Kripke semantics typical of modal

logic. In addition, however, they contain variables over states and various

(essentially classical) mechanisms for binding them.

In this paper we shall examine two hybrid languages, L(8) and L(#

0

). In

L(8) we will be able to build formulae such as the following:

9x3(x ^ � ^ 8y[(y ^3x)!  ]):

Here x is a state variable | a special sort of formula | and 9x and 8x

should be read as \there is a state x" and \for all states x" respectively.

In L(#

0

) we will be able to build formulae such as

#

0

x

(x! :3x):

Here, #

0

x

should be read as \bind x to the current state", or \label the current

state with x".

As these examples suggest, hybrid languages have a rather novel syn-

tax and semantics. These are discussed in detail below, and some of the

expressive possibilities o�ered by hybrid languages are noted. However the

main purpose of this paper is to investigate hybrid logic, and in particular,

to consider how to go about proving hybrid completeness theorems. As we

shall show, the main challenge is to �nd ways of blending the modal idea

of canonical models with the classical idea of witnessed maximal consistent

sets. The languages L(8) and L(#

0

) provide us with two extreme examples

of the issues involved. In the case of L(8) we can solve the problem relatively

straightforwardly with the aid of the Barcan axioms coupled with a modal

theory of labeling . In the case of L(#

0

), on the other hand, although we can
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still formulate a theory of labeling, the Barcan axioms are no longer valid,

and we are led to the use of COV

�

, an in�nite collection of additional rules

of inference.

2 Two hybrid languages

We begin by reviewing the syntax and semantics of propositional modal

logic. Given a denumerably in�nite set PROP = fp; q; r; : : :g of propositional

symbols, the well-formed formulae of propositional modal logic are de�ned

as follows:

WFF � := p j :� j � ^  j 2�:

The following notation is then introduced for the dual of the 2 operator:

3� := :2:�. Other Boolean operators (such as !, _, >, and ?) are

de�ned in the expected way.

The usual semantics of propositional modal logic is Kripke semantics.

Kripke semantics is an inductive de�nition of a three-place relation j= that

can hold between a model, a state in that model, and a formula. A model M

is a triple (S;R; V ) such that S is a non-empty set of states, R is a binary

relation on S (the transition relation), and V : PROP �! Pow(S), is the

valuation, which tells us at which states (if any) each propositional symbol

is true.

The j= relation is de�ned as follows. Let M = (S;R; V ) and s 2 S.

Then:

M; s j= p i� s 2 V (p); where p 2 PROP

M; s j= :� i� M; s 6j= �

M; s j= � ^  i� M; s j= � & M; s j=  

M; s j= 2� i� 8s

0

(sRs

0

) M; s

0

j= �):

IfM; s j= � we say that � is satis�ed inM at s. Perhaps the key intuition to

note about Kripke semantics is its locality: formulae are evaluated in models

at some particular state (called the current state), and the function of the

2 operator is to scan the states accessible from the current state via the

transition relation R. Note that

M; s j= 3� i� 9s

0

(sRs

0

& M; s

0

j= �):

We shall now `hybridise' propositional modal logic. The basic idea is to

allow ourselves to quantify across states (in various ways) while staying as

close to the syntax and semantics of the modal language as possible. In fact,

we shall consider two ways of doing this.
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2.1 Hybrid syntax

We hybridise modal syntax by making two changes. The �rst is to sort the

atomic symbols of the modal language: instead of having just one kind of

atomic symbol (namely the symbols in PROP) we shall add two other kinds

of atomic symbol: state constants and state variables. The second change is

to add a binding operator . The binding operator will be used to bind state

variables (but not state constants or propositional symbols). In this paper,

two di�erent binding operators will be considered, namely 8 and #

0

.

Let us make these ideas precise. Assume we have at our disposal a �nite

or denumerably in�nite set SCON; if this set is not empty we typically write

its elements as c; c

1

; c

2

; c

3

; c

4

; : : :, and so on. Further, assume that we have

a denumerably in�nite set SVAR = fx; y; z; w; : : :g, and that SCON, SVAR

and PROP are pairwise disjoint. We call SCON the set of state constants,

SVAR the set of state variables, SCON[ SVAR the set of state symbols, and

SCON [ SVAR [ PROP the set of atoms. Let B 2 f8; #

0

g. Then we build

the well-formed formulae of L(B), the hybrid language in B (over SCON,

SVAR and PROP) as follows:

WFF � := a j :� j � ^  j 2� j Bx�:

(Here a 2 ATOM and x 2 SVAR.) We de�ne 3 and other Booleans in the

usual way. When working in a language L(8) (over some choice of SCON,

SVAR and PROP) we de�ne 9x� := :8:x�. When working in L(#

0

) no

such de�nition is needed, for this binder will be self-dual. In what follows,

we generally assume that some choice of SCON, SVAR and PROP has been

�xed, and when we speak of hybrid languages, we mean the two languages

L(8) and L(#

0

) de�ned over these sets. Sometimes, however, we will need

to be more explicit about which state variables we have at our disposal. In

particular, when we prove the completeness results we will need to expand

our languages with a denumerably in�nite set of new state variables.

Intuitively, state constants are formulae that are `names for states', and

state variables are formulae that `range across states', but before we consider

how to make sense of this semantically, it's important to be absolutely clear

about an important syntactic point: the syntactic de�nition just given treats

all atoms | whether state constants, state variables, or ordinary proposi-

tional symbols | as formulae. That is, although state symbols will allow

us to `label' or `name' states, we can combine them with arbitrary formu-

lae using the Boolean and modal operators, and when we do this we make

new formulae. For example, the following is a perfectly legitimate formula

of L(8):

3(x ^ p ^3(c ^ q)) ^ 8x(x! :3x):
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In view of this, it should be clear that although we have introduced some sort

of quanti�cation over states, we have distorted the syntax of propositional

modal logic as little as possible: the entities we bind are formulae, that is,

the type of entity used in propositional modal languages. As a result of this,

hybrid languages work in a rather novel way. Although our semantics will

ensure that our state constants and state variables perform the same kind

labeling tasks that terms do in �rst-order languages, they are not segregated

from the rest of the language (as terms are in �rst-order languages) but can

be freely mixed with arbitrary pieces of information.

Of course, hybrid languages are more complex syntactically than propo-

sitional modal languages. In particular, we will need to be clear about such

issues as the distinction between free and bound state variables (in the above

formula, for example, the �rst occurrence of x is free and the last three are

bound) and we will have to de�ne how to perform substitutions. Let us attend

to these tasks right away. We �rst de�ne what it means for an occurrence of

a state variable x to be free in a formula �:

1. If � 2 ATOM, then � is a free occurrence of x i� � = x.

2. An occurrence of x is free in :� or 2� i� it is free in �, and an occur-

rence of x is free in � ^  i� it is free in � or in  .

3. An occurrence of x is free By� i� it is free in � and x 6= y. (Here

B 2 f8; #

0

g.)

An occurrence of a state variable that is not free is called bound. The set of

free state variables in a formula � is the set of state variables that have at

least one free occurrence in �. A formula that contains no free state variables

is called a sentence.

Let � be a formula, s be a state symbol, and x a state variable. Then

�[s=x], the formula obtained by substituting s for free occurrences of x in �,

is de�ned as follows:

1. If � 2 ATOM, then �[s=x] is s if � = x, and � otherwise.

2. (:�)[s=x], (2�)[s=x], and (� ^  )[s=x] are de�ned to be :(�[s=x]),

2(�[s=x]), and �[s=x] ^  [s=x] respectively.

3. (By�)[s=x] is By(�[s=x]) if x 6= y, and By� otherwise.

Of course, when we make substitutions for logical purposes we are going

to have to guard against `accidental capture' of state variables. That is, we

need a de�nition of when a state symbol is substitutable for a state variable:
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1. If � 2 ATOM, then s is substitutable for x in �.

2. s is substitutable for x in :� or 2� i� s is substitutable for x in �, and

s is substitutable for x in � ^  i� s is substitutable for x in both �

and  .

3. s is substitutable for x in By� i� x does not occur free in �, or y 6= s

and s is substitutable for x in �.

2.2 Hybrid semantics

The basic idea underlying the semantics is straightforward. We want state

constants to be formulae that act as `labels' for states, and we want state

variables to be formulae that act as `variables ranging across states'. To

achieve this we need merely stipulate that both state variables and state

constants are interpreted by singleton subsets of models. That is, any state

variable, and any state constant, will be satis�ed at exactly one state in any

model. Such formulae `label' the unique state that satis�es them.

Of course, as we wish to bind state variables (but not state constants or

propositional symbols) we should be careful how we handle their interpreta-

tion. But there's a standard way of doing this: we need merely make use of

the Tarskian idea of assignment functions. That is, while we'll use valuations

to handle the semantics of propositional symbols and state constants, we'll

handle the semantics of state variables separately, via assignment functions.

This motivates the following de�nition.

De�nition 1 Let L(B) be a hybrid language over PROP, SCON and SVAR

(where B 2 f8; #

0

g). A model M for L(B) is a triple (S;R; V ) such that S

is a non-empty set, R a binary relation on S, and V : PROP [ SCON �!

Pow(S). A model is called standard i� for all state constants c 2 SCON,

V (c) is a singleton subset of S.

An assignment for L(B) on M (or M-assignment) is a mapping g :

SVAR �! Pow(S). An assignment is called standard i� for all state vari-

ables x 2 SVAR, g(x) is a singleton subset of S.

Now for the satisfaction de�nition. Obviously we should relativise the

Kripke satisfaction de�nition to standard assignments (that is, we must turn

j= into a four-place relation). So, let M = (S;R; V ) be a standard model,

and g a standard assignment. For any atom a, let [V; g](a) = g(a) if a is a
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state variable, and V (a) otherwise. Then, for the binder-free fragment of our

language we have the following clauses:

1

M; g; s j= a i� s 2 [V; g](a); where a 2 ATOM

M; g; s j= :� i� M; g; s 6j= �

M; g; s j= � ^  i� M; g; s j= � & M; g; s j=  

M; g; s j= 2� i� 8s

0

(sRs

0

) M; g; s

0

j= �):

Now for the binders. Here is the clause for 8:

M; g; s j= 8x� i� 8g

0

(g

0

x

� g ) M; g

0

; s j= �):

The notation g

0

x

� g (we say \g

0

is an x-variant of g") means that g

0

is

a standard assignment (on M) that agrees with g on all arguments save

possibly x. That is, 8 is essentially the classical universal quanti�er in a

modal setting. Note that it follows that the dual operator 9 receives the

expected interpretation, namely:

M; g; s j= 9x� i� 9g

0

(g

0

x

� g & M; g

0

; s j= �):

Next, the clause for #

0

:

M; g; s j= #

0

x

� i� M; g

0

; s j= �; where g

0

x

� g;

and g

0

(x) = fsg:

That is, #

0

binds a variable to the current state; it creates a label for the

here-and-now. Given the fundamental importance of the current state to

Kripke semantics, this is a very natural choice of binder. Note that #

0

is self

dual; that is, M; g; s j= #

0

x

� i� M; g; s j= :#

0

x

:�.

Let � be any formula of L(B). If M; g; s j= � then we say � is satis�ed

in M at s under g. Note that, just as in classical logic, whether or not a

sentence is satis�ed is independent of the choice of assignment. That is, if �

is a sentence, then there is an assignment g such thatM; g; s j= � i� for every

assignment g, M; g; s j= �. In such a case we shall write M; s j= � and say

that � is satis�ed in M at s. A formula is valid i� for all standard models

M, all states s in M, and all standard assignments g on M, M; g; s j= �.

To close this section, some historical remarks. The earliest discussion 8

(indeed, the earliest discussions of any type of hybrid language) seem to be

those of Prior (1967) Chapter V.6, Prior (1968), and Bull (1970). These pa-

pers deal with tense logic enriched with the hybrid binder 8 and the universal

1

Incidentally, modal languages enriched with state symbols but without binders have

been investigated; see Gargov and Goranko (1993) and Blackburn (1993).
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modality A.

2

However, this work seems to have lain dormant for about 15

years until Passy and Tinchev (1985) introduced 8 and A into propositional

dynamic logic (see Passy and Tinchev (1985)). (They remark that the idea

of 8 was suggested to them by Skordev, who in turn was inspired by certain

investigations in recursion theory.) Passy and Tinchev (1991) is an excellent

overview of this line of work and its connections with extended modal logic.

However, in spite of Passy and Tinchev's spirited defense of the importance

of `labels' to modal logic, the idea doesn't really seem to have caught on.

Finally, Seligman (1991, 1994) proves a cut-elimination result for what is

essentially L(8) enriched by the universal modality.

The #

0

binder seems to have been independently invented on even more

occasions than 8. For example, Richards et. al. (1989) introduce #

0

as part

of an investigation into temporal semantics and temporal databases, Sellink

uses it to aid reasoning about automata, and Cresswell (1990) uses it as

part of his investigation of indexicality in natural language. Nonetheless,

none of the systems just mentioned treats state variables as formulae; their

use is syntactically restricted in various ways. The earliest use of #

0

in a

full hybrid language seems to be Goranko (1994); the language also contains

the universal modality A. Other papers investigating #

0

in hybrid settings

include Blackburn and Seligman (1995, 1997) and Goranko (1996a, 1996b).

2.3 Remarks on expressivity

Before turning to completeness theory, it will be helpful to brie
y explore the

expressivity of L(8) and L(#

0

); for a more detailed discussion, see Blackburn

and Seligman (1995, 1997).

First, both L(8) and L(#

0

) are more expressive than propositional modal

logic. For example, it is well known that no formula of propositional modal

logic is valid on precisely those models with an irre
exive transition relation.

However there is a sentence of L(#

0

) with this property, namely:

#

0

x

(x! :3x):

Similarly, it is well known that the Until operator is not de�nable in propo-

sitional modal logic. However, it is de�nable in L(8):

Until(�;  ) := 9x3(x ^ � ^ 8y[(y ^3x)!  ]):

2

The universal modality has as satisfaction de�nition M; s j= A� i� for all states s

0

in

M, M; s

0

j= �. The consequences of adding the universal modality to hybrid languages

are discussed below.
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Second, note that L(8) is strictly more expressive than L(#

0

). To see

this, note that we can de�ne #

0

in L(8) by

#

0

x

� := 9x(x ^ �); where x does not occur in �:

Hence L(8) is at least as expressive as L(#

0

). However, no sentence of L(#

0

)

de�nes 8. To see this, note that sentences of L(#

0

) are preserved under the

formation of generated submodels.

3

That is, if � is a sentence of L(#

0

) and

M; s j= �, thenM

s

; s j= �, whereM

s

is the submodel ofM generated by s.

The proof of this is a simple induction on the structure of �. The key point

to note is that occurrences of #

0

in � must bind state variables to local states

(that is, to states in M

s

). In short, like propositional modal logic, L(#

0

) is

a truly local language.

On the other hand, state variable binding in L(8) is not local in this

sense: a formula of the form 9x� may well be true precisely because it is

possible to bind x to a state outside the submodel generated by the current

state. And indeed, it is easy to �nd sentences of L(8) that are not preserved

under the formation of generated submodels.

4

It follows that no sentence of

L(#

0

) can de�ne 8.

Third, like propositional modal logic, both L(8) and L(#

0

) can be re-

garded as fragments of classical logic. To see this, note that it is straight-

forward to extend the standard translation of propositional modal logic into

the corresponding �rst-order language to both our hybrid languages. Recall

that the �rst-order language corresponding to a propositional modal lan-

guage contains a binary relation symbol R, a denumerably in�nite collection

of one-place symbols P , Q, R, and so on (these correspond to the elements p,

q, r, and so on, of PROP) and a denumerably in�nite collection of �rst-order

variables. Any model M = (S;R; V ) can be regarded as �rst-order model

for the correspondence language: the relation R interpets the symbol R, and

for all p 2 PROP, the subset V (p) interprets the unary predicate symbol P .

The standard translation for propositional modal logic into this language is

3

Given a model M = (S;R; V ) and a state s of S, the submodel of M generated by

s is the smallest submodel of M that contains s and is R-closed. That is, the submodel

generated by s contains just those states ofM that are accessible from s by a �nite number

of transitions along R.

4

For example, consider the sentence 9x:3x. Let M be a model consisting of precisely

two states, s and s

0

, such that s is re
exive, s

0

is irre
exive, and neither s nor s

0

is related to

the other. ThenM; s j= 9x:3x (because we can bind x to s

0

) but clearlyM

s

; s 6j= 9x:3x

(because s

0

does not belong to M

s

and we are forced to bind x to s).
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de�ned as follows:

ST

x

(p) = Px

ST

x

(:�) = :ST

x

(�)

ST

x

(� ^  ) = ST

x

(�) ^ ST

x

( )

ST

x

(2�) = 8y(xRy ^ ST

y

(�)); y a fresh variable:

Note that for any modal formula �, ST (�) is a formula of the correspon-

dence language containing exactly one free variable, namely x. It is clear

that M; s j= � i�M j= ST

x

(�)[s]: (Here M j= ST

x

(�)[s] means that the

model M satis�es the �rst-order formula ST

x

(�) when s is assigned as the

denotation of its single free variable x.)

To extend this translation to cover our hybrid languages, we need merely

add the constant symbols in SCON to the correspondence language and

de�ne:

ST

x

(y) = x = y; for all state variables y

ST

x

(c) = x = c; for all state constants c

ST

x

(8y�) = 8yST

x

(�)

ST

x

(#

0

y

�) = 9y(x = y ^ ST

x

(�))

(Note that the �rst clause implicitly assumes we are using the same set of

symbols for state variables and �rst-order variables. This is to avoid needless

notational clutter.) Note that every sentence of our hybrid languages trans-

lates to a one free variable formula of the (SCON enriched) correspondence

language. It should be clear that these additional clause preserve satisfaction,

so neither L(8) nor L(#

0

) is stronger than the correspondence language.

In fact, both our hybrid languages are strictly weaker than the correspon-

dence language. In particular, L(8) is not strong enough to capture the one

free variable fragment of the correspondence language. Why is this?

As we've already remarked, variables in L(8) need not be bound to local

states; as a result, sentences of L(8) are not preserved under the formation

of generated submodels. Nonetheless, sentences of L(8) are preserved under

the following construction. LetM = (S;R; V ) be a model, and suppose that

M

0

= (S

0

; R

0

; V

0

) is a generated submodel of M such that card(SnS

0

) � 1.

Let M

�

be the model obtained by adding a new state � to M

0

in such a

way that � is disconnected from any state in S

0

. (It is irrelevant whether �

is re
exive or irre
exive.) It follows by a straightforward induction that for

any sentence � of L(8), and any state s in S, M; s j= � i� M

�

; s j= �.

What does this tell us? Essentially, that although L(8) is not local in the

way L(#

0

) is, neither is it truly global (which the correspondence language of

course is). In particular, although we can bind variables to non-local states

in L(8), we can't inspect such states to see what information they contain.
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This is why collapsing all such non-local states to single state � does not

a�ect the satis�ability of L(8) sentences.

Incidentally, once this has been observed, it is easy to see that adding the

universal modality A to L(8) yields a hybrid formalism expressively equiv-

alent to the correspondence language. Recall that the universal modality

is de�ned by M; s j= A� i� for all states s

0

in M, M; s j= �. De�ne

E� := :A:�, and note that E� means that `� holds at some state'. Now,

the key point to observe is that the universal modality gives us the power

to inspect non-local states. In particular, note that E(x ^ �) is essentially

a `test' which examines the state labeled by x and checks whether � holds

there. With this observed, it easy to de�ne a hybrid translation from the

correspondence language into L(8)+A. Let L

x

0

be the set of formulae of the

correspondence language in which x is the only free variable, and in which

x does not occur bound. Then (again assuming that the state variables in

L(8) + A are identical with the �rst-order variables in L

x

0

) we translate L

x

0

into L(8) + A as follows:

HT (v = v

0

) = #

0

x

E(v ^ v

0

)

HT (Pv) = #

0

x

E(v ^ p)

HT (vRv

0

) = #

0

x

E(v ^3v

0

)

HT (:�) = :HT (�)

HT (� ^  ) = HT (�) ^HT ( )

HT (8v�) = 8vHT (�)

Note that in the cases when either v or v

0

is the special variable x, the hybrid

translation produces formula which are logically equivalent to much simpler

formula. For example, HT (Px) is #

0

x

E(x ^ p), which is equivalent to p.

Indeed, adding the universal modality even to L(#

0

) yields a language

expressively equivalent to the correspondence language. To see this, it su�ces

to note that in such a language we can de�ne

8x� := #

0

y

A#

0

x

A(y ! �); where y is a fresh variable:

To sum up: both L(8) and L(#

0

) are genuine expressive extensions of

propositional modal logic. L(#

0

) is the weaker of the two, and retains more

of the locality properties of the underlying modal language. On the other

hand, while L(8) has obvious non-local properties, it is not a notational

variant of the correspondence language; it is strictly weaker. Bearing these

remarks in mind, let us now consider how to axiomatise validity in L(8) and

L(#

0

).

10



3 The hybrid logic of 8

Given any countable language L(8), we now show how to axiomatise the set

of valid L(8)-formulae. Our logic will be an extension of the usual axiomati-

sation for the minimal modal logic K. In what follows, v and s are used as

metavariables over state variables and state symbols respectively.

H(8), the hybrid logic of 8, is the smallest set of L(8)-formulae that is

closed under the following conditions. First it must contain the minimal

modal logic K. That is, H(8) must contain all instances of propositional

tautologies, all instances of the distribution schema 2(� !  ) ! (2� !

2 ), and be closed under modus ponens (if f�; � !  g � H(8) then  2

H(8)) and necessitation (if � 2 H(8) then 2� 2 H(8)). In addition, it must

contain all instances of the �ve axiom schemas listed below and be closed

under generalisation (if � 2 H(8) then 8v� 2 H(8)).

Here are the required axiom schemas:

Q1 8v(�!  )! (�! 8v ), where � contains no free occurrences of v

Q2 8v�! �[s=v], where s is substitutable for v in �

Name 9vv

Nom 8v[3

m

(v ^ �)! 2

n

(v! �)], for all n;m 2 !

Barcan 8v2�! 28v�

Q1 and Q2 should be familiar: they are standard axiom schemas govern-

ing the universal quanti�er 8 found in �rst-order languages, and apply just

as well to the hybrid universal quanti�er. Name and Nom are probably un-

familiar. Name re
ects the fact that it is always possible to bind a variable

to the current state, while Nom re
ects the fact that variables are true at

exactly one state. In short, these schemas are a `modal theory of labeling'.

Another way of thinking about these schemas is to note that the `theory

of labeling' they embody is analogous to something familiar from classical

logic: the theory of equality. Last, but certainly not least, we have the Bar-

can axioms, familiar from �rst-order modal logic. One important comment

must be made here. The Barcan axioms are not an optional extra for hybrid

languages in 8. In �rst-order modal logic, the logical status of the Barcan

schema is open to debate, but this is because the quanti�ers in �rst-order

modal logic range over the points in some underlying collection of �rst-order

models, and whether or not Barcan is valid depends on what assumptions

we make about this underlying collection. In hybrid languages, however, 8

11



ranges over the states themselves. As a result, it's logical status is �xed: it's

a fundamental validity.

If a formula � belongs to H(8) then we say that � is a theorem of H(8)

and write ` �. A formula � is consistent i� :� is not a theorem. By an H(8)

proof in a language L(8) we mean a �nite sequence of L(8) formula, each

item of which is an axiom, or is obtained from earlier items in the sequence

using the rules of proof. If � is a set of formulae, and � a formula, then we

say that � is a consequence of � i� there is a formula � such that � is a

conjunction of (�nitely many) formulae in � and ` � ! �; in such a case

we write � ` �. A set of sentences � is consistent i� it is not the case that

� `?.

Our �rst goal is to show that H(8) is sound: that is, if � is a theorem

then � is valid. To prove this we need two preliminary lemmas concerning

variables and substitution.

Lemma 2 (Agreement lemma) Let M be a hybrid model and g and h

assignments on M. For all formulae �, and all states s in M, if g and h

agree on all variables occurring freely in �, then:

M; g; s j= � i� M; h; s j= �:

Proof. By induction on the complexity of �. The only step of interest is that

for the quanti�ers. So suppose � is 8x andM; g; s j= 8x . This holds i� for

all assignments g

0

such that g

0

x

� g,M; g

0

; s j=  . For every such assignment

g

0

, we de�ne an assignment h

0

as follows: h

0

x

� h and h

0

(x) = g

0

(x). As g

and h agree on all variables occurring freely in  , g

0

and h

0

do too, so by

the inductive hypothesis M; g

0

; s j=  i� M; h

0

; s j=  . Now, it is clear that

every assignment that is an x-variant of h is one of these h

0

, hence having

that M; h

0

; s j=  for all such h

0

is equivalent to M; h; s j= 8x , which is

the desired result. a

Lemma 3 (Substitution lemma) Let M be a hybrid model and g an M-

assignment. For every formula �, and every state s in M, if y is a variable

that is substitutable for x in � and c is a state constant then:

1. M; g; s j= �[y=x] i� M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = g(y).

2. M; g; s j= �[c=x] i� M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = V (c).

Proof. The proof of clause 1 is by induction on the complexity of �. The

equivalences for atomic � are immediate from the de�nition of the assign-

ments, and the equivalences for Boolean � are straightforward. If � is 3 
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the required equivalence follows from the inductive hypothesis for successor

states.

So let � be 8z . Suppose �rst that x does not occur freely in 8z .

Then, since no substitution of y for x in 8z is possible, triviallyM; g; s j=

(8z )[y=x] i� M; g; s j= 8z . Moreover, since g and g

0

agree on variables

occurring freely in 8z , by the Agreement LemmaM; g

0

; s j= 8z .

So assume that x has free occurrences in 8z . From the de�nition of

substitutability of y for x in 8z it follows that y 6= z and y is substitutable

for x in  . Hence M; g; s j= (8z )[y=x] i� M; g; s j= 8z( [y=x]). Now, by

de�nition, M; g; s j= 8z( [y=x]) i� for all assignments h such that h

z

� g,

M; h; s j=  [y=x]. For every assignment h, let h

0

be de�ned as follows:

h

0

z

� g

0

and h

0

(z) = h(z). Hence h

0

x

� h and h(y) = h

0

(x). Then by the

inductive hypothesis M; h; s j=  [y=x] i� M; h

0

; s j=  . That is, for all

assignments h

0

such that h

0

z

� g

0

, we have M; h

0

; s j=  which is equivalent

to M; g

0

; s j= 8z .

Clause 2 can be proved by induction similarly. a

Theorem 4 (Soundness) The logic H(8) is sound with respect to the class

of all hybrid models.

Proof. To prove that H(8) is sound we have to show that all H(8) theorems

' are valid; that is, for all standard modelsM, all standardM-assignments

g, and all states s in M, M; g; s j= '. Now it is clear that all instances of

the minimal modal logic K in H(8) are valid, and moreover it is clear that

modus ponens, necessitation and generalisation preserve validity, so it only

remains to check that all instances of the �ve additional schemas are valid

too.

(Q1 ). Let ' = 8x(� !  ) ! (� ! 8x ) and assume that M; g; s j=

8x(� !  ) and M; g; s j= �. It follows that for all assignments g

0

, where

g

0

x

� g, that M; g

0

; s j= � !  and, moreover, by the Agreement Lemma,

that for all such g

0

, M; g

0

; s j= � (note that M; g

0

; s j= � i� M; g; s j= � as

� does not contain free occurrences of x). It follows that for all assignments

g

0

, where g

0

x

� g, that M; g

0

; s j=  , but this is equivalent to M; g; s j= 8x ,

which is what we needed to show.

(Q2 ). Let ' = 8x� ! �[y=x] be the instance of the Q2 schema where s

is the state variable y. Suppose thatM; g; s j= 8x�. Proving thatM; g; s j=

�[y=x] is equivalent (by clause 1 of the Substitution Lemma) to showing that

M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = g(y). But as M; g; s j= 8x�, it is

immediate that M; g

0

; s j= �. Similarly, if ' = 8x�! �[c=x] is the instance

of Q2 where s is the state constant c, the result follows using clause 2 of the

Substitution Lemma.
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(Name). Let ' = 9xx. Then M; g; s j= ' i� for some assignment g

0

such that g

0

x

� g, M; g

0

; s j= x. Clearly a suitable g

0

exists: we need merely

stipulate that g

0

is to be the x-variant of g such that g

0

(x) = fsg.

(Nom). Let ' = 8x[3

m

(x ^ �) ! 2

n

(x ! �)]. Then M; g; s j= ' i�

for all (standard) assignments g

0

such that g

0

x

� g, M; g

0

; s j= 3

m

(x ^ �) !

2

n

(x ! �). But this is true since any (standard) assignment makes the

variable x true at precisely one state. (The reader who wants more details

should look at clause 5 of the proof of Lemma 21, the analogous result for

hybrid languages L(#

0

).)

(Barcan). Assume that ' = 8x2� ! 28x�. Then M; g; s j= 8x2�

i� for all g

0

such that g

0

x

� g and all t such that sRt, M; g

0

; t j= �. This is

equivalent to: for all t such that sRt and all g

0

such that g

0

x

� g,M; g

0

; t j= �,

which is equivalent to M; g; s j= 28x� as required. a

Lemma 5 Suppose that y is substitutable for x in �, and that � has no free

occurrences of y. Then ` 8x�$ 8y�[y=x].

Proof. 8x� ! �[y=x] is an instance of the Q2 schema. Pre�x 8y before it

using generalisation, and then distribute 8y over the implication using the

Q1 axiom; this proves the left to right implication. Next, note that under our

assumptions concerning y, we have that x is substitutable for y in �[y=x], and

x has no free occurrences in �[y=x]. The right to left direction thus reduces

to the previous case. a

Before going any further, let us note a few simple facts about H(8).

Lemma 6 In H(8) we have that:

1. ` (�! 9x )! 9x(�!  )

2. ` (� ^ 9y )! 9y(� ^  )

3. ` 8x('!  )! (8x'! 8x ).

Proof. (1). Note that it follows from Q2 and propositional logic that `

8x:(� !  ) ! : . Use generalisation to pre�x 8x, and Q1 to distribute

it over the implication to obtain ` 8x:(� !  ) ! 8x: . Similarly `

8x:(�!  )! � holds, thus so does ` 8x:(�!  )! (� ^ 8x: ). Taking

the contrapositive yields ` :(�^8x: )! :8x:(�!  ), thus propositional

reasoning and the de�nition of 9 yields ` (� ! 9x ) ! 9x(� !  ) as

required.
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(2). It follows from Q2 and propositional logic that ` 8y:(�^ )! (�!

: ). Use generalisation to pre�x 8y, and Q1 to distribute it over the impli-

cation to obtain ` 8y:(� ^  ) ! (� ! 8y: ). Taking the contrapositive

yields ` :(�! 8y: )! 8y:(� ^  ), and the required result follows.

(3). Left to the reader. a

We now turn to the question of completeness: showing that every validity

is a theorem, or equivalently, that every consistent set of formulae has a

model. We shall do so using a fairly even-handed mixture of modal and

classical techniques. In particular, from modal logic we shall borrow the

idea of canonical models, and from classical logic we shall borrow the idea of

witnessed sets. As we shall see, thanks to the presence of the Barcan axioms,

these two ideas can be made to work together smoothly.

De�nition 7 (Canonical models) For any countable language L(8), the

canonical modelM

c

is (S

c

; R

c

; V

c

), whereW

c

is the set of all L(8)-MCSs; R

c

is the binary relation (called the canonical relation) on W

c

de�ned by �R

c

�

i� 2� 2 � implies � 2 �, for all L-formulae �; and V

c

is the valuation

de�ned by V

c

(a) = f� j a 2 �g, where a is a propositional symbol or state

constant.

The fundamental idea needed from classical logic is that of witnessed sets:

De�nition 8 (Witnessed sets) Let L be some countable language and �

an L-MCS. � is called witnessed i� for any L-formula of the form 9x�, there

is a state variable y substitutable for x in � such that 9x�! �[y=x] is in �.

Note that all witnessed MCSs � contain at least one state variable, as all

instances of the Name axiom belong to �.

Witnessed sets are important because they provide the structure needed

to handle the hybrid quanti�ers in the manner familiar from Henkin-style

completeness proofs for classical logic. That is, eventually we will prove a

Truth Lemma (a formula is true i� it belongs to an MCS) and by using

witnessed MCSs, we can prove the inductive clause for the quanti�ers.

Roughly speaking, the model we shall eventually de�ne will be made of

witnessed MCSs related by the canonical relation, so the very �rst thing we

need to check is that any consistent set of sentences can be expanded to a

witnessed MCS. In fact, this can be done, provided we are willing to expand

the languages with countably many new variables.

Lemma 9 (Extended Lindenbaum's lemma) Let L

o

and L

n

be two count-

able languages such that L

n

is L

o

extended with a countably in�nite set of

new variables. Then every consistent set of L

o

-formulae � can be extended

to a witnessed MCS �

+

in the language L

n

.
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Proof. Let E

v

= fy

1

; y

2

; y

3

:::g be an enumeration of the set of all variables

that are contained in L

n

but not in L

o

, and let E

f

= f�

1

; �

2

; �

3

:::g be an

enumeration of all L

n

-formulae. We de�ne the witnessed MCS �

+

we require

inductively. Let �

0

= �. Note that �

0

contains no variables from E

v

(as it

is a set of L

o

formulae) and that it is consistent when regarded as a set of

L

n

formulae. (To see this, note that if we could prove ? by making use of

variables from E

v

, then by replacing all the (�nitely many) E

v

variables in

such a proof with variables from L

o

, we could construct a proof of ? in L

o

,

which is impossible.) We de�ne �

n

as follows. If �

n

[ f�

n

g is inconsistent,

then �

n+1

= �

n

. Otherwise:

1. �

n+1

= �

n

[ f�

n

g, if �

n

is not of the form 9x .

2. �

n+1

= �

n

[ f�

n

g[ f [y=x]g, if �

n

= 9x . (Here y is the �rst variable

in the enumeration E

v

which is not used in the de�nitions of �

i

for all

i � n and also does not appear in �

n

.)

Let �

+

=

S

n�0

�

n

. By construction it is maximal and witnessed; it

remains to show it is consistent. Now, if �

+

is inconsistent, then for some

n 2 !, �

n

is inconsistent, for all the (�nitely many) formulae required to prove

inconsistency belong to some �

n

. But, as we shall now show by induction,

all �

n

are consistent, hence �

+

is too.

In fact, all we need to check is that expansions using clause 2 preserve

consistency. To show this, we argue by contrapositive. Suppose �

n+1

=

�

n

[ f�

n

g [ f [y=x]g is inconsistent. Then there is a formula � which is a

conjunction of a �nite number of formulae from �

n

[ f�

n

g, such that ` �!

: [y=x]. By generalisation and Q1 we have ` � ! 8y: [y=x], where y is

a variable that does not occur in �. Hence �

n

[ f�

n

g ` 8y: [y=x], and by

Lemma 5 we obtain �

n

[ f�

n

g ` 8x: . But �

n

= 9x , and this contradicts

the consistency of �

n

[ f�

n

g. a

We now set about de�ning the standard models (and standard assign-

ments) needed to prove completeness. As a �rst step, we de�ne the concept

of witnessed models. Roughly speaking, given a witnessed MCS �, we form

the witnessed model generated by � by taking the submodel of the canonical

model generated by �, and then throwing away any non-witnessed MCSs it

contains. More precisely:

De�nition 10 (Witnessed models) Let � be a witnessed MCS in some

countable language L, let M

c

= (S

c

; R

c

; V

c

) be the canonical model in L,

and let Wit(M

c

) be the set of all witnessed MCSs in M

c

. The witnessed

model M

w

yielded by � is the triple (S

w

; R

w

; V

w

), where S

w

= f�g [
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f� j � 2 Wit(M

c

) & 9n > 0; 9s

0

; :::; s

n

2 Wit(M

c

) such that s

0

= �; s

n

=

�; s

i

Rs

i+1

; 8i : 0 � i � n� 1g, and R

w

and V

w

are restrictions of R

c

and V

c

respectively to S

w

.

Lemma 11 Let L be some countable language and M

w

= (S

w

; R

w

; V

w

) the

witnessed model yielded by some witnessed L-MCS �. Then, for all MCSs

�;� 2 M

w

and every state symbol s, if s 2 � and s 2 �, then � = �.

Proof. Suppose � and � are di�erent. Then there is a formula � such that

� 2 � and :� 2 �. The MCSs � and � are reachable from � in �nitely many

steps and hence there arem;n 2 ! such that 3

m

(s^�) 2 � and 3

n

(s^:�) 2

�. As � is witnessed and contains every instance of the Nom schema, for some

variable x that does not occur freely in �, 8x[3

m

(x^ �)! 2

n

(x! �)] 2 �,

hence 3

m

(s^�)! 2

n

(s! �) 2 �, and hence 2

n

(s! �) 2 �. But because

both 3

n

(s^:�) 2 � and 2

n

(s! �) 2 � it follows by easy modal reasoning

that 3

n

(s^:�^�) 2 �, which contradicts the consistency of �. We conclude

that � and � are identical. (Note that nothing in this proof trades on the

fact that we are working with witnessed MCSs. In fact, the result holds for

any submodel of a generated submodel of the canonical model, not just the

witnessed ones.) a

Now for the next step. Recall that a standard model is a model in which

every constant is true at exactly one state. From the previous lemma we

know that state constants are contained in at most one MCS in a witnessed

model, so it is clear that the natural de�nition of valuation on witnessed

models (that is, that symbols are true at precisely the MCSs which contain

them) almost provides us with a standard model. Moreover, it also follows

from the previous lemma that the natural way of de�ning an assignment on

witnessed models (namely, stipulating that g(x) is to be the set of MCSs

containing x) almost gives us the standard assignment we require. However

we have no guarantee that every constant and variable is contained in at least

one MCS. Whenever we have a witnessed model M

w

such that some state

symbol occurs in no MCS inM

w

, we shall `complete' the model by gluing on

a new dummy state �. We will then stipulate that any constants or variables

not occurring in any MCS inM

w

will denote this new point. This motivates

the following de�nition.

De�nition 12 (Completed models and completed assignments) LetM

w

= (S

w

; R

w

; V

w

) is the witnessed model yielded by some witnessed MCS �. If

every state symbol belongs to at least one MCS in S

w

, then M, the com-

pleted model of M

w

, is simply M

w

itself. Otherwise, a completed model
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M of M

w

is a triple (S;R; V ), where S = S

w

[ f�g (where � is an entity

that is not an MCS); R = R

w

[ f(�;�)g; for all propositional variables p,

V (p) = V

w

(p); and for all state constants c, V (c) = f� 2 M

w

j c 2 �g if

this set is non-empty, and V (c) = f�g otherwise.

If M = (S;R; V ) is a completed model of a witnessed model M

w

, then

the completed assignment g on M is de�ned as follows: for all variables x,

g(x) = f� 2 M

w

j x 2 �g if this set is non-empty, and g(x) = f�g otherwise.

Clearly (by Lemma 11) completed models are standard models and com-

pleted assignments are standard assignments, thus all theorems of the logic

H(8) are true in completed models with respect to the relevant completed

assignment. There is one other point about the previous de�nition that the

reader should note: we only glue on a dummy state � when we are forced to.

As a consequence, every state in a completed model is labeled either by some

constant or some variable. This fact will shortly help us to give a smooth

proof of the Truth Lemma.

Before we can prove the Truth Lemma, however, we need to establish a

crucial fact: that our completed models contain all the information required

to cope with the modalities. That is, we need an Existence Lemma which

tells us that if 3� belongs to an MCS � in a completed model then there is a

R

c

successor MCS �, which also belongs to the completed model , containing �.

This is not obvious. We formed the completed model by throwing away non-

witnessed MCSs. How do we know that we didn't throw away the successor

MCS � that we need?

In fact, by making use of the Barcan schema, we can prove the required

Existence Lemma. Here's the technical preliminary where we use it:

Lemma 13 Let � and � be formulae and x and y variables in some language

L such that y is substitutable for x in �, and y does not have free occurrences

in either � or �. Then 3�! 9y3((9x� ! �[y=x]) ^ �) is a theorem.

Proof. It follows from Lemma 5 that ` 9x� ! 9y�[y=x] and therefore ` �!

((9x� ! 9y�[y=x]) ^ �). Easy modal reasoning yields ` 3� ! 3((9x� !

9y�[y=x]) ^ �). Applying clauses 1 and 2 of Lemma 6 we obtain ` 3� !

39y((9x�(x) ! �(y)) ^ �). Then, using the contrapositive of the Barcan

axiom, we obtain ` 3�! 9y3((9x�(x)! �(y)) ^ �). a

Lemma 14 (Existence Lemma) Let � be a witnessed MCS in some count-

able language L. If 3� 2 � then there is a witnessed L-MCS � such that

�R� and � 2 �.
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Proof. Let E = f9x

1

�

1

; 9x

2

�

2

; :::g be an enumeration of all L-formulae that

are of the form 9x�. De�ne 	 := f j 2 2 �g and �

0

:= f�g [ 	. The

proof that �

0

is consistent is standard. Clearly, if it is possible to expand

�

0

to a witnessed MCS �, then � will be the required MCS. We will show

that such a � can be constructed. For every n 2 ! and every formula

9x

n

�

n

in the enumeration E we shall �nd a variable y

n

such that the set

�

n

:= �

n�1

[fw

n

:= 9x

n

�

n

! �

n

[y

n

=x

n

]g is consistent. We construct w

n

, the

n-th witness formula, inductively in such a way that 3(�^w

1

^ :::^w

n

) 2 �.

As we shall see, this will ensure the consistency of �

n

for every n 2 N .

To construct w

n

, assume we have already found w

1

; :::; w

n�1

such that

3(�^w

1

^ :::^w

n�1

) 2 �. Let � := �^w

1

^ :::^w

n�1

. Then by Lemma 13

we have3�! 9y3((9x

n

�

n

! �

n

[y=x

n

])^�) in �, where y is some state vari-

able that does not appear in � and �

n

. But 3� 2 � and so 9y3((9x

n

�

n

!

�

n

[y=x

n

]) ^ �) 2 �. Since � is a witnessed MCS, there is a variable y

n

substitutable for y in �

n

[y=x

n

] such that 3((9x

n

�

n

! �[y

n

=x

n

]) ^ �) 2 �.

We de�ne w

n

:= 9x

n

�

n

! �

n

[y

n

=x

n

] and so 3(� ^ w

1

^ ::: ^ w

n

) 2 �.

It remains to prove that �

n

is consistent. So suppose it is not. Then there

is a conjunction � of (�nitely many) formulae in 	 such that ` �! :(�^w

1

^

:::^w

n

). By easy modal reasoning we obtain 2�! :3(�^w

1

^:::^w

n

) 2 �.

But 2� 2 � and so :3(� ^ w

1

^ ::: ^ w

n

) 2 �, which contradicts the

consistency of �.

S

n�0

�

n

is consistent since for every n 2 N , �

n

is. Now we

expand

S

n�0

�

n

to a maximal consistent set � which is possible by the usual

version of Lindenbaum's Lemma. Note that � is witnessed. a

Lemma 15 (Truth Lemma) Let M be a completed model in some count-

able language L, g the completed M-assignment, and � an L-MCS in M.

For every formula �:

� 2 � i� M; g;� j= �:

Proof. The proof is by induction on the complexity of �. If � is a state

symbol or a propositional variable the required equivalence follows from the

de�nition of the model M and the assignment g. The Boolean cases follow

from obvious properties of MCSs. For the modal case, note that the Existence

Lemma gives us precisely the information required to drive through the left to

right direction. The right to left direction is more or less immediate, though

there is a subtlety the reader should observe: if M; g;� j= 3 , this cannot

be because M; g; � j=  , since (by de�nition) no MCS precedes �. Thus the

successor to � that satis�es � is itself some MCS, and so we really can apply

the inductive hypothesis.

Now for the quanti�ers. Let � be 9x . Suppose 9x 2 �. Since � is

witnessed, there is a y substitutable for x in  such that  [y=x] 2 �. By the
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inductive hypothesis M; g;� j=  [y=x], hence by the contrapositive of the

Q2 axiom,M; g;� j= 9x .

For the other direction assume M; g;� j= 9x . This is, there exists an

s 2 M such thatM; g

0

;� j=  , where g

0

x

� g and g

0

(x) = fsg. Now, because

of the way we de�ned completed models, we know that either a constant c

or a state variable y is true at s with respect to g.

Suppose �rst that a constant c is true at s. That is V (c) = g

0

(x). Then by

clause 2 of the Substitution Lemma M; g;� j=  [c=x] and by the inductive

hypothesis  [c=x] 2 �. So, with the help of the contrapositive of the Q2

axiom, 9x is in �.

Suppose now that a variable y is true at s. Since y may not be substi-

tutable for x in  , we have to replace all bounded occurrences of y in  by

some variable that does not occur in  at all. Denote the formula we obtained

 

0

. It follows by Lemma 5 that  $  

0

is provable, hence by soundness it

is valid, hence M; g

0

;� j=  

0

. Since y is now substitutable for x in  

0

, by

clause 1 of the Substitution Lemma M; g;� j=  

0

[y=x]. By the inductive

hypothesis  

0

[y=x] 2 �, therefore, with the help of the contrapositive of the

Q2 axiom, 9x 

0

2 �. But it follows easily from clause 3 of Lemma 6 that

9x $ 9x 

0

is provable, and so 9x 2 �. a

Theorem 16 (Completeness) Every consistent set of formulae in a count-

able language L

o

is satis�able in a rooted and countable standard model with

respect to a standard assignment function.

Proof. Let � be a consistent set of L

o

-formulae. By the Extended Linden-

baum's Lemma we can expand � to a witnessed MCS �

+

in a countable

language L

n

. Let M be the completed model yielded by �

+

and g the com-

pleted M-assignment on this model. It follows from the Truth Lemma that

M; g;�

+

j= �

+

and so M; g;�

+

j= �. By our de�nition of completed mod-

els, either �

+

is a root of this model, or there is an additional point � which

is. Moreover, as every state in the model is named by one of the (countably

many) state symbols in L

n

, the model is countable. a

4 The hybrid logic of #

0

We now axiomatise the set of valid L(#

0

)-formulae, where L(#

0

) is a countable

language. We call the axiomatisation H(#

0

).

In certain respects, H(#

0

) resembles H(8). For a start, H(#

0

) is also an

extension of the minimal modal logic K, and the axioms governing #

0

are

reasonably clear analogs of those governing 8. Moreover, H(#

0

) is closed

under modus ponens, necessitation, and #

0

-generalisation (this being the
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adaptation of ordinary generalisation required for #

0

) and contains a theory

of labeling.

But there is a crucial di�erence. The Barcan schema for #

0

(that is,

#

0

x

2� ! 2#

0

x

�) is not valid. Because #

0

binds to the point of evaluation,

it cannot safely be permuted with 2, as the reader can easily check. Now,

Barcan was crucial to the model building strategy of the previous section: it

allowed us to `paste in' suitable witness variables and thus prove the required

Existence Lemma. Its loss threatens to undercut our proof strategy.

We solve this problem by making use of a technique from extended modal

logic: the use of additional rules of inference. Although #

0

works too locally

to validate Barcan, the fact that we have `labels' in our language enables

us to make use of the COV

�

rule schema. The COV

�

rule was invented

by the So�a school of modal logic, who applied it to a variety of extended

modal languages (see, for example, Passy and Tinchev (1991) and Gargov and

Goranko (1993)). Roughly speaking, COV

�

will be useful because it gives

us a way of pasting in all the required witnesses `by hand', thus enabling us

to adapt our proof strategy to #

0

.

In this section, ` ' means that ' is a theorem of H(#

0

), and `proof',

`consistency' and related terminology refer to H(#

0

) proofs, consistency, and

so on. In what follows, v and s are used as metavariables over state variables

and state symbols respectively.

H(#

0

) is the smallest set of L(#

0

)-formulae containing the minimal modal

logic K, and all instances of the �ve axiom schemas listed below, that is

closed under modus ponens, necessitation, #

0

-generalisation (if � 2 H(#

0

)

then #

0

v

� 2 H(#

0

)) and COV

�

(explained below). In what follows we refer

to #

0

-generalisation simply as generalisation. The �ve additional axioms

schemas required are:

Q1 #

0

v

(�!  )! (�! #

0

v

 ), where � contains no free occurrences of v

Q2 #

0

v

�! (s! �[s=v]), where s is substitutable for v in �

Q3 #

0

v

(v! �)! #

0

v

�

Dual #

0

v

�$ :#

0

v

:�

Nom 3

m

(s ^ �)! 2

n

(s! �), for all n;m 2 !

Q1 is an exact analog of its H(8) counterpart. Q2 is too, save that its

consequent is an implication, whose antecedent s re
ects the fact that #

0

binds variables to the current state. This motivates the inclusion of Q3,

which allows us to eliminate such `antecedent labels'. Dual re
ects the fact
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that #

0

is self-dual operator. It is a useful axiom. For example, we will

need to appeal to the following principle to prove the completeness result:

�[y=x]! (y ! #

0

x

�): However we don't need to include this as an axiom, for

(as we later show) it is provable with the help of Dual . Nom is an obvious

analog of its H(8) counterpart; note the use of free variables. Further, note

that #

0

v

v, the obvious analog of the Name axiom of H(8), has not been

included as an axiom schema. As we shall see below, its instances are easily

derivable with the help of Q3. Thus H(#

0

) really does contain a full theory

of labeling.

Conspicuous by its absence is any analog of the Barcan schema. So let

us now de�ne the COV

�

rules we shall use to replace it. As a �rst step we

de�ne:

De�nition 17 (2-forms) Let L be a countable language, and # some sym-

bol not belonging to L. We de�ne the set of 2-forms (for L) as follows: (1)

# is a 2-form, (2) if L is a 2-form and � is an L-formula then �! L and

2L are 2-forms, and (3) nothing else is an 2-form.

Note that every 2-form L has exactly one occurrence of the symbol #. We

use L( ) to denote the formula obtained from L by replacing the unique

occurrence of # by a formula  . We can now de�ne the COV

�

rules. For

every 2-form L, and every variable x not occurring in L, we have the following

rule:

L(:x) 2 H(#

0

) implies L(?) 2 H(#

0

):

Thus we have an in�nite collection of rules of proof at our disposal. A good

way of getting better acquainted with them is to check that they preserve

validity. Let us do this now. We shall need to make use of the following

counterpart of Lemma 2:

Lemma 18 (Agreement lemma) Let M be a model and g and h assign-

ments on M. For all formulae �, if g and h agree on all variables occurring

freely in �, then M; g; s j= � i� M; h; s j= �.

Proof. The proof is by induction on the complexity of �. The only interesting

step is that for #

0

. So suppose � is #

0

x

 and M; g; s j= #

0

x

 . That is,

M; g

0

; s j=  where g

0

x

� g and g

0

(x) = fsg. Let h

0

be the assignment

such that h

0

x

� h and h

0

(x) = g

0

(x). Since h

0

and g

0

agree on all variables

occurring freely in  , by the inductive hypothesisM; g

0

; s j=  i�M; h

0

; s j=

 . ThereforeM; h; s j= #

0

x

 , and the required equivalence is established. a
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Lemma 19 Let M be a model, g a standard M-assignment, and s a state

in M. Then for every 2-form L, and every variable x not occurring in L,

if g

0

is the function such that g

0

x

� g and g

0

(x) = fsg we have:

M; g; s j= :L(?) implies M; g

0

; s j= :L(:x):

Proof. By induction on the structure of L. The base case is when L is #.

In this case :L(?) is :? and :L(:x) is ::x, so the required result is

immediate.

So consider the induction step for L = � ! L

1

, where L

1

is a 2-form.

Suppose M; g; s j= :(� ! L

1

(?)) holds. This means that M; g; s j= � and

M; g; s j= :L

1

(?). Since x does not appear in �, by the Agreement Lemma

we have M; g

0

; s j= �. By the inductive hypothesis, M; g

0

; s j= :L

1

(:x).

Therefore M; g

0

; s j= :(�! L

1

(:x)).

Now suppose L = 2L

1

. Assume that M; g; s j= :2L

1

(?). Hence there

is a state t with sRt and M; g; t j= :L

1

(?). By the inductive hypothesis

M; g

0

; t j= :L

1

(:x) and therefore M; g

0

; s j= :2L

1

(:x). a

It is an immediate corollary that if the premiss of a COV

�

rule is valid

in some model (that is, if M j= L(:x) for some variable x not occurring in

L) then the conclusion of that rule is valid in the same model too (that is,

M j= L(?)). To see this, argue by contrapositive as follows. If M 6j= L(?)

then :L(?) isM-satis�able. Hence by the previous lemma, for each variable

x not occurring in L, :L(:x) is M-satis�able, that is, M 6j= L(:x). Hence

COV

�

is a validity-preserving rule of proof.

With this established, we are almost ready to prove the soundness of

H(#

0

). First, however, we need an analog of Lemma 3:

Lemma 20 (Substitution lemma) LetM be a model, g anM-assignment

and s a state in M. For every formula �, if y is a variable that is substi-

tutable for x in � and c is a state constant then:

1. M; g; s j= �[y=x] i� M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = g(y).

2. M; g; s j= �[c=x] i� M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = V (c).

Proof. The proof of clause 1 is by induction on the complexity of �. The

cases for atomic � and Boolean connectives are straightforward. If � is 3 

the required equivalence follows from the inductive hypothesis for successor

states.

Let � be #

0

z

 . Suppose �rst that x does not occur freely in #

0

z

 . Then,

since no substitution of y for x in #

0

z

 is possible, M; g; s j= (#

0

z

 )[y=x] i�
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M; g; s j= #

0

z

 . Since g and g

0

agree on all variables occurring freely in #

0

z

 ,

by the Agreement LemmaM; g

0

; s j= #

0

z

 .

So assume that x has free occurrences in #

0

z

 . From the de�nition of sub-

stitutability of y for x in #

0

z

 follows that y 6= z, x 6= z and y is substitutable

for x in  . Hence M; g; s j= (#

0

z

 )[y=x] i� M; h; s j=  [y=x], where h

z

� g

and h(z) = fsg. Let h

0

be the assignment such that h

0

z

� g

0

and h

0

(z) = fsg.

Since h

x

� h

0

and h

0

(x) = h(y), by the inductive hypothesisM; h; s j=  [y=x]

i� M; h

0

; s j=  . But the last is equivalent to M; g

0

; s j= #

0

z

 .

Clause 2 can be proved by induction similarly. a

Theorem 21 (Soundness) The logic H(#

0

) is sound with respect to the

class of all standard models.

Proof. To prove that H(#

0

) is sound we have to show that for all H(#

0

) the-

orems ', all standard models M = (S;R; V ), all standard M-assignments

g, and all states s in M, M; g; s j= '. As all instances of the minimal

modal logic K are valid, and as all our rules of proof preserve validity, it only

remains to check that all instances of the �ve additional schemas are valid

too.

(Q1). Let ' = #

0

x

(� !  ) ! (� ! #

0

x

 ), where � does not contain free

occurrences of x, and assume that M; g; s j= #

0

x

(� !  ) and M; g; s j= �.

Proving that M; g; s j= #

0

x

 is equivalent to showing that M; g

0

; s j=  

where g

0

x

� g and g

0

(x) = fsg. But as M; g; s j= #

0

x

(� !  ) we have that

M; g

0

; s j= � !  . Moreover, by the Agreement Lemma, M; g

0

; s j= �,

for M; g; s j= � and � contains no free occurrences of x. Hence, by modus

ponens, M; g

0

; s j=  , and the desired result follows.

(Q2). Consider ' = #

0

x

� ! (y ! �[y=x]), an instance of Q2 schema

where s is the state variable y. Suppose thatM; g; s j= #

0

x

� andM; g; s j= y.

Show that M; g; s j= �[y=x] is equivalent (by clause 1 of the Substitution

Lemma) to showing that M; g

0

; s j= �, where g

0

x

� g and g

0

(x) = g(y).

But it immediate from our assumptions that g(y) = fsg and hence that

M; g; s j= #

0

x

� i�M; g

0

; s j= �. If s is taken to be a state constant the proof

is similar, but uses clause 2 of Substitution Lemma.

(Q3 ). Let ' = #

0

x

(x ! �) ! #

0

x

�. Suppose M; g; s j= #

0

x

(x ! �). That

is M; g

0

; s j= x ! �, where g

0

x

� g and g

0

(x) = fsg. But then M; g

0

; s j= x,

hence M; g

0

; s j= �, and hence M; g; s j= #

0

x

�.

(Dual). Consider ' = #

0

x

�$ :#

0

x

:�. This is equivalent to :#

0

x

�$ #

0

x

:�.

Now M; g; s j= :#

0

x

� i� M; g; s 6j= #

0

x

� i� M; g

0

; s 6j= � for g

0

x

� g and

g

0

(x) = fsg i�M; g

0

; s j= :� for g

0

x

� g and g

0

(x) = fsg i�M; g; s j= #

0

x

:�.

(Nom). Let ' = 3

m

(y ^ �) ! 2

n

(y ! �) for some state variable y.

Suppose M; g; s j= 3

m

(y ^ �). That is, there is a state t 2 M that is
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reachable from s in m R-steps such that M; g; t j= y ^ �. Hence g(y) = ftg.

To show that M; g; s j= 2

n

(y ! �) we have to show that for all states t

0

that are reachable from s in n R-steps M; g; t

0

j= y ! �. So suppose that

M; g; t

0

j= y. Then g(y) = ft

0

g and therefore (as g is a standard assignment)

t = t

0

. Hence M; g; t

0

j= �. The proof is essentially the same if the state

symbol s in the Nom schema is taken to be a state constant; we use the fact

that state constants denote singleton sets in standard models. a

The #

0

operator will be new to most readers. So, before going any further,

let's prove some useful H(#

0

) theorems, and note some general facts about

H(#

0

) provability.

Lemma 22 In H(#

0

) we have that:

1. ` #

0

x

x

2. ` #

0

x

('!  )! (#

0

x

'! #

0

x

 )

3. ` #

0

x

�! #

0

x

(x ^ �)

4. ` �[y=x]! (y ! #

0

x

�), where y is substitutable for x in �.

Proof. (1). Note that for any variable x we have ` x ! x, and hence (by

generalisation) ` #

0

x

(x ! x). But #

0

x

(x ! x) ! #

0

x

x is an instance of Q3,

thus #

0

x

x follows by modus ponens.

(2). Note that #

0

x

(� !  ) ! (x ! (� !  )) is an instance of Q2, as is

#

0

x

�! (x! �). Hence ` (#

0

x

(�!  )^#

0

x

�))! (x!  ). Use generalisation

to pre�x this formula with #

0

x

, and then use Q1 to distribute #

0

x

over the main

implication to get ` (#

0

x

(�!  ) ^ #

0

x

�)! #

0

x

(x!  ). The result follows by

applying Q3 to the consequent of this last implication.

(3). The formula � ! (x ! (x ^ �)) is a tautology. By generalisation

and the previous clause we get ` #

0

x

� ! #

0

x

(x ! (x ^ �)). Using Q3 we get

` #

0

x

�! #

0

x

(x ^ �).

(4). Note that ` #

0

x

:� ! (y ! :�[y=x]) is an instance of Q2. Taking

the contrapositive we obtain ` (y ^ �[y=x]) ! :#

0

x

:�. Using Dual we get

` (y ^ �[y=x])! #

0

x

�, and the result follows. a

Lemma 23 Suppose that � has no free occurrences of y, and that y is sub-

stitutable for x in �. Then ` #

0

x

�$ #

0

y

�[y=x].

Proof. #

0

x

� ! (y ! �[y=x]) is an instance of Q2. Use generalisation to

pre�x #

0

y

, and Q1 to distribute the quanti�er #

0

y

over the main implication

(using the fact that � does not contain free occurrences of y) to obtain
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` #

0

x

� ! #

0

y

(y ! �[y=x]). With the help of Q3 we have ` #

0

x

� ! #

0

y

�[y=x]

and this completes the proof of the left to right implication. Next, note that

by our assumptions for y, we have that x is substitutable for y, and x has

no free occurrences in �[y=x]. Hence right to left direction reduces to the

previous case. a

Lemma 24 Let � and  be two formulae such that ` � $  . Then for all

formulae ', ` '$ 'f�= g, where 'f =�g is a formula obtained from ' by

replacing some occurrences of � in ' by  .

Proof. Suppose ` � $  is provable. The required result can be proved by

induction on the structure of '. We show the inductive step for ' = #

0

x

�.

By the inductive hypothesis ` � $ �f =�g. By generalisation, ` #

0

x

(� !

�f =�g), thus with the help of clause 2 of Lemma 22, ` #

0

x

� ! #

0

x

�f =�g.

Similarly, ` #

0

x

�f =�g ! #

0

x

�. Hence ` #

0

x

�$ #

0

x

�f =�g. a

Let us now prove the completeness result. Once again, we shall do so

by combining ideas from modal and classical logic. The basic modal tool

required is unchanged: as before we use canonical models.

De�nition 25 (Canonical models) For any countable language L(#

0

), the

canonical model M

c

is (S

c

; R

c

; V

c

), where W

c

is the set of all L(#

0

)-MCSs;

R

c

is the binary relation on W

c

de�ned by �R

c

� i� 2� 2 � implies � 2 �,

for all L(#

0

)-formulae �; and V

c

is the valuation de�ned by V

c

(a) = f� j a 2

�g, where a is a propositional variable or a state constant.

Now, it may seem that the next step is to introduce a notion of witness-

ing for #

0

. Moreover, it should be fairly clear what the required notion of

witnessing for #

0

is: an MCS � is #

0

-witnessed i� for any formula of the form

#

0

x

�, there is a state variable y substitutable for x in � such that #

0

x

�! �[y=x]

is in �. However it turns out to be easier think in terms of named MCSs:

De�nition 26 (Named sets) An L(#

0

)-MCS � is named i� it contains at

least one state variable. If x 2 � then we say that x names �.

Named sets and #

0

-witnessed sets are very similar. First, every #

0

-

witnessed set is named. To see this simply note that as every #

0

-witnessed

set contains #

0

x

x ! y (for some y substitutable for x) then, because ` #

0

x

x

(clause 1 of Lemma 22), it follows that every #

0

-witnessed MCS contains

some variable y. More importantly, although we have no guarantee that

every named set is #

0

-witnessed, this is simply due to the following minor
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technical problem. Suppose � is an MCS named by y and by no other vari-

able, and further suppose that #

0

x

� 2 � but that y is not substitutable for x

in �. Then we have no guarantee that �[y=x] 2 �, and y is the only variable

we can use a witness. But this isn't a real problem. Something almost as

good as witnessing does hold for named MCSs. By renaming all bound vari-

ables in �, we obtain a formula #

0

x

�

0

that is provably equivalent to #

0

x

� and in

which y is substitutable for x. In short, named sets are #

0

-witnessed modulo

logical equivalence, and we will take advantage of this when we prove the

Truth Lemma.

Why should we think in terms of named sets? As we have already men-

tioned, the chief di�culty that faces us is that without the Barcan schema

at our disposal it is not clear how to prove the required Existence Lemma.

The COV

�

rule gives us way around this di�culty. It does so by enabling

us to build certain very special named sets:

De�nition 27 (Closed sets) Let L be some countable language and � an

MCS. The set � is called closed i� for all 2-forms L we have: if L(:x) 2 �

for all variables x, then L(?) 2 �.

First, note that every closed MCS � is named. To see this, suppose that

for all variables x, :x 2 �. But since � is closed this would mean that

?2 �, which contradicts the consistency of �. Second, as we shall now show,

by extending our language with new state variables and making use of the

COV

�

rule, we can build all the closed sets we need:

Lemma 28 (Extended Lindenbaum's lemma) Let L

o

and L

n

be two

countable languages such that L

n

is L

o

extended with a countably in�nite

set of new variables. Then every consistent set of L

o

-formulae � can be

extended to a closed MCS �

+

in the language L

n

.

Proof. Let E

v

= fy

1

; y

2

; y

3

:::g be an enumeration of all state variables that

are contained in L

n

but not in L

o

, and let E

f

= f�

1

; �

2

; �

3

:::g be an enumer-

ation of all L

n

-formulae. We de�ne the required named MCS �

+

inductively.

Let �

0

= �. Note that �

0

contains no variables from E

v

, and is consistent

when regarded as a set of L

n

formulae.

Suppose we have de�ned �

k

for k � n. If �

n

[ f�

n

g is inconsistent, then

�

n+1

= �

n

. Otherwise:

1. �

n+1

= �

n

[ f�

n

g if �

n

is not of the form :L(?), else:

2. �

n+1

= �

n

[f�

n

(= :L(?))g[f:L(:x)g where x is the �rst variable in

the enumeration E

v

which does not appear in �

k

(for 0 � k � n) nor

in L. Clearly such a variable exists, since only �nitely many variables

from E

v

are contained in �

k

(for 0 � k � n) and L.
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Let �

+

=

S

n�0

�

n

. As proofs contain only �nitely many formulae, to

show that �

+

is consistent it su�ces to show that �

n

is consistent for all

n > 0. Clearly this reduces to showing that if �

n

[ f�

n

g is consistent, where

�

n

= :L(?), then �

n+1

= �

n

[f�

n

g[f:L(:x)g is consistent. So suppose for

the sake of a contradiction that �

n+1

= �

n

[f�

n

g[f:L(:x)g is inconsistent.

Then there is a formula � which is a conjunction of �nitely many formulae

from �

n

[ f�

n

g, such that ` �! L(:x). As �! L(:x) is a 2-form and x

does not occur in � and L, using the COV

�

rule we obtain ` �! L(?) and

this contradicts the consistency of �

n

[ f�

n

g. So �

+

is consistent. Clearly

�

+

is maximal. To see that �

+

is closed, suppose that :L(?) 2 �

+

, for some

2-form L. The formula :L(?) appears in the enumeration E

f

; let it be �

k

.

But then �

k

[f�

k

g is consistent as �

+

is consistent. Hence, by construction,

�

k+1

contains :L(:x) for some state variable x, thus :L(:x) is in �

+

and

�

+

is closed. a

The crucial point to observe about the previous proof is this: we used

COV

�

to paste names into 2-forms of arbitrary depth. (Intuitively, we built

an MCS in which each possible sequence of transitions leads to a name.) It

thus seems reasonable to hope that the names we have so carefully pasted

in give us a precise blueprint for building a well-behaved model, that is, a

model for which an Existence Lemma is provable. And this is precisely how

things turn out, as we shall now see.

De�nition 29 (Named models) Let � be a closed MCS in some count-

able language L, let M

c

= (S

c

; R

c

; V

c

) be the canonical model in L, and

let N (S

c

) be the set of all named MCSs in S

c

. The named model M

n

yielded by � is de�ned to be the triple (S

n

; R

n

; V

n

), where S

n

= f�g [ f� 2

N (S

c

) j there are n > 0 and s

0

; :::; s

n

2 N (S

c

) such that s

0

= �; s

n

=

� & s

i

Rs

i+1

for 0 � i � n � 1g, and R

n

and V

n

are the restrictions of R

c

and V

c

, respectively, to S.

Lemma 30 Let L be some countable language and M

n

= (S

n

; R

n

; V

n

) be

the named model yielded by some closed L-MCS �. Then, for all MCSs

�;� 2 M

n

, and every state symbol s, if s 2 � and s 2 �, then � = �.

Proof. Suppose � and � are di�erent. Then there is a formula � such that

� 2 � and :� 2 �. Let � and � be reachable from � in m � 0 and

n � 0 R

n

-steps, respectively. We have 3

m

(s ^ �) 2 �. By the Nom schema,

2

n

(s ! �) 2 �, and therefore s ! � 2 �. So both � and :� are in �,

which contradicts its consistency. a
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Lemma 31 (Existence Lemma) LetM

n

= (S

n

; R

n

; V

n

) be a named model

yielded by some closed MCS �, and let � 2 S

n

be an MCS such that 3� 2 �.

Then there is an MCS � 2 S

n

such that �R

n

� and � 2 �.

Proof. If we can �nd y such that 3(� ^ y) is in �, then the set �

0

:=

f�^ yg [ f j 2 2 �g is consistent. But then we can use the usual version

of Lindenbaum's Lemma to extend �

0

to an MCS �. Clearly �R�, � 2 S

n

,

and y names �, hence � is the required MCS.

So it remains to show that there exists a state variable y such that 3(�^

y) 2 �. For sake of a contradiction suppose that for each variable y, :3(�^

y) 2 �. By de�nition, all MCSs in the named model M

n

have names. So,

let x be a name for �. Therefore we have x ^ :3(� ^ y) 2 �, for all state

variables y. Since � is inM

n

, 3

m

(x^:3(�^y)) 2 � for some m � 0. Using

Nom we get 2

m

(x ! 2(� ! :y)) 2 �. As this holds for all state variables

y, and since � is closed, we get 2

m

(x ! 2(� !?)) 2 �. Equivalently,

2

m

(x! 2:�) 2 �. As � is reachable from � in m R

n

-steps, x! 2:� 2 �

and therefore 2:� 2 �. As 3� 2 �, this contradicts the consistency of

�. a

Now we are ready to de�ne our model and assignment. Once again we

don't have any guarantee that named models are standard, or that natural

de�nition of assignment gives rise to a standard assignment. However (as in

the completeness proof for H(8)) we can always �x this by adding an extra

dummy point � if we have to. So our �nal model and assignment are de�ned

as follows:

De�nition 32 (Completed models and completed assignments) If

M

n

= (S

n

; R

n

; V

n

) is a named model yielded by some closed L-MCS �, then

we de�ne a completed model M based on M

n

as follows. If for all state

symbols s, the set f� 2 S

n

j s 2 �g 6= ;, then M is de�ned to be M

n

,

otherwise M is de�ned to be a triple (S;R; V ), where S = S

n

[ f�g (� is

an entity that is not an MCS), R = R

n

[ f(�;�)g, V (p) = V

n

(p) for all

propositional variables p. For all state constants c, V (c) = f� 2 S

n

j c 2 �g

if this set is not empty, and V (c) = f�g otherwise.

The completed assignment g on M is de�ned as follows: for all state

variables x, g(x) = f� 2 S

n

j x 2 �g if this set is not empty, and g(x) = f�g

otherwise.

It follows from Lemma 30 that completed models are standard. Moreover,

completed assignments are standard too, thus (by the Soundness Theorem)

all theorems ofH(#

0

) are true in completed models with respect to completed

assignments.
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Lemma 33 (Truth Lemma) Let M be a completed model in some count-

able language L, g the completed M-assignment and � an L-MCS in M.

For every L-formula �:

� 2 � i� M; g;� j= �:

Proof. The proof is by induction on the complexity of �. If � is a state

symbol or a propositional variable the required equivalence follows from the

de�nition of the model M and the assignment g, and the Boolean cases are

obvious. The modal case makes use of the de�nition of the canonical relation

and the Existence Lemma.

Now let � be #

0

x

 . First note that by de�nition of the modelM, all MCSs

inM are named. So, let y be a name for �. By de�nition of the assignment

g, y 2 � i� g(y) = f�g. Hence M; g;� j= y holds.

Let  

0

be the formula obtained from  by replacing all bounded occur-

rences of y by some variable that does not appear in  . By Lemma 23

`  $  

0

. As ` #

0

x

 $ #

0

x

 , by Lemma 24 we have that ` #

0

x

 $ #

0

x

 

0

.

It follows that #

0

x

 2 � i� #

0

x

 

0

2 � i�  

0

[y=x] 2 �. (Both directions

of the last equivalence use the fact that y 2 �: the left to right direction

follows using an instance of Q2 schema, while the right to left uses clause 4 of

Lemma 22.) By the inductive hypothesis,  

0

[y=x] 2 � i�M; g;� j=  

0

[y=x].

As the modelM and the assignment g are standard, all H(#

0

)-theorems are

true in M with respect to g. Hence M; g;� j=  

0

[y=x] i� M; g;� j= #

0

x

 

0

.

(For both directions we make use of the fact that M; g;� j= y. To prove

the left to right direction we make use of clause 4 of Lemma 22, while for

the other direction we use Q2.) Finally, since the formula #

0

x

 

0

$ #

0

x

 is

provable, it follows by soundness and the fact that M and g are standard

that, M; g;� j= #

0

x

 

0

$ #

0

x

 . Therefore M; g;� j= #

0

x

 

0

i� M; g;� j= #

0

x

 .

a

Theorem 34 (Completeness) Every consistent set of formulae in a count-

able language L

o

is satis�able in a rooted and countable standard model with

respect to a standard assignment function.

Proof. Let � be a consistent set of L-formulae. Using the Extended Lin-

denbaum's Lemma we can expand � to a closed MCS �

+

in the countable

language L

n

. Let M be the completed model yielded by �

+

and g the com-

pletedM-assignment. It follows from the Truth Lemma thatM; g;�

+

j= �

+

and soM; g;�

+

j= �. By our de�nition of completed models, either �

+

is a

root of this model, or there is an additional point � which is. As every state

in the model is named by one of the (countably many) state symbols in L

n

,

the model is countable. a
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5 Conclusions

We have investigated the completeness theory of two extreme examples of

hybrid languages, L(8) and L(#

0

). In both cases we proved completeness

by combining ideas and techniques from modal and classical logic, but the

balance of modal and classical ideas required was very di�erent. Intuitively,

L(8) is more classical than L(#

0

). This is borne out by its completeness

theory. In particular, because 8 is not a local binder, it validates the Barcan

schema, and this makes it possible to prove completeness using a fairly even-

handed blend of modal and classical techniques. The weaker language L(#

0

),

on the other hand, seems closer to the original modal language: in particular

it binds state variables locally. Because of its local binding, its analog of the

Barcan schema is not valid. This di�culty can be overcome by applying a

technique from extended modal logic, namely the use of the COV

�

rules of

inference. In short, completeness theory for L(#

0

) has a strong modal bias.

There are two clear avenues for further work. First, on the theoretical

side, it would be interesting to investigate whether there are natural ways of

avoiding the use of COV

�

in local hybrid languages. However, there is also an

obvious practical line of work that seems more urgent: �nding implementable

proof procedures for hybrid languages. The axiomatic systems considered

here, though complete, are not practical ways of performing deduction.

Here two plausible lines of approach suggest themselves. The �rst is to

investigate translation methods. A standard approach to modal theorem

proving is to make use of various embeddings into �rst-order logic: can such

techniques be extended to hybrid languages? A second approach would be

to investigate tableaux methods. It is worth noting that in his classic inves-

tigation of tableaux methods for modal logics, Fitting (1983) made use of

the idea of labels for states in the metalanguage. More recently, the idea of

labeled deduction systems (see Gabbay (1996)) has attracted widespread at-

tention. As hybrid languages actually provide labels in the object language,

it seems natural to investigate whether labeled approaches to deduction give

rise to useful hybrid proof systems.
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