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Abstract

We study integrated prefetching and caching problems following the work of Cao et. al. [3] and

Kimbrel and Karlin [13]. Cao et. al. and Kimbrel and Karlin gave approximation algorithms for

minimizing the total elapsed time in single and parallel disk settings. The total elapsed time is the

sum of the processor stall times and the length of the request sequence to be served.

We show that an optimum prefetching/caching schedule for a single disk problem can be com-

puted in polynomial time, thereby settling an open question by Kimbrel and Karlin. For the parallel

disk problem we give an approximation algorithm for minimizing stall time. Stall time is a more

realistic and harder to approximate measure for this problem. All of our algorithms are based on

a new approach which involves formulating the prefetching/caching problems as integer programs.

1 Introduction

Prefetching and caching are powerful tools for increasing the performance of �le and data base systems.

In prefetching, memory blocks are loaded from slow memory, e.g. a disk, into cache before the actual

references to the blocks so as to reduce the waiting time incurred if the block were to be fetched from

disk when it is referenced. Caching on the other hand tries to maintain the most frequently accessed

blocks in cache so that they do not have to be fetched from disk. Both prefetching and caching have

separately been the subjects of extensive theoretical and experimental studies [1, 2, 5, 6, 7, 8, 9,

14, 15, 19, 20]. However, only recently have researchers started looking at these techniques in an

integrated manner and to explore interrelationships between them [3, 4, 11, 13, 16, 17]. In a seminal

work Cao et. al. [3] introduced a model that allows an algorithmic study of the problem.

First consider the case when all blocks reside on one disk. We are given a request sequence

� = r

1

; : : : ; r

n

and a cache of size k. Each of the n requests r

i

speci�es a memory block stored on

disk. We emphasize that we study the o�ine problem in which the entire request sequence is given

in advance. Serving a request takes one time-unit. However, a request can be served only if the block

requested is in cache. Fetching a block not in cache takes F time units. Thus if we encounter a request

to a block that is not in cache we can start fetching the block from disk; in this case the processor

has to stall for F time-units. A better option is to initiate a fetch, a prefetch, to the block some i

time-units before the actual reference; the processor now has to stall for only F � i time-units. A
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prefetch operation may be initiated at any time provided it is the only prefetch happening at that

time. However, | and this is where caching enters the picture | when we initiate a prefetch we also

have to make room in cache for the in-coming block by evicting some block from cache. Thus, not

only do we need to decide when to initiate a prefetch but also what blocks to fetch and evict. Starting

a prefetch too early might force us to evict blocks which are requested fairly soon so that we have to

initiate more prefetches to avoid stalling for these blocks. On the other hand, if a prefetch is started

late, the processor might have to stall for a long time. Our goal is to minimize the total stall time,

which is the total time the processor is idle. This is equivalent to minimizing the total time taken to

serve the request sequence since this is just the sum of the stall times and the length of the sequence.

As an example, consider the requests sequence a; b; c; g; a; b; g; h and a cache size of 4, with blocks

a; b; c and d being initially in cache. Assume F = 5. The minimum stall time required on this sequence

is 3. On the �rst request to a, we start prefetching g and evict block d. Hence we have to stall for

two time-units waiting for block g. On the request to g, we start prefetching h and evict c and hence

have to stall for one time-unit before h is in cache.

-
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Figure 1: An example for one disk.

In the case of a parallel disk system, �rst explored by Kimbrel and Karlin [13], the memory blocks

are distributed overD disks with each block stored on exactly one disk. At any time at most one block

may be fetched from a given disk. However, blocks that reside on di�erent disks may be prefetched

in parallel. Any block in cache may be evicted to make room for a block being fetched. Thus, this

corresponds to the setting where blocks are read-only and do not have to be written back to disk.

Again, the goal is to minimize the total stall time. Since blocks from di�erent disks can be fetched in

parallel, an e�cient strategy for the parallel disk case involves balancing the load, ie. the number of

fetches, amongst the disks.
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Figure 2: An example for three disks.

We give a small illustrating example for three disks. Suppose that disk 1 stores blocks a

1

; a

2

; a

3

; a

4

,

disk 2 stores blocks b

1

; b

2

and disk 3 stores blocks c

1

; c

2

. We assume F = 5 and a cache of size 4.

Blocks a

1

; a

2

; b

1

; c

1

are initially in cache. In Figure 2 we give a schedule for serving the request sequence
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a

1
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. The total stall time is 4 time units. The schedule shows that stall

time may be used simultaneously on several disks. This is the case at times 4 and 5 as well as at time

11. A disk can only prefetch blocks that are stored on it. However, evictions can be from any disk.

Previous work: Cao et. al. analyzed two algorithms, conservative and aggressive for the single

disk problem. The conservative strategy incurs the same faults as Belady's optimal paging algorithm [1]

while starting prefetch operations at the latest possible point in time. In contrast, the aggressive

strategy starts prefetch operations at the earliest reasonable times. The elapsed time of the schedule

obtained by conservative (respectively aggressive) is at most 2 (respectively min f2; 1 + F=kg) times

the optimum. In addition to combinatorial analyses, Cao et. al. presented extensive experimental

studies of the two algorithms.

Kimbrel and Karlin studied conservative and aggressive for the parallel disk problem. They showed

that the approximation ratios, when the measure is the elapsed time, are D+1 and D(1+ (F +1)=k)

respectively. They also presented an algorithm called reverse aggressive, which is the aggressive

strategy on the reverse sequence. This algorithm achieves an approximation ratio of (1+DF=k). This

gives good approximation ratios if D and F=k are small, which is true in many practical applications.

Karlin and Kimbrel left open the question whether an optimum prefetching/caching schedule can be

computed in polynomial time even for the single disk case. A partial answer to this question was

given by Kimbrel [10] who showed a dynamic programming strategy that decides whether a request

sequence can be served with zero stall time in the single disk setting.

Our contribution: In this paper we present a new approach to the problem of minimizing stall

time in single and parallel disk systems. We formulate the problems as integer programs and solve

linear relaxations of these programs.

First, in Sections 2 and 3, we give a polynomial time algorithm for minimizing the stall time for

the single disk problem, thereby settling a question left open by Kimbrel and Karlin. In particular,

we show that any optimum fractional solution of our linear program can be written as a convex

combination of (polynomially many) integral solutions. This is equivalent to saying that there is an

optimum solution to the linear program that is integral.

All results in the mathematical programming literature that prove that the optimum solution to

a certain linear program is integral do so by arguing that all vertices of the corresponding polytope

are integral. This is done either by arguing that the constraint matrix is totally unimodular, as is

in the case of bipartite matching and maximum s-t 
ow, or by combinatorial arguments as for the

matching and matroid polytopes [18]. However, the polytope corresponding to the LP we consider

has non-integral vertices. Our proof of integrality of the optimum solution exploits a certain property

of the objective function we work with.

In Section 4 we study the parallel disk problem; the main novelty here being that we minimize the

total stall time instead of the total elapsed time. While minimizing these two measures is equivalent,

approximating total stall time is harder than approximating elapsed time, since the length of the

sequence is not part of our objective function. To minimize total stall time is indeed the real objective

of an e�cient prefetch/caching strategy. We generalize the linear program and the proof techniques

presented in Sections 2 and 3 for a single disk to the setting of parallel disks. An optimum solution

to the linear program is then transformed into an integral solution that achieves an approximation

ratio of D on the total stall time. The solution constructed uses at most D � 1 additional memory

locations in cache. This is actually very small { D is typically 4 or 5 { when compared with the size

of the cache.

Note that for D = 1, we obtain our optimum algorithm for the single disk case. Another pleasing

feature of our algorithm is that, if a sequence can be served with zero stall time, we obtain a schedule
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that has no stall either and uses at mostD�1 extra memory locations in cache. Finally, we demonstrate

that if no extra memory locations are allowed, then the integrality gap of our linear program can be

arbitrarily large.

In Section 5 we conclude with some remarks and open problems.

2 The LP formulation for a single disk

We assume that the request sequence is of length n. It is no loss of generality to assume that the cache

is initially empty since an initial cache con�guration can be modeled by pre�xing the request sequence

with requests to the blocks that are in cache. We identify periods in which a prefetch is performed

by considering intervals of the request sequence of length at most F ; the length of an interval is the

number of requests in it. An interval I of length less than F is viewed as having a stall time of F �jI j

units at the end. With every such interval I we associate a variable x(I) which is 1 if a prefetch

is performed in the interval and 0 otherwise. Thus minimizing the total stall time is equivalent to

minimizing

P

I

x(I)(F � jI j).

To ensure that two prefetches are not performed simultaneously we add for each point r in the

request sequence the constraint that

P

I:r2I

x(I) � 1.

With each interval I and distinct block a we associate two non-negative variables f

I;a

; e

I;a

which

denote the extent to which block a is fetched/evicted in interval I . Clearly the total amount of fetch

should be exactly equal to the total amount of eviction and this value should not exceed the value of

the interval, x(I). Formally,

8I

X

a

f

I;a

=

X

a

e

I;a

� x(I)

In a feasible solution prefetches are scheduled so that a block is in cache when it is referenced.

This constraint is enforced by looking at all intervals between two consecutive references to a block

and requiring that on these intervals the total fetch of this block equals its total eviction which is no

more than 1. Thus if the block were in cache at a certain reference it would also be in cache at the

next one. Thus if i; j are two consecutive references to a block a then

X

I�[i;j]

f

I;a

=

X

I�[i;j]

e

I;a

� 1

where I � [i; j] denotes that interval I is properly contained

1

in the interval [i; j]. To ensure that

every block is in cache at its �rst reference we require that the total fetch of a block on intervals before

its �rst reference should be 1 and the total evict of the block on these intervals should be 0. Thus if i

is the �rst reference to block a,

P

I�[0;i]

f

I;a

= 1 and

P

I�[0;i]

e

I;a

= 0.

Finally, we require that on each request, the requested block is neither prefetched nor evicted, i.e.,

if block a is referenced at time i

X

I:i2I

f

I;a

=

X

I:i2I

e

I;a

= 0:

A compact description of the linear program is given in Appendix A.

Note that the only integrality constraint we imposed was on the variables x(I). In any integral

solution the intervals with x(I) = 1 are non-overlapping. Given that these are the intervals in which

the prefetch is to be performed, it is easy to determine the exact block to fetch/evict in each interval

by using the following two rules, proposed by Cao et. al., that govern optimal prefetching and eviction.

1

Interval I is properly contained in I

0

if I is a subset of I

0

and both endpoints of I are di�erent from those of I

0

.
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1. Optimal prefetching. Fetch the block that is not in cache and is next in the stream of block

references.

2. Optimal replacement. Evict the block from cache that is referenced latest in the future.

Our linear programming relaxation for the problem is obtained by relaxing the integrality con-

straint on x(I) to the linear constraint 0 � x(I) � 1. The optimum fractional solution to the linear

program is an assignment of values, x(I), to the intervals, I . While intervals with positive values can

overlap, the sum of values of any set of pairwise overlapping intervals cannot exceed 1. Given that the

prefetches need to be performed in this set of fractional intervals we can use a fractional version of the

four rules to determine which blocks need to be evicted/fetched and to what extent in each interval.

3 Minimizing stall time for a single disk

In this section we consider an arbitrary optimum solution and show how to write it as a convex

combination of integral solutions. It then follows that one of these integral solutions has a stall time

which is at most the stall time of the fractional solution and hence at most the minimum stall time.

3.1 Modifying intervals

Let I be the set of intervals with x(I) > 0, ie. I = fI jx(I) > 0g. An interval I

1

= [i

1

; j

1

] is properly

contained in interval I

2

= [i

2

; j

2

] i� i

1

> i

2

and j

1

< j

2

; a pair of intervals such that one is properly

contained in the other is called a nested-pair. Let I

1

2 I be properly contained in I

2

2 I and let

x = minfx

I

1

; x

I

2

g. We reduce each of x

I

1

; x

I

2

by an amount x; this causes one of x

I

1

; x

I

2

to go down

to zero and we remove the corresponding interval. We also add two new intervals J

1

= [i

2

; j

1

] and

J

2

= [i

1

; j

2

] with x

J

1

= x

J

2

= x. The fetch in J

1

(respectively J

2

) is the same as the fetch in I

1

(respectively I

2

) while the evict in J

1

(respectively J

2

) is the same as the evict in I

2

(respectively I

1

).

Since J

1

ends with I

1

the blocks that were fetched in I

1

still arrive in cache at the same time. Further,

since J

1

begins with I

2

the blocks evicted in I

2

are evicted from cache at the same time as before. The

same is true for the blocks fetched/evicted in interval J

2

and hence the new solution also satis�es all

the constraints of the LP(Fig 3). Furthermore, since the total length of intervals J

1

; J

2

is the same

as that of I

1

; I

2

and the reduction in x

I

1

; x

I

2

is the same as the increase in x

J

1

; x

J

2

, the value of the

objective function remains unchanged.

c=d

a=b

J

1

J

2

I

2

I

2

I

1

x

1

x

2

x

1

x

1

x

2

� x

1

c=b

a=d

c=d

Figure 3: Eliminating nested intervals. Characters on the intervals specify \block fetched/block

evicted".

5



Thus any nested-pair of intervals can be replaced by a set of at most 3 intervals none of which

properly contains the other. By performing this transformation for every nested-pair we obtain an

equivalent fractional solution without nested-pairs. Henceforth, I denotes this new set of intervals.

We now order the intervals in I by increasing starting points; if two intervals have the same start

point then they are ordered by increasing end-points. We could also have ordered the intervals by

increasing end-points, breaking ties by looking at starting points. It turns out that since I has no

nested-pairs these two orderings are identical. Let < denote this total order on I .

3.2 The optimum fractional solution

As observed in [3] the optimum (integral) solution obeys the following two rules for fetching/evicting

blocks: at any point the block fetched is the block not in cache whose next reference is earliest and

the block evicted is that block in cache whose next reference is furthest in the future. The optimum

fractional solution also follows these rules albeit in a fractional sense.

Consider intervals in the order < and let C denote the cache con�guration after we have performed

the fetches and evicts corresponding to the �rst i intervals in the sequence. Note that each block is

in C to an extent between 0 and 1. Further let I be the (i+ 1)

th

interval. There exists an optimum

fractional solution for which the next two claims are satis�ed.

Claim 3.1 In I we fetch the block which is not completely in C and whose next reference is earliest.

Proof: For contradiction assume that this block, say a, is not fetched in I and let b be one of the

blocks fetched in I . We can now fetch a instead of b in interval I and fetch b in those intervals where

a is fetched. Since the next reference of b is later than the next reference of a, b would be fetched

before it is referenced. 2

Claim 3.2 In I we evict the block which is partially or completely in C whose next reference is

furthest.

Proof: For contradiction assume that this block, say a, is not evicted in I . Let b be one of the blocks

evicted in I . We can evict a instead of b in I and fetch back a in those intervals where b is fetched.

Since the next reference of a is only after the next reference of b, a would be fetched before it is

referenced. 2

The amount of fetch of a block prescribed by Claim 3.1 might be less than the value of I if the

block is brought completely into cache. In such a case we apply the same rule to fetch another block

in I . The same is true for the case of evictions in Claim 3.2. The above two claims then tell us what

blocks to fetch/evict in I . This then gives us a new cache con�guration which we use to decide what

blocks to fetch/evict in the interval that follows I in the order <.

De�ne the distance of interval I , dist(I), as the sum of the values of all intervals which precede

I in <, ie., dist(I) =

P

^

I<I

x(

^

I). We can also view the process of fetching/evicting as a process in

time by associating the time-interval [dist(I); dist(I)+x(I)) with interval I ; thus there is a unique

interval in I associated with each time-instant. We will also associate a unique fetch/evict with each

time-instant. If I 2 I is the interval associated with time t and a is the only block fetched and b the

only block evicted in I then we fetch a and evict b at time t. If there are many blocks fetched/evicted

in I then we order them as follows. For any two blocks a; b fetched in I , a precedes b i� the next

reference to a is before the next reference to b. This de�nes a total order on the blocks fetched in I ;

let a

1

; a

2

; : : :a

i

; : : :a

p

be the blocks in this order. Block a

i

is now fetched for f

I;a

i

time-units starting

at time dist(I)+

P

i�1

j=1

f

I;a

j

. Similarly, for any two blocks a; b evicted in I , a precedes b i� the next
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reference to a is after the next reference to b. This de�nes another total order on the blocks evicted in

I ; let b

1

; b

2

; : : : b

i

; : : : b

q

be the blocks in this order. Block b

i

is now evicted for e

I;a

i

time-units starting

at time dist(I)+

P

i�1

j=1

e

I;a

j

.

From the above two claims and our ordering of the fetches/evicts within an interval it follows that

a is fetched continuously till it is fully in cache. With regard to evictions the situation is di�erent.

The eviction of a could be interrupted | before it is completely out of cache | by the eviction of

another block b which is also in cache and which is better than a in the sense that its next reference

is further than the next reference of a.

It will be useful to view the procedure for assigning fetches/evicts to intervals as follows. We process

intervals in the order < and assign fetches/evicts to them by maintaining the cache con�guration and

following the two rules discussed above. Besides we also maintain a queue of those blocks which are

only partially in cache; the value of a block in this queue is the extent to which it is not in cache.

Before we start evicting a block which is completely in cache we append it to the end of the queue

with value 0. As we evict a block we simultaneously increase its value in the queue. If this value

reaches 1, which means that the block is completely evicted, we remove it from the queue. Similarly,

before we start fetching a block which is completely out of cache we add it to the front of the queue

with value 1. As we fetch a block we decrease its value in the queue. When this value goes down to

0, which implies that the block is now fully in cache, we remove this block from the queue.

Lemma 3.1 If block b is behind block a in the queue then the next reference to b is further than the

next reference to a.

Proof: The proof is by induction on the length of the queue. Suppose a is the block at the end of the

queue. By the induction hypothesis the next reference to a is furthest amongst the next reference to

the other blocks which are partially in cache. So if the block being evicted is only partially in cache

then it is block a. As discussed above, the eviction of a could only be interrupted by the eviction of

another block b whose next reference is further than the next reference of a. However, when we began

evicting a its next reference was further than the next reference of b. This change in status could have

happened only after a reference to block b. Hence when we started evicting b it was fully in cache and

so b was appended to the end of the queue. Now b is behind a in the queue and its next reference is

further than the next reference of a proving the induction claim. 2

Claim 3.3 At any point the block evicted is the block at the end of the queue.

Proof: From the above lemma it follows that amongst blocks which are partially in cache (and hence

in the queue) the block at the end of the queue is the one whose next reference is furthest. Thus the

next block evicted is either this block at the end of the queue or a block which is fully in cache. In

the latter case we will �rst append the block at the end of the queue and hence the block evicted is

always the one at the end of the queue. 2

Claim 3.4 At any point the block fetched is the block at the front of the queue.

Proof: From the above lemma it follows that if the block we fetch is partially in cache then this block

is the one at the front of the queue since this is the block whose reference is earliest from amongst the

blocks in the queue. Else we fetch a block that is completely out of cache that is �rst added to the

front of the queue. 2

In the remainder of this subsection we consider the fetches/evictions of a block a between two

consecutive references to a.
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Lemma 3.2 Every interruption in the eviction of a is for some integral time-units.

Proof: Once the eviction of a is interrupted it is resumed only when all blocks that were appended

to the queue after a are completely evicted. Hence the total length of the interruption in the eviction

of a is integral. 2

We say that a is partially fetched/evicted if the total extent to which a is fetched/evicted between

these two consecutive references is strictly less than one.

Lemma 3.3 If a is partially fetched/evicted, then the fetch of a begins an integral time-units after the

start of its evict.

Proof: Since the value of a block in the queue is the extent to which the block is not in cache it

follows that at any point the sum of the values of the blocks in the queue is integral. In particular,

this is also true for the time at which we start evicting a; let the sum at this time be p. Since a is

not evicted fully, all blocks that were in the queue when a was appended are not evicted further. We

start fetching a only after we have fetched back all these blocks. Since the total value of these blocks

is p it takes p time-units to fetch all these blocks back. The other blocks fetched are completely out

of cache and so they are fetched for a unit-time each. Thus the total time between the start of the

evict and the start of the subsequent fetch to a is integral. 2

Lemma 3.4 If a is evicted at time t, then there is a time t

0

= t+ i, for some integer i, at which a is

fetched back.

Proof: We �rst assume that a is partially fetched/evicted. By Lemma 3.3 the di�erence in the times

at which we start evicting a and fetching a back is integral. Once we start fetching a we fetch it

continuously till it is completely in cache. The eviction of a could however be interrupted. But by

Lemma 3.2 every interruption is for an integral time-unit. These facts together imply the lemma.

If a is fetched/evicted completely then it is no more the case that the start of the eviction and the

fetch of a are integral time-units apart. However, it is still true that once we begin fetching a we fetch

it continuously for one time-unit after which it is completely in cache and that every interruption in

the eviction of a is for an integral time-unit. These two facts again imply the lemma. 2

3.3 The convex decomposition

Claim 3.5 Let t

1

; t

2

be two time-instants such that t

2

= t

1

+ i for some positive integer i, and let

I

1

; I

2

be the intervals associated with these time-instants. Then I

1

and I

2

are disjoint.

Proof: We have t

2

� t

1

+ 1. Therefore the sum of the values of all intervals between (and including)

I

1

and I

2

in < is at least 1. Hence I

1

; I

2

cannot overlap. 2

We decompose the fractional solution into a convex combination of integral solution as follows.

Let t be in the range [0; 1) and let t

i

= i + t for every integer i, 0 � i � n. Let I

t

be the intervals

corresponding to the time-instants t

i

; by Claim 3.5 these intervals are disjoint. In the interval corre-

sponding to t

i

we schedule the fetch/evict associated with t

i

. By Lemma 3.4 the set of intervals I

t

together with this schedule of fetches and evicts forms an integral solution to the problem.

Consider the di�erent solutions obtained as t varies from 0 to 1. Note that each solution is obtained

not for just one value of t but for a range of values, say for all t in the range [a; b]. We assign this

solution a weight b�a in the decomposition. Clearly, the total weight of the solutions that an interval
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I occurs in equals x(I). Further, since t ranges from 0 to 1, the sum of the weights assigned to all

solutions is 1. Hence, this collection of solutions with the associated weights is a convex decomposition

of the optimum fractional solution.

4 The multiple disk case

In this setting the blocks are distributed over D di�erent disks. At any point we can fetch at most

one block from a disk but fetches from di�erent disks may proceed simultaneously.

4.1 The linear program

The linear program for this case di�ers from the one for the single-disk setting in that we now have

one copy of interval I for each disk. Let I

d

, d = 1; : : : ; D, denote the copy of interval I for disk d;

henceforth we view intervals I

1

; I

2

; : : : ; I

D

as distinct intervals. Let x(I

d

) be the value of interval I

d

and let e

I

d

;a

, f

I

d

;a

be the extent to which block a is evicted, fetched in interval I

d

. Since only blocks

that reside on disk d can be fetched in interval I

d

we have that f

I

d

;a

= 0 if a is not on disk d. As

before

8I

d

X

a

f

I

d

;a

=

X

a

e

I

d

;a

� x(I

d

):

To ensure that prefetches to a disk are not performed simultaneously we add for each point i in the

request sequence and for each disk d, 1 � d � D, the constraint

P

I

d

:i2I

d

x(I

d

) � 1. As in the single

disk setting we require that the total fetch of a block a on intervals between two consecutive references

of a equals the total eviction of a on these intervals and is at most 1. Moreover, no block may be

fetched or evicted while it is referenced.

Let I be the set of intervals in an integral solution to this linear program, ie those intervals with

x(I) = 1. Then the stall time for this solution is at least

�

P

I2I

F � jI j

�

=D. Hence the objective

function for this linear program is to minimize (

P

I

x(I)(F � jI j)) =D. We will construct an integral

solution with stall time at most

P

I

x(I)(F�jI j), which is at mostD times the optimum. In Appendix B

we give an alternative linear program that models the objective function more accurately. However,

we show that the approximation ratio achieved using the corresponding linear program relaxation

cannot be better than D.

4.2 The optimum fractional solution

Let I

d

=

n

I

d

jx(I

d

) > 0

o

be the set of intervals from disk d which have a positive value and let

I = [

d

I

d

. As in the single disk setting we can modify intervals so that I

d

contains no nested-pairs.

We order intervals in I by increasing starting points with ties broken �rst by increasing ending points

and then by the number of the disk to which the interval belongs; let < denote this order. Note that

for intervals from one disk the order < is exactly the same as for the single-disk setting.

Once again consider intervals in the order < and let C denote the cache con�guration after we

have performed fetches and evicts corresponding to the �rst i intervals in this order. Let I

d

be the

(i+ 1)

th

interval.

Claim 4.1 In I

d

we fetch the block from disk d which is not completely in C and whose next reference

is earliest.

9



Claim 4.2 If we evict a block from disk j in interval I

d

then this is that block from disk j which is

partially or completely in C and whose next reference is furthest.

4.3 Constructing an integral solution

The multi-disk setting therefore di�ers from that of the single-disk in that for an interval I

d

we only

know what block to evict from each disk; we do not know the relative amounts of the evictions of

blocks from di�erent disks.

As in the single-disk setting de�ne the distance of an interval I

d

, dist(I

d

), as the sum of the

values of intervals in I

d

which precede I

d

in the order <, ie., dist(I

d

) =

P

^

I

d

<I

d

x(

^

I

d

). Once again

we view this as a process in time by associating the time-interval [dist(I

d

); dist(I

d

) + x(I

d

)] with

interval I

d

. Thus there is a unique interval in I

d

associated with each time-instant. As before we order

the blocks fetched in I

d

by increasing order of their next references. Let a

1

; a

2

; : : :a

p

be the blocks in

this order. Block a

i

is now fetched for f

I

d

;a

i

time-units starting at time dist(I

d

)+

P

i�1

j=1

f

I

d

;a

j

. Thus

at each time-instant we fetch a unique block from each disk.

At each time-instant we will also evict a unique block from each disk. Let P

d

be the set of blocks

that reside on disk d. Let a

1

; : : : ; a

p

2 P

d

be the blocks from disk d that are evicted in interval I

ordered in decreasing order of their next reference. Block a

i

is evicted for e

I;a

i

time-units starting at

time

P

^

I<I;â2P

d

e

^

I;â

+

P

i�1

j=1

e

I;a

j

. Note that if there was only one disk then the time at which we start

evicting a

i

is exactly the same as dist(I)+

P

i�1

j=1

e

I;a

j

which was how we had de�ned the starting

time of this eviction earlier. However, if a

i

is evicted at time t then, unlike the single-disk setting,

it is not necessary that in the fractional solution a

i

is evicted in one of the intervals associated with

time-instant t.

The machinery we developed for the single-disk case can now be applied to each disk in the multi-

disk setting. A queue is associated with each disk d. We consider the fetches/evictions of blocks that

reside on this disk as a process in time and update the queue as in the single-disk case. Using Claims 4.1

and 4.2 we can extend Lemma 3.1 from which Claims 3.3 and 3.4 follow. It is also straightforward to

extend Lemmas 3.2 and 3.3 which can then be used, exactly as before, to prove Lemma 3.4 for the

multi-disk setting.

Extending Claim 3.5 to the multi-disk setting yields

Claim 4.3 Let t

1

; t

2

be two time-instants such that t

2

= t

i

+ i for some positive integer i, and let

I

d

1

; I

d

2

be the intervals on disk d associated with these time-instants. Then I

d

1

and I

d

2

are disjoint.

We now show how to obtain an integral solution. Let t be in the range [0; 1) and let t

i

= i + t

for every integer i, 0 � i � n. To each time-instant t

i

and disk d there corresponds an interval; our

solution contains all these intervals and let I

t

denote this set of intervals. In the interval corresponding

to t

i

and disk d we fetch the block from disk d that is fetched at time t

i

. The block that resides on

disk d and is evicted at time t

i

will also be evicted in this solution, albeit in a di�erent interval.

Evictions are assigned to intervals of I

t

in the following manner. Consider the intervals in I in the

order < and let I be the current interval. Suppose there is a block that is evicted in I and the same

eviction is scheduled at time t

i

for some i. We then add this block to a set S (S is the set of evictions

that need to be assigned to intervals of I

t

and is initially empty). If I 2 I

t

and S is not empty then

remove a block from S and assign it to interval I ; no block is evicted in interval I in this solution if

the set S is empty.

By Claim 3.5 any two intervals in I

t

that are from the same disk are disjoint. If in our solution

we fetch a block in an interval I then the same block is fetched in I in the fractional solution. If the

10



fractional solution evicts a block in an interval I then in our solution the block is evicted in an interval

whose starting point is only after the starting point of I . Next consider two consecutive references

to a block a. By Lemma 3.4 it follows that if a is evicted in some interval of this solution then it is

also fetched back. Thus this assignment of fetches/evictions to intervals of I

t

is a feasible solution to

the problem provided every interval of I

t

has an eviction assigned to it. We next prove that at most

D � 1 intervals do not have an eviction assigned.

Lemma 4.1 For any t there are at most D� 1 intervals in I

t

that do not have an eviction assigned.

Proof: Our procedure for assigning evictions to intervals of I

t

considers intervals of I in the order

<. At any step let F be the number of intervals of I

t

encountered and E the number of evictions

encountered that are to be assigned to intervals in I

t

. We �rst prove that F � E � D � 1.

Let f

d

; e

d

be the total amount of fetch, evict of blocks from disk d till this point. Clearly,

P

D

d=1

f

d

=

P

D

d=1

e

d

. Further, F =

P

D

d=1

bf

d

� t+ 1c and E =

P

D

d=1

be

d

� t + 1c. The claim that F � E +D � 1

follows from

F =

D

X

d=1

bf

d

� t+ 1c � b

D

X

d=1

(f

d

� t + 1)c = b

d

X

d=1

(e

d

� t+ 1)c <

D

X

d=1

be

d

� t + 1c+D = E +D:

Assume that the interval I is in I

t

and there are D � 1 intervals preceding I in order < that belong

to I

t

and do not have an eviction assigned. Since at any point F �E � D� 1, the set S is not empty

and hence I will be assigned an eviction. 2

Since at most D � 1 intervals do not have an eviction assigned, we can use D � 1 extra cache

locations to fetch the blocks fetched in these intervals. Note that a block fetched into one of these

extra locations can be evicted later and replaced by a di�erent block. Thus for every t 2 [0; 1) we

have a feasible solution that uses at most D � 1 extra blocks in cache.

Consider the di�erent solutions obtained as t varies from 0 to 1. Note that each solution is obtained

not for just one value of t but for a range of values. Let 0 � x

1

< x

2

< : : : < x

s

< 1 be a set of values

such that if we start fetching/evicting a block at time t on disk d or if dist(I

d

) = t for some I

d

then

there exists a value x

i

such that x

i

= tmod 1. From our de�nition of I

t

and the fetches/evictions

assigned to intervals in I

t

it follows that if x

i

� t < x

i+1

then we would obtain the same solution for

all values of t in the range [x

i

; x

i+1

). We assign this solution a weight x

i+1

� x

i

. Clearly, the total

weight of the solutions that an interval I

d

occurs is equals x(I

d

). Further, since t ranges from 0 to

1, the sum of the weights assigned to all solutions is 1. Hence, this collection of solutions with the

associated weights is a convex decomposition of the optimum fractional solution.

We would like to select the best among the s integral solutions. The number of solutions we

construct is bounded by the total number of fetches/evictions of blocks over all the intervals in the

fractional solution. This number is bounded by O(DFn

2

).

We can therefore conclude with the following theorem.

Theorem 4.2 There exists a polynomial time algorithm for the prefetch/caching problem on D par-

allel disks, that produces a solution with at most D times the optimum stall time using at most D� 1

extra memory locations.

Observe that for D = 1, we get a solution with minimum stall time without using any extra

memory locations. In Appendix B we show that if no extra memory locations are used, then the

integrality gap of our linear program can be arbitrarily large.
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5 Conclusion

In this paper we presented a polynomial time algorithm for optimal prefetching/caching on a single

disk. For the parallel disk problem we developed a D-approximation algorithm that is allowed to use

D � 1 extra memory locations in cache.

We can remove the additional memory locations at the expense of increasing the stall time. The

intergral solution constructed in Section 4.3 works on a cache of size k. Consider one of the D � 1

prefetch operations that do not have an eviction assigned. In this operation we now evict the block a

in cache whose next reference is furthest in the future. If a is evicted in some other interval I before

the next reference to a, then we cancel the eviction there; otherwise we introduce an interval I right

before the reference to a and fetch a. In any of the two cases, the block to be evicted in I is determined

in the same way as before. We repeat this process until the end of the request sequence is reached. In

the same way we process the other D � 2 prefetch operations that do not have an eviction assigned.

We obtain a schedule in which every prefetch operation has an eviction assigned. The extra stall time

introduced is at most (D� 1)

F

k

n. The total elapsed time is bounded by (1+ (D� 1)

F

k

)n+Ds, where

n is the length of the request sequence and s is the stall time before the application of the procedure.

The approximation of the elapsed time so obtained improves over the factor (1+D

F

k

) of the algorithm

by Kimbrel and Karlin if

F

k

� 1.

An interesting open problem is to �nd a combinatorial, polynomial time algorithm for minimizing

stall on a single disk. A challenging open problem is to �nd a constant approximation algorithm for

the parallel disk problem.
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Appendix A

We give the linear program for minimizing stall time for a single disk and need one more de�nition.

In the request sequence �, let a

1

; : : : ; a

n

a

be the requests to block a.

minimize

P

I

x(I)(F � jI j)

subject to

X

I:r2I

x(I) � 1 8r

X

a

f

I;a

=

X

a

e

I;a

� x(I) 8I

X

I�[a

i

;a

i+1

]

f

I;a

=

X

I�[a

i

;a

i+1

]

e

I;a

� 1 8a; i

X

I�[0;a

1

]

f

I;a

= 1 8a

X

I�[0;a

1

]

e

I;a

= 0 8a

X

I:a

i

2I

f

I;a

=

X

I:a

i

2I

e

I;a

= 0 8a; i

x(I) 2 f0; 1g 8I

Appendix B

An alternative LP formulation for minimizing stall time in the multi-disk setting would be as follows.

We have stall-variables s

i

indicating the extent of the stall just before the i

th

request is served. Thus

the objective would now be to minimize

P

n

i=1

s

i

. Once again we have a variable x(I

d

) associated with

the copy of interval I on disk d where I is of length at most F . We also have fetch and evict variables

associated with every 3-tuple, (page, interval, disk), as before. All constraints from the earlier LP still

apply. However, we now need additional constraints to ensure that for every interval I that is chosen

the sum of the stall times before the requests in this interval is at least F � jI j. It will be convenient

to have a variable s

i;d;I

indicating the stall time before the i

th

request when a block was fetched from

disk d in interval I . Then for every disk d and interval I = [p; q] we have

q

X

i=p

s

i;d;I

� x(I

d

)(F � jI j):

Let s

i;d

be the stall before the i

th

request due to a block that was being fetched from disk d. Then

s

i;d

=

X

I:i2I

s

i;d;I

:

Now the stall time before the i

th

request is the maximum of the times spent waiting for blocks that

were fetched from di�erent disks and hence s

i

= max

d

s

i;d

. Since the objective is to minimize the sum

of the stall times s

i

, we need the set of inequalities

s

i

� s

i;d

1 � d � D:
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In this linear program we relax again the integrality constraint on x(I) to the linear constraint

0 � x(I) � 1. Using this relaxation, we cannot achieve an approximation ratio on the stall time that

is better than D. Consider a cache of size D + 1, with blocks a

1

; c

1

; : : : ; c

D

being initially in cache.

Block a

1

is stored on disk 1 and block c

i

, for 1 � i � D, is stored on disk i. The request sequence to

be served is (a

1

)

F

; b

1

; c

1

; : : : ; c

D

where block b

1

is stored on disk 1. Here (a

1

)

F

represents F requests

to a

1

.

An optimum fractional solution for serving this sequence prefetches b

1

during the F requests to

a

1

and evicts every block c

i

, 1 � i � D to an extent of 1=D. Starting with the request to b

1

, the D

disks simultaneously fetch the missing portions of c

1

; : : : ; c

D

. Before the request to c

1

a stall of F � 1

time units has to be introduced. However, since each disk only prefetches a block to an extent of 1=D,

s

F+1

= s

F+1;d

for all d and thus the objective function value is

1

D

(F � 1).

An optimum integral solution, when prefetching b

1

, evicts block c

D

. On the request to b

1

, disk

D starts prefetching c

D

while the other disks are idle. Before request c

D

, a stall time of F �D time

units has to be inserted. This gives a performance ratio of (F �D)=(

1

D

(F � 1)) = D(1�

D�1

F�1

), which

can be arbitrarily close to D.

Consider the intergral solution constructed in Section 4.3. We show that if no extra memory blocks

are allowed, the integrality gap of our linear program can be arbitrarily large. This holds even for

problems on two disks. We give a request sequence � such that (a) there exists a fractional solution

with zero stall time and (b) there exists no integral solution with zero stall time.

The request sequence � is composed of three subsequences �

1

; �

2

and �

3

. We �rst give zero stall

time solutions for �

12

= �

1

�

2

and �

23

= �

2

�

3

and then show that there is no integral solution for

� = �

1

�

2

�

3

that has zero stall time.

Consider a system with two disks. We need 12 blocks a

i

; b

i

; c

i

and d

i

, 1 � i � 3, where a

i

and c

i

are stored on disk 1 and b

i

and d

i

are stored on disk 2, 1 � i � 3. Let

�

1

= b

1

; b

2

; b

2

; b

2

; a

1

; a

2

; c

3

; d

3

; c

1

; c

2

; d

1

; d

2

; c

1

; a

3

; b

3

; c

2

; c

1

; a

1

�

2

= d

1

; d

2

; b

1

; a

2

; b

2

�

3

= c

1

; d

2

; c

2

; a

3

; b

3

; a

1

; a

2

; b

1

; b

2

; c

3

; a

1

; d

3

; c

1

; a

2

; b

1

; b

2

; a

1

; c

2

; d

1

; d

2

:

We assume a cache of size 10, where initially all but blocks a

3

and b

3

are stored in cache. The stall

time is F = 8.

Figure 4 shows zero stall time schedules for the sequence �

12

= �

1

�

2

. The intervals above the

request sequence represent an optimum fractional solution, where each interval I has an associated

value x(I) = 1=2. The intervals below the request sequence represent the integral solution in which

fetches on disk 1 are completed as early as possible. An earlier completion time on disk 1 could only

be achieved if, in the �rst prefetch operations, disk 1 evicts b

1

and disk 2 evicts b

2

. However, this

leads to a schedule with non-zero stall time because disk 2 cannot simultaneously prefetch b

1

and b

2

.

Note that at the end of the schedules, blocks c

3

and d

3

are not in cache.

Figure 5 shows solutions for the request sequence �

23

= �

2

�

3

given an initial cache in which

blocks c

3

and d

3

are missing. The integral solution given below the request sequence is the only

integral solution with zero stall time. In an integral solution, disk 1 must evict d

1

in the �rst prefetch

operation. It is impossible to evict c

1

because c

1

cannot be fetched back in time. Given that disk 1

evicts d

1

, disk 2 must evict c

1

in its �rst prefetch operation; otherwise d

1

cannot be fetched back in

time. This requires that the prefetch on disk 1 starts on request d

2

.

For the sequence � = �

1

�

2

�

3

, the fractional solutions in Figure 4 and 5 can be combined and give

an optimum fractional solution for �. However, there is no integral solution with zero stall time. To
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serve �

1

�

2

, disk 1 must prefetch a

2

while serving request d

2

in �

2

. To serve �

2

�

3

, disk 2 must prefetch

c

1

while serving that particular request.

-

b

1

b

2

b

2

b

2

a

1

a

2

c

3
d

3

c

1

c

2
d

1

d

2
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Figure 4: Fractional and integral solutions for the sequence �
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