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Abstract

This paper reports on empirical performance analysis of four modal theorem

provers on benchmark suites of randomly generated formulae. The theorem

provers tested are the Davis-Putnam-based procedure Ksat, the tableaux-

based system KRIS , the sequent-based Logics Workbench, and a translation

approach combined with the �rst-order theorem prover SPASS.

Our benchmark suites are sets of multi-modal formulae in a certain nor-

mal form randomly generated according to the scheme of Giunchiglia and

Sebastiani [8, 9]. We investigate the quality of the random modal formulae

and show that the scheme has some shortcomings, which may lead to mis-

taken conclusions. We propose improvements to the evaluation method and

show that the translation approach has superior computational behaviour

compared to the other three approaches.

Keywords

Modal theorem provers, empirical performance analysis, random modal for-

mulae



1 Introduction

There are a variety of automated reasoning approaches for the basic proposi-

tional multi-modal logicK(m) and its syntactical variant, the knowledge rep-

resentation formalismALC [19]. Some approaches utilize standard �rst-order

theorem proving techniques in combination with translations from proposi-

tional modal logic to �rst-order logic [13, 14, 15]. Others use Gentzen sys-

tems [10, 11]. Still others use tableaux proof methods [7, 17, 1].

Usually, the literature on theorem provers for modal logic con�nes itself

to a description of the underlying calculus and methodology accompanied

with a consideration of the worst-case complexity of the resulting algorithm.

Sometimes a small collection of benchmarks is given as in [4]. There have

not been any exhaustive empirical evaluations or comparisons of the compu-

tational behaviour of theorem provers based on di�erent methodologies.

Giunchiglia and Sebastiani [8, 9] changed that. They report on an exhaus-

tive empirical analysis of the tableaux system KRIS [1] and a new theorem

prover, called Ksat. Ksat is an adaptation for the basic multi-modal logic

K(m) of a SAT-procedure for checking satis�ability in propositional logic.

The benchmark suite is a set of randomly generated multi-modal formulae

in a certain normal form.

We extend the empirical analysis of decision procedures for basic modal

logic based on di�erent methodologies by incorporating the Logics Work-

bench [11], a system based on a Gentzen-style calculus for modal logic and

the functional translation approach of Ohlbach [13]. The latter approach

manipulates �rst-order translations of modal formulae, whereas the other

three systems manipulate modal formulae directly. The four systems cover

four di�erent calculi and as far as we know, they are the only automated

reasoners for modal logic that are publicly available.

Our investigations show benchmarking needs to be done with great care.

The evaluation of Giunchiglia and Sebastiani has some shortcomings which

we address. The random generator used to set up a benchmark suite produces

formulae containing a substantial amount of tautologous and contradictory

subformulae. It favours the SAT-procedure Ksat which utilizes a prepro-

cessing routine that eliminates trivial tautologies and contradictions from

the formulae. This property of the random formulae mislead Giunchiglia

and Sebastiani in their analysis and comparison of Ksat and the tableaux

system KRIS . The random generator does not produce challenging unsatis-

�able modal formulae. So as to obtain harder problems we develop guidelines
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for random generation of modal formulae. We present a set of samples of

modal formulae generated according to these guidelines and verify that they

provide challenging problems for Ksat and the translation approach.

The paper is structured as follows. Sections 2, 3, 4 and 5 brie
y de-

scribe the inference mechanisms of Ksat, KRIS , the Logics Workbench

and the translation approach. Section 6 de�nes random modal formulae and

describes the test method of Giunchiglia and Sebastiani, which Section 7

evaluates. Section 8 presents percentile graphs for the four systems that are

more informative than graphs presenting the median CPU time consump-

tion. Finally, Section 9 proposes improvements to the random generator so

as to produce more challenging random samples on which the methods are

tested.

2 The SAT-based procedure Ksat

The language of the multi-modal logic K(m) is that of propositional logic

plus m additional modal operators 2

i

. By de�nition, a formula of K(m) is a

boolean combination of propositional and modal atoms. A modal atom is an

expression of the form 2

i

 , where i is such that 1�i�m and  is a formula

of K(m). 3

i

 is an abbreviation for :2

i

: .

Ksat tests the satis�ability of a given formula � of K(m). Its basic

algorithm, called Ksat0, is based on the following two procedures:

KDP: Given a modal formula �, this procedure generates a truth assignment

� for the propositional and modal atoms in � which renders � true

propositionally. This is done using a decision procedure for proposi-

tional logic.

KM: Given a modal formula � and an assignment � computed by KDP, let

2

i

 

ij

denote any modal atom in � that is assigned false by �, that is,

�(2

i

 

ij

) = ? and 2

i

�

ik

any modal atom that is assigned true by �,

that is, �(2

i

�

ik

) = >. The procedure checks for each index i, 1�i�m,

and each j whether the formula

'

ij

=

V

k

�

ik

^ : 

ij

is satis�able. This is done with KDP. If each '

ij

is satis�able, the

formula � is K(m)-satis�able. If at least one of the formulae '

ij

is not

satis�able, then KM is said to fail on �.
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Ksat0 starts by generating a truth assignment � for � using KDP. If KM

succeeds on �, then � is K(m)-satis�able. If KM fails on �, we have to gener-

ate a new truth assignment for � using KDP. If no further truth assignment

is found, then � is K(m)-unsatis�able.

The decision procedure KDP for propositional logic can be described by

a set of transition rules on ordered pairs P . S where P is a sequence of

pairs h�; �i of a modal formula � and a partial truth assignment �, and S is

a set of satisfying truth assignments.

dp sol:

h>; �i jP . S

P . S [ f�g

dp clash:

h?; �i jP . S

P . S

dp unit:

h�[c]; �i jP . S

h�

0

; � [ fc = >gi jP . S

if c is a unit clause in � and �

0

is the result of replacing all

occurrences of c and c by > and ?, respectively, followed

by boolean simpli�cation.

dp split:

h�[m]; �i jP . S

h�[m] ^ p; �i j h�[m] ^ :p; �i jP . S

if dp unit cannot be applied to h�[m]; �i, m is a propo-

sitional or modal atom.

The symbol j denotes concatenation of sequences. � denotes the comple-

mentary formula of �, for example :p = p and 2

i

p = 3

i

:p.

Starting with h�; ;i . ;, exhaustively applying the inference rules will

result in ; . S where S is a complete set of partial truth assignments making

� true.

Note that the transition rules form a variant of the Davis-Putnam proce-

dure for propositional formulae not in conjunctive normal form. The crucial

nondeterminism of the procedure is the selection of the splitting `variable' m

in the transition rule dp split. Ksat employs the heuristic that selects an

atom with a maximal number of occurrences in �.
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At any point of time the computation in KDP can be interrupted and KM

can be called with the partial truth assignment � constructed so far. If KM

fails on �, then is not necessary to continue the completion of � by KDP.

Ksat0 calls KM before every application of the dp split rule.

Giunchiglia and Sebastiani [8, pp. 583-584] suggest that Ksat0 can be

based on any decision procedure for propositional logic. However, this is

false.

Suppose that we add the pure literal rule to the Davis-Putnam proce-

dure described above. That is, whenever an atom m occurs only positively

(respectively negatively) in �, we can add fm = >g (respectively fm = ?g)

to the truth assignment and replace all occurrences of m by > (respectively

?). The application of the pure literal rule preserves satis�ability and can

be applied eagerly to �. Now consider the formula

�

1

= (p _ q _ :2

1

(p _ :p))^

(:p _ :q _ :2

1

(p _ :p)):

There is one pure literal in �

1

, namely 2

1

(p _ :p), which occurs only neg-

atively in �

1

. So we assign ? to 2

1

(p _ :p) and replace all occurrences of

2

1

(p_ :p) by ?. After simplifying the resulting formula we get the formula

>. We have arrived at a truth assignment rendering � true. Due to the

eager application of the pure literal rule, this is the only truth assignment

our procedure computes. In a second step we have to check using KM that

:(p _ :p) is satis�able. This is obviously not the case. Since KDP with the

pure literal rule does not produce any additional truth assignments for �,

Ksat concludes that � is unsatis�able. However, � is satis�able with the

truth assignment fp = >; q = ?g.

So, legitimate optimizations of the decision procedure for propositional

logic can render Ksat0 incomplete. That is, not every technique developed

for such decision procedure carries over to modal logic.

By way of one example, we will illustrate the four satis�ability testing

approaches under consideration.

Example 1:

Consider the satis�able modal formula :2

1

(p _ r) ^ (2

1

p _ 2

1

q). Figure 1

depicts the derivation tree of Ksat for this formula. In the �rst step the

procedure KDP applies the dp unit rule to the unit clause :2

1

(p _ r).

All occurrences of :2

1

(p _ r) are replaced by > while all occurrences of

2

1

(p _ r) are replaced by ?. The resulting formula > ^ (2

1

p _ 2

1

q) is

4



Figure 1: Sample derivation of Ksat

:2

1

(p _ r) ^ (2

1

p _2

1

q)

2

1

p _ 2

1

q

2

1

p ^ (2

1

p _ 2

1

q) :2

1

p ^ (2

1

p _ 2

1

q)

> 2

1

q

�

1

= f2

1

(p _ r) = ?;

2

1

p = >g

>

:(p _ r) ^ p �

2

= f2

1

(p _ r) = ?;

2

1

p = ?; 2

1

q = >g

? :(p _ r) ^ q :p ^ q

> >

KDP: dp unit

KDP: dp split

KDP: dp unit

KDP: dp unit

KDP: dp sol

KDP: dp unit

KM

KDP: dp sol

KDP: dp unit

KM
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simpli�ed to 2

1

p _ 2

1

q to which only the dp split rule of KDP is applica-

ble. Before any application of the dp split rule, Ksat calls the procedure

KM with the current truth assignment. Here, KM is used to prove that

�

0

= f2

1

(p _ r) = ?g is K(m)-satis�able. To this end, KM shows that

:(p _ r) is satis�able. This is done by KDP with two applications of the

dp unit rule to :(p_ r). Only now, the dp split rule is actually applied to

2

1

p _ 2

1

q. We assume that 2

1

p is the split variable. So, we have to show

that either 2

1

p^ (2

1

p_2

1

q) or :2

1

p^ (2

1

p_2

1

q) is satis�able. KDP will

�rst consider the formula 2

1

p ^ (2

1

p _ 2

1

q). Obviously, we can apply the

dp unit rule to propagate the unit clause 2

1

p. This step immediately re-

veals that the formula is satis�able. That is, one satisfying truth assignment

is �

1

= f2

1

(p _ r) = ?;2

1

p = >g. Ksat proceeds with KM to show that

:2

1

(p_r)^2

1

p isK(m)-satis�able. This is done by showing that :(p_r)^p

is satis�able. But KDP will reveal with an application of the dp unit rule

to the unit clause p in :(p _ r) ^ p that the formula is unsatis�able. Thus,

:2

1

(p _ r) ^ 2

1

p is not K(m)-satis�able. Consequently, KDP will continue

with the second formula :2

1

p^ (2

1

p_2

1

q) generated by the dp split rule.

Here two applications of the dp unit rule to the unit clauses :2

1

p and 2

1

q

yield a second truth assignment �

2

= f2

1

(p _ r) = ?;2

1

p = ?;2

1

q = >g.

Again Ksat continues with KM. Note that �

2

assigns ? to two modal atoms,

namely 2

1

(p _ r) and 2

1

p. Therefore, KM checks the satis�ability of two

propositional formulae, that is, :(p_r)^q and :p^q. For both formulae KDP

immediately veri�es their satis�ability. So, KM succeeds on �

2

which com-

pletes the computation by Ksat. We conclude that :2

1

(p_ r)^ (2

1

p_2

1

q)

is satis�able.

3 The tableaux-based system KRIS

While Ksat abstracts from the modal part of formulae to employ decision

procedures for propositional logic, KRIS manipulates modal formulae di-

rectly. More precisely, the inference rules of KRIS are relations on sequences

of sets of labeled modal formulae of the form w: where w is a label cho-

sen from a countably in�nite set of labels � and  is modal formula. For

improved readability we write w: ;C instead of fw: g [ C.

?-elim:

w:?; C j S

S

6



>-elim:

w:>; C j S

C j S

^-clash:

w:�; w:�; C j S

S

^-elim:

w:� ^  ;C j S

w:�; w: ;C j S

_-elim:

w:� _  ;C j S

w:�; C j w: ;C j S

if w:�_ ;C has been simpli�ed by _-simp

0

and _-simp

1

3

i

-elim:

w:3

i

�;D;C j S

v:� ^  

1

^ : : : ^  

n

; D; C j S

if D = w:2

i

 

1

; : : : ; w:2

i

 

n

, C does not contain any

w:2

i

 , none of the other rules can be applied to C, and

v is a new label from �.

Given a modal formula �, the input sequence for KRIS is the singleton set

w

0

:�

0

, where w

0

is a label chosen from a countably in�nite set of labels � and

�

0

is the modal negation normal form of �. If KRIS arrives at a sequence

C j S such that no transformation rule can be applied to C, then the original

formula � is satis�able. Otherwise the transformation rules will eventually

reduce w

0

:�

0

to the empty sequence and � is unsatis�able. The rules ?-elim,

>-elim, ^-clash, ^-elim are applied exhaustively before any application of

one of the elimination rules for _ and 3

i

. The >-elim rule is not necessary

for the completeness of the set of rules.

In addition to the inference rules, KRIS has two simpli�cation rules,

namely

w:� _  ;w:�; C ! w:�; C_-simp

0

:

w:� _  ;w:�; C ! w: ;w:�; C_-simp

1

:

These simpli�cation rules are applied only immediately before an application

of the _-elim rule and then they are applied only to the labeled formula

w:� _  to which we want to apply the _-elim rule.

7



As far as the application of the _-elim rule is concerned, KRIS actually

considers the sets of labeled formulae as sequences and chooses the �rst

disjunction in this sequence. To give a simple example, consider the formula

�

2

given by (p^:p)_>. Since �

2

is in negation normal form, we start with

the initial sequence

w

0

:(p ^ :p) _ >:

The only rule applicable is _-elim which generates the structure

w

0

:(p ^ :p) j w

0

:>:

For the reason that sequences are always processed from left to right, w

0

:(p^

:p) will be considered �rst. Only ^-elim is applicable transforming the

sequence to

w

0

:p; w

0

::p j w

0

:>:

Now we can apply the ^-clash rule to eliminate the �rst set of labeled

formulae and get

w

0

:>:

A �nal application of the >-elim rule reveals the sequence containing the

empty set. No further rule can be applied. Since we have not arrived at the

empty sequence, � is satis�able.

As the formula (p ^ :p) _ > is logically equivalent to >, its satis�ability

can be shown by a single application of the >-elimination rule. However,

KRIS has no simpli�cation rules beside _-simp

0

and _-simp

1

. In partic-

ular, KRIS does not simplify boolean expressions using the simpli�cation

rules of the preprocessing procedure that Giunchiglia and Sebastiani use in

conjunction with Ksat which we discuss later (see Table 1 on page 21).

The condition that the 3

1

-elim rule can be applied only if none of the

other rules can be applied to the set of labeled formulae under consideration

is necessary for the completeness of the system. To illustrate the problem,

consider the formula �

3

= :q^3

1

:p^ (2

1

p_ q). Starting with the sequence

w

0

::q ^3

1

:p ^ (2

1

p _ q)

a sequence of applications of the ^-elimination rule will derive

w

0

::q; w

0

:3

1

:p; w

0

:2

1

p _ q:

8



Suppose we apply the 3

1

-elimination rule before eliminating the occurrence

of the _-operator in w

0

:2

1

p _ q. The resulting system is

w

0

::q; w

1

::p; w

0

:2

1

p _ q:

The application of _-elimination rule is still possible and we get

w

0

::q; w

1

::p; w

0

:2

1

p j w

0

::q; w

1

::p; w

0

:q:

Now, no further application of any inference rule is possible. Since, we have

not derived the empty sequence, we would conclude that �

3

is satis�able.

But, it is not. If we apply the _-elimination rule to

w

0

::q; w

0

:3

1

:p; w

0

:2

1

p _ q

the resulting sequence contains two sets of labeled formulae

w

0

::q; w

0

:3

1

:p; w

0

:2

1

p j w

0

::q; w

0

:3

1

:p; w

0

:q:

The only rule applicable to the �rst system is the 3

1

-elimination rule. The

rule will replace the occurrence of w

0

:3

1

:p with w

1

::p ^ p. We have now

derived the sequence

w

0

::q; w

1

::p ^ p; w

0

:2

1

p j w

0

::q; w

0

:3

1

:p; w

0

:q:

After an application of the ^-elimination rule we arrive at

w

0

::q; w

1

::p; w

1

:p; w

0

:2

1

p j w

0

::q; w

0

:3

1

:p; w

0

:q:

It is straightforward to see that we can apply the ^-clash rule to both

sets of labeled formulae. We end up with the empty sequence. Thus, �

3

is

unsatis�able.

However, delaying the application of 3

1

-elimination to the end can also

be a disadvantage. Consider, the structure

w

0

:3

1

:p; w

0

:2

1

p; w

0

:p _ 2

1

q:

Adding w

1

::p ^ p to the set of labeled formulae followed by an application

of the ^-elimination and ^-clash rule allows the derivation of the empty

sequence although we have not eliminated the disjunction in p _ 2

1

q �rst.

This test makes a di�erence computationally if the set of labeled formulae

contains a large number of disjunctive formulae which are irrelevant with

regards its satis�ability. It is possible to add the following 3

i

-test inference

rule to the system without loosing completeness.

9



3

i

-test:

w:3

i

�;D;C j S

v:� ^  

1

^ : : : ^  

n

; w:3

i

�;D;C j S

if D = w:2

i

 

1

; : : : ; w:2

i

 

n

, and v is a new label chosen

from �.

Furthermore, if we ensure that the rule is applied only �nitely many times

before we eventually eliminate w:3

i

� by the 3

i

-elimination rule, the infer-

ence system remains terminating. Note that the application of the 3

i

-test

rule closely resembles the intermediate calls of the KM procedure during a

computation of KDP by Ksat.

We end our description of the system KRIS with a sample derivation.

Example 2:

Again, we consider the satis�able modal formula  = :2

1

(p_r)^(2

1

p_2

1

q).

First, it transforms the formula  to its negation normal form  

0

which is

 

0

= 3

1

(:p ^ :r) ^ (2

1

p _ 2

1

q). Figure 2 shows how KRIS proceeds to

prove the satis�ability of  

0

. First, KRIS eliminates the occurrence of the ^-

operator in  

0

. Then it uses the _-elim rule to split the disjunctive formula

(2

1

p_2

1

q). Now we have to deal with two sets of labeled formulae. KRIS

continues with the left set w

0

:3

1

(:p ^ :r); w

0

:2

1

p. The only rule applica-

ble to this set is 3

1

-elim. The application of the 3

1

-elim rule eliminates

the labeled formula w

0

:3

1

(:p ^ :r) from our set and adds w

1

::p ^ :r ^ p.

Applying the ^-elim rule to this labeled formula reveals that our set of la-

beled formulae contains both w

1

::p and w

1

:p. This is a contradiction and

the ^-clash rule eliminates this set of labeled formula from the sequence.

The remaining set of labeled formulae, namely w

0

:3

1

(:p ^ :r); w

0

:2

1

q, is

the second set generated by the _-elim rule. Again, the only applicable rule

is 3

1

-elim. This adds the formula w

1

::p^:r ^ p to the set while removing

w

0

:3

1

(:p ^ :r). A sequence of applications of the ^-elim rule results in a

set of labeled formulae to which no further rule applies. Thus, KRIS has

shown that  

0

and  are satis�able.

4 The Logics Workbench

The Logics Workbench (LWB) is an interactive system providing inference

mechanisms for a variety of logical formalisms including basic modal logic.

The decision procedure for basic modal logic is based on the sequent calculus

presented in Figure 3 [11] (of which some axioms and rules are eliminable).

10



Figure 2: Sample derivation of KRIS

w

0

:3

1

(:p ^ :r) ^ (2

1

p _2

1

q)

w

w

�

^-elim

w

0

:3

1

(:p ^ :r); w

0

:2

1

p _ 2

1

q

w

w

�

_-elim

w

0

:3

1

(:p ^ :r); w

0

:2

1

p j w

0

:3

1

(:p ^ :r); w

0

:2

1

q

w

w

�

3-elim

w

1

:(:p ^ :r) ^ p; w

0

:2

1

p j w

0

:3

1

(:p ^ :r); w

0

:2

1

q

w

w

�

^-elim

w

1

::p; w

1

::r; w

1

:p; w

0

:2

1

p j w

0

:3

1

(:p ^ :r); w

0

:2

1

q

w

w

�

^-clash

w

0

:3

1

(:p ^ :r); w

0

:2

1

q

w

w

�

3-elim

w

1

:(:p ^ :r) ^ q; w

0

:2

1

q

w

w

�

^-elim

w

1

::p; w

1

::r; w

1

:q; w

0

:2

1

q
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Axioms:

�;�) �;� �) >;� ?;�) �

Rules:

�;  ;�) �

� ^  ;�) �

(l^)

�) �;� �)  ;�

�) � ^  ;�

(r^)

�;�) �  ;�) �

� _  ;�) �

(l_)

�) �;  ;�

�) � _  ;�

(r_)

�) �;�

:�;�) �

(l:)

�;�) �

�) :�;�

(r:)

�;�) �

3�;2�;�) 3�;�

(l3)

�) �;�
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Figure 3: Axioms and rules of the Logics Workbench

A modal formula � is derivable using the axioms and rules of the sequent

calculus if and only if � is true in all Kripke models. Since we are interested in

satis�ability not provability, we exploit that a given formula � is unsatis�able

if and only if :� is provable using the calculus of the Logics Workbench.

The Logics Workbench does not support multiple modalities, although

the rules (l3) and (r2) can be generalized easily.

Unlike KRIS , the Logics Workbench has no simpli�cation rules. For

example, a sequent proof of the satis�ability of the formula :p ^ (p _ q) is:

p) p

Failure

q ) p

(p _ q)) p

(l_)

:p; (p _ q))

(l:)

:p ^ (p _ q))

(l^)

) :(:p ^ (p _ q))

(r:)

Starting with the sequent ) :(:p^ (p_q)), the Logics Workbench conducts

a backwards proof search. That is, the inference rules presented in Figure 3

are applied bottom up. The (r:)-rule moves the formula :p ^ (p _ q) to the

left side of the sequent. Then we eliminate the occurrence of the conjunctive
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operator using the (l^)-rule. The left hand side of the sequent now consist of

two formulae, namely :p and (p_ q). It uses the (l:)-rule to move :p to the

right hand side of the sequent. Now the (l_)-rule is the only rule applicable

to the sequent (p_ q)) p we have arrived at. We get two sequents, namely

p ) p and q ) p. Only the �rst one is an axiom. The sequent q ) p is

neither an axiom nor can we apply any further rules of the calculus. We have

failed to construct a proof of ) :(:p ^ (p _ q)). Therefore :p ^ (p _ q) is

satis�able.

There are two points worth noting. An application of the (l_)-rule creates

two branches into our backwards proof search. If one of the branches fails,

the whole proof attempt fails. We could directly derive the sequent :p; q )

from :p; (p _ q) ) using the equivalent of the _-simp

1

rule for sequents.

This would eliminate the need to apply the (l_)-rule in the example. But,

as mentioned before, the Logics Workbench has no equivalents of the _-

simpli�cation rules.

However, the Logics Workbench uses the following form of branch prun-

ing. Provided in a backwards application of the (l_)-rule the formula � is not

used in the proof of �;�) �, that is, �) � holds, then it is not necessary

to consider the branch  ;�) �. Similarly, branch pruning is applied to the

(r^)-rule.

The Logics Workbench applies the (l^)-rule, (l:)-rule, (r:)-rule and

(r:)-rule exhaustively before any application of the remaining rules. The

selection of the disjunctive and conjunctive formulae for applications of the

(l_)-rule and (r^)-rule, respectively, is determined by the order of formulae

in the left-hand side and right-hand side of the sequent, respectively. The

(l3)-rule and (r2)-rule are applied only after no application of the other

rules is possible.

Example 3:

Figure 4 gives the proof produced by the Logics Workbench of the satis�abil-

ity of  = :2

1

(p_ r)^ (2

1

p_2

1

q). Starting from) :(:2

1

(p_ r)^ (2

1

p_

2

1

q)) the backwards applications of the (r_)-rule, (l^)-rule and (l:)-rule

lead to the sequent 2

1

p _ 2

1

q ) 2

1

(p _ r). The backwards application of

the (l_)-rule generates two sequents 2

1

p) 2

1

(p _ r) and 2

1

q ) 2

1

(p _ r).

The Logics Workbench �rst considers the sequent 2

1

p ) 2

1

(p _ r). Here

we have to apply the (r2)-rule, for which we have to select a formula of

the form 2� on the right-hand side of the sequent. Since in the sequent

under consideration only one 2-formula occurs on the right-hand side of the

13



p) p; r

p) p _ r

(r_)

2

1

p) 2

1

(p _ r)

(r2)

Failure

q ) p; r

q ) p _ r

(r_)

2

1

q ) 2

1

(p _ r)

(r2)

2

1

p _2

1

q ) 2

1

(p _ r)

(l_)

:2

1

(p _ r);2

1

p _2

1

q )

(l:)

:2

1

(p _ r) ^ (2

1

p _ 2

1

q))

(l^)

) :(:2

1

(p _ r) ^ (2

1

p _2

1

q))

(r:)

Figure 4: Sample derivation of the Logics Workbench

sequent, the choice is deterministic. The application of the (r2)-rule yields

the sequent p ) p _ r. With a �nal application of the (r_)-rule we arrive

at the axiom p ) p; r. Now the Logics Workbench turns to the second al-

ternative 2

1

q ) 2

1

(p _ r). Here the application of the (r2)-rule produces

q ) p _ r. An application of the (r_)-rule renders q ) p; r. Since no more

rules apply and q ) p; r is not an axiom, our attempt to construct a proof

fails. No other proof attempts are possible. So  is satis�able.

Observe the near correspondence between the proof search of KRIS and

that of the Logics Workbench. We can directly translate the deduction steps

in the tableaux-calculus of KRIS into the sequent calculus of the Logics

Workbench. The di�erences are the absence of simpli�cation rules in the

Logics Workbench, branch pruning in the Logics Workbench, and the con-

version to negation normal form by KRIS .

In Section 7 we restrict ourselves to a comparison of the Ksat, KRIS ,

and the translation approach. However, due to the similarity between the

Logics Workbench and KRIS , our comments concerning KRIS also apply

to the Logics Workbench.

5 The translation approach

The translation approach (TA) is based on the idea that modal inference can

be done by translating modal formulae into �rst-order logic and conventional

�rst-order theorem proving. The translation approach we use is the optimized

functional translation approach described in Ohlbach and Schmidt [15]. It

14



has the property that ordinary resolution without any re�nement strategies

is a decision procedure for K(m) [18]. The translation maps modal formulae

into a logic, called basic path logic, which is a monadic fragment of sorted

�rst-order logic with one binary function symbol � that de�nes accessibility.

A formula of path logic is further restricted in that its clausal form may only

contain Skolem terms that are constants.

The optimized functional translation does a sequence of transformations.

The �rst transformation �

f

maps a modal formula � to its so-called func-

tional translation de�ned by �

f

(�) = 8x �

f

(�; x). For K(m), �

f

is de�ned

by

�

f

(p; s) = P (s)

�

f

(2

i

�; s) = def

i

(s)! 8�

i

�

f

(�; s � �

i

):

p is a propositional variable and P is a unary predicate uniquely associated

with p. The symbol def

i

is a special unary predicate with sort i that speci�es

de�nability (or not dead end), replacing :de

i

in the de�nition of Ohlbach and

Schmidt. �

i

denotes a variable of sort i. For the propositional connectives

�

f

is a homomorphism.

The second transformation applies the so-called quanti�er exchange oper-

ator � which moves existential quanti�ers inwards over universal quanti�ers

using the rule `9�8�  becomes 8�9� '. Ohlbach and Schmidt prove ��

f

preserves satis�ability, more speci�cally, � is a theorem in K(m) if and only

if :��

f

(�) is unsatis�able.

Our aim is to test the satis�ability of a given modal formula �. This can be

achieved by testing the satis�ability of the set of clauses S = c(:��

f

(:�)),

where c( ) denotes the clausal form of a �rst-order formula  . S is a set of

clauses in the basic path logic.

For basic multi-modal logic additional transformations of the clause set S

are possible. First, we replace all occurrences of literals P (s) where s is a path

of the form x � u

1

i

1

� u

2

i

2

� � � � � u

n

i

n

with length n+1 by P

n+1

(x; u

1

i

1

; : : : ; u

n

i

n

)

where P

n+1

is an (n+1)-ary predicate symbol uniquely associated with P

and n. Second, the sort information associated with the variables and con-

stants occurring in the literals in the clause set can be encoded in the pred-

icate symbols of the literals. So, we can replace all occurrences of liter-

als P

n+1

(x; u

1

i

1

; : : : ; u

n

i

n

) by P

i

1

:::i

n

(x; u

1

; : : : ; u

n

) where P

i

1

:::i

n

is a predicate

symbol uniquely associated with the predicate symbol P

n+1

and the sorts

i

1

, : : : , i

n

. The variables and constants u

1

, : : : , u

n

no longer carry any sort

information. Finally, we observe that all literals in the transformed clause
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set share the �rst argument x, which we can eliminate safely. This sequence

of three transformations can be combined in one:

P (x � u

1

i

1

� u

2

i

2

� � � � � u

n

i

n

) becomes P

i

1

:::i

n

(u

1

; : : : ; u

n

):

Example 4:

We consider our example formula  given by :2

1

(p_ r)^ (2

1

p_2

1

q). The

result of c(:��

f

(: )) is a set of four clauses, namely

def

1

(1)

:P

1

(a)(2)

:R

1

(a)(3)

:def

1

_ :def

1

_ P

1

(x) _Q

1

(y)(4)

Two resolution steps are possible: Resolving clauses (1) and (4) yields P

1

(x)_

Q

1

(y). The derived clause subsumes the clause (4). Resolving P

1

(x)_Q

1

(y)

with clause (2) yields the unit clause Q

1

(y), that subsumes the clause P

1

(x)_

Q

1

(y). Subsumption leaves the following clause set on which no further

inference steps are possible.

def

1

:P

1

(a)

:R

1

(a)

Q

1

(y)

Since the �nal clause set does not contain the empty clause, the original

clause set, and consequently, the modal formula � is satis�able.

For theorem proving we use FLOTTER and SPASS Version 0.55 devel-

oped by Weidenbach et al. [21]. FLOTTER is a system that computes the

clausal normal form of a given �rst-order formula. It performs the following

steps.

1. Rename subformulae of the input formula in order to obtain a clause

set containing a minimal number of clauses. Here an improved variant

of the technique developed by Boy de la Tour [3] is used.

2. Remove implications and equivalences using the appropriate transfor-

mation rules.
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3. Compute the negation normal form.

4. Eliminate existential quanti�ers by Skolemization.

5. Compute the clausal normal form.

6. Test the resulting clause set for redundancy by subsumption, tautology

removal and condensing.

The theorem prover SPASS is based on the superposition calculus of Bach-

mair and Ganzinger [2] extended with the sort techniques of Weidenbach [20].

We opted to use SPASS and not other well-known theorem provers (like

OTTER) for the following reasons:

1. SPASS uses ordered resolution and ordered factoring based on an ex-

tended Knuth-Bendix ordering [16].

2. It supports splitting and branch condensing. Splitting amounts to case

analysis while branch condensing resembles branch pruning in the Log-

ics Workbench.

3. It has an elaborated set of reduction rules including tautology deletion,

subsumption, and condensing.

4. It supports dynamic sort theories by additional inference rules including

sort generation and sort resolution and additional reduction rules like

sort simpli�cation and clause deletion.

Ordered inference rules and splitting are of particular importance when treat-

ing satis�able formulae. We emphasize the positive results of this paper ob-

tained for the combination of the translation approach and SPASS can most

probably not be obtained with less sophisticated theorem provers.

6 The evaluation method

The evaluation method adopted by Giunchiglia and Sebastiani follows the

approach of Mitchell, Selman and Levesque [12]. To set up a benchmark

suite for Davis-Putnam-based theorem provers Mitchell et al. [12] generate

propositional formulae using the �xed clause-length model. Giunchiglia and

Sebastiani modify this approach for the modal logic K(m).
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There are �ve parameters: the number of propositional variables N , the

number of modalities M , the number of modal subformulae per disjunction

K, the number of modal subformulae per conjunction L, the modal degree D,

and the probability P . Based on a given choice of parameters random modal

KCNF formulae are de�ned inductively as follows. A random (modal) atom

of degree 0 is a variable randomly chosen from the set of N propositional

variables. A random modal atom of degree D, D>0, is with probability P a

random modal atom of degree 0 or an expression of the form 2

i

�, otherwise,

where 2

i

is a modality randomly chosen form the set of M modalities and �

is a random modal KCNF clause of modal degree D � 1 (de�ned below). A

random modal literal (of degree D) is with probability 0:5 a random modal

atom (of degree D) or its negation, otherwise. A random modal KCNF

clause (of degree D) is a disjunction of K random modal literals (of degree

D). Now, a random modal KCNF formula (of degree D) is a conjunction of

L random modal KCNF clauses (of degree D).

For the comparison of the performance of Ksat and KRIS , Giunchiglia

and Sebastiani proceed as follows. They �x all parameters except L, the

number of clauses in a formula. For example, they choose N=3,M=1, K=3,

D=5, and P=0:5. The parameter L ranges from N to 40N . For each value

of the ratio L=N a set of 100 random modal KCNF formulae of degree D is

generated. We will see that for small L the generated formulae are most likely

to be satis�able and for larger L the generated formulae are most likely to be

unsatis�able. For each generated formula � they measure the time needed

by one of the decision procedures to determine the satis�ability of �. Since

checking a single formula can take arbitrarily long in the worst case, there is

an upper limit for the CPU time consumed. As soon as the upper limit is

reached, the computation for � is stopped. Now, the median CPU runtime

over the ratio L=N is presented. For example, the graphs of Figure 5 show

the performance of KRIS and Ksat on the parameter settings PS0 (N=5,

M=1, K=3, D=2, P=0:5) and PS1 (N=3,M=1, K=3, D=5, P=0:5). Our

tests have been run on a Sun Ultra 1/170E with 196MB main memory using

a time-limit of 1000 CPU seconds. The gaps in the graphs (for example for

KRIS above L=N = 5) indicate that more than 50 out of 100 formulae of

given ratio L=N had to be abandoned.

Giunchiglia and Sebastiani [9] present graphs for the following parameter
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Figure 5: The performance of KRIS and Ksat for PS0 and PS1

settings:

N M K D P N M K D P

PS0 5 1 3 2 0:5 PS5 4 1 3 2 0:5

PS1 3 1 3 5 0:5 PS6 4 2 3 2 0:5

PS2 3 1 3 4 0:5 PS7 4 5 3 2 0:5

PS3 3 1 3 3 0:5 PS8 4 10 3 2 0:5

PS4 3 1 3 2 0:5 PS9 4 20 3 2 0:5

Based on their graphs they come to the following conclusions [9, p. 313]:

(1) Ksat outperforms by orders of magnitude the previous state-of-the art

decision procedures.

(2) All SAT-based modal decision procedures are intrinsically bound to be

more e�cient than tableaux-based decision procedures.

(3) There is partial evidence of an easy-hard-easy pattern on randomly gen-

erated modal logic formulae independent of all the parameters of eval-

uation considered.

The graphs for the parameter settings PS0 and PS1 of Figure 5 support

these claims most visibly. We show that the situation is more complex and

does not justify such strong claims. We focus on the parameter settings PS0
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and PS1 which su�ce for our analysis of the evaluation method in the next

section. The remaining parameter settings will be considered in Section 9.

7 Analysis of the evaluation method

Selecting good test instances is crucial when evaluating and comparing the

performances of algorithms empirically. This means, we have to evaluate the

quality of the test instances �rst, before starting a performance comparison.

This is particularly important when we set up a completely new collection

of test instances. We address the question of whether the random generator

and the parameter settings chosen by Giunchiglia and Sebastiani [8, 9] are

appropriate for this purpose and actually support claims (1) to (3).

It is important to note that for D=0 and K=3 random modalKCNF for-

mulae do not coincide with random 3SAT formulae (as mistakenly claimed

by Giunchiglia and Sebastiani [9, p. 307]). Generating a clause of a ran-

dom 3SAT formula means randomly generating a set of three propositional

variables and then negating each member of the set with probability 0:5. In

contrast, generating a random modal 3CNF clause of degree 0 means ran-

domly generating a multiset of three propositional variables and negate each

member of the multiset with probability 0:5. For example, p _ q _ :r is a

3SAT clause and also a modal 3CNF clause of degree 0. The clauses p_:p_p

and p_p_q are not 3SAT clauses, but both are random modal 3CNF clauses

of degree 0. In random modal 3CNF formulae of higher degree, such clauses

occur within the scope of a modal operator. For example, contradictory

expressions like :2

1

(p _ :p _ p) may occur. Thus, random modal KCNF

formulae contain tautological and contradictory subformulae. It is easy to

remove these subformulae without a�ecting satis�ability. We now consider

to what extent the size of the random modal 3CNF formulae can be reduced

by such a simpli�cation. The graphs of Figure 6 re
ect the average ratio of

the size of the simpli�ed random modal 3CNF formulae over the size of the

original formulae. For the random modal 3CNF formulae generated using

three propositional variables, on average, the size of a simpli�ed formula is

only 1/4 of the size of the original formula. For the second parameter setting

we observe a reduction to 1/2 of the original size. In other words, one half

to three quarters of the random modal 3CNF formulae is \logical garbage"

that can be eliminated at little cost.

Ksat utilizes a form of preprocessing that removes duplicate and con-
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Figure 6: The e�ect of simplifying modal 3CNF formulae

:� _ �! > � _ > ! > � _ ? ! � � _ �! �

:� ^ �! ? � ^ > ! � � ^ ? ! ? � ^ �! �

2

i

> ! > :2

i

? ! ?

Table 1: The simpli�cation rules of Ksat

tradictory subformulae of an input formula, by applying the simpli�cation

rules presented in Table 1. The rules simplify p _ q _ p to p _ q and

2

1

(p_ q)^:2

1

(p_ q) to ?, but they will not simplify 2

1

(p_ q)^:2

1

(q_ p)

to >, since 2

1

(p_ q) is not syntactically equal to 2

1

(q _ p). Ksat also sorts

conjunctions and disjunctions alphabetically, e.g. 2

1

(q _ p) will be replaced

by 2

1

(p _ q). This allows for additional applications of the simpli�cation

rules. However, in all our experiments we have disabled the reordering of

clauses.

Ksat performs exactly the simpli�cation whose e�ect is illustrated in Fig-

ure 6. KRIS , on the other hand, does not. We consider how Ksat performs

if we remove the preprocessing step from its code. In Figure 7 Ksat0 denotes

this modi�ed form of Ksat (Ksat0 coincides with the algorithm described
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Figure 7: The performance of Ksat and Ksat0 for PS0 and PS1

in Section 2). We see that the behaviour of Ksat0 di�ers from the behaviour

of Ksat by orders of magnitude. In particular, for ratios L=N between 11

and 20 on PS0, and between 11 and 25 on PS1 Ksat0 is no longer able to

determine the satis�ability of half of the input formulae.

Since the preprocessing is not an intrinsic part of the decision proce-

dures, for the comparison of the procedures, either both Ksat and KRIS

should utilize the preprocessing or none of them should. Simpli�cation of

the generated modal formulae is reasonable, so we have added the prepro-

cessing function to KRIS . This modi�ed version of KRIS will be denoted

by KRIS*. The graphs in Figure 8 show the performances of Ksat and

KRIS*. Although the performance of Ksat is still better than that of

KRIS*, Ksat is no longer qualitatively better than KRIS with prepro-

cessing.

The superior performance of Ksat diminishes if we turn to values of

the parameter N greater than 5. Figure 9 shows the performance of Ksat

and KRIS* on the parameter setting PS10 (N=8, M=1, K=3, D=2,

P=0:5), while Figure 10 shows the performance on the parameter setting

PS11 (N=10, M=1, K=3, D=2, P=0:5). We see that the performance of

KRIS* for a ratio L=N between 4 and 11 on PS10 and for a ratio L=N

between 3 and 9 on PS11 is better than the performance of Ksat. So, it is
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Figure 8: The performance of Ksat and KRIS* for PS0 and PS1

not true that Ksat outperforms KRIS* in general, which relativizes claim

(1). For increased numbers of propositional variables, the dp unit rule and

exhaustive boolean simpli�cation of Ksat is of no particular importance for

modal formulae which are likely satis�able. And, the intermediate calls to

KM before each application of the dp split have a deteriorating e�ect on

the performance.

KRIS* applies the _-elimination rule to every disjunction in the modal

formula and continues on the �rst branch. As the number of propositional

variables and modal atoms is large, the ^-clash rule is less likely to close a

branch and the second branch need not be treated. After all occurrences of

the _-operator are eliminated, KRIS* performs all possible applications of

the 3

i

-elim rule. Each application is likely to succeed.

By contrast, Ksat uses dp split to generate two possible extensions of

the current truth assignment. Like KRIS*, it rarely has to consider the

second extension at all. However, before every application of the dp split

rule the procedure KM is called. This has the following e�ect: The dp split

rule needs to be applied more often before reaching a satisfying truth assign-

ment, since the number of di�erent propositional variables and modal atoms

has become larger. This also holds for the recursive calls of KDP by KM.

There is an increased number of intermediate calls to the procedure KM and
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Figure 9: The performance of Ksat and KRIS* for N=8
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Figure 10: The performance of Ksat and KRIS* for N=10
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each call is more expensive than for simpler formulae. The e�ect is strength-

ened by the following ine�ciency of the intermediate calls to KM. Suppose

we have just checked the K(m)-satis�ability of the truth assignment �

1

=

f2

1

 

1

= ?;2

1

�

11

= >; : : : ;2

1

�

1n

= >g and extend �

1

by f2

1

 

2

= ?g. By

the next call to KM, Ksat will not only test whether : 

2

^ �

11

^ : : : ^ �

1n

is satis�able, but it will repeat the test whether : 

1

^ �

11

^ : : : ^ �

1n

is

satis�able. So, Ksat performs the same tests over and over again without

need.

We now address claim (2) that, intrinsically, SAT-based modal deci-

sion procedures are bound to be more e�cient than tableaux-based deci-

sion procedures. Giunchiglia and Sebastiani base their claim on the work

by D'Agostino [6], who shows that in the worst case, algorithms using the

_-elim rule cannot simulate truth tables in polynomial time. Instead one

has to use the following modi�ed form of _-elim:

_-elim':

w:� _  ;C j S

w:�; C j w: ;w::�; C j S

This rule ensures that the two subproblems w:�; C and w: ;w::�; C gener-

ated by the elimination of the disjunction � _  are mutually exclusive.

We have just seen that a major cause of the di�erence in computational

behaviour of the two algorithms is the absence of the preprocessing step in

KRIS . To explain the remaining di�erence we study the quality of the ran-

dom modal 3CNF formulae. Suppose that we want to test a random modal

3CNF formula � with N propositional variables for satis�ability in a Kripke

model with only one world. We have to test at most 2

N

truth assignments

to the propositional variables. Since N � 5 for the modal formulae under

consideration, this is a trivial task, even by the truth table method. We say

a random modal 3CNF formula � is trivially satis�able if � is satis�able in a

Kripke model with only one world. We also say a random modal 3CNF for-

mula � is trivially unsatis�able if the conjunction of the purely propositional

clauses of � is unsatis�able. Again, testing whether � is trivially unsatis�able

requires only the consideration of 2

N

truth assignments.

The graphs of Figure 11 show the percentage of satis�able, trivially satis-

�able, unsatis�able, trivially unsatis�able, and unsatis�able formulae in the

samples detected by KRIS* of the set of test formulae generated for PS0.

We see that almost all unsatis�able test formulae are trivially unsatis�able.

This holds also for all the other parameter settings used by Giunchiglia and
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Figure 11: The quality of the test set for PS0

Sebastiani. This indicates, none of the parameter settings is suited to gener-

ate challenging unsatis�able modal formulae.

If we consider Figure 8 and 11 together, for ratios L=N between 19 and

21 and N=5 we observe the graph of KRIS* (in Figure 8) deviates a lot

(by a factor of more than 100) from the graph of Ksat. This is the area

near the crossover point where the percentage of trivially unsatis�able for-

mulae rises above 50%, however, the percentage of unsatis�able formulae

detected by KRIS* is still below 50% in this area. KRIS* does not detect

all trivially unsatis�able formulae within the time-limit which explains the

deviation in performance from Ksat. The reason for KRIS* not detecting

all trivially unsatis�able formulae within the time limit, can be illustrated

by the following example.

Example 5:

Let �

4

be a simpli�ed modal 3CNF formula

p ^ q ^ (m

11

_m

12

_m

13

)

: : :

^ (m

k1

_m

k2

_m

k3

) ^ (:p _ :q)

where the m

ij

, with 1�i�k, 1�j�3, are modal literals di�erent from p, q,

:p, and :q. Evidently, �

4

is trivially unsatis�able. Ksat does the following:
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Since p and q are unit clauses in �, it applies the rule dp unit twice to �.

The rule replaces the occurrences of p and q by >, it replaces the occurrences

of :p and :q by ?, and it simpli�es the formula. The resulting formula is ?.

At this point only the rule dp clash is applicable and Ksat detects that �

is unsatis�able. In contrast, KRIS* proceeds as follows. First it applies the

^-elim rule k+2 times, eliminating all occurrences of the ^ operator. Then

it applies the _-elim rule to all disjunctions, starting with m

11

_m

12

_m

13

and ending with m

k1

_m

k2

_m

k3

. This generates 3

k

subproblems. Each of

these subproblems contains the literals p and q and the disjunction :p_:q.

The simpli�cation rule _-simp

1

eliminates the disjunction :p _ :q and a

�nal application of the ^-clash rule exhibits the unsatis�ability of each

subproblem. Obviously, for k large enough, KRIS* will not be able to �nish

this computation within the time-limit. (In the Logics Workbench branch

pruning avoids this kind of computation.)

Note, it makes no di�erence whether KRIS* eliminates disjunctions by

the _-elim rule or the _-elim' rule. The reason for KRIS* not �nishing

within the time-limit is that it does not apply the simpli�cation rules _-simp

1

and _-simp

2

and the ^-clash rule exhaustively before any application of

the _-elim rule.

Similarly, we are able to explain the behaviour of KRIS as compared

with Ksat0 depicted in Figures 5 and 7. Ksat0 has a much better perfor-

mance on those sample formulae which are more likely unsatis�able. Suppose

according to our parameter setting we have �ve di�erent propositional vari-

ables occurring in the random modal 3CNF formulae. Ksat0, like Ksat,

uses the propositional or modal atom occurring most often as the splitting

`variable' for the application of the dp split rule. This has the e�ect that

Ksat will �rst use all the propositional variables in the formula as splitting

variables before using any of the modal atoms. After applying unit propaga-

tion we end up with at most 2

N

formulae which consist of modal literals of

degree greater than 0 only. Any further step of KDP assigns a truth value to

one of the modal literals. Before any application of the dp split rule, KM

will check the K(m)-satis�ability of the current truth assignment. As soon

as we have assigned > to a modal literal m which can be reduced to ? using

the simpli�cation rules in Table 1, this check will fail. KDP will not continue

to extend the current assignment, but will go on with a di�erent formula

generated by dp split. Based on the graph in Figure 6 we can assume that

there is a near 50% chance that a modal atom is K(m)-unsatis�able. So, the
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intermediate checks by KM will often fail thereby cutting down the number

of cases generated by the dp split rule.

In contrast, KRIS will �rst use the _-elimination rule to generate about

3

L

sets of labeled formulae where L is the number of clauses in the modal

3CNF formula under consideration. Then it proceeds with 3

i

-elimination

which will reveal the unsatis�ability of each of the sets of labeled formulae.

Since L may well exceed 100, there is no hope that KRIS �nishes within

the time-limit.

So, there is no intrinsic reason that a tableaux-based system cannot out-

perform Ksat (which is claim (2)). Although the di�erence between the rules

_-elim and _-elim' is fundamental from a theoretical point of view, it is

irrelevant on the randomly generated modal formulae under consideration.

The reason for KRIS* having worse performance than Ksat is that it has a

limited set of simpli�cation rules which are not applied exhaustively before

any applications of the branching rule _-elim.

Finally, we consider claim (3) conjecturing an easy-hard-easy pattern, in-

dependent of all the parameters of evaluation, in randomly generated modal

logic formulae. We have seen in Figure 5 that the median CPU time con-

sumption of Ksat decreases drastically at the ratio L=N = 17:5 for the

second sample. This is almost the point, where 50% of the sample formulae

are satis�able. This decline seems to resemble the behaviour of propositional

SAT decision procedures on randomly generated 3SAT problems. Figure 12

compares the performance of Ksat with the performance of the translation

approach on two parameter settings, where the easy-hard-easy pattern is

most visible for Ksat. As in the case of KRIS* the preprocessing routine

of Ksat has been added to the translation approach which is indicated in

the �gures by `TA*'. The translation approach does not show the peaking

behaviour of Ksat. The median CPU time grows monotonically with the

size of modal formulae. Thus, the phase transition visible in Figure 5 is an

arti�cial phenomenon of Ksat (and KRIS), and not an intrinsic property

of the generated modal formulae, which refutes conjecture (3).

Observe that the peaking behaviour occurs in the area where the num-

ber of trivially satis�able sample formulae approaches zero. The following

example tries to explain this.
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Figure 12: The performance of Ksat and TA*

Example 6:

Let �

5

be a simpli�ed modal 3CNF formula of the form

:2

1

s ^ 2

1

(p _ r) ^ (2

1

:r _2

1

q)

^ (:2

1

p _2

1

r)

^ (m

11

_m

12

_m

13

)

: : :

^ (m

n1

_m

n2

_m

n3

)

where the m

ij

, with 1�i�n, 1�j�3, are modal literals di�erent from the

modal literals in the �rst three conjunctions of �

5

. Let us assume that �

5

is

satis�able. Observe:

1. 2

1

:r is false in any model of �

5

, since 2

1

:r and :2

1

s^ (:2

1

p_2

1

r)

imply :2

1

p and 2

1

(p _ r) ^ 2

1

:r ^ :2

1

p is not K(m)-satis�able.

2. As a consequence any truth assignment � such that �(2

1

:r) = > is

not K(m)-satis�able.

3. A unit propagation step by KDP replacing 2

1

:r by > does not a�ect

the literal 2

1

r.
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Ksat starts by assigning > to :2

1

s and 2

1

(p _ r). Then it will apply a

sequence of applications of the dp split and dp unit rules to �

5

. Let us

assume that one of the �rst split variables is 2

1

:r, followed by k modal

literals m

1

, : : : , m

k

chosen from m

11

, : : : , m

n3

, and �nally :2

1

p. Before

any further applications of the dp split rule, Ksat calls the procedure KM

to test the K(m)-satis�ability of the current truth assignment �. Since �

assigns > to 2

1

:r, KM will fail. However, Ksat has no means to detect the

primary cause of the failure. Ksat continues by considering all other cases

generated by the application of dp split to :2

1

p, m

k

, m

k�1

, : : : , m

1

. It

will fail to generate a satisfying truth assignment in all these cases. Finally,

it considers the case that 2

1

:r is false. Eventually, Ksat �nds a satisfying

truth assignment to �

5

. However, Ksat has considered at least 2

k+1

cases

unnecessarily without �nding a satisfying truth assignment. This explains

the bad behaviour of Ksat on those sample formulae where satis�ability

tests in the non-propositional context are essential. KRIS* behaves even

worse since it delays the application of the 3

i

-elim until no other rule can

be applied.

In contrast, the translation approach proceeds as follows. It generates a

clause set for �

5

containing the �ve clauses

def

1

:S(a)

:def

1

_ P

1

(x) _ R

1

(x);

:def

1

_ :R

1

(x) _ :def

1

_Q

1

(y);

:P

1

(b) _ :def

1

_ R

1

(x)

where a and b denote Skolem constants associated with the two occurrences

of :2

1

and x and y are variables. Unit propagation of the �rst clause followed

by subsumption replaces the original clause set by the following one:

def

1

:S

1

(a)

P

1

(x) _R

1

(x);

:R

1

(x) _Q

1

(y);

:P

1

(b) _ R

1

(x)

Three resolvents can be derived from these clauses: P

1

(x) _Q

1

(y), :P

1

(b) _

Q

1

(y), and R

1

(b)_R

1

(x). A factoring step on the last resolvent yields the unit

clause R(b). At this point, the translation approach has detected that 2

1

:r
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Figure 13: The percentile graphs for Ksat on PS0

is not satis�able in any model of �

5

. An additional inference step computes

the unit clause Q

1

(y). No further inference is possible on this subset.

8 Broadening the evaluation

The graphs of the previous sections and of the papers of Giunchiglia and

Sebastiani are 50% percentile graphs as each point presents the median CPU

time consumption for 100 formulae with ratio L=N . More informative are

the collections of 50%, 60%, : : : , 100% percentile graphs we present in Fig-

ures 13, 14, 15 and 16. Formally, the Q%-percentile of a set of data is the

value V such that Q% of the data is smaller or equal to V and (100�Q)%

of the data is greater than V . The median of a set coincided with its 50%-

percentile.

The Figures 13, 14, 15 and 16 respectively show the percentile graphs

for Ksat, KRIS*, LWB* and the translation approach on the parameter

setting PS0 (N=5, M=1, K=3, D=2). LWB* is the Logics Workbench plus

the preprocessing routine that we also included in KRIS*. In the remainder

of the section, the Logics Workbench is assumed to include preprocessing.

The di�erence in shape for Ksat, KRIS*, and the Logics Workbench as

opposed to that for the translation approach is striking.
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Figure 14: The percentile graphs for KRIS* on PS0
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Figure 15: The percentile graphs for LWB* on PS0
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Figure 16: The percentile graphs for the translation approach on PS0

For the translation approach the di�erence between the 50%-percentile

and the 90%-percentile of the CPU time consumption is marginal. We see the

same monotonic increase of the CPU time consumption with increasing ratio

L=N for all percentiles. Only the 100%-percentile reaches the time-limit of

1000 CPU seconds at some points. This means, there are some hard random

3CNF formulae in the collection, but for each ratio L=N their number does

not exceed 10. This again supports our view that the parameter settings of

Giunchiglia and Sebastiani are not adequate to produce challenging problems.

The contrast to KRIS and the Logics Workbench is most extreme. While

the Logics Workbench shows a good uniform behaviour where the ratio L=N

is smaller than 10, we see a dramatic breakdown for ratios L=N greater

than 10. As the percentage of trivially satis�able samples reaches zero, the

Logics Workbench can hardly complete 60% of the sample formulae within

the time-limit. Even at ratios L=N above 30 where the percentage of trivially

unsatis�able formulae is greater than 90%, the Logics Workbench fails on 10%

of the formulae. Similarly, for KRIS . The absence of simpli�cation rules

in the Logics Workbench explains the less prominent `valley' for ratios L=N

above 30.

The percentage of sample formulae on which a decision procedure fails to

complete its computation within a given time-limit (of reasonable size) may
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be regarded as a kind of risk for the user of that decision procedure. We

call this the failure risk. The failure risk for each procedure is re
ected in

Figures 13 to 16 by the size of the plateau at the time-limit of 1000 CPU

seconds. The risk of failure for the parameter setting under examination is

highest for the Logics Workbench and KRIS*, and lowest for the translation

approach.

We call the percentage of sample formulae on which a decision procedure

terminates its computation within a given time-limit the success chance of a

decision procedure. The notions of success chance and failure risk are com-

plementary. The success chance will be regarded as an additional measure of

the quality of a decision procedure. The weighting of the two quality mea-

sures, the success chance and median CPU time consumption, depends on

the preferences of the user.

The percentile graphs are more informative and provide a better frame-

work for comparison than the median curves. We can say Ksat performs

better than KRIS* and has a higher chance of success on the entire range

of ratios L=N for the parameter setting PS0. The Logics Workbench is

unbeatable for ratios L=N below 7.

We believe the graphs indicate a qualitative di�erence in the performance

of the translation approach as opposed to the other three approaches.

9 Where the hard problems are

This section considers the question of how the parameter settings and random

formula generator can be modi�ed to provide better (more di�cult) test

samples.

The parameter setting PS0 provides the most challenging collection of

random 3CNF formulae among all the parameter settings used by Giunchiglia

and Sebastiani. The Figures 17 and 18 show the in
uence of the parameter

N , that is, the number of propositional variables, on the median CPU time

consumption of Ksat and the translation approach. We see an increasing

median CPU time consumption over the range of the ratio L=N with increas-

ing value N . Thus increasing the number of propositional variables involved

in the random generation of modal 3CNF formula provides more challenging

test samples.

The Figures 19 and 20 provide an indication of the in
uence of the pa-

rameter M , that is, the number of modalities, on the median CPU time

34



0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n 

C
P

U
 ti

m
e 

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 3, M = 1, K = 3, D = 2)
KSAT (N = 4, M = 1, K = 3, D = 2)
KSAT (N = 5, M = 1, K = 3, D = 2)
KSAT (N = 8, M = 1, K = 3, D = 2)

Figure 17: Varying the parameter N for Ksat
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Figure 18: Varying the parameter N for the translation approach
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Figure 19: Varying the parameter M for Ksat

consumption of Ksat and the translation approach. The in
uence on the

translation approach can be considered as being insigni�cant. Likewise we

see that for a ratio L=N greater than 20, the median CPU time consumption

of Ksat on the two parameter settings are identical. This can be explained

by our observation that almost all unsatis�able formulae are trivially un-

satis�able. The modal subformulae in trivially unsatis�able formulae are

irrelevant. Therefore, increasing the number of modalities is also irrelevant

for unsatis�able formulae. Below a ratio L=N of 20, the modal formulae

generated using only one modality seem to be slightly more challenging than

the modal formulae generated using twenty di�erent modalities. This is due

to the fact that the procedure KM is less likely to fail for twenty modalities

than for just one modality. The small divergence in the behaviour of Ksat

on PS5 (N=4, M=1, D=2, P=0:5) and PS9 (N=4, M=20, D=2, P=0:5)

is due to a smaller number of contradictions between modal literals for PS9.

We illustrate this observation by the following example.

Example 7:

The formula �

6

given by

(2

1

(p _ q) _ 2

1

(r _ q))

^ :2

1

(q _ p)
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Figure 20: Varying the parameter M for the translation approach

is satis�able. Ksat will �rst apply the dp unit rule replacing 2

1

(q _ r) by

?. The �rst conjunct of �

6

is left unchanged and Ksat has to apply the

dp split rule. Suppose it chooses 2

1

(p _ q) as split `variable'. Replacing

2

1

(p_ q) by > renders �

6

true propositionally, but checking the satis�ability

of :(q_p)^(p_q) reveals that this truth assignment is not K(m)-satis�able.

So we have to continue with 2

1

(r _ q), the second case generated by the

dp split rule. Replacing the last remaining modal atom by > again renders

the formula true propositionally. Finally, we have to check the satis�ability

of :(q _ p) ^ (r _ q) which succeeds.

In contrast consider the formula �

7

given by

(2

2

(p _ q) _ 2

1

(r _ q))

^ :2

1

(q _ p);

which is like �

6

except the �rst occurrence of a 2

1

is replaced by 2

2

. Ksat

proceeds in the same way as for �

6

. It replaces 2

1

(q _ p) by ? and chooses

2

2

(p_ q) as split `variable'. Replacing 2

2

(p_ q) by > renders � true propo-

sitionally. But now instead of checking the satis�ability of :(q _ p) ^ (p _ q)

we just have to check that :(q _ p) is satis�able, because p _ q occurs below

a di�erent modality. Since this check succeeds �

7

is satis�able. Evidently,

the computation for �

7

is easier than for �

6

.
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Figure 21: Varying the parameter D for Ksat

Now we vary the parameter D, the modal depth of the randomly gener-

ated modal 3CNF formulae. The situation for the parameter D is slightly

more complicated than for the parameters N and M . By the de�nition of

modal 3CNF formulae, increasing the modal depth increases the size of the

formulae. The size, however, is an important factor in
uencing the per-

formances of the procedures under consideration. Although the graphs in

Figures 22 and 21 seem to indicate that increasing the modal depth of the

sample formulae also increases the median CPU time consumption of the de-

cision procedures, the increase parallels the increase of the median size of the

modal formulae shown in Figure 23. A closer look at the graphs reveals that

increasing the modal depth of the randomly generated modal 3CNF formulae

actually makes the satis�ability problem easier. While the median formula

size increases by a factor of �ve between modal depth 2 and modal depth

5, the median CPU time consumption of Ksat only increases by a factor of

three.

We identify three guidelines for generating more challenging problems.

1. Parameters that have no signi�cant in
uence on the \di�culty" of the

randomly generated formulae should be set to the smallest possible

value. This applies to the parameters M and D. That is, we restrict

our attention to random modal 3CNF formulae of degree one using
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Figure 22: Varying the parameter D for the translation approach
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only one modality.

2. We have to avoid generating trivially unsatis�able modal formulae. A

straightforward solution is to require that all literals of a 3CNF clause

of modal degree 1 are expressions of the form 2

1

� or :2

1

� where � is

a random modal 3CNF clause of propositional variables. This amounts

to setting the parameter P to zero.

3. For all occurrences of2

1

� in a randommodal 3CNF formula of degree 1,

� has to be a non-tautologous clause containing exactly three di�ering

literals.

In line with the second guideline one may consider excluding also trivially

satis�able modal formulae. However, this amounts to doing preliminary sat-

is�ability checks of the generated modal formulae in order to identify and

reject the trivially satis�able ones. For the moment, we do not perform these

checks.

The parameters not �xed by the three guidelines are the number N of

propositional variables and the number K of literals in any clause. We choose

to �x K=3 in two parameter settings PS12 (N=4, M=1, K=3, D=1, P=0)

and PS13 (N=6, M=1, K=3, D=1, P=0). Figure 24 re
ects the quality

of the parameter setting PS12 by the percentage of satis�able, unsatis�-

able, trivially satis�able, and trivially unsatis�able modal formulae in the

sample sets we generated. Compared to Figure 11 (page 26) for parameter

setting PS0, the percentage of trivially satis�able formulae has decreased

signi�cantly. As expected, the percentage of trivially unsatis�able formulae

is zero. Furthermore, the percentage of satis�able formulae decreases faster.

Already for the ratio L=N of 25 there are almost no satis�able formulae. For

this reason, the experiments consider only the sample sets with ratio L=N

between 1 and 30.

The performances of Ksat, KRIS*, LWB* and the translation approach

on the settings PS12 and PS13 are given in Figures 25 and 30. Figures 26

to 34 present the corresponding percentile graphs. Again, we observe that

Ksat outperforms KRIS* and the Logics Workbench, while the translation

approach does best. More important, the formulae generated by the new

parameter settings and the modi�ed random generator are much harder than

any of the formula samples generated for the settings PS0 to PS9 by the

original generator.
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Figure 24: The quality of the test set for PS12
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Figure 25: The median performances for PS12
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Figure 26: The percentile graphs for Ksat on PS12
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Figure 27: The percentile graphs for the translation approach on PS12
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Figure 28: The percentile graphs for KRIS* on PS12
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Figure 29: The percentile graphs for the Logics Workbench on PS12
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Figure 30: The median performances for PS13
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Figure 31: The percentile graphs for Ksat on PS13
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Figure 32: The percentile graphs for the translation approach on PS13
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Figure 33: The percentile graphs for KRIS* on PS13
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Figure 34: The percentile graphs for the Logics Workbench on PS13

10 Conclusion

We have pointed out a number of problems with evaluating the performance

of di�erent algorithms for modal reasoning. A crucial factor is the quality of

the randomly generated formulae. Even for propositional theorem proving

de�ning adequate random formula generators for performance evaluation is

hard [5]. Our analysis shows the random generator used by Giunchiglia and

Sebastiani is not adequate as it distorts the evaluation.

The basic algorithm of Ksat is very similar to the algorithm of KRIS .

The essential di�erences between Ksat and KRIS are:

1. Ksat utilizes an elaborated set of simpli�cation rules for boolean and

modal formulae. These are the dp unit inference rule of the procedure

KDP and the rules in Table 1. These rules are applied whenever possible

throughout the computation. By contrast, KRIS has only a very

limited set of simpli�cation rules, namely _-simp

0

and _-simp

1

, which

are applied occasionally.

2. Ksat utilizes a heuristic for selecting the particular disjunction for the

application of disjunction elimination (namely, dp split). By con-

trast, KRIS processes disjunctions in a �xed order determined by the

ordering of the disjunctions in the input formula.
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3. Ksat performs intermediate checks ofK(m)-satis�ability of the current

truth assignment before every application of the dp split rule. This

corresponds to an application of our proposed 3

i

-test inference rule

for tableaux-based systems. KRIS has no equivalent of the 3

i

-test

rule.

Based on our performance evaluation and the insights we have gained by

inspecting the code of the various systems under examination, our assessment

of the relevance of these di�erences between Ksat and KRIS concerning

their performance is the following:

1. The presence of simpli�cation rules and their exhaustive application is

vital for any theorem prover. It is surprising that there are theorem

provers like KRIS and the Logics Workbench making very little use

of simpli�cation.

2. There is no evidence that the particular heuristics used by Ksat pro-

vides an overall improvement of performance. In particular, we have

shown that the median CPU time consumption of KRIS* for ratios

L=N between 4 and 11 on the parameter setting N=8, M=1, K=3,

D=2, P=0:5 is better than that of Ksat. Furthermore, there are no

indications that the superior performance of Ksat on samples gener-

ated for smaller values of N is due to the particular heuristic used by

Ksat.

Further investigations will have to answer whether elaborated heuristics

for the selection of split `variables' in the application of the dp split

rule or disjunctions in the application of the _-elimination rule lead to

improved performance for any samples.

3. The introduction of intermediate calls to the KM procedure to check

the K(m)-satis�ability of the current truth assignment is valuable. It

makes a di�erence to the performance of Ksat.

However, Example 6 shows that in its present form Ksat can not make

optimal use of the information provided by a failure of an intermediate

call to KM.

Further improvements of Ksat are possible and further investigations are

needed to evaluate the usefulness of the various techniques. All the tech-

niques can be transferred to tableaux-based systems like KRIS and sequent

calculus-based systems like the Logics Workbench.
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Our experiments show that the translation approach in combination with

the theorem prover SPASS has better computational behaviour than Ksat,

KRIS , and the Logics Workbench on all samples of randomly generated

modal 3CNF formulae we have considered, except for the samples of very

small formulae. The reason, we believe, is a fundamental di�erence in method.

The translation approach adopts a global method, whereas Ksat and ta-

bleaux or sequent-based systems adopt a local method.

The local methods proceed by constructing a (derivation) tree in a node-

by-node manner. The tree grows by the application of the branching rules

(_-elim, (l_), (r^), and dp split) and the rules for new nodes (3

i

-elim,

(l3), (r2), and KM). The tree is implicit only in the control structure of the

local systems. The systems perform a depth-�rst search through the tree.

At each node the systems are doing in essence ordinary propositional tests

for satis�ability. Local approaches are based on the internal view of Kripke

semantics that reduces truth to truth in worlds (on the element level) and

the derivation tree closely resembles the underlying frame.

For example, the internal reading of 3

1

3

1

p ^ 2

1

2

1

:p is that there is

some world at level two that is labeled p ^ :p. The local methods cannot

directly see this information, but derive it in a node-by-node construction.

They start with the root of the tree, followed by the construction of nodes

at depth one, until they have constructed the node labeled with p ^ :p at

depth two.

The global method of the translation approach transfers the underlying

tree structure from the meta level to the object level in the �rst-order trans-

lation of the given modal formula. The theorem prover reasons about the

structure of the tree on the object level, and is not restricted to a depth-�rst

search.

For example, the underlying tree structure of the formula3

1

3

1

p^2

1

2

1

:p

is made explicit in the global presentation of four clauses:

def

1

(5)

def

1

(a)(6)

P

11

(a; b)(7)

:def

1

_ :def

1

(x) _ :P

11

(x; y)(8)

The theorem prover can directly resolve the clauses (7) and (8) to derive

:def

1

_ :def

1

(a):
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Unit propagation with the �rst two clauses reveals the unsatis�ability of the

formula. Example 6 also illustrates the importance of this form of global

reasoning.

It is open which resolution inference rules and search strategies perform

best for basic modal logic and its extensions.
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