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Abstract

We review the fundamental resolution�based methods for �rst�order theorem
proving and present them in a uniform framework	 We show that these calculi
can be viewed as specializations of non�clausal resolution with simpli�cation	
Simpli�cation techniques are justi�ed with the help of a rather general no�
tion of redundancy for inferences	 As simpli�cation and other techniques for
the elimination of redundancy are indispensable for an acceptable behaviour
of any practical theorem prover this work is the �rst uniform treatment of
resolution�like techniques in which the avoidance of redundant computations
attains the attention it deserves	 In many cases our presentation of a resolu�
tion method will indicate new ways of how to improve the method over what
was known previously	 We also give answers to several open problems in the
area	
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� Introduction

Resolution is one of the main computational methods in logic programming
and automated theorem proving	 The purpose of this paper is to describe a
general theory of resolution and to show how it can be used to explain the
basic properties of most known resolution�based deduction methods	

The basis for the theory is a non�clausal resolution rule that incorporates
various restrictions imposed by ordering constraints and selection functions
and also limits the extent of implicit factoring	 Orderings and selection
functions may be chosen from large classes of orderings and selection func�
tions� respectively� and each speci�c setting of these parameters results in a
speci�c calculus	 The second main component of the theory is an abstract
concept of redundancy� based on which most techniques for simplifying or
deleting formulas can be formulated	 The fundamental result of the paper is
the refutational completeness of these calculi and its compatibility with the
redundancy criterion	 The completeness result applies to any combination
of deductive inferences with redundancy�based simpli�cation mechanisms	
The meaning of �any combination� is made precise by a formal notion of
fair theorem proving derivations together with the concept of a saturated
matrix	 Fairness will guarantee that limit systems of such derivations are
saturated up to redundancy	

In the second part� in Sections � and �� the paper reformulates the
major resolution�based methods of automated deduction within the given
framework	 We will show that these methods are speci�c instances of the
theory and can be obtained from appropriate settings of its parameters	 This
analysis provides for more than just reestablishing known results in a new
framework	 In some cases �e	g	� the inverse method� the exact relationship
to standard resolution was not known before	 In each case of a method that
we consider we will be able to give a precise account of which simpli�cation
techniques are compatible with a particular inference system	 For instance
we will answer open questions about certain variants of hyper�resolution and
boolean ring based resolution and superposition and extend known results
about ordered theory resolution	

The reduction of any particular such strategy to the general case will
be straightforward without requiring any major technical overhead	 That
is in sharp contrast to many papers in the literature where some speci�c
variation of the resolution scheme is often accompanied by a very technical�
lengthy and speci�c completeness argument providing little� if any� insight
into the problem itself	 In this paper we shall show that only a few basic
principles su�ce to explain resolution in general	

The theory laid down in this paper does not require formulas to be in any
normal form	 �We do assume� however� that quanti�ers have been eliminated
by skolemization	� Computing with normal forms admits an e�cient imple�
mentation of search and simpli�cation	 In the paper we shall� among others�
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specialize non�clausal resolution to clausal normal form� to Maslov�s �super
clauses� �disjunctions of conjunctions of literals�� and to sums of products in
the Boolean ring	 In our approach transformation to normalform need not
be performed as a separate preprocessing but can be intertwined with infer�
ence computation in an arbitrary manner	 Among others� this provides ways
of dealing with logical equivalence	 For instance� in the clausal case equiv�
alences need not initially be converted into conjunctions of implications� as
this may exponentially increase the size of the original formula	 While there
are translation schemes that avoid such an exponential increase in the size
of formulas� the translation also destroys much of the structure of formula	
Equivalences can often be oriented into rewrite rules that transform formu�
las into a normal form which is well�suited for the particular application at
hand �cf	 Section 
	��	

In Section �� we shall discuss the r�ole of resolution�based methods� not
only for refutational theorem proving� but also� and especially so� as a tool
for analyzing and compiling presentations of logical theories	 We will in�
dicate how the resolution theory can be applied to obtain re�nements of
tableau�based theorem proving methods	 We will argue that the notion of
a �closed tableau� should be generalized to that of a �saturated tableau�
in which all paths are saturated� up to redundancy� by ordered resolution	
It will be brie�y explained how saturation may help in automatically gen�
erating decision procedures for a theory so that a certain complexity bound
can be guaranteed	 Finally we indicate in which way saturation may be a
mechanical tool for generating variants of resolution calculi that are specif�
ically tailored to certain theories such as orderings or congruence	 This will
shed some new light on how to compute with large� but structured theories	

� Preliminaries

��� Formulas and Clauses

We consider quanti�er�free �rst�order formulas built from variables� func�
tion symbols� predicate symbols and logical connectives	 We will deal with
the logical symbols � �verum�� � �falsum�� � �negation�� � �disjunction��
� �conjunction�� � �implication�� � �exclusive disjunction�� and � �equiv�
alence�� though our results apply to other connectives as well	 A term is
either a variable or an expression f�t�� � � � � tn�� where f is an n�ary function
symbol and t�� � � � � tn are terms	 For the major part of this paper we will
only be concerned with ground expressions in which terms do not contain
any variables	� Hence� unless not stated otherwise� we shall always implic�
itly assume that terms are ground� and we will speak of �rst�order terms

�The lifting problem� that is� the problem of extending theorem proving strategies and
associated completeness results to formulas with variables will only brie�y be discussed in
Section ��
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or �rst�order expressions to explicitly admit the presence of variables	 An
atomic formula �or atom� is an expression P �t�� � � � � tn�� where P is a pred�
icate symbol of arity n and t�� � � � � tn are terms	 A predicate symbol with
arity � is called a propositional constant 	 A literal is an expression A �a
positive literal� or �A �a negative literal�� where A is an atomic formula	
The two literals A and �A are said to be complementary	 The letters F and
G will be used to denote formulas	

Calculi for automated deduction are often described in terms of con�
structs that represent formulas� but abstract from inessential aspects of the
syntax or encode additional structural information	 For example� multiple
disjunctions or conjunctions may be conveniently represented as sequences
�or multisets�� due to the associativity �and commutativity� property of the
connective	

A multiset over a set S is a function � from S to the natural numbers	
Intuitively� ��x� speci�es the number of occurrences of x in �	 We say that
x is an element of � if ��x� � �	 A set may be thought of as a multiset � for
which ��x� is � or �� for all x	 A multiset � is �nite if ��x� � � for all but
�nitely many x	 The union and intersection of multisets are de�ned by the
identities �� 	���x� � ���x� � ���x� and �� 
���x� � min����x�����x��	
If � is a multiset and S a set� we write � � S to indicate that every element
of �the multiset� � is an element of �the set� S� and use � n S to denote
the multiset �� for which ���x� � � for any x in S� and ���x� � ��x��
otherwise	 We often use sequences or set�like notation to denote multisets	
For instance� if � and � are multisets� we write ��� instead of �	�� and
�� A instead of � 	 fAg	 For example� by �A�B�B we denote the multiset
� over formulas for which ���A� � �� ��B� � �� and ��F � � �� for all
other formulas F 	

Depending on the context� �nite multisets of formulas either denote the
disjunction or the conjunction� respectively� of their elements	 In case it
denotes a disjunction we call the multiset a general clause	 The empty clause
represents the constant �	 If �F�� � � � � Fn� is a clause� by ��F�� � � � � Fn� we
denote the formula �F� � � � � � �Fn	 A standard clause is a clause in which
all elements are literals	 For standard clauses we also use the notation
L� � L� � � � � � Ln as in this case the distinction between a disjunction and
a multiset is inessential	 A clause is called a Horn clause if it is a standard
clause which has exactly one positive literal� called the head of the clause�
or if it is of the form �A�� � � ���An��� with atoms Ai	 �The latter form is
our notation for Horn clauses with an empty head	 In particular � denotes
the empty Horn clause	� We will use greek letters �� �� � to denote general
clauses	 Standard clauses will be denoted by C and D	 Multisets of formulas
that represent the conjunction of their elements are called �general� dual

clauses	 For dual clauses we obtain the corresponding notions and notations
by replacing the symbols � and � by their duals � and �� respectively	

We write E E� ! to indicate that the expression E contains E� as a subex�
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pression" and denote by E E�� ! the result of replacing in E an indicated oc�
currence of E� by E��	 By E E��E�� ! we denote the result of simultaneously
replacing all occurrences of E� by E��	 We will also have to consider partial
substitutions for subexpressions	 If E� is a subexpression of E� by E E�jE��!
we denote any expression that di�ers from E only in that some �at least
one� of the occurrences of E� in E have been replaced by E��	

��� Herbrand Interpretations

A �Herbrand� interpretation is a set of ground atoms	 A ground atom A is
said to be true in a Herbrand interpretation I if A � I� and false otherwise	
The logical symbols are interpreted in the usual way# The constant � is true
in all interpretations� whereas � is false in all interpretations	 A conjunction
A �B is true in I if� and only if� both A and B are true in I" a disjunction
A � B is true if at least one of A and B is true" etc	 The truth value of a
formula depends only on the truth values assigned to its atomic formulas	
A clause �F�� � � � � Fn� is true in I if one of the formulas Fi is true in I	

An interpretation I is called a model of E if E is true in I	 I is a
model of a multiset of expressions N � if I is a model of any expression
in N 	 An expression or a multiset of expressions is called satis�able or
consistent if it has a model" and unsatis�able or inconsistent otherwise	 An
expression that is true in all interpretations is called valid� or a tautology	
We also say that E� is a logical consequence of an expression or a multiset
of expressions E �or logically follows from E�� written E j� E�� if E� is true
in all models of E	 Two expressions E and E�� are said to be �logically�

equivalent� written E  E��� if� and only if� E and E� have the same truth
value in each interpretation I	 By a contradiction we mean an inconsistent
expression that contains only the constants � and � and logical connectives�
but no function or predicate symbols	 For example� � and � � � are
contradictions	 The formula A��A is inconsistent� but not a contradiction
in our sense	

Theorem provers are procedures that check whether a given expression
E �the �goal�� is a logical consequence of a multiset of expressions N �the
�theory��	 Refutational theorem provers deal with the equivalent problem
of showing that N 	 f�Eg is inconsistent by deriving a contradiction from
N 	 f�Eg	

��� Rewrite Systems

Rewrite systems are a basic tool for describing a variety of theorem proving
techniques	 We will primarily use rewrite systems for rewriting formulas	
We use the letters �� �� � � � to denote metavariables ranging over formulas	
Syntactically� these variables are treated like propositional constants	
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A substitution is a mapping from variables to formulas	 By E� we de�
note the result of applying the substitution � to a formula E and call E�
an instance of E	 If E� is ground �i	e	� contains no variables�� we speak of a
ground instance of E	 Composition of substitutions is denoted by juxtapo�
sition	 Thus� if 	 and 
 are substitutions� then x	
 � �x	�
� for all variables
x	

An equivalence �relation� is a re�exive� transitive� symmetric binary re�
lation	 For example� logical equivalence is indeed an equivalence relation	
A binary relation � on formulas �with variables� is called a rewrite rela�

tion if F � � F �� implies F  F � ! � F  F �� !� for all formulas F � F � and F ��	
If � is a binary relation� we denote by �� its transitive closure" by ��

its transitive�re�exive closure" by � its symmetric closure" and by �� its
transitive�re�exive�symmetric closure	

A rewrite system is a binary relation on formulas with metavariables�
the elements of which are called rewrite rules and written F � F �	 �We
occasionally speak of a two�way rewrite rule� and write F � F �� if a rewrite
system contains both F � F � and F � � F 	� If R is a rewrite system�
we denote by �R the smallest rewrite relation that contains all instances
F� � F �� of rules in R	 We also say that F can be rewritten to F � by R�
if F �R F �	 We extend the notion of rewriting to multisets by de�ning#
� �R �� if � can be written as �� F and �� as �� F �� for some clause �
and formulas F and F � with F �R F �	 Thus� a rewrite relation de�ned
on formulas can be extended to clauses� as well as to matrices and sequents
that we shall introduce in Section �	� below	

Expressions that can not be rewritten are said to be in normal form	
We write F ��

R F � to indicate that F ��
R F � and F � is in normal form	

We say that R terminates if there is no in�nite sequence F� �R F� �R � � �
of rewrite steps	 If R terminates� then every formula can be rewritten to a
normal form �in zero or more steps�	

If R and S are rewrite systems� we denote by R�S �R modulo S� the
rewrite system consisting of all rules F � F �� such that F ��

S G�R G� ��
S

F �� for some formulas G and G�	

��� Orderings

A �strict� partial ordering is a transitive and irre�exive binary relation"
a quasi�ordering a re�exive and transitive binary relation	 The re�exive
closure of a strict ordering is a quasi�ordering	 On the other hand� if � is
a quasi�ordering� then its strict part � de�ned by# x � y if x � y but not
y � x� is a strict ordering	 We may also de�ne an equivalence relation by#
x � y if x � y and y � x	 We say that an ordering �� extends � if the
latter is a subset of the former �i	e	� x �� y whenever x � y�	

For example� we may compare formulas by their size and de�ne either
a strict ordering# F � G if G is shorter �as a string� than F " or a quasi�





ordering# F � G if F is not shorter than G	 If F and G are of the same
length� we have F � G and G � F � but neither F � G nor G � F 	 This
ordering extends the subformula ordering	 The example also shows that the
re�exive closure of the strict part of a quasi�ordering may be di�erent from
the quasi�ordering	

A strict ordering � is said to be well�founded if there is no in�nite
sequence x� � x� � � � � of elements	 A quasi�ordering is well�founded if its
strict part is well�founded	 A strict ordering is said to be total �on S� if for
any two distinct elements x and y �in S� we have either x � y or y � x	

We say that an ordering � has the subterm property if E E� ! � E�� for
all expressions E and E�	 A rewrite ordering is an ordering that is also a
rewrite relation" a reduction ordering� a well�founded rewrite ordering" and
a simpli�cation ordering� a reduction ordering with the subterm property	
Note that a rewrite system R terminates if� and only if� there exists a re�
duction ordering � such that E� � E��� for each rule E � E� in R and
each substitution �	

In this paper� we mainly use orderings de�ned with respect to the tree
structure of terms and formulas	 Let � be an ordering� called a precedence�
on the given set of �function� predicate and logical� symbols	 The corre�
sponding lexicographic path ordering �lpo is de�ned by#

s � f�s�� � � � � sm� �lpo g�t�� � � � � tn� � t if and only if

�i� f � g and s �lpo ti� for all i with � � i � n" or

�ii� f � g and� for some j� we have �s�� � � � � sj��� �
�t�� � � � � tj���� sj �lpo tj� and s �lpo tk� for all k with
j � k � n" or

�iii� sj �lpo t� for some j with � � j � m	

If the precedence is well�founded� the lexicographic path ordering is a sim�
pli�cation ordering	 It is total on ground formulas whenever the given prece�
dence is total	

Any ordering on a set S can be extended to an ordering �mul on �nite
multisets over S as follows# � �mul � if �i� � �� � and �ii� whenever
��x� � ��x� then ��y� � ��y�� for some y such that y � x	 �Here � denotes
the standard �greater�than� relation on the natural numbers	� Given a
multiset� a smaller multiset is obtained by replacing an element by zero or
more occurrences of smaller elements	 If an ordering � is total �resp	� well�
founded�� so is its multiset extension	 For example� if we order formulas
by their size� then P �f�a�� � Q�a� and fP �f�a��g �mul fP �a�� Q�a�g	 For
simplicity we usually use the same symbol to denote both an ordering and
its multiset extension	

For a survey on termination orderings� see �Dershowitz �����	






A particular class of reduction orderings on formulas� called admissible
orderings� will be of importance below	 A reduction ordering � on formulas
is called admissible if �i� A � � and A � �� for all atoms A" and �ii� if for
all atoms B in G there exists an atom A in F such that A � B then F � G	
An ordering � on clauses is admissible if it is the multiset extension of an
admissible ordering on formulas	

For instance� any lexicographic path ordering is admissible if predicate
symbols have higher precedence than logical symbols� and � and � are
lowest in precedence	

� Deduction

Theorem provers are �rst of all deductive systems	 In a refutational the�
orem prover new formulas are deduced from given ones with the goal of
obtaining a contradiction	 The most widely used inference rule for that pur�
pose is resolution� which was originally introduced by Robinson ���
b�	 We
will present a general version of resolution that applies to arbitrary clauses�
of which the more common version of resolution that applies to standard
clauses only is a special case	

��� General Resolution

For our purposes� an inference rule is an n�ary relation on expressions� where
n � �	 The elements of such a relation are usually written as

E� � � � En��

E

and called inferences	 The expressions E�� � � � � En�� are called the premises�
and E the conclusion� of the inference	 We also speak of an inference from

N if all premises are elements of N 	 An inference system is a collection of
inference rules	

An inference is sound if the conclusion is a logical consequence of the
premises� i	e	� E�� � � � � En�� j� E	 The following de�nition of resolution for
formulas is sound	

General resolution�
F  G! F � G!

F  G��! � F � G��!

We speak of a resolution on G and call the conclusion of the inference a
resolvent of the two premises	 We also call F the positive� F � the negative

premise� and G the resolved subformula	
Resolution is a sound inference	 In fact� suppose that I is an interpre�

tation in which both premises are valid	 In I� the propositional formula G
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is either true or false	 If G  �G! is true in I� so is F  G��!  F  G��!!� and
hence the resolvent	

In the following example we derive a contradiction from three given input
formulas by general resolution	

��� A� B  input!
��� �A � �B  input!
��� A �B  input!
��� �� �B� � �� � B�  resolving on A in ��� and ���!
�� �� � B� � ��� � �B�  resolving on A in ��� and ���!
�
� �� ��� � �� � �� � �� � �� � ��� � ���

 resolving on B in ��� and ��!

�
� is a contradiction as each disjunct simpli�es to �	 Hence� by the sound�
ness of the inference� there cannot be any interpretation in which the three
input formulas are simultaneously valid	

A particular form of resolution is self�resolution in which the two
premises are the same formula	 Given a �nite set of input formulas to be
refuted� one might as well simply iterate self�resolution on their conjunction
until all atoms habe been resolved#

��� �A� B� � ��A � �B� � �A �B�  input!
���  �� � B� � ��� � �B� � �� �B�!

�  �� � B� � ��� � �B� � �� �B�!  resolving on A in ���!
���  �� � �� � ��� � ��� � �� ���!

�  �� � �� � ��� � ��� � �� ���!
�  �� � �� � ��� � ��� � �� ���!
�  �� � �� � ��� � ��� � �� ���!  resolving on B in ���!

��� is a contradiction as each disjunct contains a false conjunct	
These two examples indicate the wide spectrum of possible resolution

strategies� ranging from local strategies where replacement of subformulas
$ atoms� in fact $ is con�ned to single clauses� to global ones in which the
entire state of the theorem proving process is modi�ed nonlocally at each
step	

Note that the order among the two premises is signi�cant	 For example�
resolution on A in A�B and A � C yields the resolvent ���B�� �� � C��
which is logically equivalent to B � C	 If we exchange the premises� we
obtain �� � C� � �� �B�� a tautology	

Non�clausal resolution is refutationally complete in that a contradiction
can be deduced from any inconsistent set of formulas N 	 As the previous
example indicates� if N is �nite� one may replace N by the conjunction of its
elements and then apply self�resolution until all atoms are eliminated	 Since
a self�resolvent of a formula is satis�able if and only if the formula is� the
�nal resolvent is an explicit representation of satis�ablity or unsatis�ablity
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of the initial N 	 This strategy resembles the Davis�Putnam procedure that
we describe in more detail in Section ��	�	 In the context of �rst�order logic
one might in fact restrict attention to �nite N 	 This is a consequence of
the compactness theorem for �rst�order logic	 However� a proof procedure
that would exploit compactness by nondeterministically guessing a �nite
and inconsistent set of ground instances of a given inconsistent set of �rst�
order formulas� and then apply self�resolution to verify the inconsistency�
does not appear to be of much interest in practice	 The main problem
in the non�propositional case is not to demonstrate the inconsistency of a
propositional instance but rather to �e�ciently� identify those instances that
are inconsistent	 Hence it is important to see that resolution is refutationally
complete also for in�nite sets of formulas	 Let us call a �possibly in�nite�
set of formulas N saturated with respect to an inference system J if the
conclusion of any inference in J from premises in N is contained in N 	

We prove the refutational completeness of general resolution by showing
that any inconsistent saturated set of formulas contains a contradiction	
More speci�cally� we will show that any set that is saturated under general
resolution and contains no contradiction� has a model	 For that purpose
we use the following construction of a Herbrand interpretation by induction
based on admissible orderings on formulas	

Let � be a total admissible ordering on formulas	 �In Section �	� we
have argued that many such orderings can be constructed with the concept
of lexicographic path orderings	� Given a set of formulas N � we use induction
with respect to � to de�ne a Herbrand interpretation IF and a set �F � for
each formula F in N � as follows	

De�nition ��� Let us assume� as an induction hypothesis� that �G are de�

�ned for all formulas G in N with F � G� Then let IF be the set
S
F�G �G�

Furthermore� if A is the maximal atomic formula in F � then �F � fAg if

�i� A �� IF and �ii� F is false in IF � but F is true in IF 	 fAg� Otherwise�

�F is the empty set�

We also say that F produces A� and call F a productive formula� if �F �
fAg	 Finally� by I�N � or simply IN � we denote the Herbrand interpretationS
F�N �F 	

The construction is designed to render the formulas of N true in IN 	 The
interpretation IF is intended to be a model of the set NF of those formulas
in N that are smaller than F " and �F is meant to be a minimal extension
of IF that makes F true	

Example ��� We assume an atom ordering E� � E � D � C � B � A	
The following table depicts the model construction for a set of formulas
which the table is assumed to list in ascending order	
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formula F interpretation IF �F remarks

A �B � fBg B is maximal

B �C fBg � F is true in IF
B � C fBg fCg

B � �C �E� �D fB�Cg fEg

B �E � D fB�C�Eg � D not maximal

E �E� fB�C�Eg fE�g

The construction will not always yield a model of N 	 In the example� the
generated interpretation is fB�C�E�E�g� and the second last formula is not
satis�ed in it	 But we have the following lemmas#

Lemma ��� If F � N is productive� then F is true in IN �

Proof	 By the construction� if F produces an atom A then F is true in
IF 	 fAg	 As none of the atoms in IN n �IF 	 fAg� occur in F �these must
be larger than A which itself is the maximal atom in F �� F remains true in
IN 	 �

The question is whether non�productive formulas are true in IN 	 For satu�
rated sets N this is indeed the case	

Theorem ��� If N is saturated and contains no contradiction� then IN is

a model of N �

Proof	 For simplicity let us denote IN by I	 By the above lemma� productive
formulas are true in I	 Let F be the smallest non�productive formula that
is false in I �the smallest �counterexample�� so to say�	 Since N contains no
contradiction� F must contain a non�logical symbol	 Let A be the maximal
atom in F 	 We consider two cases	

�i� Suppose A �� I	 Since F is false in I� the formula F  A��! is also false
in I	 But the truth value of any atom in F  A��! is the same in IF as in I and
therefore F  A��! is false in IF as well	 But then F  A��! must also be false
in IF � for otherwise F would be productive	 The resolvent F  A��!�F  A��!
is false in IF and in I	 By saturation� it is contained in N 	 Since it contains
only symbols strictly smaller than A in the given ordering� it is smaller than
F 	 But this contradicts our assumption that F is the smallest false formula
in N 	

�ii� Suppose A � I	 Let F � be the formula producing A	 Thus� F � A��! is
false in both IF � and I	 By assumption� F  A��! is false in I	 By saturation�
the non�clausal resolvent F � A��!�F  A��! is contained in N 	 This resolvent
is false in I� yet smaller than F � which is a contradiction	

In sum� we have proved that none of the formulas in N is false in IN 	 In
other words� IN is a model of N 	 �
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The idea underlying this completeness proof is simple	 We show that if a
minimal counterexample is not a contradiction� then an even smaller coun�
terexample can be deduced by resolution	 Resolving on minimal counterex�
amples is an e�ective and deterministic stragegy for saturating �nite sets of
formulas until either a contradiction is found� or else IN yields a �minimal�
model of N 	

Example ��� Continuing the Example �	� we observe that B �E � D is
the smallest false formula and has E as maximal atom	 E is produced by
B � �C � E� � D	 Resolving these two formulas� according to case �ii� of
the proof� yields �B � �C ��� �D� � �B �� � D�	 Adding this resolvent
and redoing the model construction yields

F IF �F remarks

A �B � fBg

B � C fBg �

B � C fBg fCg

�B � �C � �� �D� � �B �� � D� fB�Cg fDg

B � �C �E� �D fB�C�Dg � true in IF
B �E � D fB�C�Dg � true in IF
E �E� fB�C�Dg �

Since E is no longer produced� E � E� cannot be made true by producing
E�	 E � E� remains the smallest false formula� and case �i� in the proof of
the Theorem applies	 Self�resolving E� in E�E� produces �E�����E���	
Now the construction proceeds as

F IF �F

A �B � fBg

B � C fBg �

B � C fBg fCg

�B � �C � �� �D� � �B � � � D� fB�Cg fDg

�E � �� � �E � �� fB�C�Dg fEg

B � �C �E� �D fB�C�D�Eg �

B �E � D fB�C�D�Eg �

E �E� fB�C�D�Eg fE�g

and results in the model fB�C�D�E�E�g

Thus� a saturated set either contains a contradiction or else has a model	
Another consequence of the Theorem �	� is that propositional logic is com�
pact	 A �nite or denumerably in�nite set N of propositional formulas can
be saturated under general resolution in at most  steps	 If it is inconsis�
tent the saturation contains a contradiction	 This contradiction has a �nite
resolution proof involving only �nitely many formulas in N 	
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General resolution� as a sound and complete inference rule� provides
a suitable deductive base for refutational theorem proving	 For practical
purposes it is too general� though� in that too many formulas can be deduced
�the �search space� is too large�	 We next discuss useful restrictions on
resolution that do not impair its completeness	

��� Selection Functions and Ordering Restrictions

An inspection of the proof of Theorem �	� reveals that we have actually
established a stronger result than is stated in the theorem	 The proof only
requires resolution on atomic formulas" in fact� only on the maximal atom
in a ground formula	 In other words� we may impose certain ordering re�
strictions on resolution	 Sometimes� resolution on non�maximal subformulas
will be useful� though� and we propose selection functions as a corresponding
control mechanism	 Furthermore� we will also relax the requirement that all
occurrences of a resolved formula be replaced	 The re�ned inference rules
have to be formulated in terms of clauses� as it is necessary to distinguish
�sub�formulas introduced by an inference from original input formulas	

By a selection function we mean a mapping S that assigns to each general
clause � a �possibly empty� set S��� of nonempty sequences of �distinct�
atoms in � such that either �i� S��� is empty or else �ii� for any interpre�
tation I in which � is false there exists a sequence A�� � � � � Ak in S��� such
that Aj is true in I� for all � � j � k	 If A�� � � � � Ak is in S��� we say
that the sequence A�� � � � � Ak is selected in � �by S�	 If a sequence in S���
consists of a single atom A� we call A a selected atom in �	 By selecting
sequences of more than one atom one speci�es their simultaneous replace�
ment in a resolution inference	 We say that � contains no selected atom�
whenever S��� is empty	

For example� consider � � ��A � �B��A�� B��	 Then both S��� �
f�A�A��� �B�A��g and S��� � fA�Bg satisfy �ii�	 A third possible choice for
selection would be S��� � fA�g	

In general� verifying �ii� for any given S and clause � may be a com�
putationally hard problem	 Certain syntactic criteria are helpful in this
regard	 For instance� if C is a simple clause� then those atoms that occur
in negative literals of C are precisely the ones that may be selected� and
any set of sequences of negative atoms forms a legal selection	 For general
clauses� a suitable generalization of the notion of polarity of a formula in
an expression is useful	 A subformula of F � in E F �! is said to be positive

�resp	� negative� if E F ���! �resp	� E F ���!� is a tautology	 In that case F �

�resp	� �F �� implies E	
For example� in a disjunction A�B both A and B are positive� whereas

in a conjunction A � B the two subformulas A and B are neither positive
nor negative	 A subformula may occur both positively and negatively �e	g	�
A in A��A or A  A�� in which case the formula is a tautology	 For simple
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clauses �A�� � � ���Am�B�� � � ��Bn we obtain the usual notion of polarity
in that all atoms Ai are negative and all atoms Bj are positive	 With this
notion of polarity for general clauses� any negative atom A in a clause may
be selected since a negative A cannot be false in any interpretation in which
the clause is false	

In general� determining whether an atom A is positive or negative in E
requires one to check whether E A��! or E A��! is a tautology� which again
is a computationally hard problem	 We may employ su�cient syntactic
criteria that allow us to identify certain positive and negative occurrences
of atoms in a clause in linear time �in the size of the given clause�#

Proposition ��	 �i� F is a positive subformula of F �

�ii� If �G is a positive �resp�� negative� subformula of F � then G is a

negative �resp�� positive� subformula of F �
�iii� If G�H is a positive subformula of F � then G and H are both positive

subformulas of F �

�iv� If G�H is a negative subformula of F � then G and H are both negative

subformulas of F �

�v� If G� H is a positive subformula of F � then G is a negative subfor�

mula and H is a positive subformula of F �

�vi� If G� � is a negative subformula of F � then G is a positive subfor�

mula of F �

�vii� F is positive in a clause � if it is an element of ��

��� General Ordered Resolution

Let � be an ordering and S be a selection function	 General ordered reso�
lution O�S is given by this inference system#

General ordered resolution with selection�

�� A�! � � � �n An! � A�� � � � � An!

�� A���!� � � � ��n An��!�� A�j�� � � � � Anj�!

where �i� either A�� � � � � An is selected by S in �� or else S��� is empty�
n � �� and A� is maximal in �� �ii� each atom Ai is maximal in �i�
and �iii� no clause �i contains a selected atom	

Ordered selfresolution�

��� A!

��� Aj�!�� A��!

where �i� the atom A is maximal in �� and �ii� the premise contains
no selected atom	
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The subscript and�or superscript in O�S will be omitted if the ordering � or
the selection function S are clear from the context� or are intentionally left
unspeci�ed	 Speci�c settings of these parameters will be discussed later� see
Sections � and �	

The last premise� �� in an ordered resolution inference is called the
negative premise� whereas the �i are called the positive premises	 In an
ordered resolution inference either all selected atoms or� if there are no
selected atoms� the maximal atom in the negative premise are resolved	
Furthermore� positive premises and the premises of self�resolution inferences
must contain no selected atoms at all	 All occurrences of the resolved atoms
in the positive premises are replaced �by �� whereas replacement in the
negative premise �by �� need not be exhaustive	 At least one occurence of
each of the Ai must be replaced� though	 For self�resolution� replacement
is restricted to a subclause �	 Substitution of A by � is exhaustive� while
replacement by � may be partial	 For instance� to facilitate the lifting of
inference rules to clauses with variables� it will be useful if not all occurrences
of an atom have to be substituted	

Lemma ��� Let � be a total admissible ordering and S be any selection

function� Then the conclusion of any inference in O�S is smaller than the

negative premise�

The lemma would not hold if the conclusions of these inferences were written
as a disjunction� instead of as a multiset	

The way the inferences have been formulated might suggest that all
possible forms of partial replacement have to be considered as conclusions	
We shall see in Section 
	� that this nondeterminism is don�t care	 As soon
as one conclusion has been derived the others become redundant	 Don�t�
care non�deterministic is also the selection of that part of the premise of a
self�resolution inference in which substitution takes place	

� Derivations and Redundancy

Redundancy is a key concept in theorem proving� especially in saturation�
based approaches	 Experiments with theorem provers indicate that mech�
anisms for deleting redundant formulas and avoiding redundant inferences�
such as tautology deletion� subsumption� and critical pair criteria� are in�
dispensable for practical performance	 We shall present an abstract notion
of redundancy from which virtually all commonly used simpli�cation tech�
niques can be derived as special cases	 Refutational completeness will be
established with respect to this general notion of redundancy	 Redundancy
is a concept referring to a particular state in a theorem proving process	
These states have to be modelled by adequate data structures to be intro�
duced next	
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��� Matrices and Sequents

A matrix is a ��nite or in�nite� multiset of �nite multisets of formulas	 More
speci�cally� we distinguish between positive matrices that represent disjunc�
tions of conjunctions" and negative matrices that represent conjunctions of
disjunctions	 Hence� a negative  positive! matrix is a �nite or in�nite mul�
tiset of  dual! clauses	 Consequently� the negation �M of a �nite negative
 positive! matrix will denote the disjunction  conjunction! of their negated
 dual! clauses	 We shall use the letters K� N and M � respectively� to denote
matrices	 A sequent is a pair of matrices� written N � M consisting of a
negative matrix N and a positive matrix M 	 The matrix N is called the an�

tecedent and the matrix M � the succedent of the sequent	 A sequent N �M
is true in an interpretation I if� whenever all clauses in N are true in I� then
there exists a multiset �of formulas� % in M � such that all formulas of % are
true in I	 An empty multiset represents the constant � in the antecedent
and the constant � in the succedent	

Notions such as logical equivalence will be applied to matrices and se�
quents in the expected manner	 For example� the two sequents N �M and
N��M � � are logically equivalent	

In a context where � is a given ordering on formulas� we assume clauses
 and �nite matrices! to be ordered by its  twofold! multiset extension	

Refutational theorem provers only consider sequents with an empty
succedent� whereas connection and tableau calculi are usually formulated
in terms of sequents with an empty antecedent	 These �one�sided� sequents
can be identi�ed with their negative and positive matrices� respectively	
Since the main purpose of this paper is the investigation of refutational the�
orem proving based on resolution calculi� all matrices below will be of the
negative type� unless indicated otherwise	

��� Theorem Proving Processes

We start out by developing the minimal prerequisites for a theory of refu�
tational theorem proving with deduction and deletion	 Deduction one may
assume to be based on an inference system J for matrices	 Deletion is
more subtle in that derived formulas may be deleted afterwards only if it
can be assured that they are not needed for the eventual proof	 Deletion
must therefore be based on a suitable redundancy criterion for formulas and
inferences	

For de�ning a redundancy criterion� two mappings RF and RI are em�
ployed	 RF and RI associate with each matrix N of clauses a set of clauses
�that is� a matrix with no multiple occurrences of clauses� and a set of
inferences� respectively� which are deemed to be redundant in the context
N 	
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De�nition ��� Let J be an inference system� A pair R � �RF �RI� of

mappings from sets of clauses to sets clauses and inferences� respectively� is

called a redundancy criterion �for J � if� for all sets of clauses N and N �

�R�� if N � N � then RF �N� � RF �N �� and RI�N� � RI�N ���
�R�� if N � � RF �N� then RF �N� � RF �N nN �� and RI�N� � RI�N nN ���
�R�� if N n RF �N� is satis�able then N is satis�able� and
�R�� if � is the conclusion of an inference I in J then I is in RI�N 	f�g��

The �rst condition expresses monotonicity of redundancy under the subset
relation and� hence� in particular under the deduction of new clauses	 The
second condition requires that redundancy of a formula or of an inference be
independent of clauses redundant in the same context	 The third require�
ment states that the removal of redundant clauses preserves unsatis�ability	
Finally� �R�� implies that upon adding the conclusion of an inference to
a matrix the inference becomes redundant henceafter	 We emphasize that
RF �N� need not be a subset of N and that RI�N� will usually contain
inferences whose premises are not in N 	 Inferences in RI�N� and clauses in
RF �N� are said to be redundant �with respect to N�	 Note that if J � is an
inference system such that J � J � then if R is a redundancy criterion for
J it can also be considered a redundancy criterion for J � which classi�es
none of the inferences in J � n J in any context as redundant	

At an abstract level a saturation�based theorem prover can be described
by a binary relation � on matrices� which we call a transition or derivation

relation	 More speci�cally� we consider derivation relations where each step
N �N � consists of either adding a clause or deleting a redundant one	

Let J be an inference system and let R be a redundancy criterion for J 	
If N is a matrix� we denote by J �N� the set of all inferences from N 	 For
a set of inferences I� C�I� shall denote the set of all conclusions of inferences
in I	

Deduction�

N �N�� if � � C�J �N��

Deletion�

N���N if � � N 	R�N�

These two rules describe the basic steps in the theorem proving process	
Since deduction determines which clauses need to be generated �the �search
space��� a more restrictive inference system is preferable" whereas a powerful
notion of redundancy is desirable for deletion� which provides a means of
decreasing the search space	

In the context of refutational theorem proving� the basic requirement
is preservation of consistency	 We call an inference system J consistency�

preserving if for all matrices N � the matrix N 	 C�J �N�� is consistent�
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whenever N is consistent	 From now on we assume that inference systems
be consistency�preserving	 Note that by the condition �R�� any redundancy
criterion is �inconsistency�preserving� in that the deletion of redundant for�
mulas preserves inconsistency	

A ��nite or countably in�nite� sequence N� �N� � N� � � � � is called a
�theorem proving� derivation	 A derivation is said to be based on J and R�
with R a redundancy criterion for J � if every step is either by deduction
with J or by deletion according to R	 The set N� �

S
i

T
j�iNj of all

persisting clauses is called the limit of the derivation	 By a theorem prover

we mean a procedure that accepts as input a matrix N � and produces a
derivation N � N��N��N�� � � � from N based on some inference system
J and redundancy criterion R	 The sets Ni represent the successive states
in the theorem proving process" the set N� its result �which� in the case of
an in�nite derivation� is only obtained in the limit�	

Lemma ��� Let N� �N� �N� � � � � be a derivation based on a J and R�

Then RF �
S
j Nj� � RF �N�� and RI�

S
j Nj� � RI�N��� Moreover� N� is

satis�able if and only if N� is satis�able�

Proof	 Let R stand for either RF or RI 	 First note that� by �R��� �
S
j Nj�n

N� � RF �
S
j Nj� and� hence� �

S
j Nj� n RF �

S
j Nj� � N�	 Again using

�R�� we infer that R��
S
j Nj� n RF �

S
j Nj�� � R�N��	 Condition �R��

states that R�N� � R�N n RF �N��� for any multiset N 	 We conclude that
R�
S
j Nj� � R�N��	

For the second part note that N� is satis�able if and only if
S
j Nj is

satis�able	 The assertion follows from the condition �R�� and the �rst half
of the Lemma	 �

Refutationally complete theorem provers produce derivations in which a
contradiction is derived eventually whenever N� is unsatis�able	 To show
refutational completeness one must assure that su�ciently many inferences
are computed	 In that regard two concepts� saturation and fairness� are of
importance	

Let J and J � be two inference systems such that J � J �� and let R
be a redundancy criterion for J 	 In employing two inference systems� our
intention is to distinguish between don�t care inferences �in J � n J � that
represent simpli�cation steps intented to increase e�ciency and those in�
ferences �in J � which are required for refutational completeness	 We say
that N is saturated up to redundancy �with respect to J and R� if all infer�
ences in J with non�redundant premises from N are redundant in N � i	e	�
J �N n RF �N�� � RI�N�	 Saturation can be achieved by fair computation
A derivation N� �N� �N� � � � � based on J � and R is called fair with re�
spect to J � J � if every inference in J with non�redundant premises in N�
is redundant with respect to

S
j Nj � i	e	� J �N� n RF �N��� � RI�

S
j Nj�	
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Fairness essentially requires that no inference in J from non�redundant per�
sisting formulas be delayed inde�nitely	 A su�cient condition for fairness is
expressed in the following lemma	

Lemma ��� A derivation is fair with respect to J if the conclusion of every

non�redundant inference in J from non�redundant formulas in N� is an
element of� or is redundant in�

S
j Nj� i�e��

C�J �N� n RF �N��� n RI�N� n RF �N����� � �
�

j

Nj 	RF �
�

j

Nj���

Proof	 If I is a redundant inference from non�redundant formulas in N�
then� by �R��� I is also redundant in

S
j Nj 	 Let now I be a non�redundant

inference from non�redundant formulas in N� and let � be its conclusion	 If
� is in

S
j Nj then� by the condition �R��� I is redundant in

S
j Nj	 Otherwise�

observe that I is inRI�
S
j Nj	f�g�� and that RI�

S
j Nj� � RI�

S
j Nj	f�g�

if � is redundant in
S
j Nj	 �

In other words� a fair derivation can be constructed by exhaustively applying
inferences to persisting formulas	

Lemma ��� If a derivation is fair with respect to J and R then its limit

is saturated up to redundancy with respect to J and R�

Proof	 If a derivation is fair� then J �N� n RF �N��� � RI�
S
j Nj�	 By

Lemma �	�� RI�
S
j Nj� � RI�N��	 Thus� J �N� n RF �N��� � RI�N���

which means that N� is saturated up to redundancy	 �

In summary we obtain the following scheme for obtaining refutationally com�
plete theorem provers	 �i� De�ne J and R	 �ii� Show that J is consistency�
preserving and that R satis�es the conditions of a redundancy criterion	
�iii� Show that J together with R is refutationally complete� that is� for all
matrices N � whenever N saturated up to redundancy with respect to J and
R and is inconsistent� then N contains a contradiction	 �iv� Design addi�
tional inferences for simpli�cation� that is� inferences which derive formulas
in order to make other� �larger� formulas redundant	 These additional infer�
ences constitute J � n J 	 �v� Design e�ective �possibly incomplete� methods
for detecting redundancy of formulas and inferences	 Finally� �vi� assure
that theorem proving processes based on J � and R fairly enumerate the
inferences in J 	

Theorem ��� Let J be a consistency�preserving inference system� and let
R be a redundancy criterion for J such that J is refutationally complete

with respect to R� Moreover let J � � J be a sound extension of J and

consider any theorem proving derivation N��N��N�� � � � based on J � and

R that is fair with respect to J � Then N� is inconsistent if and only if N�
contains a contradiction�
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��� A Redundancy Criterion for General Resolution

We shall de�ne a redundancy criterion R�� which we shall refer to as the
standard redundancy criterion for general ordered resolution	 The criterion
will be based on the given clause ordering �� but will be independent of
selection	 The criterion is a slight optimization of the one proposed by
Bachmair & Ganzinger ������� �also see Bachmair & Ganzinger ����a�	 For
the purposes of this de�nition� the ordering � need not be an admissible
ordering	 It will be su�cient to require that � be a well�founded partial
ordering on clauses	

De�nition ��	 A �general� clause � is called redundant in N �with respect

to �� if there exist clauses ��� � � � ��k in N such that ��� � � � ��k j� � and

� � ��� � � � ��k�

In other words� a clause is redundant in N if it is a logical consequence
of smaller clauses in N 	 For example� tautologies ��� or �� A��A are
redundant in any context N 	 Note that � need not be an element of N in
order to be redundant in N 	 Let us denote by N�

�
the set of all clauses �

in N � such that � � �	 � is redundant� if and only if N�
� j� �	

By R�
F �N� we denote the set of all clauses that are redundant in N with

respect to � by the standard criterion	

Lemma ��� If N � N �� then R�
F �N� � R�

F �N ��� Furthermore� if a clause
� is redundant in N � then there exist non�redundant clauses ��� � � � ��k in

N � such that ��� � � � ��k j� � is valid and � � ��� � � � ��k� Consequently�

R�
F �N� � R�

F �N n R�
F �N��� for all matrices N �

Sketch of proof	 Part ��� follows immediately from the de�niton of redun�
dancy	 For part ���� let us suppose � is redundant in N 	 Let N � � ��� � � � ��k

be a minimal submultiset of N �with respect to the multiset ordering �mul��
such that ��� � � � ��k j� � and � � �j� for all j	 The clauses �j are all non�
redundant	 �

Redundancy of resolution inferences is de�ned as follows#

De�nition ��
 An ordered resolution inference with positive premises

��� � � � ��n� negative premise �� and conclusion �� is called redundant in

N �with respect to �� if either �i� �� is in N or else �ii� there exist clauses

��� � � � ��k in N such that � � ��� � � ��k� and

��� � � � ��k���� � � � ��n j� ���

An ordered self�resolution inference with premise �� resolved atom A and

conclusion �� is called redundant in N �with respect to �� if either �i� ��

is in N or else �ii� there exist clauses ��� � � � ��k in N such that � �
��� � � ��k� and

��� � � � ��k��� A��!��A j� ���

��



In both cases the inference is redundant if its conclusion is entailed by clauses
��� � � � ��k in N which are smaller that the �negative� premise� where certain
subformulas of the inference may be used as additional assumptions	 For
ordered resolution one may additionally assume the positive premises	 For
self�resolution one has the negation of the resolved atom A and the negation
of the premise� with A replaced by �� available	 Note that if � is total� by
the Lemma �	�� the �rst alternative �i� in the de�nition of redundancy is
subsumed by the second alternative �ii�	

Clearly� an inference is redundant whenever the resolvent �� is redun�
dant� but the converse is not true in general for several reasons	 The �i have
to be smaller than the  negative! premise but may generally be larger than
�� as the ordered inferences are monotone	 For ordered resolution validity of
the positive premises may be assumed for a redundancy proof	 They might
not be in N or they might be larger than the negative premise	 Redundancy
of the inference neither implies redundancy of any of its premises	 For exam�
ple� let N consist of the clauses �A� B�C� and �A�C � E�� and assume
that B is maximal among the atoms	 Neither B � E nor �A� B �C� are
redundant in N 	 However� the inference

�A� B �C� �B � E�

�A� �� C� � �� � E�
�

the conclusion of which is equivalent to A� E� is redundant as

�A � C � E�� �A� B � C� j� A� E�

Note that A � C � E will be larger than the conclusion in most clause
orderings and A� B � C might even be the maximal premise of the infer�
ence	 The following observation will often be implicitly applied in proofs of
redundancy#

Proposition ��� An inference by ordered resolution with positive premises

��� � � � ��n� negative premise �� resolved atoms A�� � � � � An� and conclusion

�� is redundant in N if there exist clauses ��� � � � ��k in N such that � �
��� � � � ��k and

��� � � � ��k���� � � � ��n� A�� � � � � An j� ���

Proof	 We have to show that under the given assumptions the implication

��� � � � ��k���� � � � ��n j� ��

is valid	 In fact� suppose the �i and the �i are true in an interpretation I
but �� is false in I	 As �� takes the form �� A���!� � � � ��n An��!���� the
Ai must be true in I	 Therefore �� is true in I� which is a contradiction	 �

��



For ordered self�resolution� redundancy of an inference again does not
imply the redundancy of neither its conclusion nor its premise	 Suppose
� � ��A �D� A � B� A � C� is split into parts � � ��A �D� A � B� and
� � �A � C�	 Then the conclusion of self�resolving A in the ��part of �
produces a clause equivalent to �� � ��A�D� A�B� C�	 If N � in addition
to �� just contains the clause �A�B�D�� and assuming that A is the maximal
atom and � � �A�B�D�� then neither � nor �� are redundant	 On the other
hand� �A�B�D�� �B � �C� �A j� ��� demonstrating the redundancy of the
inference	 In this example the two additional assumptions �A and �B��C
�the latter is equivalent to �� A��!� that one may exploit in a redundancy
proof of an ordered self�resolution inference are essential	 Dropping any one
of them would no longer allow to deduce �� from �A�B�D�	

By R�
I �N� we denote the set of resolution inferences that are redun�

dant in N with respect to � by the standard criterion	 As an immediate
consequence of the Lemma �	� we obtain#

Lemma ���� If N � N �� then R�
I �N� � R�

I �N ��� Moreover� R�
I �N� �

R�
I �N n R�

F �N��� for all matrices N �

Theorem ���� R� is a redundancy criterion for O��

Proof	 Properties �R�� and �R�� follow from the Lemmas �	� and �	��	
Moreover� the redundancy criterion R� is obviously sound in the sense
of �R��	 �R�� follows directly from the de�nition	 �

� Refutational Completeness

For demonstrating the refutational completeness of general ordered resolu�
tion O� with respect to the standard redundancy criterion R� by applying
the Theorem �	 we need to show that saturated sets of clauses that do not
contain a contradiction are satis�able	 We use the same model construction
technique as for the proof of Theorem �	� above� but apply it to general
clauses	 Let N be a negative matrix and � be a total admissible ordering
on clauses	 By induction over � we de�ne a Herbrand interpretation I� and
a set ��� for each clause � in N as follows#

De�nition ��� Let I� be the set
S
��� ��� Furthermore� if A is the max�

imal atomic formula in �� then �� � fAg if �i� A �� I�� and �ii� � is false

in I�� but � is true in I� 	 fAg� Otherwise� �� is the empty set�

We say that � produces A� and call � productive� if �� � fAg	 By IN we
denote the Herbrand interpretation

S
��N ��	

Lemma ��� Let N be a set of ground clauses� � a total admissible or�

dering� and I the interpretation constructed from N � If N is saturated up

to redundancy and contains no contradiction� then for all atoms A and all

clauses � in N with maximal atom A	
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� If � produces A then � is non�redundant� contains no selected atoms�

and for all clauses �� in N � where � � ��� �� is true in I��
�� � is true in I�

Proof	 The proof is by induction	 Let A be an atomic formula	 We assume
that properties �	 and �	 hold for clauses with a maximal atom B such that
A � B	

�	 Suppose � produces A and let �� be a clause in N with � � ��	
We will show that either �i� �� is true in I� or else �ii� � � ��� �� is non�
redundant� and �� does not contain a selected atom	 Note that A is not in
I�	 The proof of �i� is by induction over ��	 We assume that �i� is true for
all clauses � in N with �� � �	

��� If the maximal atom in �� is smaller than A then� by part �	 of the
main induction hypothesis� �� is true in I	 Since the interpretations I and
I� assign the same truth value to all atoms strictly smaller than A� �� is
then also true in I�	

��� Suppose now that �� contains A	
��	�� If �� is redundant in N then there exist clauses �i in N such that

�� � �i which logically imply ��	 By induction hypothesis these clauses are
true in I�� hence so is ��	

��	�� Suppose now that �� is not redundant	 We distinguish whether or
not �� contains a selected atom	

��	�	�� Suppose �� contains no selected atom	 If � � �� then �ii� fol�
lows	 Otherwise� let � � ��	 As � produces A� the clause ��� having A as
maximal atom� cannot be productive� and� therefore� I� and I�� are identi�
cal	 Suppose� for the purpose of deriving a contradiction� that �� is false in
I�	 If �� A��! were true in I�� the clause �� would be productive	 Hence
��� A��! is true in I�	 Consider any self�resolution inference with premise
�� � ��� A! and resolvent ��� � ���� Aj�!�� A��!�	 Since N is saturated
up to redundancy and �� is non�redundant� the inference must be redundant
in N 	 Hence there exist clauses �i in N such that �� � �i and ��� is true in
any interpretation satisfying the �i� ��� A��!� and �A	 By the induction
hypothesis� the �i are true in I�� as are �A and ��� A��!	 Consequently�
��� is true in I�	 Note that ��� Aj�! and �� have the same thruth value in
I�	 As ��� is true in I�� the clause � A��! must be true in I�	 But then ��

would be true in I�� 	 fAg and produce A� which is a contradiction	 Hence
�� is true in I�	

��	�	�� Now assume that S���� is nonempty	 Suppose that �� is false
in I�	 By the de�ning properties of selection functions� we may �nd a
sequence A�� � � � � An of atoms in S���� which are all true in I�� hence A � Ai	
Let �i be the clause that produces Ai	 Since any �i contains only atoms
smaller than A� we may use the �main� induction hypothesis to infer that
the �i are non�redundant and contain no selected atoms	 From the premises

��



��� � � � ��n and � we obtain a resolvent

��� � �� A���!� � � � ��n An��!��� A�j�� � � � � Anj�!�

Since all premises are non�redundant� and N is saturated up to redundancy�
the resolvent ��� is a logical consequence of the positive premises �i and
those clauses in N that are smaller than ��	 By the induction hypothesis
all such clauses are true in I�	 Since �i produces Ai� the clause �i Ai��! is
false in I�i

and� hence� in I�	 Therefore� �� A�j�� � � � � Anj�! must be true
in I�	 As Ai � I�� for all i� the truth value of the latter clause and the truth
value of �� coincide in I�	 In short� �� is true in I�	

�	 We prove this part by induction on �	 If � is redundant the assertion
follows immediately from the induction hypothesis	 Also� if � is productive
it is true in I	 Hence we may assume that � is non�redundant and non�
productive	

��� Suppose that S��� is nonempty and that � is false in I	 Then there
exists a sequence A�� � � � � An of atoms in S��� which are all true in I" let
�i be the clauses that produce the Ai	 By part ��� any of the �i is non�
redundant and contains no selected atoms	 From premises ��� � � � ��n and
� we obtain a resolvent

�� � �� A���!� � � � ��n An��!�� A�j�� � � � � Anj�!�

Since all premises are non�redundant� and N is saturated up to redun�
dancy� �� is a logical consequence of the �i and those clauses in N that
are smaller than �	 The �i and Ai are true in I	 By the induction hypoth�
esis� clauses smaller than � are true in I	 Altogether� �� is true in I	 Since
�i produces Ai� �i Ai��! must be false in I�i

and� hence� in I	 Therefore�
� A�j�� � � � � Anj�!� and hence �� must be true in I	

��� Assume now that � is non�redundant and contains no selected atom	
We distinguish two cases#

��	�� Suppose that A is not in I	 Consider any self�resolution inference
with premise � � ��� A! and resolvent �� � ���� Aj�!�� A��!�	 Since N
is saturated up to redundancy and �� is non�redundant� the inference must
be redundant in N 	 Hence there exist clauses �i in N such that � � �i
which� together with �A and �� A��!� logically imply ��	 If � A��! is
true in I then � is also true in I	 For� otherwise� � would have to produce
A which contradicts the assumption that A is not in I	 Let us now assume
that �� A��! is true in I	 By the induction hypothesis� the �i are true in
I	 We conclude that the conclusion �� of the self�resolution inference is true
in I	 Suppose � were false in I	 As we have assumed that A is not in I�
the clauses � and ���� Aj�!� have the same truth value in I hence � A��!
must be true in I� and� therefore� � true in I 	 fAg	 Then � produces A�
which is a contradiction	 Hence � is true in I	
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��	�� Finally� suppose that A is in I� and let � be the clause that produces
A	 Consider the non�clausal resolvent

�� � � A��!�� Aj�!�

of � and �	 Since N is saturated up to redundancy� the resolvent must be
a logical consequence of �� of A and the clauses in N that are smaller than
�	 Since all these clauses are true in I� we may infer that �� is also true in
I	 Consequently� � is true in I	 �

We call an ordering � on formulas completable if it can be extended to
a total admissible ordering	 An ordering on multisets is completable if it is
the multiset extension of a completable ordering on formulas	

Redundancy of a clause or inference is preserved under extension of the
underlying ordering	

Lemma ��� If the ordering �� extends �� then R�
F �N� � R��

F �N� and

R�
I �N� � R��

I �N�� Consequently� if N is saturated up to redundancy under

O�S � then it is also saturated up to redundancy under O�
�

S �

Theorem ��� �Refutational completeness� Let � be a completable or�

dering and S be a selection function� If N is saturated up to redundancy

under O�S � then N is unsatis�able if and only if it contains a contradiction�

Proof	 If N contains a contradiction� then it is unsatis�able	 Suppose N
contains no contradiction and let �� be a total admissible ordering that ex�
tends �	 By Lemma 	�� if N is saturated up to redundancy under O�S � then

it is also saturated up to redundancy under O�
�

S 	 We may use Lemma 	��
to infer that N has a model	 �

� Applications of Standard Redundancy

The purpose of this section is to indicate how wide a range of resolution�
based theorem proving strategies is provided by the general completeness
results in the Theorems �	 and 	�	 We shall begin with describing fur�
ther restrictions to the inference system that are furnished by the standard
redundancy criterion	

��� Polarity�Based Restrictions

Inferences which yield tautologies are trivially redundant	 An analysis of
the polarity of the resolved atoms is helpful in this regard	

Proposition 	�� An inference by ordered resolution is redundant if the neg�

ative premise contains a positive occurrence of any of the resolved atoms or

if any of the positive premises �i contains a negative occurrence of Ai or a

positive occurrence of any of the atoms Aj with Aj �� Ai�
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Proof	 Let �i Ai!� � � i � n� be the positive premises� and let � be the
negative premise of the inference� resolving A�� � � � � An	 Then the resolvent
is of the form �� � �� A���!� � � � ��n An��!�� A�j�� � � � � Anj�!	 If� say� A�

occurs positively in � then � A�j�� � � � � Anj�! is true in any interpretation
in which A� is true	 Thus� A� entails ��� and by the Proposition �	� the
inference is redundant	 If �i contains Ai negatively� then �i Ai��! is a tau�
tology� and so is ��	 If� say� A� occurs positively in� say� ��� then �� A���!
is a tautology� as is �� A���� A���!� provided A� �� A�	 Therefore� A� en�
tails �� A���! and hence the conclusion ��	 This proves the redundancy of
the inference	 �

Proposition 	�� An inference by self�resolution is redundant if the resolved

atom occurs positively or negatively in the premise�

Proof	 Let � � ���� A!� be the premise� A the resolved atom� and let
�� � ���� Aj�!�� A��!� denote the conclusion of the inference	 If A occurs
positively in �� the clause �� A��! is false in any interpretation� therefore
entails ��� and the inference is redundant	 If A occurs negatively in �� the
clause � A��! is true in any interpretation	 Consequently ���� Aj�!� is
true in any interpretation in which A is false	 Therefore �� is entailed by
�A� hence the inference is redundant	 �

Propositions 
	� and 
	� give rise to additional polarity constraints that we
may safely attach to ordered  self�! resolution	

Let us brie�y remark that Manna & Waldinger ������ and Murray ������
proposed a di�erent restriction for general resolution� where the resolved
atom A is required to occur positively in the positive premise and nega�
tively in the negative premise	 This requires a di�erent notion of polarity�
according to which each subformula is positive or negative �or both�	 For
instance� A and B are considered to be positive in A � B	 These polarity
constraints are not compatible with ordering constraints or selection	 The
combination yields an incomplete calculus	 For example� take the formulas
A �B and �B and suppose A � B and A and B are considered positive in
A �B	 The inference

A �B �B

�A � �����

satis�es the polarity constraint# B is positive in the �rst and negative in the
second premise" but not the ordering constraint# B is not maximal in the
�rst premise	 �The resolvent� by the way� is a contradictory formula� but
not a contradiction in our sense	� On the other hand� the inference

A �B A �B

�� �B�� �� �B�

�



satis�es the ordering constraint� but not the polarity constraint� as A occurs
only positively in both premises	 The resolvent of this inference is equivalent
to B" another resolution step with �B yields a contradiction	 There is no
resolution inference from A � B and �B that satis�es both polarity and
ordering constraints	 In other words� the simultaneous application of both
kinds of constraints renders non�clausal resolution incomplete	

��� Replacement Strategies and Implicit Factoring

Resolution inferences are essentially case analyses with respect to certain
atoms	 The atom on which a case split is performed is substituted by its
possible truth values � or �	 We have formulated the general inferences in
a way such that to a large extent the particular choice of which occurrences
are to be substituted has been left open	 The following propositions show
that the actual choice can be made don�t�care non�deterministically	

Proposition 	�� Consider any two ordered resolution inferences from the

same premises resolving the same atoms� If one inference is redundant in

N so is the other�

Proof	 Let �� and ��� be two resolvents derived by ordered resolution from
positive premises ��� � � � ��n and a negative premise �	 �� and ��� can di�er
only in which occurrences of the resolved atoms have been replaced �by ��
in the negative premise	 Therefore� if A�� � � � � An are the resolved atoms� �
and �� are equivalent in any model of A�� � � � � An	 Suppose that the inference
which derives one of the resolvents� �� say� is redundant in N 	 That means
��� � � � ��k���� � � � ��n� A�� � � � � An j� �� for certain clauses �i in N which
are smaller than �	 Then ��� � � � ��k���� � � � ��n� A�� � � � � An j� ���� and by
the extended redundancy criterion �cf	 Proposition �	�� redundancy of the
other inference follows	 �

In a similar way we obtain the corresponding result for self�resolution	

Proposition 	�� Consider any two ordered self�resolution inferences from
the same premise resolving the same atom� If one inference is redundant in

N so is the other�

Proof	 Two self�resolution inferences of the indicated kind may di�er in
the subfomula � and ��� respectively� in which resolution of the atom A
takes place� and in the selection of positions in � and ��� respectively�
at which A gets replaced by �	 Hence �� � ������� Aj�!��� A��!�
and ��� � ������� Aj�!�� A��!� are the two resolvents from the premise
� � ��������	 One observes that interpretations in which both �A and
�� A��! are true assign the same truth value to both �� and ���	 Conse�
quently� if one of them is implied by �A� �� A��!� and certain clauses in
N � so is the other	 �
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In the propositional case one usually substitutes many� if not all� occurrences
of the atom that is resolved upon	 For �rst�order clauses the simultaneous
replacement of atoms requires implicit or explcit factoring 	 Di�erent ground
instances of a clause may have di�erently many occurrences of the maximal
atom	 As an example consider the clause �p�x� g�y����p�g�y�� x�� p�x� y�	
Any ground instance in which x � g�y� will have two occurrences of the
maximal atom	 In any other ground instance the maximal atom occurs just
once	 If one substitutes too few occurrences of the resolved atom then one
forgets in too many places the information about the case analysis that the
resolution inference performs	 If one wants to substitute more occurences
at the same time� one either has to implicitly factor by unifying di�erent
non�ground atoms in a clause before they are resolved or else one has to
explicitly add a �factor� � A�A��B�B�! of the clause � for maximal atoms
A and B that are uni�able by �	 The disadvantage of the latter is that
after factorization a certain set of ground clauses is represented twice by
di�erent non�ground clauses� the original clause� and its factor	 This leads
to a duplication of computation	 For the positive premise there is no choice
however	 All occurrences of the resolved atom need to be replaced� hence a
certain amount of implicit or explicit factoring is required	

We will speak of simple resolution if substitution� where it may be par�
tial� is con�ned to a single formula in a clause� but done exhaustively there	

Simple ordered resolution with selection�

�� A�! � � � �n An! �� F  A�� � � � � An!

�� A���!� � � � ��n An��!��� F  A���� � � � � An��!

where F is a formula such that �i� either A�� � � � � An is selected by S in
��� F �� or else S��� F � is empty� n � �� and A� is maximal in ��� F ��
�ii� each atom Ai is maximal in �i� and �iii� no clause �i contains a
selected atom	

Simple ordered selfresolution�

�� F  A!

�� F  A��!� F  A��!

where �i� the atom A is maximal in �� and �ii� �� F contains no
selected atom	

The refutational completeness of simple resolution follows from the above
propositions together with the Theorem 	�	 The propositions also indicate
that the choice of the particular formula F in the inferences is don�t�care	

We end this section by showing that resolving only a subsequence of any
selected sequence of atoms in a negative premise is su�cient	
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Proposition 	�� Let

�� A�! � � � �n An! � A�� � � � � An!

�� A���!� � � � ��n An��!�� A�j�� � � � � Anj�!

be a general ordered resolution inference in which n � � and the A�� � � � � An

are selected in the negative premise� Let fi�� � � � � ikg be any non�empty subset

of the indexes � � i � n� The inference is redundant in N � whenever the

�partial conclusion

� � ��i�  Ai���!� � � � ��ik  Aik��!�� Ai� j�� � � � � Aik j�!�

is implied by the �j and clauses in N smaller than ��

Proof	 Let �i� � � i � m� be clauses in N such that

��� � � � ��m���� � � � ��n j� �

Then the clauses

��� � � � ��m� A�� � � � � An���� � � � ��n

imply the conclusion of the given inference� yielding the redundancy criterion
of Proposition �	� �

A resolution inference in which simultaneously atoms A�� � � � � An are resolved
can be implemented by any sequence of inferences in which at each step
only some of the atoms are resolved �using the corresponding subset of the
positive premises�	� The proposition says that if one such partial resolvent is
generated or otherwise shown redundant� the original inference is redundant�
too	 In short� whenever a sequence of atoms is selected in a clause we may
don�t�care non�deterministically resolve a subset of it	 The partial inference
can be equipped with the same redundancy criterion as we have de�ned it
for the resolution inferences proper	

��� Simpli�cation

An important application of redundancy is in the use of logical equivalences
for simpli�cation of clauses	 For instance� suppose N��� j� � and N�� j� ��

and � � ��	 Then there is a two�step derivation�

N���N����� �N���

where the �rst step is by deduction� as �� is a logical consequence of N��"
and the second by deletion� as � is rendered redundant by ��	 We thus
obtain a derived inference rule#

�These partial inferences are sound but do not satisfy the restriction about selection�
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Simpli�cation�

N���N���

if N��� j� � and N�� j� �� and � � ��

For example�
N� ������N��

is a simpli�cation step	
A more interesting case of simpli�cation is the use of object�level equiv�

alences F � G for rewriting	 More speci�cally� we get

N� �F � G��� F ! � N� �F � G��� G! if � F ! � � G!

Equivalences occur in many problem domains and very often simpli�cation
is the natural way of dealing with them	 For example� an equivalence X �
�Y 
 Z� �  �X � Y � � �X � Z�! can be used to replace any occurrence
of X � �Y 
 Z� by a conjunction of simpler �subset relations� X � Y
and X � Z	 We believe that simpli�cation in our sense is also the right
framework for an analysis of the question of �demodulation across argument
and literal boundaries�� a research problem posed by Wos ������	

Metalevel equivalences suitable for simpli�cation can be conveniently
described by rewrite systems	 For example� by P we denote the set of the
following rewrite rules for elimination of � and � from conjunctions� dis�
junctions and negations#

� � � � � �� � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � �� � � �
�� � � �� � �

If F � F � is a ground instance of a rule in P� then F  F �	 Furthermore�
the rewrite system is contained in any simpli�cation ordering �including
lexicographic path orderings�	 Consequently�

N���N��� if � ��
P

��

is a simpli�cation step �for any simpli�cation ordering�	
Similar rules for the elimination of � and � can be designed for other

connectives� e	g	�

�� � � �� � � � � �
�� � � � � � � � �
�� � � �� � � � � ��
�� � � � � � � � �

cover implication and equivalence	 The simpli�cation rules for eliminating
� and � are often directly built into specialized variants of inferences for
speci�c classes �normalforms� of formulas as discussed below	

��



��� Normal Forms

Rewrite systems also provide a convenient way of describing various normal
forms	 Let us brie�y discuss negation� conjunctive� and disjunctive normal
form	 First note that all connectives can be expressed in terms of disjunction�
conjunction and negation� as expressed by the rules�

�� � � ��� �� � �� � ��
�� � � �� � �

for the case of implication and equivalence	 Termination of these rules can
be proved by a lexicographic path ordering �based on a precedence� in which
the symbols to be eliminated �� and � in this case� have higher precedence
than the other connectives �here �� � and ��	

We may then push negation inside and eliminate double negations#

��� � �� � �� � ��
��� � �� � �� � ��

��� � �

Termination of these rules requires a precedence in which � � � and � � �	
The normal forms de�ned by these rules are also called negation normal
forms	

From negation normal form we get to conjunctive normal form by ap�
plying distributivity rules#

�� � �� � � � �� � �� � �� � ��
� � �� � �� � �� � �� � �� � ��

By C we denote the set consisting of all of the above rules	 A lexicographic
path ordering� in which � � � � � � � � � and other connectives have
higher precedence than �� can be used to prove termination of C	 We em�
phasize that we are interested in the existence of normal forms �or �weak
normalization�� which is ensured by termination�� but not in their unique�
ness	 Indeed� it is well�known that conjunctive normal forms are not unique	
Also� formulas in conjunctive normal form may contain certain �redundan�
cies	� For example�

��A �A� � �B �A�� � ��A � �B� � �B � �B��

is a conjunctive normal form of �A�B�� �A��B�� which could be further
simpli�ed to

�A � �B �A�� � �A � �B��

These additional simpli�cations will be part of the transformation to stan�
dard clauses discussed below	

��



Disjunctive normal form is obtained by distributing conjunctions over
disjunctions#

�� � �� � � � �� � �� � �� � ��
� � �� � �� � �� � �� � �� � ��

To prove termination� we only need to slightly modify the above lexico�
graphic path ordering� so that � � �� instead of � � �	

��	 Tautology Deletion and Subsumption

Let us next list a few more examples of techniques for eliminating redun�
dancies that are common in resolution provers	

Tautology deletion�

N���N if � is a tautology

Subsumption�

N��� ������N��

This ground version of subsumption is a simple example of deletion# a clause
��� is obviously redundant in the presence of another clause �	 The cor�
responding version of subsumption for clauses with variables is an essential
part of most resolution provers	

Subsumption resolution�

N� ��� L�� ��� L��N� ��� L���

if L and L are complementary literals and � � �

This rule represents a deduction step �resolution� followed by �zero or more�
simpli�cation steps and a deletion step �subsumption�#

N� ��� L�� ��� L�
� N� ��� L�� ��� L�� �����
�
� N� ��� L�� ��� L���

� N� ��� L���

It �or rather its analogue for clauses with variables� is quite useful in practice	
Let us emphasize that the implicit deduction step is by resolution� but not
necessarily by ordered resolution� as the resolved atom need not be maximal
in the premises	 This is one of many examples where inferences are applied
that are not necessary for reasons of completeness� but are nonetheless very
useful in that they enable certain simpli�cations or deletions	
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��� A Spectrum of Strategies

The theory developed so far provides us with a large spectrum of resolution�
based theorem proving methods	 Its particular instances are identi�ed by
various parameters� including the speci�c ordering� selection function� par�
tial substitution strategy� simpli�cation inferences� and redundancy detec�
tion methods that one chooses to realize	 The signi�cance of this spectrum
and the general completeness result that comes with it is more of theoretical
than of direct practical value	 It will serve us to investigate the theoreti�
cal properties of more specialized resolution methods that have proven to
be useful in practice	 For good reasons those are usually based on a re�
stricted syntax such as standard clauses� super clauses� sums of products�
constrained clauses� and are endowed with speci�c simpli�cation techniques
that can be e�ciently implemented	 We will investigate some of them in
more detail in Section � below	

Nevertheless� some of the power of general resolution should be more
exploited in new designs of implementations	 At present� transformation of
a problem into� say� clausal normal form is considered as trivial and separate
preprocessing	 This view is not entirely justi�ed	 The loss of structure that
comes with such preprocessing is enormous	 Existential quanti�cation and
equivalences �including de�nition hierarchies� are no longer visible	 While
the problem of adequately dealing with existential quanti�cation is beyond
the scope of the present paper� our theory does allow for treating many
cases of equivalences by simpli�cation rather than search	 Research into
e�cient methods of intertwining general resolution� simpli�cation on the
level of general clauses� normalform transformation and subsequent e�cient
computation with normalforms should be given more emphasis in the future	

� Basic Resolution Strategies

This section is devoted to the discussion of resolution techniques that depend
on a particular normal form of general clauses	 Resolution� when applied
to clauses in normal form� can be more e�ciently implemented	 Conceptu�
ally� resolution on normal forms is �restricted� general resolution followed by
normalization so as to avoid the generation of non�normal clauses	 The two
steps are usually integrated into one and presented in the form of speci�cally
modi�ed resolution inferences	 The standard redundancy criterion R� for
general resolution is at the same time a redundancy criterion for resolution
with normalization provided the normalform transformation preserves logi�
cal equivalence and is compatible with the clause ordering �	 In fact� if the
normalization �� of the conclusion � is entailed by certain other clauses �i�
then � will be entailed by the �i and ��	 Since inferences and normalization
are monotone� �� will be smaller that the  negative! premise of the inference
and hence satis�es the ordering restrictions of R�	

��




�� Standard Resolution

We have seen that the replacement of a formula by its conjunctive normal
form�

N� ��� F � �N� ��� F �� if F ��
C
F �

is a simpli�cation step �for a suitable ordering�	 We may take this normal�
ization of formulas a step further and eliminate conjunctions from general
clauses as follows#

N� ��� F �G�
�N� ��� F �G�� ��� F �
�N� ��� F �G�� ��� F �� ��� G�
�N� ��� F �� ��� G�

�a sequence of two deduction steps followed by a deletion�	 In a similar way
we may eliminate disjunctions#

N� ��� F �G��N� ��� F�G�

In short� any �nite negative matrix can be reduced to an equivalent standard
matrix� in which all clauses are standard clauses	 Finally� we may eliminate
certain redundancies by applying the following simpli�cation rules#

N� ��� L� L� � N� ��� L�

N� ��� A��A� � N��

N�� � N

For standard clauses� each occurrence of an atom is either positive or
negative	 A �minimal� selection function selects at most one negative atom
in any clause	 We call selection functions of this form strong selection func�

tions	 If we apply simple resolution with strong selection to standard clauses
and simplify the conclusion by P� we obtain the following inference rule#

Standard ordered resolution with strong selection�

C �A � � � � �A D � �A

C �D

where �i� C contains only non�selected atoms not greater than or equal
to A and �ii� the atom A is either selected by S in D � �A� or else
D � �A contains no selected atoms at all and A is maximal and non�
positive in D	

�The actual non�clausal resolvent is C � � � � � � � � � D � ��� which can
obviously be simpli�ed to C�D	 Substitution replaces exactly one arbitrar�
ily chosen negative occurrence of A in the negative premise	� Self�resolution

��



needs not be applied to standard clauses� as all atoms are either positive or
negative in them �cf	 Proposition 
	��	

The standard resolution rule is often decomposed into factoring and bi�
nary resolution inferences	 By R�S we denote the inference system consisting
of ordered factoring and �binary� ordered resolution with �strong� selection	

Positive ordered factoring�

C �A �A

C �A

where A is maximal in C and no atom in C is selected	

�Binary� ordered resolution with selection�

C �A D � �A

C �D

where �i� B �� A� for any atom B in C�� and C contains no selected
atoms� and �ii� the atom A is either selected by S in D � �A� or
else D � �A contains no selected atoms at all and A is maximal and
non�positive in D	

The positive factoring inference is of course just the deductive part implicit
in a simpli�cation N� C �A �A�N� C �A	

We obtain as corollary to Theorem 	�#

Theorem ��� Let S be any strong selection function and � be a completable

ordering� If a standard negative matrix N is saturated up to redundancy
under R�S � then N is unsatis�able if and only if it contains a contradiction�

We emphasize that the notion of saturation up to redundancy is �exible�
and general� enough so as to cover �mixed� derivations� in which both non�
clausal and standard resolution inferences appear	

For certain applications below negative factoring will be required#

Negative ordered factoring�

C � �A � �A

C � �A

where A is selected or C contains no selected atom and A is maximal
in C	

�If � is total the constraint is equivalent to A � B� for any B in C�
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�� Positive Resolution

A �general� clause is called positive� if it is false in the empty Herbrand
interpretation I� �in which all atoms are false�	 If a clause � is positive� no
atom can be selected in it� that is� S��� must be empty for any selection
function S	 Conversely� if a clause is not positive� simply selecting all its non�
positive atoms yields an admissible selection	 In fact� if C is non�positive
and is false in an interpretation I then I contains an atom A of C	 Note
that a positive clause cannot contain a negative occurrence of an atom	 The
converse is not true in general	

Positive resolution for general clauses is obtained through a selection
function S with S��� empty� whenever � is positive� and S��� the set of all
non�positive atoms in �� if � is non�positive	 In that case� General Ordered
Resolution with Selection specializes to this inference#	

General positive ordered resolution�

� A! � A!

� A��!�� Aj�!

where �i� the atom A is maximal in �� �ii� the clause � is positive�
and �iii� the atom A is non�positive in �	

Let GP� denote the resolution calculus consisting of positive ordered res�
olution and positive ordered self�resolution �that is� ordered self�resolution
from positive premises�	 As an immediate consequence of Theorem 	� we
obtain#

Theorem ��� Let � be a completable ordering� If N is saturated up to

redundancy under GP�� then it is unsatis�able if and only if it contains a

contradiction�

Unlike in the case of standard clauses where the negative premise in positive
resolution is always non�positive �cf	 below�� for general positive resolution
one cannot safely add the restriction that negative premises be non�positive	
The inconsistent matrix consisting of the three atoms A� B� and C� and the
positive clause ��A�C� �B�C�� with A the maximal atom� would otherwise
be saturated	


�� Hyper�Resolution

The variants of resolution we have presented depend on two parameters� an
ordering on formulas and a selection function	 Let us discuss some speci�c
settings for these parameters in the context of standard resolution	

�The polarity constraints that are represented by the Propositions ��� and ��� are
attached as explicit restrictions to the inference�

�



Contrary to the general case� a standard clause is positive if it contains
no negative atoms	 We call a standard clause negative if it contains no
positive literals	 Let S be a selection function which selects� in any non�
positive clause� exactly one negative atom	 Ordered resolution with this
type of selection is the following inference rule#

Positive ordered resolution�

C �A D � �A

C �D

where �i� C is a positive clause and A is maximal in C� and �ii� the
atom A is selected by S in D � �A	

This inference rule is of course also a special case of general positive ordered
resolution	

If we choose a selection function that selects the sequence of all negative
atoms in a clause� and if we choose to replace any of their occurrences� we
get the following inference#

Ordered resolution with maximal selection�

C� �A� � � � Cn �An DN �DP

C� � � � � � Cn �DP

where �i� the clauses C�� � � � � Cn and DP are all positive� �ii� the Ci

do not contain any of the atoms Aj� �iii� DN is a negative clause
containing the literals �A�� � � � ��An� and only those literals� and �iv�
the Ai are maximal in the Ci� for all i	

The restriction �ii� has been added to make the polarity results of Propo�
sition 
	� explicit� assuming that ordered positive factoring takes care of
clauses with multiple positive occurrences of maximal atoms	

Resolution with maximal selection is strongly related to hyper�
resolution �Robinson ��
a�# Let C� �A�� � � � � Cn �An be positive clauses�
where Ai is maximal in Ci� for all i	 If there exist clauses D�� � � � �Dn���
such that Di�� is an ordered resolvent between Ci and Di on Ai� and Dn��

is positive� then
C� �A� � � � Cn �An D�

Dn��

is called a �positive� hyper�resolution inference	 The �rst n premises are
called the electrons� the last premise the nucleus of the inference	 Since all
premises are standard clauses� the �nal �positive� clause Dn�� �but not the
intermediate clauses D�� � � � �Dn� is independent of the order in which the
electrons are listed	

�




Consider an inference by ordered resolution with maxi�
mal selelection and take Di to be the simpli�ed version of
�C�� � � � � Ci�DN  A���� � � � � Ai��!�DP �� � � i � n	 Then Di�� is a
simpli�ed version of the conclusion of the resolution inference on Ai

with premises Ci � Ai and Di	 While ordered resolution with maximal
selection� therefore� is evidently a hyper�resolution inference� there are
hyper�resolution inferences� such as

A� �A� A� �A� �A� � �A� �A	

A� �A� �A	

that are not ordered resolution inferences with maximal selection	 �A�

should not occur in the �rst premise	� In other words� ordered resolution
inference with maximal selection is a more restrictive inference schema than
hyper�resolution	

We should also point out that a resolution inference with maximal se�
lection is redundant if any of the �intermediate resolvents� �i is redundant
�cf	 Proposition 
	�	 This answers an open question in �Wos �����	


�� Consolution

A standard negative matrix
V
i�I Ci is valid if� and only if� each clause Ci

with i � I contains a complementary pair of literals	 If the matrix is also
�nite� its validity can therefore be checked easily	 A �nite positive matrix

�

�	i	m

�

�	j	ni

Li�j

is inconsistent if� and only if� the negative matrix
�

�	i	m

�

�	j	ni

Li�j

is valid� where Li�j is complementary to Li�j	
One way of checking the validity of a positive matrix is by transforming

it into an equivalent negative matrix	 �Similarly� we may check whether a
negative matrix is inconsistent by transforming it into an equivalent positive
one	� This observation is the basis of a calculus called consolution Eder
������	 We describe �the propositional version of� this calculus by rewrite
rules �in terms of formulas rather than matrices�	 Let AC be the set of the
set of two�way rules

�� � �� � � � � � �� � ��

� � � � � � �

�� � �� � � � � � �� � ��

� � � � � � �

��



and D be the rewrite system consisting of all generalized distributivity rules�

��� � � � � � �m� � ��� � � � � � �n� �
�

�	i	m��	j	n

�i � �j

plus the rules
� � ��� � � � �� �

plus the rewrite rules from P for eliminating the constants � and �	 Con�
solution corresponds to normalization by D�AC	

For example� we have

�A �B� � ��A �B� � �B
�  �A � �A� � �B � �A� � �A �B� � �B �B�! � �B
�
�  �B � �A� � �A �B� �B! � �B

� �B � �A � �B� � �A �B � �B� � �B � �B�
�
� �

That is� the formula �A �B� � ��A �B� � �B is valid	
In Eder�s terminology� a dual clause is called a path	 A path is called

complementary if two of its literals are complementary	 A multiset of paths�
i	e	� a positive matrix K� can be shortened to another positive matrix M �
if there exists a surjective mapping s from K to M such that for any
P in K� s�P � is a subset of P 	 For instance� C � D is a shortening of
�C�D���C��A���A�D�	 A positive matrix implies any of its shortenings	
Consolution from two standard clauses C � A and D � �A is the inference
consisting of �i� conjuncting the premises into �C �A� � �D � �A�� �ii� ap�
plying distributivity� yielding �C �D�� �C ��A�� �A�D�� �A��A�� �iii�
eliminating complementary paths� giving� �C�D���C��A���A�D�� and�
�nally� �iv� shortening the result arbitrarily	 As C �D is one of the possible
shortenings� resolution can be considered an instance of consolution	 De�
spite this fact� consolution is more closely related to the connection or mat�
ings method �Andrews ����� Bibel ����� and to semantic tableau �cf	 Sec�
tion ��	�� than to resolution	 If taken literally� all possible shortenings of
paths have to be enumerated by the consolution inference	 That refutational
completeness is achieved by just considering the speci�c shortening C �D
is an insight which the theory of resolution provides	


�	 Boolean Ring�Based Methods

Let AC be the set of �two�way� rewrite rules

�� � �� � � � � � �� � ��

� � � � � � �

��� ��� � � �� �� � ��

�� � � � � �

��



and BR the set of rewrite rules

�� � ���

� � � � �� � ��� ��� ��

� � � � �

� � � � �

� � � � �

��� � �

�� � � �

��� �� � � � �� � ��� �� � ��

All of these rules describe logical equivalences	 Furthermore� the rewrite
system BR�AC terminates and the corresponding normal forms� called BR�
normal forms� are unique up to equivalence under AC �Hsiang ����	 We
denote by '�F � a BR�normal form of F 	

Normal forms may also be represented as �possibly empty� sums

P� � P� � � � � � Pn

of �pairwise di�erent� possibly empty� products of �pairwise di�erent� atoms

Pi � Ai�� � � � Ai�ni

where a product A�A� � � � An represents the formula

�A� � �A� � � � � �An�� �An� � � ��

and a sum P� � P� � � � � � Pn the formula

�P� � �P� � � � � �Pn�� � Pn� � � ���

where empty products denote � and empty sums denote �	 We often need
to single out a speci�c atom and write

AP� � � � ��APm �Q� � � � ��Qn

with the understanding that none of the products P�� � � � � Pm� Q�� � � � � Qn

contains A	 We often use AP�Q as a short form for such a sum of products	
We will now design a refutationally complete calculus for formulas in BR�

normal form	 Our method is straightforward# we take a general resolution
inference� the premises of which are in BR�normal form� and try to express
its conclusion by an equivalent BR�normal form	 Our notion of redundancy
is powerful enough� so that the derived inference system is guaranteed to be
refutationally complete	
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Consider a general ordered resolution inference

AP �Q AP � �Q�

�� � P ��Q� �� � P ���Q�

in which both premises are sums of products in normal form	 The disjunction

��� � P ��Q� � ��� � P ���Q���

which is logically equivalent to the resolvent� can be simpli�ed to

Q � �P � �Q���

Eliminating the disjunction symbol from the latter formula we get

Q�P � �Q���Q� �P � �Q��

which is equivalent to

�Q����P � �Q���Q�

These considerations lead to the following inference rules#

Ordered BRresolution�

AP �Q AP � �Q�

'��Q����P � �Q���Q�

where both premises are BR�normal forms with maximal atom A	

BRselfresolution�
AP �Q

'�PQ� P �Q�

where the premise is a BR�normal form with maximal atom A	

By BR we denote the inference system of these rules	 As these rules are spe�
cialized versions� for premises in BR�normal form� of the general resolution
inferences �with subsequent normalization of the conclusions�� the notion of
redundancy is exactly the same as given in the De�nition �	�	

Theorem ��� Let N be a set of formulas in BR�normal form� If N is

saturated with respect to BR and R�� then N is inconsistent if and only if

it contains a contradiction�

Proof	 If N is saturated under BR�� then it is also saturated under O�	
More speci�cally� a general ordered resolution inference

AP �Q AP � �Q�

�� � P ��Q� �� � P ���Q�
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is redundant whenever the corresponding ordered BR�resolution inference

AP �Q AP � �Q�

'��Q����P � �Q���Q�

is redundant� and an ordered self�resolution inference

AP �Q

�� � P ��Q� �� � P ��Q

is redundant whenever the corresponding BR�self�resolution inference

AP �Q��

'�PQ� P �Q�

is redundant	 �

An alternative to ordered BR�resolution is a form of critical pair compu�
tation for equations between sums of products of atoms	 A sum AP�Q with
maximal atom A is viewed as an equation AP � Q � � and oriented into
a rewrite rule AP � Q � �	 Given another rewrite rule AP � � Q� � �
with the same maximal atom� a critical pair P �Q� � �� � P ��Q � ��
exists that can itself be represented by the polynomial corresponding to
P �Q�����P ��Q�����	 Hence �simple� BR�superposition is the follow�
ing inference#

Simple BRsuperposition�

AP �Q AP � �Q�

'�P �Q� ���� P ��Q������

where both premises are BR�normal forms with maximal atom A	

This inference rule is sound	 In addition� we have

A� AP �Q j� P � �Q���

therefore also

A� AP �Q j�
P �Q� ���� P ��Q�����
� �Q����Q� ���� P ��Q�����
� �Q����Q� ��� P ����
� �Q����P � �Q���Q�

The calculation shows that if A and AP �Q are true the equivalence of the
conclusions of a BR�superposition inference and a BR�resolution inference
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with the same premises follows	 For proofs of redundancy of resolution in�
ferences� the resolved atom and the positive premises may be assumed �cf	
Proposition �	�� Hence� the redundancy of a BR�superposition inference
implies the redundancy of the corresponding ordered BR�resolution infer�
ence �with the same premises�	 Denoting by BRS the inference system of
BR�superposition and BR�self�resolution� we therefore obtain the following
completeness result#

Theorem ��� Let N be a set of formulas in BR�normal form� If N is

saturated with respect to BRS and R�� then N is inconsistent if and only if

it contains a contradiction�

Let us next brie�y describe how a positive variant of BR�resolution
can be derived from general positive resolution	 First note that a product
A� � � � An is false in the interpretation I� �in which all atoms are false�� un�
less it is the trivial product �	 Consequently� a formula in BR�normalform
is false in I� if� and only if� it does not contain the trivial product �	

Positive BRresolution�

AP �Q AP � �Q�

'��Q����P � �Q���Q�

where both premises are BR�normal forms� the �rst premise contains
no trivial product �� and A is the maximal atom in the �rst premise	

On the other hand� a product A� � � � An is always true in the interpreta�
tion I
 �in which all atoms are true�	 Thus� a formula in BR�normalform
is false in I
 if� and only if� it contains an even number of products and is
di�erent from �	 The negative variant of ordered BR�resolution is therefore
of the following form#

Negative BRresolution�

AP �Q AP � �Q�

'��Q����P � �Q���Q�

where both premises are BR�normal forms� the �rst premise is a sum
of an even number of products� and A is the maximal atom in the �rst
premise	

The refutational completeness of positive and� hence� negative BR�
resolution �together with positive and� respectively� negative BR�self�
resolution� is an immediate consequence of Theorem �	�	 It is clear that
variants of these inference rules similar to BR�superposition are also refu�
tationally complete	 Incidentally� the completeness of the latter inference
systems was posed as an open problem by Zhang ������� who introduced
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negative BR�resolution and also mentions its positive dual	 In �Zhang �����
the negative variant of BR�resolution is called the �odd strategy�� which may
sound odd� given that the inference is characterized by the syntactic restric�
tion that the �rst premise consist of an even number of products	 However�
Zhang represents the formula AP�Q by an equation '�AP�Q��� � �� so
that a formula with an even number of products is turned into an equation�
the left�hand side of which consists of an odd number of products	

A Boolean ring�based method for �rst�order theorem proving was �rst
described by Hsiang �����	 This so�called �N�strategy� is closely related
to �standard� negative resolution	
 The method applies to equations A � �
where A is a sum of products obtained from the negation of a given clause	
That is� the initial formulas are assumed to be clauses� the negations of which
are translated to sums of products	 For instance� the negation of a negative
clause �P ��Q is represented by an equation PQ � � �called an �N�rule��
with a single product of atoms on the left�hand side	 The N�strategy is a
resolution method with the restriction that one of the premises of each in�
ference be an N�rule	 Thus� standard negative resolution is a special case	
The N�strategy also allows for simpli�cation by rewriting whereby equa�
tions may be transformed so that they no longer represent single standard
clauses	 However� the method is only complete if rather severe restrictions
are imposed on simpli�cation �Zhang �����	 Thus� the N�strategy in essence
more closely resembles standard negative resolution� whereas negative�BR�
resolution is a true non�clausal method� as shown above	

There are also slightly di�erent approaches that do not derive from non�
clausal resolution� but where critical pair computations and other techniques
from associative�commutative completion are directly applied to the rewrite
system BR�AC and polynomial equations" see �Kapur & Narendran ����
and �Bachmair & Dershowitz ����� for details	

	 Re
ned Techniques for De
ning Orderings and

Selection Functions

The basic resolution strategies of the preceeding section can be re�ned em�
ploying more elaborate techniques of de�ning orderings and selection func�
tions	 A key technique in this regard are renamings and conservative ex�
tensions of the theory	 Renamings will allow to also select positive literals	
Conservative extensions of the theory provide more freedom in de�ning or�
derings	 The de�nitions of the new symbols of such an extension will often
have to be �at least conceptually� pre�saturated as a �rst step of a theorem
proving process	 This fact will lead us to generally consider re�nements of
resolution in the presence of a saturated theory	

�Various improvements of the original N	strategy have been proposed� e�g�� 
M�uller �
Socher	Ambrosius ���

��



��� Renaming and semantic resolution

There are several re�nements of resolution that are essentially syntactic vari�
ants of inference systems described in the previous sections	 In particular�
that is the case for semantic resolution �Slagle ��
�� and� hence� for set�of�

support resolution	 Since these inference systems were originally introduced
for standard clauses� we will restrict our discussion in this section to this
case	

Let I be a Herbrand interpretation	

Semantic resolution�
C � L D � L

C �D

where �i� L and L are complementary literals� �ii� C � L is false in I�
and �iii� L is the maximal literal in the �rst premise	

More speci�cally� we speak of a semantic resolution with respect to �the
interpretation� I	 Let again I� be the interpretation in which all atoms
are false� and I
 the interpretation in which all atoms are true	 Semantic
resolution with respect to I� corresponds to positive resolution"� semantic
resolution with respect to I
 has been called negative resolution	 Another
well�known re�nement of resolution that is covered by the restrictions of
semantic resolution is set�of�support resolution �Wos� Robinson & Carson
��
�# if N is a satis�able matrix �the theory�� we say that a resolution
inference

C � L D � L

C �D

obeys the set�of�support restriction for N if at most one premise is a clause
in N 	

Positive and negative resolution are dual to each other in that positive
resolution is based on the minimal �in a set�theoretic sense� Herbrand inter�
pretation I�� whereas negative resolution is based on the maximal Herbrand
interpretation I
	 It turns out that semantic resolution with respect to an
interpretation I may be seen as a syntactic variant of semantic resolution
with respect to any other interpretation I �	 That is� the key aspects of se�
mantic resolution can be captured syntactically� via renaming of literals	 We
outline how semantic resolution may be mapped to positive resolution� so
that our completeness results are applicable	

Let L be a propositional language with atoms are A�� A�� � � � and L� be
a propositional language �disjoint to L� with atoms A��� A

�
�� � � � 	 Injective

mappings 
 from L to the literals over L� are called renamings if� in addi�
tion� for no A�i in L� both A�i and �A�i are in the range of 
	 Renamings are

�For simplicity� we disregard selection in the negative premise�
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homomorphically extended to clauses and matrices	 assuming that expres�
sions of the form ��A are simpli�ed to A	 If I � is a Herbrand interpretation
over L� and 
 a renaming of L into L� then by 
�I �� we denote the Herbrand
interpretation over L such that A is in 
�I �� if and only if 
�A� is true in I �	
I � is a model of a matrix 
�N� if and only if 
�I �� is a model of N 	

If I is a Herbrand interpretation for L� then the renaming 
I induced

by I is the renaming de�ned as follows# if Ai � I� then 
I�Ai� � �A�i and
if Ai �� I� then 
I�Ai� � A�i	 In other words� 
I maps atoms in L that are
false in I to positive literals in L�� and atoms that are true in I to negative
literals	 Therefore� 
I�I

�
�� � 
I��� � I	 If � is an admissible ordering on

expressions in L� we de�ne a corresponding ordering �� for L� by# E � E�

if� and only if� 
I�E� �� 
I�E
��	 
I�C� is true in I ���� that is� is a clause

with a negative literal� if and only if C is true in I	 With these de�nitions�
whenever

C � L D � L

C �D

is a semantic resolution inference with respect to I� then


I�C � L� 
I�D � L�


I�C �D�

is a positive resolution inference	 In short� semantic resolution with respect
to any interpretation I may be viewed as a syntactic variant of positive
resolution	

Proposition 
�� Let N be a negative and consistent matrix of standard

clauses� Then there exists a renaming 
 and a selection function S such

that 
�N� is saturated up to redundancy by ordered resolution with respect

to S and any ordering�

Proof	 If I is a model of N � choose 
 to be 
I and observe that no clause in

�N� is positive	 Then choose S in a way such that some atom is selected in
each clause in 
�N�	 Since every clause in 
�N� must have a selected atom�
no inference from premises in 
�N� exist	 �

The signi�cance of this proposition lies in the fact that it asserts the ex�
istence of a saturated presentation for any consistent theory� in particular
establishing the refutational completenes of the set�of�support strategy	

��� Resolution with free selection

Recall that we have obtained positive resolution by choosing the selection
function in a suitable way	 For standard clauses it su�ces to select� in any
non�positive clause� some negative atom	 The observations in Section �	�
show that we may elude the limitation of selection to negative occurrences of
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atoms� by renaming literals so that every positive occurrence of an atom A
we wish to select is turned into a negative occurrence of the renamed atom
A�	

These results� however� are not quite su�cient to explain the refutational
completeness of free selection for Horn clauses	 A free selection function
selects exactly one �or� more generally� at least one� arbitrary� positive or
negative� atom in any �nonempty� clause	 Then� binary resolution with

free selection is restricted to inferences which resolve an atom only if it is
selected in both premises	 Completeness results for binary resolution with
free selection have been obtained by Lynch ������ and de Nivelle ����
�	 We
present a simple proof of this fact that is based on proof transformations on
resolution proof trees	

Let N be a matrix of Horn clauses	 �Remember that Horn clauses with
empty heads are admitted and are written in the form �A� � � � ���Ak ���
with atoms Ai	� A proof of an atom A  or of A � �! from N is an ordered
tree with these properties# �i� any node di�erent from the root is labeled
by an atom" �ii� its root is labeled A" and �iii� for any node v labeled B in
the tree there exists a clause C � �A� � � � � � �Ak � B in N such that v
has exactly k descendants labeled A�� � � � � Ak	 �In that case we say that the
clause C has been applied at v	�

Theorem 
�� Let N be a matrix of Horn clauses that contains all resolvents

by binary resolution inferences with free selection from N � If N j� � then

N contains ��

Proof	 If N j� � then there exists a proof of � from N 	 Let be a minimal
�with respect to the number of nodes� such proof be given	 If the proof
simply consists of � we are �nished	 Otherwise we propose a construction
that will leave us with a contradiction� showing that the minimal proof
cannot be nontrivial	 Suppose the proof has more than one node	 Then
we may consider any path v�� � � � � vk from the root v� downward in the tree
such that� for any � � i � k� if C � �A� � � � � � �Ak � B is the clause
that is applied at node vi and if vi�� is the j�th descendant of vi� then Aj

is selected in C	 If the path is chosen such that it has maximal length� that
is� cannot be extended any further� then k � �	 In fact� since the clause
applied at the root of the proof has an empty head �� it must have a negative
atom selected� and we may choose the corresponding descendant of v� for
v�	 Moreover in the clause D which is applied at vk the positive� but no
negative� atom is selected� as otherwise the path would be extensible	 We
infer that a resolution inference is possible between D and the clause D�

applied at vk�� which obeys the restrictions about selection	 �In fact� the
atom at vk is selected both in D and D�	� As the resolvent is contained in
N we might use it to construct a proof of � which has one node less than
the proof that we started with	 This is a contradiction	 �
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A consequence of this theorem is the completeness of SLD�resolution
�Kowalski ����� for Prolog# as a particular free selection function one
chooses one that selects� respectively� for program clauses their heads� and�
for negative goal clauses� any of their negative literals	

One can easily see that resolution with free selection �together with unre�
stricted positive and negative factoring� is generally incomplete for non�Horn
clauses	 For an example� consider the inconsistent matrix

A �B� A � �B� �A �B� �A � �B

with selection as indicated by underlining	 The two inferences possible de�
rive B � �B and A � �A� respectively	 Even if these tautologies are not
eliminated� selecting as indicated only allows to derive clauses which are
present already	 de Nivelle ����
� has shown� however� that free selection
for full clauses may cause incompleteness only when every resolution�based
proof of inconsistency requires at least one step of factoring	 That is the
case in particular for every inconsistent set of binary clauses	 Resolution
between two binary clauses produces again a binary clause� and only by
factoring steps clauses may become shorter	

SL�resolution �Kowalski & Kuehner ����� is a resolution strategy for full
clauses which also employs a rather liberal selection strategy that cannot be
directly justi�ed within the essentially semantic framework described until
now	 SL�resolution is a re�nement of set�of�support resolution where arbi�
tray� positive or negative atoms may be selected� provided they have been
introduced by a theory clause premise of a previous resolution step	 SL�
resolution is closely related to model elimination �Loveland ��
�� and hence
to semantic tableau	 In Sections ��	� and ��	� we shall brie�y describe how
to generalize the linear theorem proving derivations of the Section �	� to
derivation trees	 This will allow us to model semantic tableau and re�ne�
ments such as model elimination in our framework	 We shall in particular see
that those aspects of selection that cannot be modeled on the semantic level
of partial interpretations can be justi�ed on the meta�level of derivations	

To keep this paper within reasonable bounds� this proof�theoretic di�
mension of resolution cannot be explored in much detail in this paper	 The
proof of Theorem �	� indicates that one can de�ne redundancy criteria for
resolution which are based on proof orderings	 These could be much more
re�ned than the simple node count that we have used there	 Our standard
redundancy criterion corresponds to a proof ordering where proofs are com�
pared by simply comparing the sets of assumptions they apply	 This gives a
quasi�ordering where all proofs that use the same assumptions would become
equivalent	 More �ne�grained orderings may provide a justi�cation of more
sophisticated redundancy elimination techniques than we can deal with in
the present paper	 On the other hand it appears that proof�theoretic com�
pleteness proofs for general ordered resolution with selection are technically
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much more complex and� moreover� cannot easily be extended to re�nements
of resolution such as chaining or superposition	 In �Bachmair ����� com�
pleteness proofs for certain calculi of ordered resolution and paramodulation
have been given by means of proof transformations	 Proof transformations
for a superposition�type calculus for Horn clauses with equality have been
explored in �Ganzinger �����	

��� Conservative Extensions

A straightforward transformation to clausal form or conjunctive normal
form$for instance� via normalization with the rewrite system C$may ex�
ponentially increase the size of a formula	 Fortunately� there are other trans�
formation schemes that preserve the consistency of a formula� but avoid an
exponential increase in size	 They are based on the concept of the extension
of a language by new predicate symbols and corresponding de�nitions	

More formally� let N  F ! be a matrix containing a subformula F and
L be a literal P or �P � where P is an atom not occurring in N 	 We
say that the matrix N ��M is a regular extension of N  F ! �by L� if N � is
obtained from N by replacing one or more occurrences of F by L and if M
is logically equivalent to L � F 	 Similarly� we speak of a positive �resp	�
negative� extension if only positive �resp	� negative� occurrences� of F in
N are replaced and if M is logically equivalent to L � F �resp	� F � L�	
Finally� we say that K is a �conservative� extension of N if it is obtained
from N by a sequence of �nitely many �but at least one� regular� positive
and�or negative extensions	

Proposition 
�� If K is an extension of N � then K is consistent if� and

only if� N is consistent�

Proof	 It is su�cient to show the assertion for every regular� positive� and
negative extension	

Let I be a model of N  F ! and L be a literal P or �P � such that P is
not contained in N 	 If L and F have the same truth value in I� then I is a
model of any �regular� positive� or negative� extension of N  F ! by L	 If L
and F have di�erent truth values in I� de�ne I � to be I 	fPg� if P �� I" and
I n fPg� if P � I	 Then L and F have the same truth value in I � �since P
does not occur in F �� and I � is a model of any extension of N  F ! by L	 We
have thus shown that the consistency of N implies the consistency of all of
its regular� positive� and negative extensions	

If I is a model of a regular extension N ��M of N  F ! by L� then L and F
have the same truth value in I and� hence� N � and N  F ! also have the same

�We speak of a positive �negative� occurrence of F in matrix N if that occurrence of F
is within a clause C of N in which F is a positive �negative� subformula�
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truth value in I	 Since I is a model of N �� it has to be a model of N  F ! as
well	

If I is a model of a positive extension N ��M of N  F ! by L� then I is a
model of N � and of L � F 	 Again� if L and F have the same truth value
in I� then N  F ! is true in I	 If L is true in I� then F must also be true
in I� for otherwise the implication L � F would be false	 Thus� if L and
F have di�erent truth values in I� then L is false in I and F is true in I	
Since N � results from replacing positive occurrences of F in N � for any such
occurrence C F ! within a clause C of N the clause C F��! is a tautology�
which implies that C F ! is true in I	 Clauses in N in which F is not replaced
also occur in N � and� hence� are true in I by assumption	

The case of negative extensions is handled in a similar way	 In sum� the
consistency of any regular� positive or negative extension of N implies that
N is also consistent	 �

We illustrate the use of the extension principle by showing how any for�
mula �or any �nite matrix� for that matter� can be converted to an equiv�
alent standard matrix so that the size increases only by a constant factor�
cf	� Tseitin ������	

Let EP �L � L�� denote the standard matrix �of three clauses�

�P � L��P � L�� P � L � L��

where L and L� and also L� and L�� are complementary literals	 Similarly�
let EP �L � L�� be the standard matrix

�P � L � L�� P � L�P � L�"

EP �L� L�� the matrix

�P � L � L�� P � L�P � L�"

and EP �L� L�� the matrix

�P � L � L���P � L � L�� P � L � L�� P � L � L��

These matrices satisfy the following logical equivalences#

EP �L � L��  P � �L � L��

EP �L � L��  P � �L � L��

EP �L� L��  P � �L� L��

EP �L� L��  P � �L� L��

Let now N be a �nite matrix	 For simplicity� we assume that all formulas
in N are in negation normal form	 �Transformation to negation normal
form increases the size of a formula by a constant factor only	� If N is
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not a standard matrix� it must contain a subformula L � L�� where � is
one of the connectives �� �� � or � and L and L� are literals	 Then
N  PL�L� !� EPL�L�

�L � L�� is an extension of N  L � L�!� where PL�L� is a new
predicate symbol	 Each extension step eliminates at least one occurrence of
a binary connective� so that we eventually end up with a standard matrix
that is consistent if� and only if� the initial matrix N is consistent	 Since in
the worst case each occurrence of a logical connective in the initial formula
has to be replaced by a new atom and a matrix of at most four clauses� each
with no more than three literals� the size of the initial matrix may increase
only by a constant factor	

Plaisted & Greenbaum ����
� have presented a re�nement of this trans�
formation scheme in which the polarities of abbreviated formulas L � L� are
considered so that for a positive  negative! L�L� a positive  negative! exten�
sion by PL�L� is generated	 They also discuss how to automatically extend
the ordering to the new PL�L��atoms in a way such that predicates that
abbreviate small formulas are preferred for ordered inferences	

��� Lock resolution

Extension allows us to obtain some interesting variations of resolution infer�
ence systems	 For instance� lock resolution �Boyer ����� can essentially be
encoded by positive hyper�resolution	

Lock resolution is applied to clauses in which each occurrence of a lit�
eral has been assigned an integer� called a lock index	 For example� in the
following matrix N� of four clauses�

�A � �B�

��A � 	�B�


B � ��A�

��B � A

each literal occurrence has a unique index� but in general di�erent literal
occurrences may be assigned the same index	 The lock restriction states
that only literals with a minimal index must be resolved	 More formally� we
have the following inference rules#

Lock resolution�
C � iA j�A �D

C �D

where no literal in C has a smaller index than i� and no literal in D
has a smaller index than j	

Lock factoring�
C� iA� jA

C� iA

where no literal in C has a smaller index than i	
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For example�

�A � �B ��A � 	�B

�B � 	�B

is a lock resolution inference� but

�A � �B 
B � ��A

�B � 
B

is not	
Let N � C�� � � � � Cn be a �nite matrix of standard clauses �with lock

indices�	 For each clause

Ci � li��Ai�� � � � � � li�ki
Ai�ki � li�ki��

�Bi�ki�� � � � � � li�ki�mi
�Bi�ki�mi

let C �i be the �renamed� clause

Ci � Pi�� � � � � � Pi�ki � Pi�ki�� � � � � � Pi�ki�mi

where the Pi�j are predicate constants not occurring in N " and let Mi be the
matrix of all clauses �Pi�j �Ai�j� where � � j � ki� and �Pi�ki�l � �Bi�ki�l�
where � � l � mi	 We also say that Pi�j encodes Ai�j or �Bi�j� respectively	
Finally� let N � be the �renamed� matrix C ��� � � � � C

�
n and M be the matrix

M�� � � � �Mn	 The clauses in M are called de�nitions	
Note that a clause �Pi�j � Ai�j is logically equivalent to the implication

Pi�j � Ai�j� and �Pi�j � �Bi�j is logically equivalent to Pi�j � �Bi�j	 Thus�
N ��M is an extension of N 	

For example� from the matrix N� above we get a renamed matrix

P��� � P���
P��� � P���
P��� � P���
P	�� � P	��

where the predicate constants Pi�j are de�ned by this matrix M #

�P��� � A �P��� � B
�P��� � �A �P��� � �B
�P��� � B �P��� � �A
�P	�� � �B �P	�� � A

Let now � be an ordering in which �i� Ai�j � Pi�j and Bi�j � Pi�j� for all
i� j� and �ii� Pi�j � Pi��j� if� and only if� the lock index li�j associated with the
literal encoded by Pi�j is smaller than the lock index li��j� associated with

	We assume there is a su�cient supply of symbols Pi�j in the given propositional
language�
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the literal encoded by Pi��j� 	 We then saturate the matrix M under ordered
resolution	 This results� with the given ordering� in the elimination of the
�old� atoms Ai�j� that is� the result is a matrix M�K� where K consists of
all two�element negative clauses �Pi�j ��Pk�l� such that Pi�j and Pk�l encode
complementary literals	 The clauses in K are called connections	

For the above example we obtain the following connections#

�P��� � �P��� �P��� � �P���
�P��� � �P��� �P��� � �P	��
�P��� � �P	�� �P	�� � �P���
�P��� � �P��� �P	�� � �P���

For instance� the connection �P��� � �P��� indicates that in the original
matrix N� the �rst literal in the �rst clause is complementary to the second
literal in the third clause	

The matrix N ��M�K is partially saturated in the sense that all inferences
with premises from M �i	e	� de�nitions� are redundant in this context	 If we
use a selection function that selects both literals in a connection� then any
possible ordered resolution inference with this selection must be of the form

C � Pi�j D � Pk�l �Pi�j � �Pk�l

C �D

where Pi�j is maximal in the �rst positive premise and Pk�l is maximal in the
second positive premise	 The negative premise is a connection and the con�
clusion is again a positive clause	 In other words� these are positive hyper�
resolution inferences with connections as nucleus	 The ordering restrictions
guarantee that these hyper�resolution inferences encode lock resolution in�
ferences	 More precisely� if C � �L denotes the clause obtained from C �Pi�j
by replacing each atom by the literal it encodes� and D� � L is obtained in
the same way from D � Pk�l� then

C � � L D� � L

C � �D�

is a lock resolution inference	 Conversely� each lock resolution inference is
encoded by a positive hyper�resolution inference of the above form	 In sum�
there is a one�to�one correspondence between hyper�resolution inferences
�with two renamed clauses as negative premises and a connection as positive
premise� and lock resolution �on the original clauses�	

For example� the hyper�resolution inference

P��� � P��� P	�� � P	�� �P��� � �P	��

P��� � P	��
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encodes the lock resolution inference


B � ��A ��B � A

��A � A

It is well�known that lock resolution is not compatible with tautology
deletion	 For example� the two lock resolution inferences we have shown
above are the only ones from premises in N�	 In each case� the conclusion
is a tautology	 If these inferences were regarded as redundant� then N�

would be saturated up to redundancy� yet is inconsistent and contains no
contradiction	 This appears to contradict the fact that our completeness
results cover redundancy	 But redundancy� in our sense� has to be applied
to encoded clauses and inferences and we can see from the example that the
encoding� P��� �P	��� of the tautology ��A� A is not itself a tautology and
therefore is not redundant	

��	 The inverse method

The inverse method was proposed by Maslov ���
��	 Its basic inference
rules are formulated in terms of a given set of �generalized� disjunctions
of conjunctions of formulas	 In our description of the method we follow
Lifschitz ������� where the method is formulated for disjunctions G� � � � ��
Gk of conjunctions Gi � Li� � � � � � Limi

of literals Lij	 The disjunctions
have been called �superclauses�� and the conjunctions Gi� �superliterals�
in �Lifschitz �����	 The negations �Gi� which are equivalent to standard
clauses in the Lij � will be denoted by Gi	 Given a set of input superclauses�
an S�clause is any standard clause that is logically equivalent to a disjunction
of negated superliterals Gi in the input	 For example� given the input

�P � �Q� � �R � T �
�P �Q
�R

the input superliterals are the conjunctions

P � �Q� R � T� �P� Q� �R�

and their negations are the clauses

�P �Q� �R � �T� P� �Q� R �

Forming� for instance� the disjunction consisting of the negated �rst and
third superliterals yields the clause

�P �Q � P

which is a tautology	 They represent connections between complementary
literals in the input superclauses	

The inverse method consists of the following two inference rules#
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Type A inferences

C

where C is any S�clause which is a tautology	

Type B inferences
E� �G� � � � Ek �Gk

E� � � � � �Ek

where G� � � � � �Gk is an input superclause� and where the premises
are S�clauses	

Clearly� the conclusion of a type B inference is again an S�clause	 In
�Lifschitz ����� factoring is built into the set notation for clauses	

We will show how to encode this standard version of the inverse method
by positive hyper�resolution	 The encoding will be similar to the encoding of
lock resolution	 Let N be a matrix F�� � � � � Fn� where each Fi is a disjunction
Gi��� � � ��Gi�mi

of conjunctions Gi�j of literals	 For each conjunction Gi�j we
introduce a propositional constant Pi�j that does not occur in N � and denote
by Mi�j a standard matrix logically equivalent to �Pi�j � Gi�j	 By M we
denote the matrix M���� � � � �Mn�mn 	 Let Ci be the clause �Pi��� � � ���Pi�mi

and N � be the standard matrix C�� � � � � Cn	 Then N ��M is an extension of N 	
�Note that it is su�cient to introduce one constant Pi�j for all occurrences
of a formula Gi�j" we need not introduce di�erent constants for di�erent
occurrences of Gi�j in N 	� In the example N � has the clauses

�P��� � �P��� ���
�P��� � �P��� ���
�P��� ���

with the �Pi�j � Gi�j of the form

�P��� � P � �Q
�P��� � R � T
�P��� � �P
�P��� � Q
�P��� � �R

and� hence� M the standard matrix

P��� � P
P��� � �Q
P��� � R
P��� � T
P��� � �P
P��� � Q
P��� � �R �

�



As can be observed from the example� in �Pi�j � Gi�j �the �de�nition� of the
literal �Pi� j�� if Gi�j is a conjunction L�

i�j�� � ��L
mi�j

i�j � then the implication is

logically equivalent to the matrix of binary clauses Pi�j�L
�
i�j� � � � � Pi�j�L

mi�j

i�j 	
Let � be an admissible ordering in which all new atoms Pi�j are smaller than
all old atoms occurring in N 	 If we saturate M under ordered resolution� the
result is a matrix M�K� where K is a matrix of positive clauses of the form
Pi�j � Pi��j� 	 The clauses in K encode the tautologies that can be obtained
by �Type A� inferences	 In the example� K consists of the clauses

P��� � P��� ���
P��� � P��� ��
P��� � P��� �
��

Let us also use a selection function that selects all negative literals in a
clause	 Then the non�redundant resolution inferences during saturation of
N ��M�K are positive hyper�resolution inferences of the form

D� � L� � � � Dn � Ln �L� � � � � � �Ln

D� � � � � �Dn

where the positive premises are positive clauses �initially from K� and the
negative premise is from N �	 The conclusion is again a positive clause	
These inferences correspond to �Type B� inferences �The negative premise
�L� � � � � � �Ln encodes one of the formulas in the original matrix N 	�
Conversely� any �Type B� inference can be translated into a positive hyper�
resolution inference of this form	 In short� we have established a one�to�one
correspondence between the �standard version of the� inverse method and
positive hyper�resolution	 For refutational completeness� ordered factoring
for positive clauses has to be added	

In the example one derives a contradiction by the following series of type
B inferences#

��� P���  �
� into ��� !
��� P���  ��� and ��� into ��� !
��� P���  �� and ��� into ��� !
���� �  ��� and ��� into ��� !

Maslov�s superclauses represent a particular �non�standard� clausal nor�
mal form	 Specializing general resolution to superclauses would result in an
inference

�� A �G ���A �H

� A��!�� Aj�!

which is related to �a sequence of two� type B inferences of the inverse
method but di�erent in the way multiple occurrences of the resolved atom
A are handled	





��� Ordered Theory Resolution

Theory Resolution is concerned with specializing resolution to a speci�c
�consistent� submatrix T of a given matrix� the theory 	 �The clauses not in
T will be called goal clauses	� The concept was introduced by Stickel �����	
Instances of theory resolution include resolution modulo an equational the�
ory E in which case syntactic uni�cation is replaced by E�uni�cation� or
constraint resolution such as in �B�urckert �����	 A minimal requirement for
any calculus of theory resolution is that no explicit inferences with the the�
ory should be required	 That is equivalent to requiring that T be saturated
with respect to some particular instance of resolution	 In Section �	� we have
shown that� by renaming� one can always obtain a saturated presentation	
Hence� set�of�support resolution may be viewed as an instance of theory
resolution	 The presentation of T which underlies set�of�support resolution
is in a trivial way saturated# After renaming� none of the theory clauses
is positive� and selecting their non�positive parts makes inferences syntacti�
cally impossible unless one of the premises is a goal clause	 In particular�
no non�trivial consequences of T are explicity represented	

If T is saturated by ordered resolution without selelection then more
powerful theory resolution schemes can be obtained	 Technically� the re�
sults in this section strictly extend both the results by Baumgartner ������
and Bronsard & Reddy ������	 We will again restrict our presentation to
the case of propositional standard clauses	

To facilitate notation we will at places employ signed atoms to denote
literals# A sign is either ��� or ���� where �A denotes the positive literal
A while �A denotes the negative literal �A	 � and 	 denote signs	 The
complement � of a sign � is ��� if � is ���� and ���� otherwise	

Let � be a completable ordering	 By �w we denote the partial ordering
on clauses de�ned as C �w D if and only if for any atom B in D there
exists an atom A in C such that A � B	 We call �w the weak extension of
� to clauses	 �w is well�founded� but in general not an admissible clause
ordering	 For �w only the maximal atoms matter	 Clauses that have the
same or uncomparable maximal atoms cannot be compared in �w

We assume that T is saturated up to redundancy with respect to binary
ordered resolution R� �with positive and negative ordered factoring� without
selection and redundancy criterion R�w 	 That is we assume resolution or�
dering restrictions according to � and ordering restrictions for redundancy
according to �w	 In general R�w�N� is a proper subset of R��N�� both for
clauses and inferences� and for any matrix N 	

In general� as � may be partial� a theory clause can have more than
one maximal atom	 If �� is a well�founded �not necessarily total� admissible
extension of �� ordered theory resolution with respect to �� is the following
inference#






Ordered theory resolution

C� � ��A� � � � Ck � �kAk

C� � � � � � Ck �D

where the Ci � �iAi are k � � goal clauses and there exists a theory
clause ��A� � � � � � �kAk � D such that �i� B ��� Ai for any atom B
in Ci� �ii� the Ai are pairwise incomparable under �� and �iii� for any
atom B in D there exists an i such that Ai � B	

In essence� ordered theory resolution is hyper�resolution of goal clauses into
a theory clause such that all the maximal atoms of the theory clause are re�
solved simultaneously	 The non�maximal atoms in the theory clause remain
as a �smaller� residuum	 On the side of the goal clauses only maximal atoms
participate in the inference� whereby the ordering can be any well�founded
extension of the ordering � with respect to which the theory is saturated	

Ordered theory resolution� together with ordered resolution and ordered
factoring �both positive and negative�� both restricted to goal clauses� is
refutationally complete	 We will brie�y sketch how the completeness proof
can be reduced to the completeness proof for general ordered resolution	
That reduction will implicitly construct the redundancy criterion that can
be associated with the theory resolution inference	

The key technique� again� is extension and renaming so that �i� the max�
imal atoms in theory clauses become negative literals which can be selected
afterwards� and �ii� goal clauses become positive clauses under the renam�
ing	 Theory resolution then is positive hyper�resolution of goal clauses into
a theory clause as the nucleus� yielding another �positive� goal clause	 With
any propositional symbol A in T we associate two new symbols A� and A�
which will be used to denote positive and negative A�literals� respectively	
Also� if �� is any extension of �� we shall order the new atoms according to
A� �

� B� i� A �� B� for any two atoms A �� B	 To represent the intended
semantics of the new atoms we assume the presence of the� respectively�
positive and negative connections A� � A� and �A� � �A�	 Let K  K�!
denote the matrix consisting of all the  negative! connections	

If C is a clause in T of the form

C � ��A
� � � � � � �kA

k � 	�B
� � � � � � 	mB

m

such that the Ai are the maximal atoms in C� that is� they are pairwise
incomparable under � and any Bj is smaller than some Ai� then by 
�C�
we denote the renamed clause

�A�
��
� � � � � �Ak

�k
�B�

��
� � � � �Bm

�m
�

For instance� if C � �A ��B �C �which can be written as �A��B �C �
with maximal atoms B and C we obtain 
�C� � �B���C��A�	 Observe

�



that for any set of clauses Ci� the entailment C�� � � � � Ck j� C� is valid if and
only if 
�C��� � � � � 
�Ck��K j� 
�C��	 Also� for the weak extension ��w of ��

we observe that 
�C� ��w 
�D� if and only if C ��w D	
With these constructions and under the assumptions made above we

obtain this Lemma#

Lemma 
�� If I is a model of 
�T �	K� then there exists an interpretation

I � such that I � I � which is a model of 
�T � 	K�

Proof	 Let �� be any admissible total extension of �	 We may assume
that no clause in T contains more than one occurrence of its maximal �in
��� atom	 �Otherwise� as T is saturated by ordered positive and negative
factoring� the clause is redundant and we may remove it without a�ecting
saturation	� We de�ne� for any atom A in T � using induction over ���
interpretations I �A and EA in the following way#

I �A � I 	
�

A�B

EB

and �i� EA is the empty set� if either A� or A� is in I� or else �ii� EA is
fA�g whenever I �A 	 fA�g is a model of 
�M�� or else �iii� EA is fA�g�
otherwise	 Finally� let

I �A � I 	
�

A

EA

By construction I � satis�es the connections K	 Assume that A is minimal
such that I �A 	 EA is not a model of 
�M�	 By the induction hypothesis�
I �A is a model of 
�M� and hence EA � fA�g	 Moreover� I �A is a model of
all clauses 
�C� such that C contains only atoms smaller �in ��� than A	
There exists a clause of the form �A� �D� in 
�M� such that D� is false
in I �A	 There also exists a clause of the form �A� � C� in 
�M� such that
C� is false in I �A	 �For� otherwise� I �A 	 fA�g would be a model of 
�M��
hence EA � fA�g	� As neither C� nor D� contain A� they are also false
in I �A 	 fA�g	 Suppose that C � A and D � �A are clauses in T for which

�C �A� � �A� �C� and 
�D � �A� � �A� �D�� respectively	

C�A cannot be in R�w�T �	 For otherwise there exist clauses D�� � � � � Dk

in T such that D�� � � � �Dk j� C �A and C �A �w Di� hence C �A ��w Di	
Therefore� the Di contain only atoms smaller than A in �� so that the 
�Di�
are true in I �A	 As 
�D��� � � � � 
�Dk��K j� C� � �A�� C� � �A� would have
to be true in I �A� which is a constradiction	 Similarly� D � �A cannot be
redundant in T 	

Consider the inference by ordered resolution �with respect to �� from
premises C � A and D � �A resolving A	 As the inference is redundant in
T � either C �D is in T or else there exist clauses G�� � � � � Gk in T which are
smaller than D��A in �w such that G�� � � � � Gk� A j� C �D	 If C �D is in
T then 
�C�D�� as it does not contain neither A� nor A�� is true in I �A	 As

�




�C�D� and C��D� have the same truth value in I �A� this is a contradiction	
If C�D is not in T consider the clauses Gi	 By de�nition of ��w their atoms
are smaller than A with respect to ��� and hence their renamed forms 
�Gi�
are true in I �A	 We may infer that 
�G��� � � � � 
�Gk�� A��K j� C� �D�	 In
sum� C� �D� is true in I �A 	EA� which is a contradiction	 �

To �nish the completeness proof for ordered theory resolution� consider
any well�founded completable extension �� of � and ordered resolution R�

�

with a selection function whereby all negative literals in 
�T � and K� are
selected	 The given goal clauses are renamed� employing the new vocabulary�
into purely positive clauses	 The positive connections are not considered�
at �rst	 Then the only non�redundant inferences apart from factoring are
ordered hyper�resolution inferences with non�goal clauses as electrons into a
nucleus that is either a renamed theory clause or else one of the connections
in K�	 The former kind of inferences correspond to theory resolution� while
the latter represent ordered resolution between two non�goal clauses	 If no
contradiction can be derived� the union of the renamed goal clauses with

�T � and K� are satis�able	 If I is a model of this clause set� by the Lemma
it can be extended to a model of K and 
�T �	 As the renamed goal clauses
are positive� and inferences create positive clauses only� the extension of the
model also satis�es the latter	

The redundancy criterion for the theory resolution inference is simply
the redundancy criterion for general ordered resolution instantiated for the
corresponding hyper�resolution inference between the renamed goal clauses
and the renamed theory clause	 In particular� certain clauses which denote
tautologies before transformation� are not redundant	 This is similar to
what we have seen in lock resolution	

If T is saturated with respect to a total ordering �� there is no di�erence
between an ordered theory resolution inference and an ordered resolution
inference in which one premise is a goal clause and the second premise is a
theory clause	 In this case no extension and renaming is needed to achieve
the same e�ect	 With a partial ordering the residuums in a theory resolution
inference may be shorter	 On the other hand there are more theories that
can e�ectively �and �nitely� be saturated under a total atom ordering	 For
an example see Section ��	�

� First�Order Resolution Methods

��� First�Order Sequents

In this paper� resolution has been described for �possibly in�nite matrices
of� ground formulas	 In practice� resolution methods for propositional logic
only play a minor role compared to the Davis�Putnam procedure �that we
brie�y deal with in Section ��	�� or the method of Ordered Binary Decision

�



Diagrams �Bryant �����	 One of the main applications of resolution and
related saturation�based methods is automated theorem proving for �rst�
order logic	 In this context one is interested in �nding the proof of a given
sequent N � M � possibly containing variables and quanti�ers	 To be able
to apply resolution� quanti�ers have to be eliminated� and the sequent has
to be replaced by the equivalent negative matrix N��M � �	 Inference
systems and redundancy criteria have to be lifted to �quanti�er�free� clauses
with variables	

��� Lifting of Resolution Inferences

The lifting of unconstrained resolution inferences to quanti�er�free clauses
with variables is not a problem and is dealt with by standard methods	
In particular equality of ground atoms is generalized to uni�cation of non�
ground atoms	 For instance� general �ground� resolution

F  G! F � G!

F  G��! � F � G��!

is lifted to

F  G�� � � � � Gk! F � G��� � � � � G
�
n!

F� G��! � F �� G��!

where � is the most general uni�er �mgu� of the atoms G�� � � � � Gk�
G��� � � � � G

�
n� G � G��� and where one implicitly renames variables in one

of the premises in order to achieve disjointness of variables	 This formula�
tion takes care of the fact that in the ground inference all occurences of G
are replaced both in F and F �	 On the non�ground level the set of positions
at which G occurs has to be determined �non�deterministically� by uni�ca�
tion	 This is similar for all inferences in which more than one occurence
of an atom is to be replaced	 An additional dimension of non�determinism
is caused by the fact that there may not be a unique choice of atoms Gi

and G�j that can be uni�ed	 We refer to the discussion about replacement
strategies in Section 
	�	

��� Lifting of Ordering Constraints

Theorem proving processes are parameterized by orderings� selection func�
tions� renaming strategies� simpli�cation and deletion strategies	 Here is
where lifting starts to become less straightforward	 In the literature we �nd
two main techniques for lifting ordering constraints	 A possible choice is to
approximate ground constraints safely on the non�ground level	 One �rst
extends the �total� wellfounded� ground ordering to �a partial� wellfounded
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ordering on� non�ground expressions E and E� by stipulating that E � E� if
and only if E� � E��� for all ground substitutions �	 Then one lifts ordering
ground constraints of the form E � E� into constraints of the form E� �� E
on the non�ground level	 For instance �simple� binary� ordered resolution
on the non�ground level becomes the inferences

C �A D � �B

C� �D�

where � is the most general uni�er of A and B such that �i� A�� �� A�� for
any A� in C� �ii� C contains no selected literal� �iii� either �B is selected or
else B�� �� B�� for any atom B� in D	 Note that it is better to check the
constraints after the uni�er has been applied as this gives a more precise
approximation of the ordering constraints for the ground instances of the
inference	 For many orderings� the satis�ability of non�ground constraints
will be undecidable	 In such cases one has to employ safe approximations�
that is� possibly incomplete� but in any case sound� constraint solvers	

��� Constrained Formulas

A second� perhaps more adequate method is based on considering non�
ground expressions with constraints	 The constraints restrict the set of
ground terms that one may substitute for a variable	 Notations such as

C  �!

are used to denote the set of all ground instances of a non�ground clause C
such that the constraint � is satis�ed	 �Binary� ordered resolution �without
selection� on clauses can be lifted into the inference

C �A  �! D � �B  �!

C �D  � � � � �A � C� � �B � D� � �A � B�!

on constrained non�ground clauses	 The resolvent inherits the constraints �
and � of the premises to which the maximality contraints �A � C���B � D�
and the equality constraint A � B for the resolved atoms are added	 Such
notations have been inspired by constraint logic programming and� in the
context of automated theorem proving� been suggested by Kirchner� Kirch�
ner & Rusinowitch ������� among others	 Completeness proofs for certain
saturation�based theorem proving strategies involving constrained clauses
have �rst been obtained by Huet ������� B�urckert ������ and Nieuwenhuis
& Rubio ������	 By moving the constraints from the meta�level to the ob�
ject level� and through constraint inheritance� the ordering restrictions of the
ground level are represented in a precise way and no information is lost a
priori	 The signi�cance of constraint notations also becomes apparent when
�nite representations of saturated theories are sought� cf	 Section ��	�	�	
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Constraints of the above form combine logical and meta�logical restric�
tions into one expression	 In the binary resolution inference� A � B is the
logical constraint that ensures soundness of the inference	 There is some
evidence for the fact that notations which explicitly separate logical from
meta�logical constraints would be more appropriate	 A meta�logical con�
straint can be relaxed without a�ecting soundness and completeness� and it
is the case that certain simpli�cation strategies actually require such con�
straint relaxation	 Also� solvers for meta�logical constraints need not be
complete	 Of course� logical constraints must not be relaxed� and complete�
ness of the theorem proving process requires that one is able to decide their
solvability	

��	 Resolution Modulo an Equational Theory

The concept of constraints provides a framework in which the results about
resolution can be easily extended to resolution modulo equational theories �
�on ground atoms�	 On the ground level one would only consider formulas
that contain atoms which are canonical representations of their equivalence
classes	 Ground resolution inferences do not introduce any non�canonical
atoms if the atoms in the premises are canonical	 The atom ordering �
needs to be compatible with �	 As the only requirement is well�foundedness
of � on the canonical atoms� for any equivalence relation such orderings
can be found	 For attaining refutational completeness only solvability of
equality constraints needs to be decidable	 In case where the sets of uni�ers
can be very large �e	g	� in AC�uni�cation� or even in�nite �e	g	� in the case
of higher�order uni�cation� constraints are an indispensable concept �Huet
����� Nieuwenhuis & Rubio ����� Vigneron �����	

��� Redundancy

Most simpli�cation and deletion techniques are easily extended to the non�
ground case on the basis of this straightforward lifting of redundancy# A
non�ground clause �matrix� sequent� inference� is called redundant in � if
and only if all its ground instances are redundant in �	

Some cases of subsumption� however� are not covered by this method of
lifting redundancy criteria	 For instance the non�ground atom p�x� properly
subsumes the atom p�f�y��� hence� in the presence of the former� one wants
to delete the latter	 Such a deletion rule is not directly justi�ed by the non�
ground form of redundancy as the respective ground instances are identical	
On the other hand it is intuitively clear that it su�ces to only compute
with one non�ground representation of any ground formula	 For covering
all cases of subsumption by the standard redundancy criterion� one needs
to add further syntactic notation	 One possiblity is to consider ground
instances C� of a non�ground clause C as labeled clauses of the form C # C�


�



carrying the clause C from which the instance is obtained as a label	 In
that case clause orderings can be conceived that lexicographically combine
any admissible ordering on unlabeled clauses in the sense of this paper with
an arbitrary well�founded ordering such as the subsumption ordering for
non�ground clauses	

To formalize all aspects of lifting properly and independently of con�
crete notations for non�ground clauses �with or without constraints� with
or without typings for variables� with or without an equational background
theory� one should employ appropriate abstract notions of representation

and approximation that relate a non�ground expression to the set of ground
formulas it represents	 Such an approach would be related in spirit to the
notion of abstract interpretation in data�ow analysis frameworks	

� Applications

We brie�y describe some areas to which this theory of resolution can be fruit�
fully applied	 To keep this paper within reasonable bounds our exposition
will have to remain sketchy	

��� The Davis�Putnam Method

A very e�ective method for testing satis�ability of a �nite set of propositional
standard clauses is the Davis�Putnam method �Davis & Putnam ��
��	 The
method consists in a combination of eagerly perfomed simpli�cation steps
�unit reduction� pure literal detection� together with case splits on proposi�
tional variables	 We can model this method and justify its completeness in
our framework if we extend or notion of linear theorem proving derivations
on matrices to tree�structured derivations as created by derivation steps of
this form#

Splitting

N � N�M� j � � � j N�Mk �k � ��

if N is satis�able if and only if one of the N�Mi is satis�able

Splitting branches the theorem proving process into k subprocesses with
initial matrices N�Mi	 That is� instead of linear derivation sequences one
now consideres possibly in�nite� �nitely branching trees in which each node
represents one of the derivation steps deduction� deletion or splitting	 In tree
derivations� inference system and redundancy criteria need not be uniform
throughout the tree	 Therefore� suppose we have families J � �J ��� and
J� � �J �

� �� of inference systems such that J �
� � J � � for every �� and

having R � �R��� as associated family of redundancy criteria	 Assume
also that every system J �

� � together with R� � is refutationally complete	
The theorem proving derivation tree �based on the families J and R� is
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called fair with respect to J� if� for the limit N� �
S
i

T
j�iNj of each path

N�� N�� N�� � � � in the tree� there exists a � such that every inference in J �
�

with non�redundant premises in N� is redundant in
S
j Nj with respect to

R� � i	e	� J �
� �N� n R��N��� � R�

J �



�
S
j Nj�	 As in Lemma �	� we can show

that for a fair derivation the limit of any path is saturated up to redundancy	
In that case the initial matrix N� is unsatis�able if and only for every path
N�� N�� N�� � � � its limit

S
i

T
j�iNj is unsatis�able� that is�

S
j Nj contains a

contradiction	
The following rules which describe the Davis�Putnam method are speci�c

instances of deduction� deletion and splitting	

Unit reduction

N�L�C � L � N�L�C where L is the complement of L

Unit subsumption

N�L�C � L � N�L

Pure literal extension

N � N�L if L� but not its complement� occurs in N

Tautology deletion

N�C � N if C is a tautology

Splitting

N � N�A j N��A if the atom A occurs in N

The strategy is such that the splitting rule is applied only if no other rule
is applicable	 Pure literal extension is also an instance of splitting �for
k � ��	 If L� but not its complement� occurs in N one only needs to consider
interpretations in which L is true	 If N is satis�able then it also has a model
in which L is true	 Pure literal extension triggers subsequent subsumption
steps by which all clauses that contain that literal can be eliminated	

It is easy to see that the Davis�Putnam method� when applied to ma�
trices that consist of standard ground clauses� represents a fair resolution
strategy	 In fact� the only case in which no rule is applicable is when either
N contains the empty clause� or else N contains only literals and no two of
them are complementary	 For such matrices� no resolution and�or factoring
inferences are applicable� hence they are saturated with respect to standard
resolution R�S and an arbitrary atom ordering �	 The completeness of the
method is a consequence of Theorem �	�	 It is also easy to see that the
method terminates whenever the initial matrix is a �nite set of standard
ground clauses	 The main problem with respect to performance in practice
is which atom A to select in the splitting step	 The method can be fur�
ther improved by adding additional simpli�cation and deletion steps such
as general subsumption and subsumption resolution �also see Section 
	�#
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Subsumption resolution

N�D � L�D �C � L � N�D � L�D � C

if L is the complement of L	

Note that the main technique in the Davis�Putnam procedure� splitting
on an atom A� followed by unit reduction of the two branches by A or �A�
respectively� is an instance of ordered self�resolution#

Splitting as selfresolution

M�F  A!

M�F  A��!� F  A��!

In that view� the derivation tree is represented as a single clause M�F in
which the component formulas F represent the leaves of some partially ex�
panded Davis�Putnam tree	 Each formula itself is in conjunctive normal
form	 The self�resolution inference takes one leaf F in the tree and self�
resolves in F on the maximal atom A� where the ordering is implicitly de�
termined by the process	 Replacement of A by � and � is unit reduction	
If A occurs in just one polarity in F � the conclusion simpli�es to either
M�F  A��! or M�F  A��!	

Despite this fact it does not seem to be possible to model the Davis�
Putnam procedure as a linear theorem proving process based on ordered
resolution with selection in a natural way	 The choice of atoms that are self�
resolved at any step in the Davis�Putnam tree does not follow one uniform
atom ordering but is guided by the syntactic speci�cities of the respective
subtrees	 That is� in di�erent subtrees splitting may occur in di�erent or�
der	 Any linear ordered resolution process would have to adopt a uniform
ordering	

On the other hand one can show that in a theorem proving derivation one
may� without a�ecting the general results about how to e�ectively achieve
fairness and� hence� the saturation of its limit� always admit �nitely many
�heureka� steps N �N � in which one replaces N by any N � such that both
consistency and inconsistency is preserved	 All this indicates why the Davis�
Putnam procedure does not easily extend to the in�nite case of clauses with
variables	

��� Saturated Semantic Tableaux

While the Davis�Putnam method splits on tautologies of the formA��A� the
tableau method performs case splits according to the clauses in a matrix	 In
the most basic form� in a propositional and clausal setting� we may describe
it by the following two forms of derivation steps#






Splitting on clauses

N� �L� � � � � � Lk� � N�L� j � � � j N�Lk

Ancestor literal complement

N�L�L � �

Splitting on clauses is a combination of splitting and subsumption	

N�C � N�C�L� j � � � j N�C�Lk � N�L� j � � � j N�Lk

if C � L� � � � � � Lk	 Since we eliminate the clause on which the case split
is performed� the tablaux become automatically regular �no path contains
two nodes that correspond to the same clause split�	 Closing a path in
the presence of a complementary ancestor literal is a unit resolution step�
generating the empty clause� followed by subsumption steps by which all
other clauses are eliminated	 A matrix to which none of the above rules is
applicable consists either of the empty clause� or else of unit clauses such
that no two of them are complementary	 Any strategy that applies the two
rules exhaustively �and don�t�care nondeterministically� is fair� hence the
limit of each path in the derivation tree is closed under resolution	 The
completeness of the tableau method thus follows from the completeness of
standard resolution �cf	 Theorem �	��	 In the basic formulation orderings
are irrelevant	

We may improve the method by adding ordering constraints� selection
functions and simpli�cation	 It is su�cient to saturate the limit of each path
with respect to any of the resolution calculi	 To that end we may restrict
clause splitting to instances that correspond to a step of ordered resolution
with selection	

Splitting on clauses induced by ordered resolution

N�C �A � � � � �A�D � �A � N�C��A j N�A�D

if the resolution inference

C �A � � � � �A D � �A

C �D

is an inference by standard ordered resolution with respect to a given
ordering and selection function	

In this formulation� rather than splitting �A�D� with D � L��� � ��Lk� into
its k � � disjuncts� we split into two cases where the �rst case corresponds
to the atom on which we have resolved� and where the second case is the
remaining disjunct D which may be split further in subsequent steps	 We
have exploited the fact that in the second of the two cases we may assume
that A is true� and hence have simpli�ed C �A into A	 This formulation of







the semantic tableau emphasizes its close relationship to the Davis�Putnam
methods	 The di�erence between the two methods seems to be mainly due to
the choice of concrete datastructures	 In semantic tableaux when performing
an expansion of the form

N�L� � � � � � Lk � N�L� j � � � j N�Lk

the common part N is not duplicated but shared in the graphical repre�
sentation of the tableaux	 In fact one may even consider the initial clause
set N� as implicit and only store the literals Li on which case splits are
performed in the tableau	 But then properties such as regularity have to be
posed as extra constraints	 When one translates the above formulation of a
semantic tableau with ordering restrictions and selection functions into the
more common graphical formulations one obtains in particular a justi�ca�
tion of the ordering restrictions for tableaux that have been proved complete
by Klingenbeck & H�ahnle ������	 Actually� one can also see that the order�
ing � does not need to be uniform	 For each path one may choose a speci�c
ordering	

In short� what we are saying is that with the theoretical machinery of
this paper one may generalize the notion of a closed tableau to that of a
saturated tableau	 A saturated tableau is one in which all paths are saturated
up to redundancy with respect to one of the refutationally complete calculi
of resolution	

��� Model Elimination

Consider the method of semantic tableau applied to standard matrices of the
form T�G� where G is a positive clause A�� � � ��Ak and where every clause
in T has a negative literal	 Assume a selection function which selects exactly
one negative literal in any clause in T 	 This is the format that we can obtain
after renaming whenever T is a consistent set of clauses	 In fact� whenever
some matrix N is inconsistent� we may �nd an inconsistent �nite submatrix
of the form T �� G� where G� is a clause such that T � is consistent but T �� G�

is not	 After renaming� cf	 the discussion of semantic and set�of�support
resolution in Section �	�� we obtain T�G as assumed	

Model elimination �Loveland ��
�� can be described by this calculus of
theorem proving derivation rules#

Splitting on the goal clause

T�G � T�A� j � � � j T�Ak

Expansion with a theory clause

T�� ��A�L��� � ��Ln��M�A � T��M�A�L� j � � � j T��M�A�Ln

if �A is selected in the indicated theory clause
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Ancestor literal complement

N�L�L � �

The expansion rule is a special case of the rule �splitting on clauses� of
Section ��	� for a theory clause� where the branch for �A has been omited
since it immediately derives � from A and �A	 Again we delete the clause
on which the splitting is performed� avoiding a multiple case analysis over
the same clause	 The submatrices M contain newly derived literals from
either the initial goal splitting or any subsequent expansion step	

Model elimination re�nes semantic tableau in that an expansion step by
a theory clause must be triggered by the existence of a literal that descends
from the initial goal clause G and that is complementary to the literal that is
selected in the theory clause	 The expansion is therefore linear with respect
to the theory clauses	 Clearly� in any fully expanded model elimination tree�
any path is saturated under resolution with selection up to redundancy	
Therefore� T�G is inconsistent if and only if any path in the tree ends with
�	 Note that since in concrete applications we do not e�ectively know what
the renaming of T �� G� into T�G looks like� we have to compute with the
original T �� G� �we may even have to consider more than one tree� one for
every clause G� in N n T ��	 In particular we do not know which ones the
selected literals are� so that we have to try them all in a non�deterministic
fashion	

We may now come back to a question about free selection that was raised
earlier in Section �	�	 To that end we analyse the correspondence between
pre�xes in model elimination trees and resolution derivations	 In a model
elimination tree� any inner node contains a unique literal that has been in�
troduced in the splitting step which has produced that node �these are the
Ai in the goal splitting step� and the Lj in the expansion steps�	 Let us call
this literal the main literal of the node	 Now take any �partial� derivation
tree that contains at least one expansion step and for which none of the
leaf nodes contain a pair of contradictory literals	 Let L�� � � � � Lm be the
main literals of the sequence of leafs �ignoring any ��leaves� in that pre�x	
Then the clause L� � � � ��Lm can be derived from T�G by linear resolution
�at most one premise is a clause in T � together with implicit or explicit
factoring	 This gives the linearity constraints in SL�resolution �Kowalski
& Kuehner �����	 The selection constraints for that method allow to se�
lect an arbitrary literal that was inherited by a resolvent from the theory
clause premise of the resolution step	 That selection simply means that the
model elimination tree can be expanded don�t�care non�deterministically by
selecting any of its leafs	 The ancestor literal complement steps in model
elimination either correspond to implicit factoring� or else to subsumption
resolution steps called �ancestor resolution� in �Kowalski & Kuehner �����	
Tautology elimination as well as the other redundancy elimination tech�
niques of that paper can be easily modeled by standard redundancy	


�



In conclusion� there is a close correspondence between model elimina�
tion trees and certain resolution derivations with simpli�cation	 Resolution
methods such as SL�resolution which exploit that relationship� may feature
combinations of restrictions on the matrix level that can be justi�ed by
the semantic framework with restrictions on the level of theorem proving
derivation trees that can be justi�ed by proof transformations	

��� E�ective Saturation of First�Order Theories

Saturation up to redundancy terminates in many cases of consistent theories�
if strong enough techniques for simpli�cation and redundancy elimination
are employed	 In this section we brie�y describe some of the applications in
which �nitely saturated theories play a central role	 We intend to demon�
strate that saturation can be understood as a �partial� compilation process
through which� when it terminates� certain objectives with regard to e��
ciency can be achieved in an automated way	

������ Decision Procedures Based on Resolution

The abstract notion of redundancy is su�ciently general so as to accomodate
virtually all the major techniques of simpli�cation and elimination	 With
the right setting of the resolution parameters� most of the known decidable
fragments of �rst�order logic can be decided by saturation up to redundancy	
The theory of resolution is� hence� a powerful tool for obtaining proofs of
decidability for �rst�order theories and for logics that can be semantically
embedded into �rst�order logic	 An early example was given by Joyner Jr	
����
� where he shows that the monadic class can be decided by ordered
resolution� endowed with subsumption and condensement as simpi�cation
techniques	 Since then� many other decidable classes have been shown decid�
able by suitably re�ned calculi of ordered resolution �and paramodulation�#
the monadic class with equality �Bachmair� Ganzinger & Waldmann ������
the Ackermann class with equality �Ferm�uller & Salzer ������ a subclass of
Maslov�s class K �Ferm�uller� Leitsch� Tammet & Zamov ����� and various
logics for knowledge representation �Ferm�uller et al	 ����� Hustadt �����	
Hustadt ������ appears to be the �rst to describe a resolution�based deci�
sion procedure for the full Maslov class K� the completeness proof of which
makes essential use of the methods presented here� and in particular of re�
naming techniques	 Schmidt ������ proposes a general method for obtaining
resolution�based decision procedures for many modal logics	 In particular
she provides a descision procedure for an interesting fragment of �rst�order
logic� called path logic	 Ferm�uller et al	 ������ give a comprehensive overview
of the earlier work on decision methods based on resolution	
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������ Automated Complexity Analysis

Motivated by work on �local theories� by McAllester ������� the relation
between saturation and decidability issues has been extended to complex�
ity analysis by Basin & Ganzinger ����
� 	 There is was shown that the
complexity of the ordering that one uses for saturation is directly related
to the complexity of the entailment problem for a theory	 More precisely�
suppose N is a standard matrix �with variables�	 The entailment problem
for the theory N consists in checking whether or not a query C� where C is
a ground standard clause� is logically implied by N 	 If N is saturated �up to
redundancy� under standard ordered resolution without selection �that is�
no atom is selected in any clause and� hence� the resolved atom is maximal
in both premises�� one can derive upper bounds for the complexity of the
entailment problem for N 	 For this to be possible� the ordering on atoms
must be such that for any given ground atom A there are are only �nitely
many ground atoms that are smaller than A	 In that case� the complexity of
an ordering can be bounded from above by a function f such that whenever
A is a ground atom of size �number of symbols� n� then there are at most
f�n� ground atom that are smaller than n	 One of the main results in �Basin
& Ganzinger ���
� is the following#

Theorem ���� Suppose � is a partial well�founded ordering on ground

atoms of complexity f and N is a �nite set of Horn clauses that is satu�
rated under ordered resolution up to redundancy with respect to each total�

well�founded extension of �� Then the entailment problem for N is decid�

able in time O�fk� where k is a constant that depends only on the theory

N �

In particular� the entailment problem is polynomial� if the ordering is of
polynomial complexity	

For the proof idea �assume� for simplicity� � is total� note that if N is
saturated� all inferences in which both premises are in N are redundant	 To
decide as to whether some ground query C is entailed� negate C� add the
resulting unit clauses to N � and restart saturation by ordered resolution	
Clauses generated from ordered inferences with one premise in N and one
premise in �C cannot generate �ground instances of� clauses in which an
atom is bigger than each atom in C	 Hence� if C is a consequence of N � it
already follows from a set of ground instances of N in which all atoms are
smaller or equal in � to an atom in C	 By applying dynamic programming
methods of bottom�up computation �N was assumed to be Horn�� the result
follows	

What we have just described� can be summarized into this Lemma#

Lemma ���� Let N be saturated up to redundancy with respect to ordered

resolution �without selection� based on a total and well�founded ordering ��
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If C is a standard ground clause then C is a logical consequence of N if and

only if C is a logical consequence of those ground instances D of N in which

for any atom A in D there exists an atom B in C such that B � A�

It is sometimes the case� for examples see �Basin & Ganzinger ���
��
that the natural presentation of a theory is not saturated with respect to a
desired ordering� but can be �nitely saturated	 In such cases saturation can
be viewed as an optimizing compiler which adds su�cienty many �useful�
consequences to a theory presentation so as to achieve a certain complexity
bound for its entailment problem	

������ Deduction with Saturated Presentations

Having discussed why lifting methods in practice may require constraint
notation� we will give an example in which such notation allows to �nitely
present a saturated theory such that theory resolution gives a practically
useful re�nement of resolution modulo that theory	

The following is a presentation T � using ordering�constrained clauses� of
the transitive�re�exive closure p� of a binary predicate p#

� p��x� x� ���
p�x� y� � p��x� y� ���

p��x� y�� p��y� z� � p��x� z� ���
p��x� y�� p�y� z� � p��x� z�  y � z� y � x! ���
p�x� y�� p��y� z� � p��x� z�  x � y� x � z! ��
p��x� y�� p�y� z� � p��x� z�  z � x� z � y! �
�
p�x� y�� p�y� z� � p�x� z�  y � x� y � z! ���

The presentation is saturated �under ordered resolution with selection� with
respect to a speci�c �class of� orderings	 Suppose we are given any well�
founded and total ordering on ground terms	 Then the ordering on atoms has
to be such that �i� A � B whenever the maximal term in A is greater then
the maximal term in B� and �ii� p��s� t� � p�u� v�� whenever the maximal
term among s and t is the same as the maximal term among u and v	 The
selection function always selects the maximal negative atom� provided the
maximal term of the clause occurs in a negative p��atom� or else in a negative
p�atom but not in a positive p��atom	 In all other cases� nothing is selected	
To check that the system is in fact saturated is not di�cult� but somewhat
tedious	 With a su�ciently powerful saturation procedure such as the one
implemented in the Saturate system �Ganzinger & Nieuwenhuis ����� it
can be obtained automatically from the �rst three clauses	� For instance

�Actually in the system that we get automatically from 
���
��� instead of 
��� which is
not a consequence of 
���
��� we �nd the clause p
x� y�� p
y� z�� p�
x� z� �y � x� y � z��
Since in the application we are interested in one may assume non	theory clauses to not
contain negative occurrences of p its replacement by 
�� is justi�ed�
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consider the inference

p�x� y�� p��y� z� � p��x� z�  x � y� x � z! p��x� z�� p��z� u� � p��x� u�

p�x� y�� p��y� z�� p��z� u� � p��x� u�  x � y� x � z� x � u!

by ordered resolution with selection from the �fth and the third clause	 For
p��x� z� to be selected in the second premise� x � u must be true and� hence�
has been added to the constraint of the conclusion	 The following proof �for
the case x � u� the case x � u being trivial� of the same clause involves only
clauses smaller than the second premise#

p�x� y�

p��y� z�� p��z� u�
 x � y� x � z� x � u!

p��y� u�
 x � y� x � u!

p��x� u�

The constraints indicate that the involved clauses do exist and are su��
ciently small	

Given that T is saturated� consider saturation of matrices T�N that
contain T as a subtheory	 We may assume that p�atoms occur in N only
positively� while p��atoms occur only negatively in N 	 To put it di�erently�
any negative  positive! occurrence of p  p�! in N can be replaced by p�  p!
without a�ecting satis�ability or unsatis�ability of T�N 	 Consider ordered
inferences from mixed premises in T and N #

�a� Inferences with premise ��� or ��� and any clause in N are impossible#
In ��� and ��� a p��atom is selected while N has no positive occurrences of
p�	

�b� Omitting the negative premise� hyper�resolution inferences between
clauses in N as positive premises and clause ��� as negative premise can be
written as this inference �we describe the ground version�#

Ordered chaining with selection� right

C� p�s� t� D� p�t� u�

C�D� p�s� u�

where �i� t � s� t � u� �ii� p�s� t� is greater than any atom in C� �iii�
p�t� u� is greater than any atom in D� and �iv� neither C nor D contain
a selected atom	

�c� In the clauses �� and �
� the positive atom is maximal	 Ordered res�
olution with positive premise �� or �
� and a N �clause as negative premise�
followed by the resolution of the resulting negative p�atom by another clause
in N with a positve p is tantamount to the two cases of ordered chaining
left#
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Ordered chaining with selection� left �I�

C� p�s� t� D��p��s� u�

C�D��p��t� u�

where �i� s � t� s � u� �ii� p�s� t� is greater than any atom in C� �iii�
p��s� u� is either selected or else greater than or equal to any atom in
D� and �iv� C contains no selected atom	

Ordered chaining with selection� left �II�

C� p�t� s� D��p��u� s�

C�D��p��u� t�

where �i� s � t� s � u� �ii� p�t� s� is greater than any atom in C� �iii�
p��u� s� is either selected or else greater than or equal to any atom in
D� and �iv� C contains no selected atom	

Inferences involving ��� or ��� need not be dealt with speci�cally	 Note
that the chaining inferences preserve the speci�c normal form with respect
to the polarity of occurrences of p and p�	

In summary� when one extends standard ordered resolution with selec�
tion by the ordered chaining inferences one obtains a refutationally complete
specialization of resolution for theories with transitive and re�exive relations
p� in which no resolution inferences with the transitvity axiom for p� are
required	�� In Bachmair & Ganzinger �����b� we have employed speci�c
methods from term rewriting to obtain a closely related result	 Here we have
demonstrated that processing a theory presentation by saturation� which
can be automated to a large extent� can mechanically produce a practically
useful inference system that might otherwise require non�trivial meta�level
arguments for its completeness proof	

It seems that many other theories� including congruence� orderings� and
distributive lattices� can be engineered in a similar way	 This sheds some
new light on how theory resolution can actually be e�ciently implemented
in practice for theories that can e�ectively be saturated in a way such that
�problematic� clauses such as transitivity are eliminated to a certain ex�
tent	 Pre�saturation of theory modules contributes to an e�cient handling of
large� but structured theories	 Similar ideas in the context of theorem prov�
ing for modal logics where speci�c saturations of the respective �background
theories� form the heart of the method have been elaborated by Nonnengart
�����	

�
The chaining inferences encode certain ordered inferences with transitivity� The ad	
vantage over unordered hyper	resolution strategies with the transitivity clause is a better
balancing between forward and backward computation�
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�� Concluding Remarks

We have presented a version of resolution for general clauses with order�
ing constraints and selection functions	 Orderings of clauses are based on
well�founded� partial orderings on atoms	 Slagle ���
�� attributes the orig�
inal idea of ordering atoms to Reynolds ���
�	 Selection functions select
atoms that must be true in interpretations in which the clause is false	
The earliest resolution strategy that exploits selection appears to be hyper�
resolution �Robinson ��
a�	 The don�t�care non�deterministic aspects of
selection in resolution and the resulting pruning of resolution search spaces
have been �rst recognized by Kowalski & Kuehner ������	 Our main the�
oretical result is the refutational completeness of this family of calculi in
the presence of a certain redundancy criterion based on a well�founded or�
dering on formulas	 The proof applies a variant of the model construction
technique that was originally introduced in �Bachmair & Ganzinger �����	
Related ideas had been described earlier� but not worked out with the re�
quired mathematical rigour� by Zhang ������� and subsequently also by Pais
& Peterson ������	 From that construction one observes that �in the case
of standard clauses� the only inferences that are needed arise from produc�
tive clauses and from minimal counterexamples to the model property	 The
standard concept of redundancy is an abstraction from these restrictions
that enjoys stability under deduction as well as under deletion of redundant
clauses	 In some cases� however� the abstraction is too crude	 Recently we
have shown that one can go one step further and try to use more seman�
tic properties of these partial interpretation for further pruning the search
space �Ganzinger� Meyer & Weidenbach �����	

The concept of redundancy allows us to handle a variety of simpli�cation
techniques� such as tautology deletion� subsumption� and simpli�cation by
rewriting" and provides a framework for e�ectively handling equivalences	
The well�foundedness assumption for atom orderings is not an essential re�
striction	 If one assumes well�foundedness of the atom ordering� compactness
of �rst�order logic is a consequence of our completeness result	 Alternatively
one might start out by assuming compactness	 If a matrix is inconsistent� a
�nite submatrix will already be inconsistent	 Restricted to that submatrix�
any ordering will be wellfounded	

Resolution for standard clauses emerges as a special case in which the
simpli�cation rules for clausal normalization are applied before any resolu�
tion inferences	 In particular� our completeness results applies to sharpened
versions of ordered resolution and positive resolution	 The same techniques
can also be applied to hyper�resolution� semantic resolution� and set�of�
support resolution� to the inverse method� to Boolean ring�based methods�
as well as to constrained resolution and theory resolution	 We have thus
generalized these various completeness results in at least two ways	 First�
we consider arbitrary formulas� not just clauses" and secondly� we establish
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completeness in the presence of redundancy� which also allows us to deal with
a wide spectrum of simpli�cation mechanisms	 For instance� the clausal nor�
malization rules can be applied selectively to certain parts of formulas only�
a tactics that could be useful for dealing with equivalences F  G	

The theory has been developed mainly to serve as a theoretical justi�
�cation for many techniques that have been proposed for saturation�based
theorem proving	 Despite the powerful criteria for redundancy that we have
introduced� saturation�based theorem proving often turns out to be too lit�
tle goal�oriented in practice	 One should attempt to combine it with the
goal�oriented methods of the sequent calculus or the semantic tableau	 We
refer to �Avron ����� for some inital discussion of this problem	 Having
demonstrated that our theory of resolution may be useful for explaining
essential properties of semantic tableau and variants thereof� including the
Davis�Putnam method� model elimination and SL�resolution� is reassuring
and may serve as a starting point for further investigations of this problem	

We have also indicated that there might be a smooth way of specializ�
ing resolution to theories that include transitive relations �e	g	� orderings�
equality� in a way such that rewriting�based calculi �e	g	� ordered chaining�
superposition" Bachmair & Ganzinger ����� are obtained	 This is another
topic that deserves more attention with regard to future work	
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