
From Parallel to External List Ranking

Jop F. Sibeyn�

Abstract
Novel algorithms are presented for parallel and external
memory list-ranking. The same algorithms can be used for
computing basic tree functions, such as the depth of a node.

The parallel algorithm stands out through its low mem-
ory use, its simplicity and its performance. For a large
range of problem sizes, it is almost as fast as the fastest
previous algorithms. On a Paragon with 100 PUs, each
holding106 nodes, we obtain speed-up 25.

For external-memory list-ranking, the best algorithm so
far is an optimized version of independent-set-removal.
Actually, this algorithm is not good at all: for a list of
lengthN , the paging volume is about72 � N . Our new
algorithm reduces this to18 � N . The algorithm has been
implemented, and the theoretical results are confirmed.

1 Introduction
A linked list, hereafter justlist, is a basic data structure: it
consists of nodes which are linked together, such that ev-
ery node has precisely one predecessor and one successor,
except for theinitial node, which has no predecessor, and
the final node, which has no successor. Connected to the
use of lists is thelist rankingproblem: computing for each
nodei the final nodej of its list, and the number of links
betweeni andj. Once a set of lists has been ranked, it can
be turned into an array, on which many operations can be
performed more efficiently.

Parallel and external list ranking is a challenge, be-
cause it is hard to obtain good performance. In this
paper we present novel algorithms for performing list-
ranking on various models of parallel computers (ranging
from PRAMs to practical parallel systems), and in external
memory. The simplicity of the presented algorithms fa-
cilitates their implementation. At the same time they are
highly efficient and out perform existing algorithms. In
particular the external-memory algorithm is several times
faster than the best existing algorithm. It requires three
passes over the input, only one more than sorting.

The central point in the algorithms presented is a basic
step that allows for an efficient split-off of a parametrizable
fraction of the nodes. This may sound familiar, but it is
done in a completely new way. A second important point
(for the parallel algorithms) is that there are algorithms that
solve a problem with many short lists considerably faster
than an arbitrary list-ranking problem.

�Max-Planck-Institut für Informatik, Im Stadtwald, 66123
Saarbrücken, Germany. E-mail: jopsi@mpi-sb.mpg.de. URL:
http://www.mpi-sb.mpg.de/�jopsi/

1.1 Motivation

There are several reasons for performing a detailed study
of the list-ranking problem for parallel and external appli-
cations. We distinguish three types of motivation, which
are discussed hereafter:

� Theoretical interest.

� Benchmark character for the class of irregular prob-
lems.

� Practical applications as a subroutine in other prob-
lems.

The theoretical interest of list-ranking is evident: it is
one of the most basic problems, and in the theory of parallel
computation (and thus by “inheritance” also in the theory
of external computation). Therefore it has been considered
extensively [41, 9, 10, 11, 1, 2]. List ranking appears as a
subroutine in many graph problems particularly because it
is the key ingredient of the Euler-tour technique [39] (see
[24] for a detailed description).

List-ranking has linear sequential complexity, and can be
solved very efficiently by an almost trivial algorithm. This
makes it very hard to achieve good speed-ups on a parallel
computer, and means that by comparison one may expect
to lose a rather large factor when solving the problem ex-
ternally: the communication or paging can impossibly be
hidden by the computation. Because the problem is in ad-
dition very irregular, we believe that the performance ob-
tained for the list-ranking problem gives a kind of a lower
bound on the performance that may be expected for general
purpose parallel or external computing.

The above two reasons are already motivation enough.
However, the list-ranking problem also has real practical
importance. Here we must be extremely careful not to
confuse applications in theory and applications in practice.
For example, one might believe that list-ranking is an es-
sential ingredient for rooting the trees that appear in most
connected-components algorithms based on [22]. How-
ever, in practice most nodes of these trees will lie close
to a root (if necessary one could randomize the indices of
the vertices), and it will be much faster to apply a variant
of pointer-jumping. Expression evaluation [30, 17, 25] is
another pseudo-application: probably one needs the Euler-
tour technique for solving this problem, but where do we
find expressions that are so big that they do not fit inter-
nally, or that we would like to evaluate in parallel?

A true application, which is important in its own right,
which appears to not have alternative easier solutions, and

1

which one would really like to solve for very big problem
sizes, is found in the lowest-common ancestor,LCA, prob-
lem. The LCA problem has wide applications. A recent
and outstandingly important application of the problem is
for performing queries on philogenetic trees in computa-
tional biology [34]. The LCA problem is to preprocess
the entries of a tree such that afterwards, for any pair of
nodes(i; j), their lowest-common ancestorLCA(i; j) can
be computed in constant sequential time. Such a prepro-
cessing pays off if one has to answer many of these queries,
which appears to be the case for philogenetic trees. Clearly
the amount of data in this application may be overwhelm-
ing, and thus there is a natural need for solving the LCA
problem in parallel or in external memory. In a parallel
context one may wonder why one cannot use the parallel
computer for the later queries (though it may not be avail-
able all the time). But, in an external context, the goal is
highly desirable: after preprocessing, the later queries can
be performed with three accesses to the external memory,
whereas searching through a tree requires at least some log-
arithmic number of accesses.

The LCA problem has been considered by several au-
thors [21, 33, 5]. The algorithm of Berkman and Vishkin
[5] is really simple and easy to implement. In the first stage
of this algorithm, one has to compute an “Euler array” and
the depth of every node. In the second stage one has to
solve a range-minima problem (a complete description is
given in [24]). The range minima problem can be solved
by computing prefix- and suffix-minima, well-structured
problems that can be solved efficiently by parallel com-
puters and in external memory. So, the total time for the
LCA problem is, to a large extent, determined by the time
for computing the Euler array, which boils down to solv-
ing a list-ranking problem on an Euler tour of the tree. The
depths can be computed by keeping track of some addi-
tional information.

1.2 Previous Results

PRAMs. On PRAMs, the basic approach is ‘pointer jump-
ing’ [41]. This technique can be used in a list-ranking al-
gorithm which runs inO(logN) time withO(N � logN)

work on an ‘EREW’ PRAM. Using “accelerated cascad-
ing”, the work of this algorithm is reduced to the opti-
malO(N), while maintaining running timeO(logN) [9].
These improved algorithms start by repeatedly selecting an
“independent set”, which reduces the size of the graph by a
constant factor in every phase. Then, if it has been reduced
to N= logN , pointer jumping is applied. Numerous vari-
ants of this idea have been developed. More references are
given in [24]. A variant of [9] and [2] tuned towards the
requirements of the BSP model has recently been given in
[6].

Meshes, Hypercubes, On parallel computers that
communicate through an interconnection network, it is
hard to achieve anything worth mentioning: by its nature,
list ranking is an extremely non-local problem. For hyper-

cubes, Ryu and JáJá [32] have shown that linear speed-up
can be achieved if every PU holds at leastk = P

� nodes.
HereP is the number of PUs, and� > 0 a constant. Using
randomization, the problem can be solved in(2+ o(1)) � k,
if k = !(log

2

P) [35].
The list-ranking problem on meshes has been considered

in [3, 19, 35]. O(n) algorithms are derived for ranking a
list of lengthN = n

2 on two-dimensionaln � n meshes.
The algorithms in [35] give the best constants. If every
PU holdsk nodes, it takes17 � k � n + O(n) steps beating
pointer jumping for practical values ofk andn. Randomly,
10 � k � n + O(n) steps are sufficient [35]. Fork = !(1),
near-optimal performance is achieved:(1=2+ o(1)) � k � n

steps.

Earlier Practical Results. Several recent papers report
on implementations of list-ranking algorithms on parallel
computers.

Experiences with algorithms based on the independent-
set-removal idea are described in [23] (for the MassPar)
and [37] (for the Paragon). Asymptotically these algo-
rithms are optimal, but the involved constants are just too
large to achieve really convincing results. For example, on
a Paragon with 100 PUs, the maximum obtained speed-up
was 14 [37].1 The version of independent-set removal pre-
sented in this paper is better: it achieves speed-up17 on a
Paragon withP = 100 andk = 10

6.
Reid-Miller [31] describes a randomized algorithm in

the spirit of [2] on a Cray T-90. A similar algorithm has
been implemented on the Paragon by Sibeyn e.a. [37]. This
“sparse-ruling-set” algorithm is unbeatable when either the
start-up costs are (relatively) low, or when the load (the
numberk of nodes per PU) is extremely high: it achieves
speed-up26 on a Paragon withP = 100 andk = 10

6, for
largerk the speed-up would be much higher.

In [36] algorithms are given that achieve a better trade-
off between the number of required start-ups (the time for
initiating the sending of a packet) and the routing volume
(the total number of integers sent and received by each PU).
In this way we obtain better speed-ups for practical values
of k. The most original algorithm in this paper is the “one-
by-one cleaning” approach, which consists ofP�1 rounds,
in which PUs only communicate in pairs. This is one of the
very few algorithms which does not require an all-to-all
routing at the end of every round.

External Memory Algorithms. In comparison to the
numerous parallel results, there are very few results on
list-ranking in the domain of external computation. Ac-
tually, we are not aware of any algorithms that go beyond
simulation of PRAM algorithms. In [8] the application of
the provided PRAM simulator directly to the algorithms of
[1, 10] is suggested. Asymptotically this is optimal, but one
cannot expect to obtain good constants with such a coarse

1All speed-up results are given with respect to an optimized version
of the simple sequential algorithm running on a single PU of the Paragon.
For problems that are so large that they do not fit internally,the results are
scaled-up linearly for the sake of comparison.

2

approach: every single PRAM instruction requires several
sorts and scans of all the involved data.

Still, with some obvious optimizations, it appears that
until now this is essentially the best idea. Instead of full
sorting operations, one should perform bucket sorts, and for
the selection of the independent set it is better to perform
the much simpler random coin tossing. In Section 3, we
consider this algorithm more closely, to obtain an estimate
of the number of required paging operations.

1.3 New Results

The algorithms of this paper are based on a further devel-
opment of some of the ideas from [36], most notably from
“repeated-halving”. However, different from [36], in our
new algorithm we repeatedly perform a reduction step as
in independent-set removal. This novel and highly efficient
way to split off a parametrizable fraction of the nodes is
common to the parallel and the external algorithm, but in
the details they are quite different.

The parallel algorithm uses pointer jumping for chasing
down sets of lists with small expected length. This goes
very fast, because the number of participating nodes de-
creases rapidly. For the final subproblem we use one-by-
one cleaning from [36], which, for general problems, is far
more efficient than pointer jumping. Ifd is the number
of performed reduction rounds, then the algorithm requires
12 � d all-to-all routing operations. If the reduction factors
are appropriately chosen, then the resulting routing volume
can be bounded to6 � (1+ lnP=d) � k. Thus, we establish a
trade-off similar to that in [36]. On a Paragon withP PUs
we obtain speed-up up aroundP=3. For largeP the speed-
up is somewhat smaller due to the start-up losses: On a
Paragon withP = 100 andk = 10

6 the speed-up is25.
The parallel algorithm is interesting due to its approach

and simplicity, but does not really give an improvement
over existing results. Our external algorithm is more of
a breakthrough. In this algorithm, the reduction factors are
chosen such that in every iteration a chunk of the size of
the memory is split-off. Operations on this chunk are in-
ternal. The whole algorithm requires three passes over the
input, going back-and-forth in a wave-like fashion. “Ques-
tions” and “answers” are pushed on stacks, and popped as
soon as the next wave comes by. Our analysis shows that
the totalpaging volume(the number of integers that have to
brought from the hard-disc into the main-memory) is less
than 18 � N . Our version of independent-set removal in
Section 3 has paging volume72 � N , and it appears that
this cannot be improved much further. To be complete, we
mention an experimental result (though we think it may be
hard to judge its value): ForN = 64 �2

20, our algorithm re-
quires 5740s. This was achieved on a 175Mhz UltraSparc,
whose hard-disc requires about 11ms for reading an 8KB
page and 16ms for writing one. Internally the simple se-
quential algorithm runs 45 times faster, and externally it
runs 300 times slower.

All results are given for randomly arranged lists. In the
parallel algorithm, a random distribution is essential for

balancing the work that the PUs have to do in each round,
and for balancing the size of the packets during the com-
munication rounds. With a bad distribution of the nodes,
the total work of the algorithm also increases, but only by
a small factor: for the external algorithm,21 �N is a worst-
case bound on the paging volume. The difference with the
average-case bound is so small, that it does not pay off to
first randomize the input.

A further strong point of the algorithms is that they re-
quire only little additional space: our implementation of the
parallel algorithm requires storage for3:6 �N integers, the
external algorithm for5:4 �N integers This is hardly more
than the sequential algorithm which requires3 � N (and
much less than that required by independent-set removal).

Finally, the same algorithms can be used for finding the
roots and depths of the nodes in a set of trees. We will
commonly refer to this task bytree rooting. Most other
techniques become inefficient or break-down. The major
exception is pointer jumping, but this technique is very in-
efficient in itself when the trees are not shallow. Thus our
algorithms allow the computation of some basic tree func-
tions without applying the Euler-tour technique, saving the
involved overhead (more than a factor two).

2 Preliminaries

Problem Definition. The input is a set of lists or trees of
total lengthN . Every node has a pointer to a successor. The
final nodes can be recognized by the distinguished value of
their successor field. The lists are given by the array of their
successor values,succ. The output consists of two arrays,
mastanddest. Here, for every0 � j < N , mast[j] should
give the index of the final node of the list or tree to which
j belongs, anddest[j] should give the number of links be-
tweenj andmast[j]. In our parallel algorithms, the number
of PUs isP , and every PU holds exactlyk = N=P nodes
of the lists.PU

i

, 0 � i < P , holds the nodes with indices
j �P + i, for all 0 � j < k. Unless indicated otherwise, we
assume that the nodes are indexed in a random way. Notice
that we donotassume that the lists or the trees are random,
the assumption is made only for the indexing.

Cost Model. Except for a PRAM section, we will express
the quality of our parallel algorithm by giving itsrouting
volume, the number of integers sent and received by a PU,
and the number of all-to-all routing operations.2 Both these
notions are well-defined, and can be determined precisely.
Actually, the time for the internal work may be more im-
portant. For example, on the Paragon, which has a power-
ful network, the communication time may account for less
than 10% of the total time consumption. But, in all list-
ranking algorithms the internal work is proportional to the
routing volume, and it is hard to give a definition of the in-
ternal work that is meaningful up to the constants. In the

2An all-to-all routing is a communication pattern in which every PU
has to send some packets to all other PUs. It is the typical pattern that
arises when a shared-memory algorithm is run on a distributed-memory
machine.

3

particular case of list ranking, our cost measure has proven
to be a fairly reliable instrument for predicting the practical
behavior of algorithms [36]. Our cost model can be viewed
as a simplification of BSP or BSP� [40, 28, 4].

The quality of the external algorithms is measured by
determining theirpaging volume, the number of integers
that have to be brought from the hard-disc into the main-
memory. Actually, we are slightly more precise, by dis-
tinguishing between pages from which data are only read,
and those on which data are (also) written. In general, one
should also take into account the internal work of external
algorithms, but in the case of list ranking, where the work
is linear in the paging volume, it is fully justified to neglect
it (only about 2% of the time consumption of our external
algorithm is due to internal work).

Basic Assumptions. In the analysis of our parallel algo-
rithm, we will mostly assume thatN is much larger than
P . For all-to-all communication patterns, it is even impor-
tant thatk is considerably larger thanP , so that the start-up
costs for sending packets can be amortized.

In the context of the external algorithms, we denote the
memory size byM , and the page size byB (both given in
integers). Furthermore, it is convenient to define

P = 2 � c �N=M;

k = N=P:

Herec is some small constant, later on we will takec = 3.
If an external algorithm is obtained as a simulation of a par-
allel algorithm, thenP corresponds to the number of PUs
in the parallel algorithm [38, 14]. Throughout this paper
we assume, that

P �B < M=2: (1)

This implies that the main memory is large enough to ac-
commodatec integers for thek input elements the algo-
rithm is currently working on, plus one page for every
“PU”. These pages contain “messages” from the other PUs,
or are used to write away messages to other PUs. It also
means that bucket sort withP buckets can be performed
with one scan through the data and linear work.

Theoretically, (1) is a limitation, but practically it is not:
nowadays even a small PC hasM = 4 � 10

6, and a typi-
cal value forB is 2000 or smaller. So, (1) means that we
should not try to handle problems that involve more than
1000 � c � k = 500 �M data. Considering that currently
RAM costs less than 50 times as much as hard-disc stor-
age, such a system would be very unbalanced.

Probability Theory. In addition to some well-known re-
sults we will need

Lemma 1 (Azuma Inequality) [29] Let X
1

; : : : ; X

m

be
independent random variables. For eachi, X

i

takes val-
ues in a setA

i

. Let f :

Q

i

A

i

! R be a measurable
function satisfyingjf(x) � f(y)j � c, whenx andy differ
only in a single coordinate. LetZ be the random variable
f(X

1

; : : : ; X

m

). Then for anyh > 0,

P [jZ �E[Z]j � h] � 2 � e

�2�h

2

=(c

2

�m)

:

3 Independent-Set Removal
We describe the best version of independent-set removal
we can think of. As a parallel algorithm this version may
be almost competitive with other parallel list ranking al-
gorithms. However, in the external algorithm, it is essen-
tial that the active nodes stand in a compact interval of the
memory at all times. This rearrangement requires consid-
erable extra work and some additional data structures. This
makes the already rather weak performance even worse.

3.1 Parallel Algorithm

In the independent-set-removal algorithm, reductions are
repeated until the problem size has become sufficiently
small to terminate with some other algorithm. Then the
excluded nodes are reinserted in reverse orde. At all times,
there is a set of active nodes. Initially all non-final nodes
are active. In Phaset of the reduction we perform

Algorithm REDUCTION(t)

1. Each active node chooses independently a 0 or a 1
with probability 1/2. Each nodep that has chosen a 1
sends a packet tomast(p).

2. If a nodep which selected a 0 receives a packet, then
it is inserted in the list of nodes that were excluded dur-
ing Phaset, and is excluded from the list of active nodes.
It sendsmast(p) anddest(p) back to the sending node.
Otherwisep sends back the number�1, to indicate that
it was not excluded.

3. If an active nodep receives�1, then it does nothing.
Otherwise it uses the received data to updatemast(p)
anddest(p).

Every phase reduces the problem size to about3=4. The
reinsertion is even simpler. Here we assume, by induction,
that for all nodesp that were still active during the corre-
sponding reduction phase,mast(p) gives the index of the
last node of the list anddest(p) the distance thereto.

Algorithm REINSERTION(t)

1. Each node that was excluded during Phaset sends a
packet to its master.

2. Each nodep that received a packet sends back
mast(p) anddest(p).

3. Each nodep that was excluded during Phaset uses
the received data to updatemast(p) anddest(p).

Lemma 2 A parallel implementation of the independent-
set-removal algorithm has routing volume(8 + o(1)) � k.
Each round requires4 all-to-all routings.

Proof: In Step 1 ofREDUCTION, 1=2 of the nodes sends
a packet of size 1. In Step 2,1=4 sends a packet of size
1, and1=4 of size 2. In Step 1 ofREINSERTION, 1=4 of
the nodes sends a packet of size1. In Step 2,1=4 sends a
packet of size 2. Together, this gives a volume of2 � k for
the first phase. Multiplying by 4 for the later phases, we
obtain8 � k.

4

log

2

k P = 4 P = 16 P = 64

10 0.03 0.02 0.01
12 0.09 0.06 0.04
14 0.18 0.13 0.09
16 0.22 0.19 0.16
18 0.22 0.20 0.17
20 0.21 0.20 0.18

Table 1: Measured efficiencies of independent-set removal,
running on an Intel Paragon for various numbers of PUs,
and various values ofk. In all cases we performed ten re-
duction phases.

About 5 reduction phases are needed for reducing the
problem size by a factor4 (because0:755 = 0:24), thus for
a given reduction, the number of all-to-all routings is of the
same order as in four-reduction from [36], and the routing
volume is only slightly larger.

3.2 Experimental Results

In Table 1, we provide a few examples of measured values
of the efficiency of the algorithm, where byefficiencywe
meanspeed-up=P = Tseq=(P � Tpar). As a basis for the
computation of our efficiencies, we assumed thatTseq, the
sequential time, equals3:9 � 10�6

�N , for all N .
A plot of the speed-ups is given in Figure 1. The given

10.0 12.0 14.0 16.0 18.0 20.0

10.0

30.0

50.0

70.0

90.0

110.0

130.0

0.26

2.19

4.13

6.06

8.00

9.93

11.86

13.80

15.73

17.67

19.60

21.54

Figure 1: Experimental results for independent-set re-
moval: the x-axis giveslog k, the y-axisP , and the gray-
tones the speed-up.

algorithm is much better than the one that was described
in [37], but still cannot compete with four-reduction. The
algorithm of Section 6 also performs better.

3.3 External Algorithm

In the parallel algorithm, we maintained a list of active
nodes. Hereby, we did not need to rearrange the remain-

ing active nodes after each application ofREDUCTION and
REINSERTION. The fact that the active nodes are standing
spread-out leads to poor cache behavior (as opposed to the
algorithm presented in this paper!), but is still preferable to
a rearrangement.

In an external algorithm, we have no choice: the active
nodesmustbe rearranged. Unfortunately, this has unpleas-
ant consequences: either the nodes must be renumbered,
or it becomes non-trivial to find the data of the nodes (ini-
tially, the data related to Nodej were stored in positionj
of the respective arrays). Renumbering is a lot of work.
An alternative is to apply a variant of hashing that has a
collision-handling strategy that guarantees that data are not
stored too far away from the expected position.

In the following we do not give a detailed description of
the algorithm, but rather an optimistic estimate of its pag-
ing volume. Particularly, we assume that the hashing does
not require any slack, which is obviously not true. Further-
more, we neglect all slack that is required in order to ac-
commodate data structures of randomly fluctuating sizes.

Lemma 3 An application ofREDUCE together with the re-
quired rearrangement on a set of lists with a total ofN

nodes, requires a paging volume of about9:5 �N .

Proof: Step 1, 2 and 3 can be performed with two passes
through the data. In each pass, themastand destfields
are read and written, and in addition, the “packets” must
be written and read once. This gives a paging volume of
(2 � 2+ 0:5 � 2+ 0:25 � 4+ 0:25 � 2) �N = 6:5 �N . The re-
arrangement implies that all data must be read and written
at least once. Together, this means that4 �N numbers must
be read and written altogether. Furthermore, the prior ar-
rangement must be recorded, which requires additionalN

writing operations. However, by overlapping this operation
with the second pass through the data, the reading can be
saved.

Lemma 4 The reversal of the operations in Lemma 3 by
applyingREINSERT and a restoration operation, requires
a paging volume of about8:5 �N .

Proof: For the restoration,3 �N integers must be read and
2 � N written. These operations can be overlapped with
Step 1 and part of Step 2 ofREINSERT. But, a second
pass through the data is needed to complete Step 2 and for
Step 3. This adds a volume of(2 + 0:25 � 2+ 0:25 � 4) �N .

Theorem 1 A complete list-ranking algorithm based on
independent-set removal along the sketched lines requires
a paging volume of more than72 �N .

Proof: After every round, the problem-size is reduced by
a factor0:75. Thus, the total paging volume is4 � (9:5 +
8:5) �N .

5

Possibly, one might slightly further optimize the implemen-
tation of the algorithm, but quite surely one will not come
below60 � N : just the rearrangement and the restoration,
which appear inevitable, require40 �N .

4 Power of Autoclean and Altroclean
The basic idea of our algorithm is to split the input into two
sets:S

0

andS
1

. Then we perform

Algorithm PEELING OFF(S
0

, S
1

)

1. AUTOCLEAN(S
1

);

2. ALTROCLEAN(S
0

);

3. SOME RANK(S
0

);

4. ALTROCLEAN(S
1

).

Here SOME RANK designates any ranking algorithm,
possibly PEELING OFF itself. By AUTOCLEAN(S

j

) we
mean:

All nodes inS
j

follow the links running through
nodes inS

j

until a link out-offS
j

is found or a
final node of the list is reached. Then they update
mastanddest.

By ALTROCLEAN(S
j

) we mean:

All nodes inS
j

that have not reached a final node
and whose master is not an element ofS

j

, ask
their master for itsmastand destfields. Then
they update theirmastand destfields with the
received values.

Later we will give efficient algorithms for performing
auto- and altroclean. For the time being, we assume that
they are performed according to the above specifications.
If initially

mast(j) = succ(j);

dest(j) = 1;

for all 0 � j < N , then we get

Lemma 5 PEELING OFF correctly computes the values of
mast and dest for all nodes.

Proof: After Step 1, every node inS
1

has either found a
master inS

0

or reached a final node. Hence, after Step 2,
all nodes inS

0

have either a master inS
0

itself or reached
a final node. So, in Step 3 we indeed have to solve an
ordinary weighted list-ranking problem. In the altroclean
of Step 4, all nodes ofS

1

that have not reached a final node
participate. They ask their masters for theirmastvalues,
and the answer is some final node.

The time consumption ofPELLING OFF is given by:

Tpeelingoff(S0 [S1) = Tsomerank(S0) + Tautoclean(S1)

+ Taltroclean(S0) + Taltroclean(S1)

The two altrocleans in Step 2 and Step 4 are more or less the
same, though the fraction of participating nodes is larger in
Step 4. If the autoclean were as hard as an arbitrary ranking
problem, then going on recursively, would give a logarith-
mic factor in the overall time consumption. Fortunately,
this is not the case.

For the performance of the parallel algorithm, it is cru-
cial that in the autoclean in Step 1 a fraction� = #S

1

=N

of the nodes plays the role of a terminal node (all those
with a master inS

0

). That is, we have lists of expected
length1=�. Such a list-ranking problem is substantially
easier than a general one. For example, if we apply pointer
jumping, then the number of participating nodes in Roundt

is only (1� �)

2

t

.
Along these lines one can also obtain an efficient exter-

nal algorithm. It appears, however, to be even more effi-
cient to chooseS

1

such that#S
1

= M=6. Then, Step 1
is a simple internal operation. The details are discussed in
Section 7.

5 PRAMs
5.1 List Ranking Algorithm

We show that along the lines ofPEELING OFF there is an
easy randomized PRAM algorithm running inO(logN)

time withN= logN PUs.
First one should perform some randomization: ev-

ery node is placed in a randomly chosen bucket of size
N= logN . With P PUs this can be done inO(N=P +

logN) time. Using Chernoff bounds [7, 20], it is easy to
see that no bucket will hold more than(1+o(1))�N= logN

nodes. The buckets are numbered from0 throughlogN�1,
and the set of nodes in Bucketj is denotedBuc

j

.
Then we performlog logN rounds ofPEELING OFF in

which the problem size is halved each time. In Roundt,
1 � t � log logN , we take

S

0

(t) = [

logN=2

t

�1

j=0

Buc
j

;

S

1

(t) = [

logN=2

t�1

�1

j=logN=2

t

Buc
j

:

Finally we perform pointer jumping onS
0

(log logN) =

Buc
0

. An iterative formulation of the given recursive algo-
rithm may be easier to understand:

Algorithm PRAM RANK

for t = 1 to log logN

AUTOCLEAN(S
1

(t));
ALTROCLEAN(S

0

(t));
POINTER JUMPING(S

0

(log logN));
for t = log logN downto 1

ALTROCLEAN(S
1

(t)).

The correctness of PRAMRANK follows from
Lemma 5 and the fact thatS

0

(t+ 1) [S

1

(t+ 1) = S

0

(t),
for all 1 � t < log logN .

On a PRAM, the altrocleans are trivial: for every node
two numbers must be read. So, the work is linear in the size
of the set on which it is performed. As

P

log logN

t=1

S

0

(t) =

6

N=2, and
P

log logN

t=1

S

1

(t) = N�N= logN , the total work
is linear. The processor allocation is no problem.

The final pointer jumping has to be performed on a set of
sizeN= logN . With P PUs, this can be done inO(N=P +

logN) time (see [24]).
The autocleans we perform by applying the basic pointer

jumping step (every node which has a master inS
1

(t) asks
its master for itsmastanddestvalues) until no nodes are
active anymore. Their time consumption is analyzed in
Lemma 7.

A practical way of handling a final nodef is, that it,
when asked for its master, passes back the value�index,
whereindexis the index off : as negative values automati-
cally lie outside the range of other values, there is no further
need to single-out nodes that point tof .

5.2 Analysis

In a PRAM algorithm, in which we do not care much about
the leading constant in the time consumption, we could
have randomized the nodes we are working on at the begin-
ning of every iteration, which would make it obvious that
the probability that the master of a given node inS

1

lies in
S

0

is 1=2 and independent of any other such event. But,
we will prove that this is even the case with just the single
initial randomization. For this we need several results. At
this point they may appear to be of little importance, but
they give insight into the operation of the algorithm, and
we will reuse them in our analysis of the other algorithms.

Lemma 6 (Hangglider Lemma)At the end of Iterationt,
0 � t � log logN , an arbitrary noden 2 S

0

(t) has as
master the final nodef of its list iff all nodes betweenn and
f lie in N �S

0

(t). If this is not the case, then its master is
the first nodem 2 S

0

(t) such that all nodes betweenn and
m lie in N � S

0

(t).

Proof: By the way final nodes are handled, the first case
can be viewed as a special case of the second, So, we may
concentrate on a node with masterm, m not being a final
node. Clearlym 2 S

0

(t), due to the autocleaning and al-
trocleaning during Iterationt.

For the rest of the proof we proceed by induction on
t. Let m be the above defined node. So far,n has not
asked any node inS

0

(t) to give its master. Thus, either
mast(n) = succ(n), for which the lemma holds, orn must
have heardmast(n) from some noden0 2 N � S

0

(t). n0

may have updated its master in two ways: during some pre-
vious altroclean and during an autoclean. By the induction
hypothesis,n0 can certainly not have “looked” beyondm
during an altroclean. During the autoclean this is excluded
altogether.

This lemma states that after Iterationt, the linking structure
in S

0

(t) is identical to the initial one, except for short-cuts
overN � S

0

(t). From this we conclude

Corollary 1 At the beginning of Iterationt, the probability
that any node fromS

0

(t) [S

1

(t), which has not reached a
final node, has its master inS

0

(t) is 1=2.

Corollary 2 At the beginning of Iterationt, no two nodes
fromS

0

(t) [S

1

(t) have the same master, except for those
whose master is a final node.

Lemma 7 On a PRAM withP PUs,AUTOCLEAN(S
1

(t)),
1 � t � log logN , can be implemented to run in
O(#S

1

(t)=P + log logN) time, with high probability.

Proof: A noden in S

0

is active in Iterations � 0, if n
and all nodes up to distance2s from s have a master inS

1

.
The probability that any given node lies inS

1

is 1=2, so the
probability thatn is active in Rounds equals2�2

s

. Hence,
the expected number of nodes that is active in Rounds

equals2�2

s

� #S

1

. So, for the expected number of the
sum of active nodes over all rounds we find

E(actives(t)) =
X

s�0

2

�2

s

�#S

1

(t) < 0:82 �#S

1

(t): (2)

Here we make use of the fact that expected numbers can
be computed by simply adding probabilities, and that the
expected number of a sum equals the sum of the expected
numbers, even if the random variables are not independent
(see [16, p. 222]).

Now anyone will also believe that, with high probability,
the work is bounded byO(#S

1

(t)), but this is not so easy
to prove. We will first put a bound on the number of rounds
that has to be performed, then ensure that during the first
rounds the number of active nodes decreases as it should
do, and then argue that the contribution from the remaining
nodes is minor.

Claim 1 After O(log logN) rounds there are no active
nodes left, with high probability.

Proof of claim: The probability that any of the#S
1

(t)

nodes is active in Rounds is at most#S
1

(t) � 2

�2

s

. For
s = 2 � log logN , this is less than1=N .

For bounding the number of active nodes during the first
rounds, we use the Azuma inequality, Lemma 1. Here the
X

j

are the random variables given by: “X

j

= 1 if Node j
lies in S

1

(t), otherwise it is 0.” The functionf gives the
number of active nodes in Rounds. Flipping the value of
one of theX

j

may change the value off by at most2s, so
c = 2

s. Thus, substitution yields

P [jZ �E(Z)j � h] � 2 � e

�2�h

2

=(2

2�s

�N)

:

For h = 2

s

� (N � logN)

1=2, this is a very small number.
Thus, as long as2s �(N � logN)

1=2

= o(2

�2

s

�#S

1

(t)), we
may assume that the deviations from the expected values
are negligible. So, we may assume that afterlog logN

1=3

rounds only(1+o(1)) �#S

1

(t)=N

1=3 active nodes remain.
Therefore, the sum over the remaining rounds of the num-
ber of active nodes is less than(2 � log logN) � (1 + o(1)) �

#S

1

(t)=N

1=3

= o(#S

1

(t)).

Combining the above results, we find

Theorem 2 On a PRAM withP PUs,PRAM RANK ranks
a set of list withN nodes inO(N=P + logN) time, with
high probability.

7

5.3 Tree Rooting

For tree rooting we apply the same algorithm. The only dif-
ference is that now several nodes may have the same suc-
cessor. Lemma 6, the conclusion about the structure and
Corollary 1 still hold, and we have the following partial
analogue of Theorem 2:

Theorem 3 On a PRAM withP PUs,PRAM RANK roots
a set of trees withN nodes inO(N=P + logN) expected
time.

Proof: The crucial point is again that expected values may
be added together, even if their random variables are not
independent.

The good news is that Theorem 3 holds forall trees
(as opposed to pointer-jumping, whose expected time con-
sumption depends on the structure of the tree). The bad
news is that we cannot put a high-probability bound on the
time consumption. Consider atailed star: a tree which is
obtained by attaching a tail to a star, see Figure 2. Assume

u u u u u u
- - ... - -...

@

@R
?

�

�	

@

@I6

�

��

Figure 2: A tailed star.

that the star containsN � logN= log logN nodes, and the
tail logN= log logN . Then it cannot be exluded that all
the nodes of the tail are allocated to theS

1

(1). But then
AUTOCLEAN(S

1

(1)) will require
(N � logN) work. Sim-
ilar problems arise with the altrocleans in the first for-loop
of PRAM RANK.

A possible solution would be to never answer more than
one question at a time, and to tell the others that later they
should ask here again. However, it appears that in this way
it may happen that only a very small subproblem is solved,
and that we have not gained much. As the Euler-tour tech-
nique gives a reduction of the tree-rooting problem to list
ranking with a small constant factor loss, it is not worth the
effort to develop some elaborate algorithm for it.

6 Distributed Memory Machines
6.1 List Ranking Algorithm

To a large extent, our algorithm for distributed memory ma-
chines is a direct simulation of the PRAM algorithm. Now
PU

i

, holds thek = N=P nodes with indicesi + j � P ,
for all 0 � j < k. Each PU has a buffer for every PU, in
which it writes questions and answers. In any step, all ques-
tions or answers are generated, then the all-to-all routing
is performed and so on. This is the standard way of run-
ning algorithms under the BSP paradigm, and is straight-
forward. This immediately leads to an algorithm with ac-
ceptable performance. To optimize the algorithm, one has
to be slightly more careful.

For the final stage, we should not perform pointer jump-
ing, but rather one-by-one cleaning from [36]. This routine
is so much more efficient that we can stop with a larger
subproblem:

Lemma 8 [36] For ranking a set of list with a total ofk �
P nodes on a parallel computer withP PUs, one-by-one
cleaning requires3�P�3 start-ups, and has routing volume
6 � lnP .

Theoretically the most interesting feature is the choice
of the number of reduction roundsd (in the PRAM algo-
rithm we hadd = log logN) and thereduction factors: the
numberf

t

, 1 � t � d, given by

f

t

= #S

1

(t)=#S

1

(t� 1);

where#S
1

(0) = N . These must be tuned to obtain a good
trade-off between the two components of our cost measure:
the number of all-to-all routings and the routing volume. In
any case thef

t

must be chosen according to the following
guide-lines.

� Thef
t

should decrease witht.

� f

1

should increase withd.

� f

d

should not be too small.

One such choice is

f

t

(d) =

1 + d� t

2 + d� t

: (3)

With thesef
t

, we get a simple expression:

#S

0

(t) = (d+ 1� t)=(d+ 1) �N:

There are better choices (see Section 6.2 for the choice of
our implementation), but this choice facilitates the analysis
of the routing volume:

Theorem 4 Whend reduction phases are performed with
reduction factors as in (3), the routing volume is less than

(6 + (3 � ln d+ 6 � lnP)=(d+ 1)) � k;

with high probability.

Proof: We are going to compute the number of questions.
For every question two answers will be sent, so the routing
volume is three times the number of questions.

During the altroclean in Iterationt of the first loop,
the expected number of questions equals#S

0

(t) �

#S

1

(t)=(#S

0

(t) + #S

1

(t)) < #S

1

(t). Summing over
all rounds, we get less than(1� 1=(d� 1)) � k. The same
estimate holds for the altrocleans in the second loop.

Generally, if one performs an autoclean on a setS, in
which the probability that a node has master inS is�, then
we find the following analogue of (2) for the total number
of questions asked:

E(questions) =
X

s�0

�

�2

s

�#S:

8

In our case,� assumes the values1=2; 1=3; : : : ; 1=(d+1).
The computation of the sum is easy because#S

1

(t) =

N=(d + 1), for all t. The first-order term,1=2 + 1=3 +

� � � + 1=(d + 1) < ln d � 1=4, for d � 10. The quadratic
terms are equal to those neglected in the estimate of the
volume of altroclean, and all the remaining terms together
are less than1=4.

The final one-by-one cleaning is performed on a set of
sizek � P=(d+ 1).

If all-to-all routings are performed in the most straight-
forward way, then the3 � P � 3 start-ups from one-by-one
cleaning correspond to three all-to-all routings. Using this
estimate, it is easy to express the number of all-to-all rout-
ings as a function of the number of reduction rounds:

Theorem 5 Whend reduction phases are performed, the
algorithm requires(6 + 2 � dlog logne) � d + 3 all-to-all
routings.

Proof: For every reduction round we have to perform two
altrocleans, each taking two all-to-all routings, and one au-
toclean. Asf

t

(d) � 1=2, the probability that the distance
between two elements inS

0

exceedsr is at most2�r�1.
Thus, the probability that the pointer-jumping has not ter-
minated afters steps, requiring two all-to-all routings each,
equals2�2

s

�1. For s = dlog logne + 1, this is less than
1=n

2.

6.2 Experimental Results

During the autocleans, we have to perform several rounds
of pointer jumping. In order to prevent having to redeter-
mine the active nodes every time, these should be selected
from the former active nodes once they get to know their
new masters.

In order to save buffer space, it turns out to be better not
to send all the questions at one time: for every question
two answers are generated, and thus we would need twice
as much buffer space as questions being generated. We
need only a fraction1=P additional buffer space, if all PUs
first send their questions to the PU with index one larger
(cyclically), then return the answers to the received ques-
tions, and then repeat this for the questions to PUs with
index two larger, and so on.

To obtain better performance for smaller values ofk, it
is essential to apply the two- and log-phase routers next
to the simpler one-phase router (see [37]). In this way, at
the expense of higher handling costs, the number of start-
ups for an all-to-all routing can be reduced fromP � 1 to
2 � (

p

P � 1) or even justlogP .
To minimize the costs of the autocleans, one should

make the firstf
t

somewhat larger, and then later on,
when the size of the problem becomes smaller, somewhat
smaller. We found good performance for

f

t

(d) =

1:6 + 1:05 � d� t

6 + d� t

:

log

2

k P = 4 P = 16 P = 64

10 0.06 0.03 0.01
12 0.19 0.07 0.03
14 0.36 0.10 0.09
16 0.47 0.29 0.18
18 0.44 0.35 0.23
20 0.41 0.35 0.26

Table 2: Measured efficiencies of the parallel algorithm
running on an Intel Paragon for various numbers of PUs,
and various values ofk. In all casesd = 6.

The d for which the time consumption is minimized in-
creases withk, and decreases withP . In all cases it lies
between4 and16. However, beyond a certain point, the
choice ofd has only a minor influence. It turns out that
d = 6 always gives results that are close to optimal. A fixed
choice ford allows us to optimize the size of the buffers.
Ford = 6, the final problem is so small,0:012 �N , that its
solution takes very little time.

The number of pointer-jumping steps in the autocleaning
of Roundt must be chosen as a function off

t

, #S
1

(t)

andd, in such a way that the probability that the whole
algorithm is correct is constant (alternatively, one can test
whether all nodes are done). In practice, we mostly need
five pointer-jumping steps iff

t

< 0:4, but for f
t

� 0:4,
four of these steps are generally enough.

Implementing these ideas, we obtained an algorithm
which uses in every PU next to the three arrays of sizek

each, only two buffers which are used for several purposes.
These have size0:3 � k each. The program, and its sequen-
tial variant (which is identical except that every variable
is replaced by an array, and every instruction by a loop)
are available athttp://www.mpi-sb.mpg.de/-
�jopsi/dprog/prog.html.

We did extensive experiments and found that when only
the one-phase router is applied, the time consumption on
the Paragon can be described up to 10% by an expression
of the following form:

T

1

(P; k) = �+ � � k +
 � P + � � k � log(P):

For the constants we found the following values:

� = 38 � 10

�3

; � = 40 � 10

�7

;

 = 58 � 10

�4

; � = 24 � 10

�7

:

In Table 2, we provide a few examples of measured val-
ues of the efficiency of the algorithm. Theefficiencyis de-
fined as in Section 3.2. From these numbers we can discern
the following trends: the efficiency strongly increases with
k, and slowly decreases withP . None of this is surprising.
There are three reasons for the deterioration withP : the fi-
nite capacity of the network starts to become noticeable for
6�6 partitions and larger; the number of start-ups required
for an all-to-all routing increases withP , which forces the
algorithm to use an alternative, less efficient, router; for

9

largeP , the load-balancing becomes worse. A plot of the
speed-ups is given in Figure 3.

10.0 12.0 14.0 16.0 18.0 20.0

10.0

30.0

50.0

70.0

90.0

110.0

130.0

0.39

3.15

5.90

8.66

11.42

14.17

16.93

19.69

22.44

25.20

27.96

30.72

Figure 3: Experimental results for the parallel algorithm:
the x-axis giveslog k, the y-axisP , and the gray-tones the
speed-up. In all casesd = 6.

6.3 Tree Rooting

As for the PRAM, we may apply the same algorithm for
tree rooting. The expected work is the same as for ranking
lists.

In order to give a feeling of what happens when we ap-
ply the algorithm to different non-cyclic structures, we give
some numbers for the special caseP = 8 andk = 65,536.
We have tested random lists, random binary trees, and stars
with a tail of length 1,000. In each case we tested 20 in-
puts. The results are given in Table 3. These results may
be taken to be representative for other values ofP andk.

min time max time av. time st. dev.
lists 0.674 0.678 0.675 0.002

binary trees 0.595 0.626 0.607 0.010
tailed starts 0.692 1.772 1.070 0.280

Table 3: Time consumption in seconds for different types
of input forP = 8 andk = 65,536.

Most apparent is the increase of the standard deviation.
Also we see that in practice the average time consump-
tions may differ. Reasons why a problem can be solved
faster than for lists are that more nodes may discover the fi-
nal node at an earlier stage, and that when more nodes ask
for information from the same node, this information still
may be available in cache. The main reason why it may go
slower than for lists is that the load-balancing may be poor.

7 External Memory Computation
7.1 Algorithm

The external algorithm is closely related to, but neverthe-
less not a direct translation of the parallel algorithm. If we
look back at PRAMRANK, then there are two important
differences that go beyond the correct choice of the reduc-
tion factors, and the management of “packets”:

� AUTOCLEAN should not be implemented by pointer
jumping, but as an internal list-ranking problem.

� In the second for-loop, one should not perform
ALTROCLEAN(S

1

(t)), butALTROCLEAN(N � S

0

).

High-Level Description. In the following we describe the
algorithm in more detail. LetP = 6 �N=M , andk = N=P .
The input is subdivided inP buckets of sizek each:Buc

i

,
0 � i < P , holding the data related to the nodes with
indicesj, such thatk � i � j < k � (i+1). Furthermore, for
all 1 � t � P ,

S

0

(t) = [

P�t�1

i=0

Buc
i

;

S

1

(t) = Buc
P�t

:

With these definitions, we get the following high-level de-
scription of the algorithm:

Algorithm EXTERNAL RANK

for t = 1 to P � 1

AUTOCLEAN(S
1

(t));
ALTROCLEAN(S

0

(t));
AUTOCLEAN(S

1

(P));
for t = P � 1 downto 1

ALTROCLEAN(N � S

0

(t)).

The first loop is the same as before except for the size
of the subsets. The second loop is also more or less the
same. Only the order in which the questions are posed is
slightly different. Now, all questions pending for the nodes
in Buc

P�t�1

are asked in Passt.

Lemma 9 EXTERNAL RANK correctly solves a ranking
problem on a set of lists or trees.

Proof: As before, we may assume that at the end all nodes
of S

1

(P) know their ranks and the last nodes of their lists.
This is the basis of our induction assumption: at the end
of Passt of the second loop, all nodesp for whichmast(p)
lies inS

0

(t) after the end of the first loop know their ranks
and final nodes. But then, during Passt� 1, all nodes with
master inBuc

P�t

= S

0

(t� 1)�S

0

(t) ask their questions,
and get to know their ranks and final nodes. After Pass1,
all nodes with master inS

0

(1), that is all nodes, know their
ranks and final nodes.

Design Principles. In the remainder of this section, we
will talk about the nodes inBuc

i

, as if they are managed
by their ownPU

i

. In this way we can say things like “the

10

questions toPU
i

”, which means “requests for data from the
nodes inBuc

i

.”
In our implementation, we go through the data in a wave-

like way: addressingPU
i+1

after PU
i

or vice-versa. In
addition we apply the following principles:

� Bucketing the questions and answers.

� Lazy processing of answers.

� Use of stacks.

The bucketingmeans that all questions or answers of a
given type that all PUs are sending toPU

i

are pushed on
a common stack. Thelazy processingmeans that ques-
tions and answers destined forPU

i

are not processed im-
mediately, but only once the wave through the data hits
PU

i

the next time. The use of stacks implies that ques-
tions or answers destined forPU

i

are popped, once they
are processed. The newly generated questions and answers
are pushed again, and for this the just freed space can be
reused. Thus, instead of reading one block of the memory,
and writing another, we may read and write the same block.

Going in waves through the PUs, and applying
the three given points, is not limited to list rank-
ing, but constitutes a good set of design princi-
ples for any external algorithm.

Details of Implementation. The algorithm consists of
three waves: the first starting atPU

0

, the second starting
atPU

P�1

and the third starting atPU
0

again. We describe
each of them.

Wave 1 consists of a kind of bucket-sort: for each Nodej

in PU
i

, which hassucc(j) = j

0 in somePU
i

0 , with i

0

< i,
(j

0

; j; 1) is pushed on the stack of 1-questions to be asked to
PU

i

0 during Wave 2. During Wave 1 the order in which the
PUs are addressed is not so important, but it is profitable
to end inPU

P�1

, becausePU
P�1

is the starting point of
Wave 2.

Wave 2 corresponds to the first for-loop fromEXTER-
NAL RANK. The PUs are addressed in decreasing order,
starting with PU

P�1

and ending withPU
0

. For each
PU

i

, first all answers to the 1-questions are processed and
popped from their stacks. Hereafter, the autoclean can be
performed. If after this, Nodej hasmast(j) = j

0, with
j

0 held byPU
i

0 , then(j0; j) is pushed on the stack of 2-
questions to be asked toPU

i

0 during Wave 3. Now all 1-
questions toPU

i

can also be answered. Here we must be
careful: some of the questions are sent back to the asking
PUs, others are forwarded. Consider a question by Nodej

0

in PU
i

0 to Nodej in PU
i

, and letj00 = mast(j) lie in PU
i

00 .
If i00 � i

0, then(j0; j00; value+ dest(j)) is pushed on the
stack of answers ofPU

i

0 . Herevalueindicates the former
value of this field. On the other hand, ifi00 > i

0, then in
the original algorithm,PU

i

0 would ask a second question
during a later altrocleaning. So, on behalf of Nodej

0, PU
i

pushes an updated question(j00; j0; value+ dest(j)) on the
stack of 1-questions ofPU

i

00 .

Wave 3 corresponds to the second for-loop fromEX-
TERNAL RANK. The PUs are addressed in increasing or-
der, starting withPU

0

and ending withPU
P�1

. For each
PU

i

, first all answers to the 2-questions are processed and
popped from their stacks. Hereafter, the 2-questions to
PU

i

can be answered: for a question(j; j0) asked byPU
i

0 ,
(j

0

;mast(j); dest(j)) is pushed on the stack of answers of
PU

i

0 .

7.2 Analysis

The correctness of the algorithm is guaranteed because it
only means a non-essential rescheduling of the order of op-
erations. So, it remains to analyze the time consumption
and the paging volume.

Worst-case Inputs. At first it is not clear that the al-
gorithm has linear time consumption: during Wave 2, one
question may generate a whole ripple of forwarded ques-
tions. Fortunately, for lists we have an analogue of the
Hangglider Lemma, Lemma 6, stating that while process-
ing PU

i

during Wave 2, no two nodes in somePU
i

0 , with
i

0

< i, address questions to the same node inPU
i

. Hence,
a PU has to answer at mostk 1-questions. In the following
we go in more detail.

During Wave 1 allsuccfields are paged-in. In Wave 2, all
succfields are paged-in again, to initialize themastfields,
but that is it. So,succcontributes(2�P�1)�k to the paging
volume (read only).

Themastanddestfields are updated during Wave 2 and
Wave 3. So, each of them contributes(2 � P � 1) � k to the
paging volume (read and write).

In total, at most(P � 1) � k 1-questions are generated,
each consisting of three integers. Each question must be
read again, then there is at most one answer of the same
size, which must be written and read once.

All nodes inPU
i

, with 1 � i < P ask one 2-question
consisting of two integers. Each question must be read
again, and then there is one answer of size three integers,
which must be written and read once.

Theorem 6 For ranking a set of lists of total lengthN ,
EXTERNAL RANK has a paging volume of at most21 �N�

18 � k. Of this amount,3 � N � 2 � k is read-only paging.
The algorithm needs at most6 �N storage space in total.

Proof: Adding together the above numbers gives an upper
limit of 28 � N � 25 � k. However, this includes a certain
amount of double counting, because the stacks shrink and
expand in the same memory blocks. We show that by the
use of stacks, we save7 � (N � k) in total.

During Wave 2, a PU never handles more thank answers
andk 1-questions. As a result it produces at mostk an-
swers andk 2-questions. So, at most6 � k integers are read,
of which 5 � k are written again. During Wave 3, each 2-
question is read and answered as far as possible in the same
space.

11

So, we see that unlike the parallel algorithm, it is no
problem at all to handle worst-case inputs. A comparison
with Theorem 1 shows that even for bad inputs, the algo-
rithm has less than one third of the paging volume of an
algorithm based on independent-set removal.

Randomized Inputs. If the input may be assumed to
be random, or if they are randomized first, then the per-
formance is even better. Here we give an estimate of the
expected paging volume. High-probability bounds can be
derived as in the proof of Theorem 4.

Theorem 7 For ranking a set of random lists of total
lengthN , EXTERNAL RANK has an expected paging vol-
ume of less than18 �N � 10 � k. Of this amount more than
4 � N is read-only paging. The algorithm needs at most
5:4 �N storage space in total.

Proof: The paging volume due tosucc, mastanddest, is
the same as before:6 � N � 3 � k, of which 2 � N � k is
read-only. In the following we analyze the paging volume
due to the questions and answers.

During Wave 1, the expected number of pushed 1-
questions equals

P

P�1

i=1

i �k=P = (N�k)=2. This induces
a paging volume of3=2 � (N � k).

During Wave 2,PU
i

has to readk � i=(i+1) 1-questions,
which are answered or forwarded without causing addi-
tional paging volume. In total this contributes a paging vol-
ume of three times

P

P�1

i=1

k�i=(i+1) = N�k�

P

P

i=1

1=i '

N � k � lnP .
During Wave 2, a PU also has to handle as many updates

as it asked 1-questions. That is,k �(P�i�1)=P by PU
i

. In
addition, the 2-questions are pushed:k for everyPU

i

, with
i > 0. Generally, we must account for these two operations
a paging volume ofk �maxf3 � (P � i� 1)=P; 2g. Over all

PUs this gives2 � N + 3 � k

P

P=3�1

i=1

i=P = 2

1

=

3

�N � k.
Of thisN=3 + k is read-only.

During Wave 3, eachPU
i

answers as many 2-questions
as were posed to it:k � g

i

, whereg
i

=

P

P�1

j=i+1

1=j. The
questions have size two, the answers size three. In addition,
for i > 0, PU

i

readsk answers. That is, the paging volume
for PU

i

equalsk � maxf3 � g

i

; 2 � g

i

+ 3g. Becauseg
i

'

lnP � ln i, we see that the first term dominates fori �

P=e

3. Thus, using
P

i

g

i

= P � 1,

P�1

X

i=0

maxf3 � g

i

; 2 � g

i

+ 3g '

2 � P � 2 + 3 � P � (1� e

�3

) +

P=e

3

X

i=0

g

i

'

(5 + e

�3

) � P � 2:

Here we approximated the sum overg

i

by an integral, and
g

i

by lnP� ln i. Of this amount,(2+e

�3

) �N is read-only.
The required storage space reaches its maximum during

Wave 3: after processing the first few PUs, most questions

have been answered, but are not yet processed. More pre-
cisely, afterPU

i

is addressed, the stack has expected size
of approximately

2 � (N � k) + k �

i

X

j=1

(lnP � ln j � 1):

The maximum is assumed fori = P=e: 2 � (N �k)+N=e.

We see that the algorithm may indeed be expected to run
faster on random inputs, but the difference with the worst-
case bound is not tremendous.

7.3 Refinement

The paging volume for the randomized case can be reduced
by�(k � logP), at the expense of a similar amount of addi-
tional internal work. In comparison to the total of�(k �P),
this is asymptotically negligible, but forP < 100, this im-
proves the performance by a few percent.

After the autocleaning, all nodes have a master in a PU
with higher index, and therefore the number of 2-questions
equals(P � 1) � k. There is a certain waste here: it is better
not to ask 2-questions that could have been answered inter-
nally. The easiest way to realize this, is to postpone auto-
clean. During the altrocleans of the first loop, this means
that a certain number of questions cannot be answered im-
mediately, but the necessary search is internal, and the ex-
pected depth of search is small. Instead, a PU should per-
form autoclean during the second loop, after processing
the answers to the 2-questions, and before answering the
2-questions. In this way, the number of 2-questions is re-
duced by

P

P

i=2

k=i ' k � lnP .
We resume the complete external algorithm, missing de-

tails can be found in the above descriptions.

Algorithm EXTERNAL RANK

1. for i = P � 1 downto 1 do with PU
i

a. Determine all nodesj with succ(j) in some
PU

i

0 with i

0

< i. For each such node, push a
question on the stack of 1-questions ofPU

i

0 .
2. for i = 0 to P � 1 do with PU

i

a. For all nodesj setmast(j) = succ(j)
anddist(j) = 1.

b. Process all answers to 1-questions.
c. Answer all 1-questions and push an answer on the

stack of answers of the PU that asked the question,
or push a new question on the stack of 1-questions
of some intermediate PU.

d. For every nodej, with mast(j) in PU
i

0

with i

0

> i, push a question on the stack
of 2-questions ofPU

i

0 .
3. for i = P � 1 downto 0 do with PU

i

a. Process all answers to 2-questions.
b. Perform autoclean.
c. Answer all 2-questions and push an answer on the

stack of answers of the PU that asked the question.

12

7.4 Experimental Results

The algorithm has been programmed in C. Including
lengthy comments and routines for generating lists, test-
ing and visualization the program has 462 lines. Ac-
tually all essential work is performed by less than 100
lines of code. This conciseness means that optimiza-
tion efforts can be focused. The program is avail-
able at http://www.mpi-sb.mpg.de/�jopsi/-
dprog/prog.html.

An important point is how the stacks are organized. In
our case, we (de-) allocated chunks of the size of a memory
page to (from) one of the sub-stacks (for example to the
stack of 1-questions toPU

14

). At the end of a full page of
a sub-stack, it is indicated where the stack continues. This
costs only one position out of every memory page (in our
case a page consists of 2048 integers).

We did not observe an improvement by allocating larger
chunks of memory to the sub-stacks. Allocating larger
chunks should be profitable if there would be a large dif-
ference between random and streamed paging operations.
We measured a difference between the costs of these types
of access of about 50%, which apparently does not out-
weigh the additional cost of having larger “loose ends”. In
the program, this virtual page size can be modified with a
parameter.

Another point is memory-alignment. We took care to
arrange our stacks so that the virtual pages coincide with
physical pages. This reduced the overall time consumption
by 15%.

The program was designed to handle random inputs, and
that is why, next to the three fields of sizeN for succ, mast
anddest, we only need a stack of size7=3 �N . In practice,
using little additional memory is also pleasant because this
allow larger problems to be solved on a given hardware.

We have measured the time consumption of our program
on a standard work-station: a SUN UltraSparc with a clock
rate of 175Mhz, a 64MB main-memory and a 2.2GB swap
partition on the hard-disc. Notice that it was never our goal
to break a benchmark for external list ranking: our goal
was to design a better algorithm. Clearly, one would obtain
much better performance with a faster hard-disc, and even
more so if several hard-discs were used. If the three large
fields and the stack are scattered overd discs, than it should
be possible to gain almost a factord.

We tested our program for severalk, and found that its
choice is non-critical: as long ask is not chosen too large or
extremely small, we observed only minimal fluctuations in
the time consumption. In Table 4 we give some experimen-
tal results, measured fork = 2

20 (inputs were generated on
a machine with 1GB of RAM). In the second column, we
give the time per million nodes. For the whole range these
numbers continue to increase, which is disappointing.

After double-checking all proves of linearity, we discov-
ered that the continuing deterioration is caused by an in-
crease in the time per paging operation. It turns out that
this time is quite accurately described bytop = 0:0135 +

P T

T �10

6

N

T �2048

top�N

1 3.63 3.46 —
16 1393 87.8 12.2
32 3239 96.6 12.9
48 5378 106.9 12.9
64 7641 113.9 12.9
80 9556 114.0 12.1
96 12104 120.3 12.1

112 14583 124.4 11.8

Table 4: Performance of the external list-ranking algo-
rithm. The first column givesP ; the second the time (in
seconds) for ranking a random lists of size2

20

�P ; the third
column the time per million nodes; and the last column
a number that is closely related to the paging volume per
node.

0:0045 �size=109 seconds, wheresizeis the total number of
bytes that have to be stored. Measured values are given in
Table 5.

size=106 time
500 0.0158

1000 0.0181
1500 0.0202
2000 0.0226

Table 5: Time (in seconds) per paging operation for various
sizes of the data space (in MB).

In our case we have estimatedsize = 4 � 4 � N (the
succfields are only used initially and the full size of the
stack is used only for a very short period). Thus, we get
top(P) = top(4 �2

20

�P) ' 0:0135+72 �10

�6

�P . If we di-
vide the ranking times bytop(P) and multiply by2048=N ,
we get the estimates for the paging volume per node, which
are given in the last column of Table 4. This is an underes-
timate, because the first access to a page is much cheaper
than later accesses, and the read-only operations cost only
2=3 of the general operations. So, on basis of Theorem 7,
we would expect values of around 12. This nicely coin-
cides with the obtained values. Even more important is that
now, finally, we have obtained values that are more or less
constant, as they should be.

On the same machine, the sequential algorithm requires
2:37 � 10

�6

�N seconds as long as it is running internally.
For P = 64 our algorithm is45 times slower. On the
other hand, if the sequential algorithm were to be applied
to a list of 226 nodes, it would make two page faults per
node (one for finding the initial node, and one for the up-
dates). For that case, we can estimate that it takes about
2 � 0:016 = 0:032s per node, which is300 times slower
than our algorithm.

7.5 Tree Rooting

As with the parallel algorithm, the external algorithm can
be applied to random trees without modification. The ex-

13

pected time consumption is the same as before, but the
worst-case performance may be very bad, and not even if
the indices are randomized can we give a high-probability
guarantee. For the caseP = 8, we have tested 20 ran-
dom inputs from each of the categories that were listed in
Table 3: list, binary trees and tailed stars. The results are
given in Table 6. As in Table 3, we see that the difference
between lists and binary trees is small, but that tailed stars
may be distributed such that the time considerable exceeds
the expected value. For this kind of problems, we also need
a larger stack.

min time max time av. time st. dev.
lists 496 506 500 3

binary trees 498 511 504 5
tailed starts 387 884 530 130

Table 6: Time consumption in seconds for different types
of input forP = 8 andk = 2

20.

8 Conclusion
New algorithms were presented for parallel and external
list ranking. On the Intel Paragon the parallel algorithm is
better than any other in an intermediate range ofk andP
values. The external algorithm is more of a jump forward.
It appears to be several times faster than the best previous
algorithm. Both algorithms can also be applied to trees,
and stand out by their simplicity and memory-efficiency.

We have observed that the time for performing a pag-
ing operation increases linearly with the size of the used
data space. This implies that minimizing the paging vol-
ume should not be the only guiding principle when design-
ing external algorithms. In our case we have succesfully
minimized the size of the data space by using stacks, even
though this does not lead to a minimal paging volume in
all steps. This slightly larger paging volume is more than
compensated for by the cheaper paging operations.

We do not believe that the algorithms can be made de-
terministic without destroying their performance. Still it
would be interesting to look deeper into this. A second
open question is whether it is possible to modify the algo-
rithms so that trees can be handled in a way that guarantees
the expected time consumptions with high probability.

Acknowledgement

Tillmann Seidel assisted me with the programming of the
parallel algorithms. The parallel programs where run on
the Paragon at the KFA in Jülich.

References
[1] Anderson, R.J., G.L. Miller, ‘A Simple Randomized

Parallel Algorithms for List-Ranking,’Information
Processing Letters, 33(5), pp. 269–273, 1990.

[2] Anderson, R.J., G.L. Miller, ‘Deterministic Parallel
List Ranking,’Algorithmica, 6, pp. 859–868, 1991.

[3] Atallah, M.J., S.E. Hambrusch, ‘Solving Tree Prob-
lems on a Mesh-Connected Processor Array,’Infor-
mation and Control, 69, pp. 168–187, 1986.

[4] Bäumker, A. W. Dittrich, F. Meyer auf der Heide,
‘Truly Efficient Parallel Algorithms:c-Optimal Mul-
tisearch for an Extension of the BSP-Model,’Proc.
European Symposium on Algorithms, LNCS 979,
Springer-Verlag, pp. 17–30, 1995.

[5] Berkman, O., U. Vishkin, ‘Recursive Star-Tree Par-
allel Data Structure,’SIAM Journal on Computing,
22(2), pp. 221–242, 1993.

[6] Cáceres, E., F. Dehne, A. Ferreira, P. Flocchini, I.
Rieping, A. Roncato, N. Santoro, S.W. Song, ‘Effi-
cient Parallel Graph Algorithms for Coarse Grained
Multicomputers and BSP,’Proc. ICALP 97, LNCS,
Springer-Verlag, 1997.

[7] Chernoff, H., ‘A Measure of Asymptotic Efficiency
for Tests of a Hypothesis Based on the Sum of Obser-
vations,’ Annals of Mathematical Statistics, 23, pp.
493–507, 1952.

[8] Chiang, Y-J, M.T. Goodrich, E.F. Grove, R. Tamassia,
D.E. Vengroff, J.S. Vitter, ‘External-Memory Graph
Algorithms,’ Proc. 6th Symposium on Discrete Algo-
rithms, pp. 139–149, ACM-SIAM, 1995.

[9] Cole, R., U. Vishkin, ‘Deterministic Coin Tossing and
Accelerated Cascades: Micro and Macro Techniques
for Designing Parallel Algorithms,’Proc. 18th Symp.
on Theory of Computing, pp. 206–219, ACM, 1986.

[10] Cole, R., U. Vishkin, ‘Approximate Parallel Schedul-
ing, Part I: the Basic Technique with Applications to
Optimal Parallel List Ranking in Logarithmic Time,’
SIAM Journal on Computing, 17(1), pp. 128–142,
1988.

[11] Cole, R., U. Vishkin, ‘Faster Optimal Parallel Pre-
fix Sums and List Ranking,’Information and Control,
81, pp. 334–352, 1989.

[12] Cormen T.H., C.E. Leiserson, R.L. Rivest,Intro-
duction to Algorithms, MIT Press, Cambridge, MA,
1990.

[13] Dally, W., C. Seitz, ‘Deadlock Free Message Routing
in Multiprocessor Interconnection Networks,’IEEE
Transactions on Computers, 36(5), pp. 547–553,
1987.

[14] Dehne, F., W. Dittrich, D. Hutchinson, ‘Efficient Ex-
ternal Memory Algorithms by Simulating Coarse-
Grained Parallel Algorithms,’Proc. 9th Symposium
on Parallel Algorithms and Architectures, pp. 106–
115, ACM, 1997.

14

[15] Dehne, F., S.W. Song, ‘Randomized Parallel List
Ranking for Distributed Memory Multiprocessors,’
Proc. Asian Computer Science Conference, LNCS
1179, pp. 1–10, 1996.

[16] Feller, W.,An Introduction to Probability Theory and
Its Applications, Volume I, Third Edition, John Wiley
& Sons, New York, 1970.

[17] Gibbons, A., W. Rytter, ‘An Optimal Parallel Al-
gorithm for Dynamic Evaluation and its Applica-
tions,’ Proc. 6th Conference of Foundations of Soft-
ware Technology and Theoretical Computer Science,
LNCS 241, pp. 453–469, Springer-Verlag, 1986.

[18] Gibbons, A., W. Rytter,Efficient Parallel Algorithms,
Cambridge University Press, Cambridge, 1988.

[19] Gibbons, A.M., Y. N. Srikant, ‘A Class of Problems
Efficiently Solvable on Mesh-Connected Computers
Including Dynamic Expression Evaluation,’Informa-
tion Processing Letters, 32, pp. 305–311, 1989.

[20] Hagerup, T., C. Rüb, ‘A Guided Tour of Chernoff
Bounds,’ Information Processing Letters, 33, 305–
308, 1990.

[21] Harel, D., R.E. Tarjan, ‘Fast Algorithms for Finding
Nearest Common Ancestors,’SIAM Journal on Com-
puting, 13, pp. 338–355, 1984.

[22] Hirschberg, D.S., A.K. Chandra, D.V. Sarwate,
‘Computing Connected Components on Parallel
Computers,’Communications of the ACM,22(8), pp.
461–464, 1979.

[23] Hsu, T.-s, V. Ramachandran, ‘Efficient Massively
Parallel Implementation of some Combinatorial Al-
gorithms,’Theoretical Computer Science, 162(2), pp.
297-322, 1996.

[24] JáJá, J.,An Introduction to Parallel Algorithms,
Addison-Wesley Publishing Company, Inc., 1992.

[25] Kosaraju, S.R., A.L. Delcher, ‘Optimal Parallel Eval-
uation of Tree-Structured Computations by Raking,’
Proc. 3rd Aegean Workshop on Algorithms, LNCS
319, pp. 101–110, Springer-Verlag, 1988.

[26] Kruskal, C.P., L. Rudolph, M. Snir, ‘The Power of
Parallel Prefix,’IEEE Transactions on Computers, C-
34, pp. 965–968, 1985.

[27] Leighton, T.,Introduction to Parallel Algorithms and
Architectures: Arrays-Trees-Hypercubes, Morgan-
Kaufmann Publishers, San Mateo, California, 1992.

[28] McColl, W.F., ‘Universal Computing,’Proc. 2nd
Euro-Par Conference, LNCS 1123, pp. 25–36,
Springer-Verlag, 1996.

[29] McDiarmid, C., ‘On the Method of Bounded Dif-
ferences,’ inSurveys in Combinatorics, J. Siemons,
editor, 1989 London Mathematical Society Lecture
Note Series 141, pp. 148–188, Cambridge University
Press, 1989.

[30] Miller, G.L., J.H. Reif, ‘Parallel Tree Contraction and
its Applications,’Proc. 26th Symposium on Founda-
tions of Computer Science, pp. 478–489, IEEE, 1985.

[31] Reid-Miller, M., ‘List Ranking and List Scan on the
Cray C-90,’ Proc. 6th SPAA, pp. 104–113, ACM,
1994.

[32] Ryu, K.W., J. JáJá, ‘Efficient Algorithms for List
Ranking and for Solving Graph Problems on the Hy-
percube,’ IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 1, No. 1, pp. 83–90, 1990.

[33] Schieber, B., U. Vishkin, ‘On Finding Lowest Com-
mon Ancestors: Simplification and Parallelization,’
SIAM Journal on Computing, 17, pp. 1253–1262,
1988.

[34] Setubal, J., J. Meidanis,Introduction to Computa-
tional Molecular Biology, PWS Publishing Company,
Boston, 1997.

[35] Sibeyn, J.F., ‘List Ranking on Interconnection Net-
works,’Proc. 2nd Euro-Par Conference, LNCS 1123,
pp. 799–808, Springer-Verlag, 1996. Full version in:
Technical Report 11/1995, SFB 124-D6, Universität
Saarbrücken, Saarbrücken, Germany, 1995.

[36] Sibeyn, J.F., ‘Better Trade-offs for Parallel List Rank-
ing,’ Proc. 9th Symposium on Parallel Algorithms and
Architectures, pp. 221–230, ACM, 1997.

[37] Sibeyn, J.F., F. Guillaume, T. Seidel, ‘Practical Par-
allel List Ranking,’Proc. 4th Symposium on Solving
Irregularly Structured Problems in Parallel, LNCS
1253, pp. 25–36, Springer-Verlag, 1997.

[38] Sibeyn, J.F., M. Kaufmann, ‘BSP-Like External-
Memory Computation,’Proc. 3rd Italian Conference
on Algorithms and Complexity, LNCS 1203, pp. 229–
240, Springer-Verlag, 1997.

[39] Tarjan, R.E., U. Vishkin, ‘Finding Biconnected Com-
ponents and Computing Tree Functions in Logarith-
mic Parallel Time,’SIAM Journal on Computing, 13,
pp. 862–874, 1984.

[40] Valiant, L.G., ‘A Bridging Model for Parallel Compu-
tation,’ Communications of the ACM, 33(8), pp. 103–
111, 1990.

[41] Wyllie, J.C., The Complexity of Parallel Computa-
tions, PhD Thesis, Computer Science Department,
Cornell University, Ithaca, NY, 1979.

15

