From Parallel to External List Ranking

Jop F. Sibeyn

Abstract 1.1 Motivation

Novel algorithms are presented for parallel and externdlhere are several reasons for performing a detailed study
memory list-ranking. The same algorithms can be used faf the list-ranking problem for parallel and external appli-
computing basic tree functions, such as the depth of a nodmtions. We distinguish three types of motivation, which
The parallel algorithm stands out through its low memare discussed hereafter:
ory use, its simplicity and its performance. For a large
range of problem sizes, it is almost as fast as the fastest
previous algorithms. On a Paragon with 100 PUs, each o Benchmark character for the class of irregular prob-
holding10° nodes, we obtain speed-up 25. lems.
For external-memory list-ranking, the best algorithm so
far is an optimized version of independent-set-removal. ® Practical applications as a subroutine in other prob-
Actually, this algorithm is not good at all: for a list of lems.
length V, the paging volume is abod®2 - N. Our new
algorithm reduces this té8 - N. The algorithm has been
implemented, and the theoretical results are confirmed.

e Theoretical interest.

The theoretical interest of list-ranking is evident: it is
one of the most basic problems, and in the theory of parallel
computation (and thus by “inheritance” also in the theory
. of external computation). Therefore it has been considered
1 Introduction extensively [41, 9, 10, 11, 1, 2]. List ranking appears as a
A linked list hereafter justist, is a basic data structure: it subroutine in many graph problems particularly because it
consists of nodes which are linked together, such that eis the key ingredient of the Euler-tour technique [39] (see
ery node has precisely one predecessor and one succesia#} for a detailed description).
except for thanitial node, which has no predecessor, and List-ranking has linear sequential complexity, and can be
the final node which has no successor. Connected to thsolved very efficiently by an almost trivial algorithm. This
use of lists is thédist rankingproblem: computing for each makes it very hard to achieve good speed-ups on a parallel
nodei the final nodej of its list, and the number of links computer, and means that by comparison one may expect
between andj. Once a set of lists has been ranked, it caro lose a rather large factor when solving the problem ex-
be turned into an array, on which many operations can hernally: the communication or paging can impossibly be
performed more efficiently. hidden by the computation. Because the problem is in ad-

Parallel and external list ranking is a challenge, bedition very irregular, we believe that the performance ob-
cause it is hard to obtain good performance. In thigined for the list-ranking problem gives a kind of a lower
paper we present novel algorithms for performing listbound on the performance that may be expected for general
ranking on various models of parallel computers (rangingurpose parallel or external computing.
from PRAMSs to practical parallel systems), and in external The above two reasons are already motivation enough.
memory. The simplicity of the presented algorithms faHowever, the list-ranking problem also has real practical
cilitates their implementation. At the same time they arémportance. Here we must be extremely careful not to
highly efficient and out perform existing algorithms. Inconfuse applications in theory and applications in practice.
particular the external-memory algorithm is several timeBor example, one might believe that list-ranking is an es-
faster than the best existing algorithm. It requires thresential ingredient for rooting the trees that appear in most
passes over the input, only one more than sorting. connected-components algorithms based on [22]. How-

The central point in the algorithms presented is a baswver, in practice most nodes of these trees will lie close
step that allows for an efficient split-off of a parametrizableo a root (if necessary one could randomize the indices of
fraction of the nodes. This may sound familiar, but it isthe vertices), and it will be much faster to apply a variant
done in a completely new way. A second important poindf pointer-jumping. Expression evaluation [30, 17, 25] is
(for the parallel algorithms) is that there are algorithms thainother pseudo-application: probably one needs the Euler-
solve a problem with many short lists considerably fastebur technique for solving this problem, but where do we
than an arbitrary list-ranking problem. find expressions that are so big that they do not fit inter-

*Max-Planck-Institut ~ fur Informatik, Im Stadtwald, 66123 nally, or that we would like to evaluate in parallel?

Saarbriicken, Germany.  E-mail: jopsi@mpi-sh.mpg.de.  URL A true application, which is impqrtant ir.' its own right,
http://www.mpi-sh.mpg.desjopsi/ which appears to not have alternative easier solutions, and




which one would really like to solve for very big problemcubes, Ryu and JaJa [32] have shown that linear speed-up
sizes, is found in the lowest-common ancest@A, prob- can be achieved if every PU holds at least P¢ nodes.

lem. The LCA problem has wide applications. A recenHereP is the number of PUs, and> 0 a constant. Using
and outstandingly important application of the problem isandomization, the problem can be solveddn- o(1)) - &,

for performing queries on philogenetic trees in computaf k& = w(log?® P) [35].

tional biology [34]. The LCA problem is to preprocess The list-ranking problem on meshes has been considered
the entries of a tree such that afterwards, for any pair @f [3, 19, 35]. O(n) algorithms are derived for ranking a
nodes(i, j), their lowest-common ancestbCA(i, j) can list of length N = n? on two-dimensionah x n meshes.

be computed in constant sequential time. Such a preprohe algorithms in [35] give the best constants. If every
cessing pays off if one has to answer many of these queri¢d) holdsk nodes, it taked7 - k£ - n + O(n) steps beating
which appears to be the case for philogenetic trees. Cleagpinter jumping for practical values éfandn. Randomly,

the amount of data in this application may be overwhelmt0 - k - n + O(n) steps are sufficient [35]. Fdr = w(1),

ing, and thus there is a natural need for solving the LCAear-optimal performance is achievéd/2 + o(1)) - k- n
problem in parallel or in external memory. In a parallekteps.

context one may wonder Why one can.not use the paral.llﬁlarlier Practical Results. Several recent papers report
computer for the later queries (though it may not be avail-

. . .on implementations of list-ranking algorithms on parallel
able all the time). But, in an external context, the goal '%ompl?ters g a9 P

highly desirable: after preprocessing, the later queries CanExperiences with algorithms based on the independent-

be performed with three accesses to the external memo@ét-removal idea are described in [23] (for the MassPar)
whereas searching through a tree requires at least some Iog-

arithmic number of ACCesses. and [37] (for the Paragon). Asymptotically these algo-

The LCA problem has been considered by several a{j'—thms are optimal, but the involved constants are just too

; .. large to achieve really convincing results. For example, on
thors [21, 33, 5]. The algorithm of Berkman and VISthna Paragon with 100 PUs, the maximum obtained speed-up

[5]is really simple and easy to implement. In the first stagt\?vas 14 [37} The version of independent-set removal pre-

of this algorithm, one has to compute an “Euler array” and o . o .
the depth of every node. In the second stage one hasé%med in this paper is better. it achieves speediupn a

e . aragon with? = 100 andk = 106.
sglve a range-minima probl_em (a complete description is Reid-Miller [31] describes a randomized algorithm in
given in [24]). The range minima problem can be SOIVe(f]he spirit of [2] on a Cray T-90. A similar algorithm has
by computing prefix- and suffix-minima, WeII-structuredbeenim lemented ontthara.onb Sibe nge a. [37]. This
problems that can be solved efficiently by parallel com, P 9 y yne.a. '

puters and in external memory. So, the total time for thgsparse-ruling—set" algor{thm is unbeatable when either the
LCA problem is, to a large extent, determined by the tim@?’t""rt'lJp costs are (relatlvely) low, or whe_n th_e Ioaq (the
for computing the Euler array, which boils down to solv-numberk of nodes per PU) 1S extremely high: it %chleves

ing a list-ranking problem on an Euler tour of the tree. Th peed-up6 on a Paragon wit = 100 andk = 10°, for

depths can be computed by keeping track of some ad wgerk the spe_ed-up WOUI.d be much h|.gher.
tional information. In [36] algorithms are given that achieve a better trade-

off between the number of required start-ups (the time for
initiating the sending of a packet) and the routing volume
(the total number of integers sent and received by each PU).
PRAMs. OnPRAMs, the basic approach is ‘pointer jump-n this way we obtain better speed-ups for practical values
ing’ [41]. This technique can be used in a list-ranking alof £. The most original algorithm in this paper is the “one-
gorithm which runs inO(log N) time with O(N -log N)  by-one cleaning” approach, which consistd®bf 1 rounds,
work on an ‘EREW’ PRAM. Using “accelerated cascadin which PUs only communicate in pairs. This is one of the
ing”, the work of this algorithm is reduced to the opti-very few algorithms which does not require an all-to-all
mal O(NN), while maintaining running timé&(log N') [9]. ~ routing at the end of every round.

These improved algor?thms start by repeatedly selecting @ ternal Memory Algorithms.  In comparison to the
independent sgt , Which reduces the size of the graph by,@merous parallel results, there are very few results on
constant factor in every phase. Then, if it has been reducﬁgt-ranking in the domain of external computation. Ac-

to N/log N, pointer jumping is applied. Numerous vari-yq|ly we are not aware of any algorithms that go beyond
ants of this idea have been developed. More references gfg, jation of PRAM algorithms. In [8] the application of
given in [24]. A variant of [9] and [2] tuned towards the \e provided PRAM simulator directly to the algorithms of
requirements of the BSP model has recently been given f2, 10]is suggested. Asymptotically this is optimal, but one
[6]- cannot expect to obtain good constants with such a coarse
Meshes, Hypercubes, ... . On parallel computers that

communicate through an interconnection network, it is, Al SPeed-up results are given with respect to an optimizexion
of the simple sequential algorithm running on a single PUhefRaragon.

hard to ?Ch_ieve anything worth mentioning: by its naturésor problems that are so large that they do not fit interntiilyresults are
list ranking is an extremely non-local problem. For hyperscaled-up linearly for the sake of comparison.

1.2 Previous Results




approach: every single PRAM instruction requires severalalancing the work that the PUs have to do in each round,
sorts and scans of all the involved data. and for balancing the size of the packets during the com-
Still, with some obvious optimizations, it appears thamunication rounds. With a bad distribution of the nodes,
until now this is essentially the best idea. Instead of fulthe total work of the algorithm also increases, but only by
sorting operations, one should perform bucket sorts, and farsmall factor: for the external algorith®i, - NV is a worst-
the selection of the independent set it is better to perforease bound on the paging volume. The difference with the
the much simpler random coin tossing. In Section 3, waverage-case bound is so small, that it does not pay off to
consider this algorithm more closely, to obtain an estimatirst randomize the input.

of the number of required paging operations. A further strong point of the algorithms is that they re-
quire only little additional space: our implementation of the
1.3 New Results parallel algorithm requires storage 6 - N integers, the

The algorithms of this paper are based on a further devedxternal algorithm fob.4 - N integers This is hardly more
opment of some of the ideas from [36], most notably fronthan the sequential algorithm which requites N' (and
“repeated-halving”. However, different from [36], in our much less than that required by independent-set removal).
new algorithm we repeatedly perform a reduction step as Finally, the same algorithms can be used for finding the
in independent-set removal. This novel and highly efficienoots and depths of the nodes in a set of trees. We will
way to split off a parametrizable fraction of the nodes isommonly refer to this task biree rooting Most other
common to the parallel and the external algorithm, but itechniques become inefficient or break-down. The major
the details they are quite different. exception is pointer jumping, but this technique is very in-
The parallel algorithm uses pointer jumping for chasingfficient in itself when the trees are not shallow. Thus our
down sets of lists with small expected length. This goeslgorithms allow the computation of some basic tree func-
very fast, because the number of participating nodes déons without applying the Euler-tour technique, saving the
creases rapidly. For the final subproblem we use one-bipwolved overhead (more than a factor two).
one cleaning from [36], which, for general problems, is far
more efficient than pointer jumping. i is the number 2 Preliminaries
of performed reduction rounds, then the algorithm requires e _ ) )
12 - d all-to-all routing operations. If the reduction factorsProblem Definition.  The input is a set of lists or trees of
are appropriately chosen, then the resulting routing volunf@tal lengthV. Every node has a pointer to a successor. The
can be bounded - (1 + In P/d) - k. Thus, we establish a flnql nodes can pe recognl_zed by th_e distinguished value pf
trade-off similar to that in [36]. On a Paragon withPUs their successor field. The lists are given by the array of their
we obtain speed-up up aroufi3. For largeP the speed- SUCCESSOr valuespcc The output consists of two arrays,
up is somewhat smaller due to the start-up losses: OnT@astanddest Here, for every) < j < N, mas{j] should
Paragon withP = 100 andk = 10° the speed-up i25. give the index of the final nod_e of the list or tree_to which
The parallel algorithm is interesting due to its approach Pelongs, andiest;] should give the number of links be-
and simplicity, but does not really give an improvemenfweenj andmast;]. Inour parallel algorithms, the number
over existing results. Our external algorithm is more off PUS isP, and every PU holds exactly = N/P nodes
a breakthrough. In this algorithm, the reduction factors ar@f the lists.PU;, 0 < i < P, holds the nodes with indices
chosen such that in every iteration a chunk of the size df I’ +i, forall0 <j < k. Unless indicated otherwise, we
the memory is split-off. Operations on this chunk are in@SSume that the nodes are mdgxed in a random way. Notice
ternal. The whole algorithm requires three passes over tieat we donotassume that the lists or the trees are random,
input, going back-and-forth in a wave-like fashion. “Questhe assumption is made only for the indexing.
tions” and “answers” are pushed on stacks, and popped @8st Model. Except for a PRAM section, we will express
soon as the next wave comes by. Our analysis shows thae quality of our parallel algorithm by giving it®uting
the totalpaging voluméthe number of integers that have tovolume the number of integers sent and received by a PU,
brought from the hard-disc into the main-memory) is lesand the number of all-to-all routing operatichBoth these
than18 - N. Our version of independent-set removal imotions are well-defined, and can be determined precisely.
Section 3 has paging volum& - N, and it appears that Actually, the time for the internal work may be more im-
this cannot be improved much further. To be complete, wgortant. For example, on the Paragon, which has a power-
mention an experimental result (though we think it may beul network, the communication time may account for less
hard to judge its value): Fa¥ = 64-22°, our algorithmre-  than 10% of the total time consumption. But, in all list-
quires 5740s. This was achieved on a 175Mhz UltraSpar@nking algorithms the internal work is proportional to the
whose hard-disc requires about 11ms for reading an 8KButing volume, and it is hard to give a definition of the in-

page and 16ms for writing one. Internally the simple seternal work that is meaningful up to the constants. In the
quential algorithm runs 45 times faster, and externally k—; — o o
runs 300 times slower. An all-to-all routing is a communication pattgm in wh!ch every PU
. . has to send some packets to all other PUs. It is the typic&pathat
All results are given for randomly arranged lists. In theyises when a shared-memory algorithm is run on a distdetemory
parallel algorithm, a random distribution is essential fomachine.




particular case of list ranking, our cost measure has provéh Independent-Set Removal

to be a fairly reliable instrument for predicting the practicalye describe the best version of independent-set removal
behavior of algorithms [36]. Our cost model can be viewegye can think of. As a parallel algorithm this version may
as a simplification of BSP or BSR40, 28, 4]. be almost competitive with other parallel list ranking al-
The quality of the external algorithms is measured byorithms. However, in the external algorithm, it is essen-
determining theipaging volumethe number of integers tjg| that the active nodes stand in a compact interval of the
that have to be brought from the hard-disc into the mainnemory at all times. This rearrangement requires consid-
memory. Actually, we are slightly more precise, by diseraple extra work and some additional data structures. This

tinguishing between pages from which data are only reaghakes the already rather weak performance even worse.
and those on which data are (also) written. In general, one

should also take into account the internal work of extern& .1 parallel Algorithm

?"9”"“”‘5’ but in Fhe case of I.'S.t rank|r_19, \_A{here the Worlfn the independent-set-removal algorithm, reductions are
1S linearin the poagmg VO“_Jme' Itis fuIIyJ_ustlﬂed to neglect epeated until the problem size has become sufficiently
it (only about 2% of the time consumption of our externaLma" to terminate with some other algorithm. Then the
excluded nodes are reinserted in reverse orde. At all times,
Basic Assumptions. In the analysis of our parallel algo- there is a set of active nodes. Initially all non-final nodes
rithm, we will mostly assume thaV is much larger than are active. In Phaseof the reduction we perform
P. For all-to-all communication patterns, it is even impor- Algorithm REDUCTION()
tant thatk is considerably larger thaR, so that the start-up i :
costs for sending packets can be amortized. 1_. Each active node chooses independently a O ora 1
In the context of the external algorithms, we denote the With probability 1/2. Each nodg that has chosen a 1
memory size by)Z, and the page size by (both givenin ~ Sends a packet tmas{p).
integers). Furthermore, it is convenient to define 2. Ifanodep which selected a O receives a packet, then
P = 2.¢-N/M it is inserted in the list of nodes that were excluded dur-
’ ing Phase, and is excluded from the list of active nodes.
k = N/P. It sendsmastp) anddes{p) back to the sending node.
Herec is some small constant, later on we will take- 3. Otherwisep sends back the numberl, to indicate that
If an external algorithm is obtained as a simulation of a par- it was not excluded.
allel algorithm, thenP corresponds to the number of PUs 3 if an active node receives-1, then it does nothing.

in the parallel algorithm [38, 14]. Throughout this paper otherwise it uses the received data to updatestp)
we assume, that anddestp).

P-B< M)2.
This implies that the main memory is large enough to aclgvery phase reduces the problem size to aligut The

commodate- integers for thek input elements the algo- reinsertion is even simpler. Here we assume, by induction,

rithm is currently working on, plus one page for everythatr:‘girnallrngde;p ;[]ha;[]were stil a(;\t/lve ?hu”?ngdﬂ;(e t;otrhre-
“PU". These pages contain “messages” from the other PUEE)C;n dg ?tklljcliot Fr)]dasmastﬁp)gi te?] eth ret ot the
or are used to write away messages to other PUs. It al gt hodeotthelista es{p) the distance thereto.

means that bucket sort witR buckets can be performed Algorithm REINSERTIONt)

with one scan through the data and linear work. 1. Each node that was excluded during Phasends a
Thedoretlcally, (1)is a"hmlctaggsn, but pragtlcalljy itis not:  packet to its master.

nowadays even a small P = 4-10°% and a typi- .

cal value forB is 2000 or smaller. So, (1) means that we rﬁ Each nr:jc()jdep that received a packet sends back

should not try to handle problems that involve more than as(p) anddes(p). _

1000 - ¢ - k = 500 - M data. Considering that currently 3. Each_ node that was excluded during Phaseses

RAM costs less than 50 times as much as hard-disc stor-the received data to updateastp) anddestp).

age, such a system would be very unbalanced.

algorithm is due to internal work).

Lemma 2 A parallel implementation of the independent-
Probability Theory. In addition to some well-known re- set-removal algorithm has routing volunig + o(1)) - k.
sults we will need Each round required all-to-all routings.

Lemmal (Azuma Inequality) [29] Let X4, ..., X, be
independent random variables. For eachX; takes val-
ues in a setd;. Letf : [[, A; = R be a measurable
function satisfyindf (z) — f(y)| < ¢, whenz andy differ
only in a single coordinate. Let be the random variable
f(X41,...,X;). Then for anyh > 0,

Proof: In Step 1 ofREDUCTION, 1/2 of the nodes sends
a packet of size 1. In Step 2/4 sends a packet of size
1, and1/4 of size 2. In Step 1 oREINSERTION 1/4 of
the nodes sends a packet of sizeln Step 2,1/4 sends a
packet of size 2. Together, this gives a volume of: for

the first phase. Multiplying by 4 for the later phases, we
P||Z — E[Z]| > h] < 2. e~ 2"*/(c"m), obtaing - . O



logok | P=4 P=16 P =064 ing active nodes after each applicatiorREFDUCTION and
10 0.03 0.02 0.01 REINSERTION The fact that the active nodes are standing
12 0.09 0.06 0.04 spread-out leads to poor cache behavior (as opposed to the
14 0.18 0.13 0.09 algorithm presented in this paper!), but is still preferable to
16 0.22 0.19 0.16 a rearrangement.
18 0.22 0.20 0.17 In an external algorithm, we have no choice: the active
20 0.21 0.20 0.18 nodesmustbe rearranged. Unfortunately, this has unpleas-

ant consequences: either the nodes must be renumbered,
or it becomes non-trivial to find the data of the nodes (ini-
%ally, the data related to Nodgwere stored in positiopi

f the respective arrays). Renumbering is a lot of work.
An alternative is to apply a variant of hashing that has a
collision-handling strategy that guarantees that data are not
stored too far away from the expected position.

About 5 reduction phases are needed for reducing the In the following we do not give a detailed description of
problem size by a facter (becaus®.75° = 0.24), thus for  the algorithm, but rather an optimistic estimate of its pag-
a given reduction, the number of all-to-all routings is of théng volume. Particularly, we assume that the hashing does
same order as in four-reduction from [36], and the routingot require any slack, which is obviously not true. Further-
volume is only slightly larger. more, we neglect all slack that is required in order to ac-

commodate data structures of randomly fluctuating sizes.

Table 1: Measured efficiencies of independent-setremov
running on an Intel Paragon for various numbers of PU
and various values df. In all cases we performed ten re-
duction phases.

3.2 Experimental Results

In Table 1, we provide a few examples of measured valu&€mma 3 An application oREDUCEtogether with the re-
of the efficiency of the algorithm, where kfficiencywe quired rearrgngement_ on a set of lists with a total /gf
meanspeed-upP = Teeq/ (P - Tha). As a basis for the nodes, requires a paging volume of abOLit- N.

computation of our efﬂmenmeg, we assumed tiah the  proof: Step 1, 2 and 3 can be performed with two passes
sequential time, equals9 - 10~ - N, for all NV. _ through the data. In each pass, thastand destfields
A plot of the speed-ups is given in Figure 1. The giveny e read and written, and in addition, the “packets” must
be written and read once. This gives a paging volume of
21.54 (2-2+0.5-2+0.25-4+40.25-2)- N =6.5-N. There-
arrangement implies that all data must be read and written
at least once. Together, this means tha¥ numbers must
17.67  be read and written altogether. Furthermore, the prior ar-
15.73 rangement must be recorded, which requires additidhal
writing operations. However, by overlapping this operation
13.80  with the second pass through the data, the reading can be
11.86 saved. O

130.0
19.60

110.0

90.0

70.0
9.93

g00 Lemmad4 The reversal of the operations in Lemma 3 by
applyingREINSERT and a restoration operation, requires
a paging volume of abo@t5 - V.

50.0
6.06

30.0 4.13

Proof: For the restoratior - N integers must be read and
219 2. N written. These operations can be overlapped with
10.0 0.26 Step 1 and part of Step 2 &EINSERT. But, a second
10.0 120 140 160 18.0 20.0 pass through the data is needed to complete Step 2 and for

Figure 1: Experimental results for independent-set re3tep 3. This adds a volume f +0.25-2 4 0.25-4) - N.
moval: the x-axis givetog k, the y-axisP, and the gray- L
tones the speed-up.

algorithm is much better than the one that was describafheorem 1A Comp|ete |ist_ranking a|gorithm based on

in [37], but still cannot compete with four-reduction. Thejndependent-set removal along the sketched lines requires
algorithm of Section 6 also performs better. a paging volume of more thar - N.

3.3 External Algorithm Proof: After every round, the problem-size is reduced by
In the parallel algorithm, we maintained a list of activea factor0.75. Thus, the total paging volume is- (9.5 +
nodes. Hereby, we did not need to rearrange the remai) - N. O



Possibly, one might slightly further optimize the implemenThe two altrocleans in Step 2 and Step 4 are more or less the
tation of the algorithm, but quite surely one will not comesame, though the fraction of participating nodes is larger in
below60 - N: just the rearrangement and the restoratiorStep 4. If the autoclean were as hard as an arbitrary ranking

which appear inevitable, requité - V. problem, then going on recursively, would give a logarith-
mic factor in the overall time consumption. Fortunately,
4 Power of Autoclean and Altroclean this is not the case.

The basic idea of our algorithm is to split the input into twoc.afc:;;?.enF;Egc;rr?gggzr?fr:hsi garlalalleflr:g; rihmgt |§Vcru-
sets:S, andS; . Then we perform ! ! u In Step #51/

of the nodes plays the role of a terminal node (all those

Algorithm PEELING.OFH(Sy, S1) with a master inSy). That is, we have lists of expected
1. AUTOCLEAN(S)): Iength 1/a. Such a list-ranking problem_ is substantia}ly
5 S easier than a general one. For example, if we apply pointer
- ALTROCLEAN(So); jumping, then the number of participating nodes in Rotind
3. SOME.RANK(Sp); isonly(1—a)?.
4. ALTROCLEAN(S)). Along these lines one can also obtain an efficient exter-

nal algorithm. It appears, however, to be even more effi-
Here SOME_RANK designates any ranking algorithm,cient to choose5; such that#S; = M /6. Then, Step 1
possibly PEELING_OFF itself. By AUTOCLEAN(S;) we is a simple internal operation. The details are discussed in
mean: Section 7.

All nodes inS; follow the links running through
nodes inS; until a link out-off S; is found or a 5 PRAMS ) )
final node of the list is reached. Then they update -1 List Ranking Algorithm

mastanddest We show that along the lines @EELING.OFF there is an
easy randomized PRAM algorithm running @(log V)
By ALTROCLEAN(S;) we mean: time with N/ log N PUs.

First one should perform some randomization: ev-
ery node is placed in a randomly chosen bucket of size
N/log N. With P PUs this can be done i@(N/P +
log N) time. Using Chernoff bounds [7, 20], it is easy to
see that no bucket will hold more thétH-o(1))- N/ log N
nodes. The buckets are numbered fothroughlog N —1,

Later we will give efficient algorithms for performing and the set of nodes in Buckgts denoteduc;.
auto- and altroclean. For the time being, we assume thatThen we performioglog N rounds ofPEELING.OFF in
they are performed according to the above specificationghich the problem size is halved each time. In Ro#nd

All nodes inS; that have not reached a final node
and whose master is not an elementSpf ask
their master for itsnastand destfields. Then
they update theimastand destfields with the
received values.

If initially 1 <t <loglog N, we take
mas{j) = sucj), So(t) = UEN~'Bug,
desty =1 log N/2t=1
19) : Si(t) = Uj(f10g/12\r/2t 'Bug,.
forall 0 < j < N, then we get Finally we perform pointer jumping o8 (loglog N) =

{Bug. An iterative formulation of the given recursive algo-
rithm may be easier to understand:

Algorithm PRAM_RANK
for t = 1to loglog N
AUTOCLEAN(S: (1));
ALTROCLEAN(Sy(%));
POINTERJUMPING(Sy (log log N));
for ¢t = loglog N downto 1

Lemma 5 PEELING.OFF correctly computes the values o
mast and dest for all nodes.

Proof: After Step 1, every node i5; has either found a
master inS, or reached a final node. Hence, after Step 2,
all nodes inSy have either a master i§, itself or reached

a final node. So, in Step 3 we indeed have to solve an
ordinary weighted list-ranking problem. In the altroclean
of Step 4, all nodes af; that have not reached a final node

participate. They ask their masters for theiastvalues, ALTROCLEAN(S1(#)-
and the answer is some final node. O The correctness of PRAMANK follows from
Lemma5 and the fact th& (¢t + 1) USi(t + 1) = Sp(2),
The time consumption (FELLING_OFFis given by: forall 1 <t < loglog N.
On a PRAM, the altrocleans are trivial: for every node
Tpeelingoft(So US1) = Tsomerank(So) + TautocearS1)  two numbers must be read. So, the work is linear in the size

+  TatodealSo) + Tairoclead S1) of the set on which it is performed. A8 ,%%'°8 ™ Sy (t) =



N/2,andy 68N S, () = N— N/log N, the total work ~ Corollary 2 At the beginning of Iteration, no two nodes
is linear. The processor allocation is no problem. from Sy (t) U S; (t) have the same master, except for those
The final pointer jumping has to be performed on a set afhose master is a final node.

sizeN/log N. With P PUs, this can be done (N/P + Lemma 7 On a PRAM withP PUs, AUTOCLEAN(S, (1)),

log ') time (see [24]). 1 < t < loglog N, can be implemented to run in

The autocleans we perform by applying the basic pointey,, 7 . o i
jumping step (every node which has a mastegift) asks %(#81 (£)/ P+ loglog N) time, with high probability.

its master for itamastanddestvalues) until no nodes are Proof: A noden in Sy is active in lterations > 0, if n
active anymore. Their time consumption is analyzed iand all nodes up to distaneé from s have a master i .
Lemma?. The probability that any given node liesdh is 1/2, so the

A practical way of handling a final nodg is, that it, probability that» is active in Round equal2—%". Hence,
when asked for its master, passes back the valinglex  the expected number of nodes that is active in Rosind
whereindexis the index off: as negative values automati-equals2—2" - #S;. So, for the expected number of the
cally lie outside the range of other values, there is no furth&um of active nodes over all rounds we find

need to single-out nodes that pointfto E(activest)) = Z 902 . 48, (1) < 082 #5,(1). )

5.2 Analysis 520

In a PRAM algorithm, in which we do not care much abouf1€7® We make use of the fact that expected numbers can
the leading constant in the time consumption, we coull® computed by simply adding probabilities, and that the

have randomized the nodes we are working on at the begifPected number of a sum equals the sum of the expected
ning of every iteration, which would make it obvious thatnumbers, even if the random variables are not independent

the probability that the master of a given nodesinlies in ~ (S€€ [16, p. 222]). _ o .
Sy is 1/2 and independent of any other such event. But Now anyone will also believe that, with high probability,

we will prove that this is even the case with just the singld€ Work is bounded b (# (1)), but this is not so easy
initial randomization. For this we need several results. A Prove. We will first puta bound on the number of rounds

this point they may appear to be of little importance, puthat has to be performed, then ensure that during the first

they give insight into the operation of the algorithm, andounds the number of active nodes decreases as it should

we will reuse them in our analysis of the other algorithmsd0: @nd then argue that the contribution from the remaining

nodes is minor.
Lemma 6 (Hangglider Lemma)At the end of Iteration,

0 <t < loglog N, an arbitrary noden € Sy(t) has as
master the final nod¢ of its list iff all nodes betweemand
fliein N — Sy (t). If this is not the case, then its master isProof of claim: The probability that any of thetS, (t)
the first noden € Sy(t) such that all nodes betweerand  nodes is active in Rounslis at most#S; (t) - 272°. For
mliein N — Sp(t). s =2-loglog N, this is less thai /N.

Proof: By the way final nodes are handled, the first case For bounding the number of active nodes during the first

can be viewed as a special case of the second, So, we nigynds, we use the Azuma inequality, Lemma 1. Here the

concentrate on a node with master m not being a final -X; are the random variables given byX’j = 1 if Node j

node. Clearlyn € S,(t), due to the autocleaning and al-lies in Si(¢), otherwise it is 0.” The functiorf gives the

trocleaning during Iteratioh number of active nodes in Round Flipping the value of
For the rest of the proof we proceed by induction oPne of theX; may change the value gfby at mosg*, so

t. Let m be the above defined node. So farhas not ¢ = 2°. Thus, substitution yields

asked any node i(?) to give its master. Thus, either P[|Z - E(Z)| > h] < 2. /("N

mas{n) = sucgn), for which the lemma holds, or must

have heardnastn) from some node’’ € N — Sy(t). n' Forh = 2% (N -log N)'/2, this is a very small number.

may have updated its master in two ways: during some préhus, as long ad® - (N -log N)'/? = (272" - #8, (1)), we

vious altroclean and during an autoclean. By the inductiofay assume that the deviations from the expected values

hypothesisp’ can certainly not have “looked” beyond ~ are negligible. So, we may assume that afttgrog N''/3

during an altroclean. During the autoclean this is exclude@unds only(1+o(1)) - #8; (t)/N'/? active nodes remain.
altogether. [0 Therefore, the sum over the remaining rounds of the num-

ber of active nodes is less théh- loglog N) - (1 + o(1)) -
This lemma states that after Iteratigrthe linking structure 4.8, (t)/N'/3 = o(#8, (t)). 0
in Sp(t) is identical to the initial one, except for short-cuts
over N — Sy(t). From this we conclude Combining the above results, we find

Corollary 1 At the beginning of Iteration, the probability Theorem 2 On a PRAM with?” PUs,PRAM_RANK ranks

that any node fron$, (¢) U Si (t), which has not reached a @ set of list withV-nodes inO(N/P + log N) time, with
final node, has its master i (¢) is 1/2. high probability.

Claim 1 After O(loglog N) rounds there are no active
nodes left, with high probability.



5.3 Tree Rooting For the final stage, we should not perform pointer jump-
For tree rooting we apply the same algorithm. The only difid, but rather one-by-one cleaning from [36]. This routine
ference is that now several nodes may have the same siS0 much more efficient that we can stop with a larger
cessor. Lemma 6, the conclusion about the structure aggPproblem:

Corollary 1 still hold, and we have the following partial| ayma 8 [36] For ranking a set of list with a total o -
analogue of Theorem 2: P nodes on a parallel computer with PUs, one-by-one

Theorem 3 On a PRAM with? PUs. PRAM._RANK roots cleaning require8- P—3 start-ups, and has routing volume
a set of trees withiV nodes inO(N/P + log N') expected 6-InP.
time. Theoretically the most interesting feature is the choice

of the number of reduction rounds(in the PRAM algo-

Proof: The crucial point is again that expected values may - we hadd — log log \') and thereduction factorsthe
be added together, even if their random variables are nl%mberft 1<t < d, given by

independent.
fo=#S@O)/#S:(t-1),

The good news is that Theorem 3 holds &l trees
(as opposed to pointer-jumping, whose expected time cohere#S:(0) = N. These must be tuned to obtain a good
sumption depends on the structure of the tree). The b&g@de-off between the two components of our cost measure:
news is that we cannot put a high-probability bound on thhe number of all-to-all routings and the routing volume. In
time consumption. Considertailed star a tree which is any case thg; must be chosen according to the following
obtained by attaching a tail to a star, see Figure 2. Assurfilide-lines.

e The f; should decrease with

\ l / e f should increase with.

reO—0—>0 """ 0—>0—0

/ T \ e f; should not be too small.
One such choice is
Figure 2: A tailed star. lad—t
d)=——+—. 3
that the star contain¥ — log N/ loglog N nodes, and the fi(d) 24d—-t ®
tail log N/loglog N. Then it cannot be exluded that all \y, thesef;, we get a simple expression:
the nodes of the tail are allocated to tHg(1). But then '
AUTOCLEAN(S; (1)) will require (N -log N') work. Sim- #So(t) =(d+1—-1t)/(d+1)-N.
ilar problems arise with the altrocleans in the first for-loop ) i ,
of PRAM_RANK. There are better choices (see Section 6.2 for the choice of

A possible solution would be to never answer more thafu implementation), but this choice facilitates the analysis
one question at a time, and to tell the others that later th& the routing volume:

should ask here again. However, it appears that in this washeorem 4 Whend reduction phases are performed with

it may happen that only a very small subproblem is solvededuction factors as in (3), the routing volume is less than
and that we have not gained much. As the Euler-tour tech-

nigue gives a reduction of the tree-rooting problem to list 6+ 3-lnd+6-InP)/(d+1)) -k,
ranking with a small constant factor loss, it is not worththe .~ .
effort to develop some elaborate algorithm for it. with high probability.
Proof: We are going to compute the number of questions.

6 Distributed Memory Machines For every question two answers will be sent, so the routing
6.1 List Ranking Algorithm volume is three times the number of questions.
. L During the altroclean in lteration of the first loop,
Toa Iarge extent, o_uralgquthmfordlstrlbuted Memory Mag,e  aynected number of questions equaissy (1) -
;TJmeﬁ ||sda drl]rectilmulatlon of the _PRAM_ algorlthm. Now#g1 (1)) (#50(£) + #8, () < #8,(f). Summing over

i, holds thek = N/P nodes with indices +j - P, rounds, we get less thdth — 1/(d — 1)) - k. The same

for_aII 0 S.j < k. E?Ch PU has a buffer for every PU, in o.gimate holds for the altrocleans in the second loop.
which it writes questions and answers. In any step, all ques—Generally if one performs an autoclean on aSetn

tions or answers are generated, then the all-to-all routiq,ghich the probability that a node has mastesiis o, then

is_ perform_ed and so on. This is the s_tandard way of "U%e find the following analogue of (2) for the total number
ning algorithms under the BSP paradigm, and is Stra'ghgfquestions asked:

forward. This immediately leads to an algorithm with ac-
ceptable performance. To optimize the algorithm, one has E(questiony = Z a2 #S.
to be slightly more careful. 550



In our caseq assumes the valugg2,1/3,...,1/(d +1). log, k | P=4 P=16 P=04
The computation of the sum is easy becays® (t) = 10 0.06 0.03 0.01
N/(d + 1), for all t. The first-order term1/2 + 1/3 + 12 0.19 0.07 0.03
-+ 4+ 1/(d+1) < Ilnd — 1/4, ford > 10. The quadratic 14 0.36 0.10 0.09
terms are equal to those neglected in the estimate of the 16 0.47 0.29 0.18
volume of altroclean, and all the remaining terms together 18 0.44 0.35 0.23
are less than/4. 20 0.41 0.35 0.26
The final one-by-one cleaning is performed on a set of
sizek - P/(d + 1). O

Table 2: Measured efficiencies of the parallel algorithm

If all-to-all routings are performed in the most straight-runnlng on an Intel Paragon for various numbers of PUs,

forward way, then th@ - P — 3 start-ups from one-by-one and various values df. In all cases! = 6.
cleaning correspond to three all-to-all routings. Using this
estimate, it is easy to express the number of all-to-all rouFhe d for which the time consumption is minimized in-
ings as a function of the number of reduction rounds: creases withk, and decreases witR. In all cases it lies

. betweerd and16. However, beyond a certain point, the
Theo_rem 5 Wh_end reduction phases are performed, thechoice ofd has only a minor influence. It turns out that
algorithm requires(6 + 2 - [loglogn]) - d + 3 all-to-all 5 _ ¢ a\ways gives results that are close to optimal. A fixed
routings. choice ford allows us to optimize the size of the buffers.
Proof: For every reduction round we have to perform th:ord_: 6, the final p_roblgm is so smal),012 - N, that its
altrocleans, each taking two all-to-all routings, and one alution takes very little time. _ _
toclean. Asf,(d) > 1/2, the probability that the distance The number of pointer-jumping steps in the autocleaning
between two elements i, exceeds: is at mostz—r—1,  Of Round? must be chosen as a function f, #5: (¢)

Thus, the probability that the pointer-jumping has not tef@1dd: in such a way that the probability that the whole
minated afte steps, requiring two all-to-all routings eaCh’algonthm is correct is constant (alternatively, one can test
equals2 2 1. Fors = [loglogn] + 1, this is less than whether all nodes are done). In practice, we mostly need

1/n? O five pointer-jumping steps if; < 0.4, but for f; > 0.4,
' four of these steps are generally enough.

Implementing these ideas, we obtained an algorithm
which uses in every PU next to the three arrays of ize
) each, only two buffers which are used for several purposes.
During the autocleans, we have to perform several roung$,age have size.3 - k each. The program, and its sequen-
of pointer jumping. In order to prevent having to redetergia ariant (which is identical except that every variable
mine the active nodgs every time, these should be selecﬁﬁqeplaced by an array, and every instruction by a loop)
from the former active nodes once they get to know theglre available athtt p: // ww. npi - sb. npg. de/ -
new masters. _ ~j opsi / dpr og/ prog. ht ni .

In order to save buffer space, it tumns out to be better notye gjq extensive experiments and found that when only
to send all the questions at one time: for every questiqq one-phase router is applied, the time consumption on

two answers are generated, and thus we would need Wige, paragon can be described up to 10% by an expression
as much buffer space as questions being generated. Weihe following form:

need only a fractiort/ P additional buffer space, if all PUs
first send their questions to the PU with index one larger T, (P,k)=a+3-k+~v-P+4§-k-log(P).
(cyclically), then return the answers to the received ques-
tions, and then repeat this for the questions to PUs withor the constants we found the following values:
index two larger, and so on. _3 _7

To obtain better performance for smaller valueg pit o =38-1077, #=40-107",
is essential to apply the two- and log-phase routers next y=58-107%,  §=24-10".
to the simpler one-phase router (see [37]). In this way, at

the expense of higher handling costs, the number of start- In Table 2, we provide a few examples of measured val-
ups for an all-to-all routing can be reduced fran- 1 to ues of the efficiency of the algorithm. Tlefficiencyis de-

. fined as in Section 3.2. From these numbers we can discern
2-(v/P —1) or even juslog P. . : . . )
To minimize the costs of the autocleans. one shoulthe following trends: the efficiency strongly increases with
X ' E and slowly decreases wifR. None of this is surprising.
make the firstf, somewhat larger, and then later on L . !
when the size of the problem becomes smaller Somewh”l'here are three reasons for the deterioration Witfhe fi-
smaller. We found ogd erformance for ' r&ﬁe capacity of the network starts to become noticeable for
’ 9 P 6 x 6 partitions and larger; the number of start-ups required
16+1.05-d—t for an all-to-all routing increases witR, which forces the

fild) = T 6rd—t algorithm to use an alternative, less efficient, router; for

6.2 Experimental Results



large P, the load-balancing becomes worse. A plot of the External Memory Computation
speed-ups is given in Figure 3. 7.1 Algorithm

The external algorithm is closely related to, but neverthe-
30.72 less not a direct translation of the parallel algorithm. If we

look back at PRAMRANK, then there are two important
27.96  differences that go beyond the correct choice of the reduc-
95.90 tion factors, and the management of “packets”:

130.0

110.0

22.44 e AUTOCLEAN should not be implemented by pointer

90.0 jumping, but as an internal list-ranking problem.

19.69

16.93 e In the second for-loop, one should not perform
ALTROCLEAN(S; (%)), bUtALTROCLEAN(N — Sp).

70.0
14.17

11.42 High-Level Description. Inthe following we describe the

500 algorithmin more detail. LeP = 6-N/M, andk = N/P.

806 The input is subdivided i buckets of sizé each:Bug,

30.0 590 0 < i < P, holding the data related to the nodes with
315 indicesj, suchthak-i <j < k-(i+1). Furthermore, for

all <t <P,
10.0 0.39
0.0 120 140 160 18.0  20.0 So(t) = UP'Bug,

Figure 3: Experimental results for the parallel algorithm: Si(t) = Bucp ;.

the x-axis givesog k, the y-axisP, and the gray-tones the

speed-up. In all casek= 6. With these definitions, we get the following high-level de-

scription of the algorithm:

Algorithm EXTERNAL_RANK

6.3 Tree Rooting fort=1toP—1

AUTOCLEAN(S: (1));
As for the PRAM, we may apply the same algorithm for ALTROCLEAN(Sy(%));
tree rooting. The expected work is the same as for ranking AUTOCLEAN(S; (P));
lists. for t = P — 1 downto 1
In order to give a feeling of what happens when we ap- ALTROCLEAN(NV — Sp(1)).

ly the algorith iff -cycli i . . :
ply the algorithm to different non-cyclic structures, we give The first loop is the same as before except for the size

some numbers for the special case- 8 andk = 65,536, of the subsets. The second loop is also more or less the

We have tested random lists, random binary trees, and st%gsme onlv the order in which the auestions are posed is
with a tail of length 1,000. In each case we tested 20 in- ‘ y q P

puts. The results are given in Table 3. These results mgal}ghtly different. Now, ‘?" questions pending for the nodes
be taken to be representative for other valueB a@idk. N Bucp_;_; are asked in Pass

Lemma 9 EXTERNAL_RANK correctly solves a ranking

mintime maxtime av.time st. dey. problem on a set of lists or trees.
lists | 0.674 0.678 0.675 0.007
binary trees| 0.595 0.626 0.607 0.01d
tailed starts| 0.692 1.772 1.070 0.28d

Proof: As before, we may assume that at the end all nodes
of S; (P) know their ranks and the last nodes of their lists.
This is the basis of our induction assumption: at the end
Table 3: Time consumption in seconds for different type8f Pass of the second loop, all nodesfor whichmastp)

of input for P = 8 andk = 65,536. lies inSy(t) after the end of the first loop know their ranks
and final nodes. But then, during Pass 1, all nodes with
master inBucp_; = So(t — 1) — Sp(t) ask their questions,
Also we see that in practice the average time consum nd get to know their ranks and final nodes. After Piass

tions may differ. Reasons why a problem can be solve I nodes w_ith master i§y (1), that is all nodes, know their
faster than for lists are that more nodes may discover the ﬁ'gnks and final nodes. -
nal node at an earlier stage, and that when more nodes ask

for information from the same node, this information stillDesign Principles. In the remainder of this section, we
may be available in cache. The main reason why it may gaill talk about the nodes iBug, as if they are managed
slower than for lists is that the load-balancing may be poohy their ownPU;. In this way we can say things like “the

Most apparent is the increase of the standard deviatio

10



guestions t&’U,”, which means “requests for datafromthe Wave 3 corresponds to the second for-loop fram:

nodes inBug,.”

TERNAL_RANK. The PUs are addressed in increasing or-

In our implementation, we go through the data in a waveder, starting withPU, and ending withPUp_;. For each

like way: addressindPU; ., after PU; or vice-versa. In
addition we apply the following principles:

e Bucketing the questions and answers.
e Lazy processing of answers.
e Use of stacks.

The bucketingmeans that all questions or answers of
given type that all PUs are sendingRdJ; are pushed on

a common stack. Thkazy processingneans that ques-
tions and answers destined f8tJ; are not processed im-
mediately, but only once the wave through the data hi
PU; the next time. The use of stacks implies that quesAlorst-case Inputs.

PU;, first all answers to the 2-questions are processed and
popped from their stacks. Hereafter, the 2-questions to
PU; can be answered: for a questigh ;') asked byPU;/,
(4',mastj),destj)) is pushed on the stack of answers of
PU; .

7.2 Analysis

al’he correctness of the algorithm is guaranteed because it
only means a non-essential rescheduling of the order of op-
erations. So, it remains to analyze the time consumption
t%nd the paging volume.

At first it is not clear that the al-

tions or answers destined f&U; are popped, once they gorithm has linear time consumption: during Wave 2, one
are processed. The newly generated questions and answagarestion may generate a whole ripple of forwarded ques-
are pushed again, and for this the just freed space can tiens. Fortunately, for lists we have an analogue of the
reused. Thus, instead of reading one block of the memomyjangglider Lemma, Lemma 6, stating that while process-
and writing another, we may read and write the same blockig PU; during Wave 2, no two nodes in sorR&J;/, with

Going in waves through the PUs, and applying
the three given points, is not limited to list rank-
ing, but constitutes a good set of design princi-
ples for any external algorithm.

Details of Implementation. The algorithm consists of
three waves: the first starting BtJy, the second starting
atPUp_1 and the third starting &U, again. We describe
each of them.

Wave 1 consists of a kind of bucket-sort: for each Ngde

in PU;, which hassucdj) = j' in somePU;:, with i’ < i,

(j', 4, 1) is pushed on the stack of 1-questions to be asked
PU;» during Wave 2. During Wave 1 the order in which th
PUs are addressed is not so important, but it is profitab

to end inPUp_,, becausé’Up_; is the starting point of
Wave 2.
Wave 2 corresponds to the first for-loop fraaxTER-

NAL_RANK. The PUs are addressed in decreasing ord

starting with PUp_; and ending withPU,. For each

e

i’ < 1, address questions to the same nodelh. Hence,
a PU has to answer at mdstL-questions. In the following
we go in more detail.

During Wave 1 alkuccfields are paged-in. In Wave 2, all
succfields are paged-in again, to initialize theastfields,
but that s it. Sosucccontributeg2- P —1)-k to the paging
volume (read only).

Themastanddestfields are updated during Wave 2 and
Wave 3. So, each of them contribut@s P — 1) - k to the
paging volume (read and write).

In total, at most P — 1) - k 1-questions are generated,
(g:lch consisting of three integers. Each question must be
read again, then there is at most one answer of the same
%ze, which must be written and read once.

All nodes inPU;, with 1 < i < P ask one 2-question
consisting of two integers. Each question must be read
again, and then there is one answer of size three integers,

evlyhich must be written and read once.

PU;, first all answers to the 1-questions are processed anfi€orem 6 For ranking a set of lists of total lengthV,
popped from their stacks. Hereafter, the autoclean can BETERNAL_RANK has a paging volume of at mast- N —

performed. If after this, Nodg¢ hasmastj) = j', with

j" held byPU;,, then(j', j) is pushed on the stack of 2-

guestions to be asked BU;; during Wave 3. Now all 1-

18 - k. Of this amount3 - N — 2 - k is read-only paging.
The algorithm needs at mast NV storage space in total.

questions tdPU; can also be answered. Here we must b&roof: Adding together the above numbers gives an upper
careful: some of the questions are sent back to the askifignit of 28 - N — 25 - k. However, this includes a certain
PUs, others are forwarded. Consider a question by Nbdeamount of double counting, because the stacks shrink and

in PU;» to Nodej in PU;, and letj” = mastj) lie in PU;.
If 7 < 4', then(j', j",value+ destj)) is pushed on the
stack of answers dPU,,. Herevalueindicates the former
value of this field. On the other hand,:f > ', then in

expand in the same memory blocks. We show that by the
use of stacks, we save (N — k) in total.

During Wave 2, a PU never handles more thamswers
andk 1l-questions. As a result it produces at mbsdn-

the original algorithmpPU; would ask a second questionswers and: 2-questions. So, at most k integers are read,

during a later altrocleaning. So, on behalf of NgdePU;
pushes an updated questigti, j', value+ dest;)) on the
stack of 1-questions d?U; .

of which 5 - £ are written again. During Wave 3, each 2-
questionis read and answered as far as possible in the same
space. [l

11



So, we see that unlike the parallel algorithm, it is ndhave been answered, but are not yet processed. More pre-
problem at all to handle worst-case inputs. A comparisocisely, afterPU; is addressed, the stack has expected size
with Theorem 1 shows that even for bad inputs, the algmf approximately
rithm has less than one third of the paging volume of an

algorithm based on independent-set removal. 2 (N—k)+k- Z(ln Polnj—1).

Randomized Inputs. If the input may be assumed to j=1
be random, or if they are randomized first, then the per-
formance is even better. Here we give an estimate of tH
expected paging volume. High-probability bounds can He
derived as in the proof of Theorem 4.

e maximum is assumed foe= P/e: 2- (N — k) + N/e.

We see that the algorithm may indeed be expected to run
faster on random inputs, but the difference with the worst-

Theorem 7 For ranking a set of random lists of total case bound is not tremendous.

length N, EXTERNAL_RANK has an expected paging vol-
ume of less that8 - vV — 10 - k. Of this amount more than 73 Refinement

4 - N is read-only paging. The algorithm needs at most ) )
5.4 - N storage space in total. The paging volume for the randomized case can be reduced

by O(k -log P), at the expense of a similar amount of addi-
tional internal work. In comparison to the total®f% - P),
this is asymptotically negligible, but fd? < 100, this im-
Pproves the performance by a few percent.

Proof: The paging volume due teucc mastanddest is
the same as befor®.- N — 3 - k, of which2- N — k is

read-only. In the following we analyze the paging volum ) .
y g y paging After the autocleaning, all nodes have a master in a PU

due to the questions and answers. ith hiaher ind d therefore th ber of 2 i
During Wave 1, the expected number of pushed Y1th igherindex, and theretore the Number of 2-questions

: Pl AT . equalg P — 1) - k. There is a certain waste here: itis better
gupe;;ggsviﬁuur:?gﬁ; (%Ji ;)(N k)/2. This induces not to ask 2-questions that could have been answered inter-

During Wave 2PU; has to read-i/ (i + 1) 1-questions, nally. The easiest way to realize this, is to postpone auto-

which are answered or forwarded without causin addqlean. During the altrocleans of the first loop, this means
. . . . 9 fhat a certain number of guestions cannot be answered im-
tional paging volume. In total this contributes a paging vol-

. P11, -/ — P . -~ mediately, but the necessary search is internal, and the ex-
;Jvm_e Zf‘tlhr%e imes iy keif(i+1) = N=k-3iy 1/i =~ pected depth of search is small. Instead, a PU should per-
ne tfﬁ(')is(rem autoclean during the second loop, after processing
. . . answers to the 2-questions, and before answering the
as |t_a_15ked 1-quest|o_ns. Thatis(P—i—1)/P byPUi._In 2-questions. In this way, the number of 2-questions is re-
addition, the 2-questions are pushédor everyPU;, with duced byZP kfi~k-InP
1> 0._Generally, we must account.for these two operations We resurﬁ:ezthe complete external algorithm, missing de-
a paging volume ok - max{3 - SDPS_IZ —D/P, ?}' Overall il can be found in the above descriptions.
PUs this give@ - N +3- k.23 i/P = 23 N — k.

Of this N/3 + k is read-only. Algorithm EXTERNAL_RANK
During Wave 3, eacRU; answers as many 2-questionsl: fori = P —1downto 1 dowith PU;
as were posed to itt - g;, whereg; = E;':‘L 1/j. The a. Detem_nng all Qode;; with sucgj) in some
questions have size two, the answers size three. Inaddition, ~ PUir with i <. For each such node, push a
fori > 0, PU, readsk answers. That s, the paging volume question on the stack of 1-questionsRd;..
for PU; equalsk - max{3 - g;,2 - g; + 3}. Becausgy; ~ 2- fori=0to P —1dowith PU;
In P — Ini, we see that the first term dominates foK a. Forallnodeg setmastj) = sucd;)
P/e3. Thus, using ., g; = P — 1, anddist(j) = 1. _
b. Process all answers to 1-questions.
P—1 c. Answer all 1-questions and push an answer on the
Z max{3-¢;,2-¢9; +3} =~ stack of answers of the PU that asked the question,
i=0 or push a new question on the stack of 1-questions
P/e? of some intermediate PU.
2-P—2+4+3-P-(1—e ?)+ Z g o~ d. For every nodg, with mastj) in PU;
=0 with i’ > i, push a question on the stack
(5+e3)-P—2. of 2-questions oPU;.

3. fori = P — 1 downto O do with PU;

Here we approximated the sum ovgiby an integral, and a. Process all answers to 2-questions.
gi byln P —1Ini. Of this amount(2+e~3)- N is read-only. b. Perform autoclean.

The required storage space reaches its maximum during ¢- Answer all 2-questions and push an answer on the
Wave 3: after processing the first few PUs, most questions ~ Stack of answers of the PU that asked the question.

12



7.4 Experimental Results P T T%OG L2048
op

The algorithm has been programmed in C. Including 1| 363 346 —

lengthy comments and routines for generating lists, test- 16| 1393 87.8 12.2
ing and visualization the program has 462 lines. Ac- 32| 3239 96.6 129
tually all essential work is performed by less than 100 48 | 5378 106.9 129
lines of code. This conciseness means that optimiza- 64| 7641 1139 129
tion efforts can be focused. The program is avail- 80| 9556 114.0 121
able athttp://ww. npi - sb. npg. de/ ~j opsi / - 96 | 12104 1203 121
dprog/ prog. htm . 112 | 14583 1244 11.8

An important point is how the stacks are organized. In . .
our case, we (de-) allocated chunks of the size ofamemoI ble 4: Pgrformance Of the external Ilst-rank!ng a!go-
page to (from) one of the sub-stacks (for example to thidthm. The first °9'“m” gives; _the secqnd the t|me_ (in
stack of 1-questions tBUy,). At the end of a full page of seconds) for ranking a random lists of siZ8 - P; the third

a sub-stack, it is indicated where the stack continues. THf§'umn the time per million nodes; and the last column
costs only one position out of every memory page (in ol number that is closely related to the paging volume per
case a page consists of 2048 integers). node.

We did not observe an improvement by allocating larger . 0 o
chunks of memory to the sub-stacks. Allocating largep-0045 - Siz§/'10” seconds, whersizeis the total number of

chunks should be profitable if there would be a large dif?Ytes thathave to be stored. Measured values are given in
ference between random and streamed paging operatioﬁ@ple 5.

We measured a difference between the costs of these types size/10° time
of access of about 50%, which apparently does not out- 500 | 0.0158
weigh the additional cost of having larger “loose ends”. In 1000 010181
the program, this virtual page size can be modified with a 1500 0'0202
parameter. 2000 | 0.0226

Another point is memory-alignment. We took care to
arrange our stacks so that the virtual pages coincide witfable 5: Time (in seconds) per paging operation for various
physical pages. This reduced the overall time consumptigfizes of the data space (in MB).
by 15%.

The program was designed to handle random inputs, andIn our case we have estimatstze = 4 -4 - N (the
that is why, next to the three fields of sid&for sucg mast ~succfields are only used initially and the full size of the
anddest we only need a stack of siZg3 - N. In practice, stack is used only for a very short period). Thus, we get
using little additional memory is also pleasant because thisp(P) = top(4-2°-P) ~ 0.0135+72-10°- P. If we di-
allow larger problems to be solved on a given hardware. Vide the ranking times bip(P) and multiply by2048/N,

We have measured the time consumption of our progral® g€t the estimates for the paging volume per node, which
on a standard work-station: a SUN UltraSparc with a clocRre given in the last column of Table 4. This is an underes-
rate of 175Mhz, a 64MB main-memory and a 2.2GB Swaﬁ'mate, because the first access to a page is much cheaper
partition on the hard-disc. Notice that it was never our godan later accesses, and the read-only operations cost only
to break a benchmark for external list ranking: our goat/3 Of the general operations. So, on basis of Theorem 7,
was to design a better algorithm. Clearly, one would obtaify® Would expect values of around 12. This nicely coin-
much better performance with a faster hard-disc, and evé#fles with the obtained values. Even more importantis that
more so if several hard-discs were used. If the three larg@W. finally, we have obtained values that are more or less

fields and the stack are scattered avdiscs, than it should constant, as they should be. _ _ _
be possible to gain almost a factr On the same machine, the sequential algorithm requires

2.37-10"% - N seconds as long as it is running internally.

choice is non-critical: as long sis not chosen too large or FOF £ = 64 our algorithm is45 times slower.  On the
extremely small, we observed only minimal fluctuations irpther_hand,;;‘ the sequential algorithm were to be applied
the time consumption. In Table 4 we give some experimeri@ @ list of 2> nodes, it would make two page faults per
tal results, measured fér= 22° (inputs were generated on node (one for finding the initial node, and one for the up-
a machine with 1GB of RAM). In the second column, wedates). For that case, we can e_st|m_ate that it takes about
give the time per million nodes. For the whole range thesg * 0-016 = 0.032s per node, which i800 times slower
numbers continue to increase, which is disappointing. ~ than our algorithm.

After double-checking all proves of linearity, we discov- )
ered that the continuing deterioration is caused by an if-> Tree Rooting
crease in the time per paging operation. It turns out tha&s with the parallel algorithm, the external algorithm can
this time is quite accurately described ky = 0.0135 + be applied to random trees without modification. The ex-

We tested our program for sevetgland found that its

13



pected time consumption is the same as before, but th§] Atallah, M.J., S.E. Hambrusch, ‘Solving Tree Prob-

worst-case performance may be very bad, and not even if
the indices are randomized can we give a high-probability

guarantee. For the cage = 8, we have tested 20 ran-

dom inputs from each of the categories that were listed irl4]
Table 3: list, binary trees and tailed stars. The results are
given in Table 6. As in Table 3, we see that the difference
between lists and binary trees is small, but that tailed stars
may be distributed such that the time considerable exceeds
the expected value. For this kind of problems, we also nee?

a larger stack.

mintime maxtime av.time st. dey.
lists 496 506 500 3
binary trees| 498 511 504 5
tailed starts| 387 884 530 130

Table 6: Time consumption in seconds for different types

of input for P = 8 andk = 22°.

8 Conclusion

New algorithms were presented for parallel and external
list ranking. On the Intel Paragon the parallel algorithm is

better than any other in an intermediate rangé ahd P

values. The external algorithm is more of a jump forward.
It appears to be several times faster than the best previous
algorithm. Both algorithms can also be applied to trees,

and stand out by their simplicity and memory-efficiency.
We have observed that the time for performing a pag-[9] Cole, R., U. Vishkin, ‘Deterministic Coin Tossing and

ing operation increases linearly with the size of the used
data space. This implies that minimizing the paging vol-
ume should not be the only guiding principle when design-
ing external algorithms. In our case we have succesfully
minimized the size of the data space by using stacks, evgrO]
though this does not lead to a minimal paging volume in
all steps. This slightly larger paging volume is more than

compensated for by the cheaper paging operations.

We do not believe that the algorithms can be made de-
terministic without destroying their performance. Still it
would be interesting to look deeper into this. A secondil1]
open question is whether it is possible to modify the algo-
rithms so that trees can be handled in a way that guarantees

the expected time consumptions with high probability.

Acknowledgement

Tillmann Seidel assisted me with the programming of the
parallel algorithms. The parallel programs where run om3]

the Paragon at the KFA in Julich.

References

[1] Anderson, R.J., G.L. Miller, ‘A Simple Randomized

Parallel Algorithms for List-Ranking,Information
Processing Letters33(5), pp. 269-273, 1990.

[2] Anderson, R.J., G.L. Miller, ‘Deterministic Parallel

List Ranking, Algorithmicg 6, pp. 859-868, 1991.

14

lems on a Mesh-Connected Processor Arrbyfor-
mation and Contrql69, pp. 168-187, 1986.

Baumker, A. W. Dittrich, F. Meyer auf der Heide,
‘Truly Efficient Parallel Algorithms:-Optimal Mul-
tisearch for an Extension of the BSP-Modé?foc.
European Symposium on AlgorithmENCS 979,
Springer-Verlag, pp. 17-30, 1995.

] Berkman, O., U. Vishkin, ‘Recursive Star-Tree Par-

allel Data Structure,SIAM Journal on Computing
22(2), pp. 221-242, 1993.

[6] Céceres, E., F. Dehne, A. Ferreira, P. Flocchini, I.

Rieping, A. Roncato, N. Santoro, S.W. Song, ‘Effi-
cient Parallel Graph Algorithms for Coarse Grained
Multicomputers and BSPProc. ICALP 97 LNCS,
Springer-Verlag, 1997.

[7]1 Chernoff, H., ‘A Measure of Asymptotic Efficiency

for Tests of a Hypothesis Based on the Sum of Obser-
vations,” Annals of Mathematical Statistic3, pp.
493-507, 1952.

[8] Chiang, Y-J, M.T. Goodrich, E.F. Grove, R. Tamassia,

D.E. Vengroff, J.S. Vitter, ‘External-Memory Graph
Algorithms,’ Proc. 6th Symposium on Discrete Algo-
rithms pp. 139-149, ACM-SIAM, 1995.

Accelerated Cascades: Micro and Macro Techniques
for Designing Parallel AlgorithmsProc. 18th Symp.
on Theory of Computingp. 206-219, ACM, 1986.

Cole, R., U. Vishkin, ‘Approximate Parallel Schedul-
ing, Part I: the Basic Technique with Applications to
Optimal Parallel List Ranking in Logarithmic Time;’
SIAM Journal on Computingl7(1), pp. 128-142,
1988.

Cole, R., U. Vishkin, ‘Faster Optimal Parallel Pre-
fix Sums and List Rankinglhformation and Contral
81, pp. 334-352, 1989.

2] Cormen T.H., C.E. Leiserson, R.L. Rivedntro-

duction to AlgorithmsMIT Press, Cambridge, MA,
1990.

Dally, W., C. Seitz, ‘Deadlock Free Message Routing
in Multiprocessor Interconnection Network$EEE
Transactions on Computers36(5), pp. 547-553,
1987.

4] Dehne, F., W. Dittrich, D. Hutchinson, ‘Efficient Ex-

ternal Memory Algorithms by Simulating Coarse-
Grained Parallel AlgorithmsProc. 9th Symposium
on Parallel Algorithms and Architecturepp. 106—
115, ACM, 1997.



[15] Dehne, F., S.W. Song, ‘Randomized Parallel Lisf29] McDiarmid, C., ‘On the Method of Bounded Dif-

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Ranking for Distributed Memory Multiprocessors,’
Proc. Asian Computer Science Conferent®CS
1179, pp. 1-10, 1996.

Feller, W.,An Introduction to Probability Theory and

Its Applications Volume I, Third Edition, John Wiley [30]

& Sons, New York, 1970.

Gibbons, A., W. Rytter, ‘An Optimal Parallel Al-

gorithm for Dynamic Evaluation and its Applica- [31]

tions,” Proc. 6th Conference of Foundations of Soft-
ware Technology and Theoretical Computer Scignce
LNCS 241, pp. 453-469, Springer-Verlag, 1986.

Gibbons, A., W. Rytter=fficient Parallel Algorithms
Cambridge University Press, Cambridge, 1988.

Gibbons, A.M., Y. N. Srikant, ‘A Class of Problems

Efficiently Solvable on Mesh-Connected Computer£33]

Including Dynamic Expression Evaluatioiforma-
tion Processing Letter82, pp. 305-311, 1989.

Hagerup, T., C. Rub, ‘A Guided Tour of Chernoff
Bounds, Information Processing Letters33, 305—
308, 1990.

Harel, D., R.E. Tarjan, ‘Fast Algorithms for Finding (35]

Nearest Common Ancestor§IAM Journal on Com-
puting 13, pp. 338-355, 1984.

Hirschberg, D.S., A.K. Chandra, D.V. Sarwate,
‘Computing Connected Components on Parallel
Computers,Communications of the ACN22(8), pp.
461-464,1979.

Hsu, T.-s, V. Ramachandran, ‘Efficient Massively

Parallel Implementation of some Combinatorial Al-[37]

gorithms, Theoretical Computer Sciencks2(2), pp.
297-322,1996.

JaJa, J.,An Introduction to Parallel Algorithms
Addison-Wesley Publishing Company, Inc., 1992.

Kosaraju, S.R., A.L. Delcher, ‘Optimal Parallel Eval-
uation of Tree-Structured Computations by Raking,’
Proc. 3rd Aegean Workshop on AlgorithmsNCS
319, pp. 101-110, Springer-Verlag, 1988.

Kruskal, C.P., L. Rudolph, M. Snir, ‘The Power of
Parallel Prefix,IEEE Transactions on Computeis-
34, pp. 965-968, 1985.

[40]

Leighton, T.,Introduction to Parallel Algorithms and
Architectures: Arrays-Trees-HypercubeMorgan-
Kaufmann Publishers, San Mateo, California, 1992.

(32]

(34]

(36]

(38]

(39]

ferences,’ inSurveys in Combinatoricsl. Siemons,
editor, 1989 London Mathematical Society Lecture
Note Series 141, pp. 148-188, Cambridge University
Press, 1989.

Miller, G.L., J.H. Reif, ‘Parallel Tree Contraction and
its Applications,’Proc. 26th Symposium on Founda-
tions of Computer Sciencpp. 478-489, IEEE, 1985.

Reid-Miller, M., ‘List Ranking and List Scan on the
Cray C-90, Proc. 6th SPAApp. 104-113, ACM,
1994.

Ryu, K.W., J. JaJa, ‘Efficient Algorithms for List
Ranking and for Solving Graph Problems on the Hy-
percube, IEEE Transactions on Parallel and Dis-
tributed System3a/l. 1, No. 1, pp. 83-90, 1990.

Schieber, B., U. Vishkin, ‘On Finding Lowest Com-
mon Ancestors: Simplification and Parallelization,’
SIAM Journal on Computingl7, pp. 1253-1262,

1988.

Setubal, J., J. Meidanigntroduction to Computa-
tional Molecular Biology PWS Publishing Company,
Boston, 1997.

Sibeyn, J.F., ‘List Ranking on Interconnection Net-
works,’ Proc. 2nd Euro-Par ConferenceNCS 1123,
pp. 799-808, Springer-Verlag, 1996. Full version in:
Technical Report 11/1995, SFB 124-Déniversitat
Saarbriicken, Saarbriicken, Germany, 1995.

Sibeyn, J.F., ‘Better Trade-offs for Parallel List Rank-
ing, Proc. 9th Symposium on Parallel Algorithms and
Architecturespp. 221-230, ACM, 1997.

Sibeyn, J.F., F. Guillaume, T. Seidel, ‘Practical Par-
allel List Ranking,'Proc. 4th Symposium on Solving
Irregularly Structured Problems in ParallelLNCS
1253, pp. 25-36, Springer-Verlag, 1997.

Sibeyn, J.F.,, M. Kaufmann, ‘BSP-Like External-
Memory Computation,Proc. 3rd Italian Conference
on Algorithms and ComplexitiNCS 1203, pp. 229-
240, Springer-Verlag, 1997.

Tarjan, R.E., U. Vishkin, ‘Finding Biconnected Com-
ponents and Computing Tree Functions in Logarith-
mic Parallel Time,'SIAM Journal on Computind.3,

pp. 862—-874, 1984.

Valiant, L.G., ‘A Bridging Model for Parallel Compu-
tation,’ Communications of the ACN33(8), pp. 103—
111, 1990.

[41] wyllie, J.C., The Complexity of Parallel Computa-

McColl, W.F., ‘Universal Computing, Proc. 2nd
Euro-Par Conference LNCS 1123, pp. 25-36,
Springer-Verlag, 1996.

15

tions PhD Thesis, Computer Science Department,
Cornell University, Ithaca, NY, 1979.



