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Abstract

We consider the problem of implementing �nger search trees on the pointer machine,

i.e., how to maintain a sorted list such that searching for an element x, starting the

search at any arbitrary element f in the list, only requires logarithmic time in the

distance between x and f in the list.

We present the �rst pointer-based implementation of �nger search trees allowing

new elements to be inserted at any arbitrary position in the list in worst case constant

time. Previously, the best known insertion time on the pointer machine was O(log

�

n),

where n is the total length of the list. On a unit-cost RAM, a constant insertion time

has been achieved by Dietz and Raman by using standard techniques of packing small

problem sizes into a constant number of machine words.

Deletion of a list element is supported in O(log

�

n) time, which matches the previous

best bounds. Our data structure requires linear space.

1 Introduction

A �nger search tree is a data structure which stores a sorted list of elements in such a way

that searches are fast in the vicinity of a �nger, where a �nger is a pointer to an arbitrary

element of the list.

The list operations supported are the following. We let n denote the length of the involved

list.

�
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� CreateList creates a new list only containing one element, say, �1. A �nger to the

single element is returned.

� Search(f; x) searches for element x, starting the search at the element of the list given

by the �nger f . Returns a �nger to x if x is contained in the list, otherwise a �nger to

the largest element less than x in the list.

� Insert(f; x) inserts element x immediately to the right of the �nger f . Returns a

�nger to x.

� Delete(f) deletes the element pointed to by the �nger f .

Brown and Tarjan [2] observed that by level-linking (2; 4){trees, �nger searches can be

done in worst case O(log �) time, where � is the distance between the �nger and the search

element. The distance between two elements is the di�erence between their ranks in the list.

In the following, we denote a data structure having O(log �) search time a �nger search tree.

Huddleston and Mehlhorn [10] showed that (2; 4){trees support insertions and deletions in

amortized constant time, assuming that the position of the element to be inserted or deleted

is known.

The question we consider is, if it is possible to remove the amortization from the result

of Huddleston and Mehlhorn [10], i.e., if �nger search trees exist which support insertions

and deletions in worst case constant time.

By assuming a unit-cost RAM, Dietz and Raman [3] have presented a �nger search tree

implementation supporting insertions and deletions in worst case constant time. The data

structure of Dietz and Raman is based on standard RAM techniques of packing small problem

sizes into a constant number of machine words. For the weaker pointer machine model no

similar result is known. The results obtained for the pointer machine are as follows.

Search trees with constant insertion and deletion time on the pointer machine have been

presented by Levcopoulos and Overmars [13] and Fleischer [6], but neither of them support

�nger searches.

Finger search trees with worst case constant insertion and deletion time for the restricted

case where there are only a constant number of �xed �ngers have been given by Guibas et

al. [7], Kosaraju [12] and Tsakalidis [17].

Finger search trees which allow any element of the list to be a �nger and which obtain

worst case O(log

�

n) insertion and deletion time have been given by Harel and Lueker [8, 9].

In this paper we present the �rst �nger search tree implementation for the pointer machine

which supports arbitrary �nger searches and which supports insertions in worst case constant

time. The data structure can be extended to support deletions in worst case O(log

�

n) time

which matches the previous best bounds of Harel and Lueker [8, 9]. The space requirement

for the data structure is O(n).

The technical contribution of this paper is a new approach to select the nodes to split

in a search tree. The previous approaches by Levcopoulos and Overmars [13] and Dietz and

Raman [3] were based on a global splitting lemmawhich guaranteed that each of the recursive

substructures would have polylogarithmic size. For a detailed discussion and applications

of this lemma we refer to the thesis of Raman [16]. Our approach is, in contrast, a local

bottom-up approach based on a functional implementation of binary counting to select the
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nodes to split in a search tree. A weakly related bottom-up approach has been presented by

Brodal [1] to remove the amortization from the partial persistence technique of Driscoll et

al. [5].

The structure of this paper is as follows. Section 2 describes the basic idea of the construc-

tion, Section 3 describes how to maintain ancestor pointers in a tree by using a functional

stack implementation, and Section 4 describes how to achieve constant time splitting of nodes

of arbitrary degree. How to support �nger searches is described in Section 5. In Section 6

the data structure is extended to support deletions in worst case O(log

�

n) time. In Section 7

we describe how to make the space requirement linear. Finally some concluding remarks are

given in Section 8.

2 A new splitting algorithm

In this section we present a new algorithm for splitting nodes in a search tree when new

leaves are created. The trees generated by this algorithm do not have logarithmic height

and do not support insertions in worst case constant time, but the algorithm presented is

the essential new idea required to obtain the claimed result.

Throughout this paper we implicitly assume that each node in a search tree has asso-

ciated the interval of elements spanned by the node. This is standard for all search tree

implementations and we therefore take this as an implicit assumption for the remaining of

this paper.

In this section we assume that the ancestor of height d of a leaf can be found in worst

case constant time, and that a node of arbitrary degree can be split in worst case constant

time. In Section 3 and Section 4 we show how to avoid these assumptions, and in Section 5

we show how to extend the data structure to support �nger searches.

In the following, T is a tree where all leaves have equal depth. We de�ne leaves to have

height zero, the parents of the leaves to have height one, and so on. To each leaf ` 2 T we

associate a counter c

`

� 0. Initially the tree consists only of a single leaf storing the element

�1 and having a counter equal to zero, and the parent node of the leaf.

Let �

1

;�

2

; : : : be a list of integers satisfying �

d

� 2

2

d

�1. Theorem 1 gives the resulting

relation between �

d

and the degrees of the nodes of height d.

The implementation of the insertion of an element e into the list next to a �nger f is as

follows. Let ` denote the leaf given by the �nger f , and p the parent of `. First we create a

new leaf `

0

storing the new element e below p and to the right of `. Next we increment c

`

by

one and assign the resulting value to c

`

0

too. Let d be the unique value satisfying

c

`

mod 2

d

= 2

d�1

;

i.e., d is the position of the rightmost bit equal to one in the binary representation of c

`

.

Let v be the ancestor of ` and `

0

of height d. The third and last step we perform is to split

v, provided the degree of v is at least 2�

d

. We assume v is split into two nodes v

0

and v

00

,

each having a degree of at least �

d

. If we split the root, we increase the height of the tree

by creating a new root of degree two.
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Theorem 1 The above algorithm guarantees that all nodes of height d have degree at most

2

2�2

d

�

d

and at least �

d

, except for the root which only has degree at least two.

Proof Essential to the proof is the following notion of potential. We de�ne the potential of

a leaf ` with respect to height d as:

�

d

`

= 2

2

d

�1�((c

`

+2

d�1

) mod 2

d

)

:

Notice that 1 � �

d

`

� 2

2

d

�1

. If v is an internal node of T of height d, we let T

d

v

denote the

subtree rooted at v and jT

d

v

j the number of leaves in T

d

v

. We de�ne the potential of T

d

v

to

be the sum of the potentials of the leaves in T

d

v

with respect to height d, i.e.,

�

d

v

=

X

`2T

d

v

�

d

`

:

We now consider how an insert operation in the subtree T

d

v

a�ects �

d

v

. Let d

0

denote the

height of the node to be split. If d

0

6= d, then c

`

mod 2

d

6= 2

d�1

and by increasing c

`

by one

the value of �

d

`

is halved. We conclude that the new value of �

d

`

+ �

d

`

0

equals the old value

of �

d

`

, and �

d

v

remains unchanged. Otherwise d

0

= d, then the old value of �

d

`

is one and the

new values of �

d

`

and �

d

`

0

are 2

2

d

�1

. We conclude that �

d

v

increases by 2 � 2

2

d

�1

� 1 = 2

2

d

� 1

before we try to split v.

By induction we now prove that for all heights d and nodes v of height d,

�

d

v

� 2

2�2

d

d

Y

i=1

�

i

: (1)

Initially the tree consists only of a single leaf with a counter equal to zero and the parent of

the leaf as the single internal node. The potential of the single internal node is two and it

follows that (1) is true for the initial tree.

As argued above, the only node which increases its potential when creating a new leaf is

the node v of height d which is the candidate to be split. Recall that �

d

v

increases by 2

2

d

�1.

If v is split into two nodes, v

0

and v

00

, then each of the two nodes have a degree of at least

�

d

� 2

2

d

� 1, and therefore also potential of at least 2

2

d

� 1. We conclude that

�

d

v

0

� �

d

v

+ 2

2

d

� 1 � �

d

v

00

� �

d

v

� 2

2�2

d

d

Y

i=1

�

i

;

and similarly for �

d

v

00

, and (1) is satis�ed.

If v is not split we �rst consider the case d = 1. Then the degree of v is at most 2�

1

� 1,

implying �

1

v

� 4�

1

� 2 � 2

2�2

1

�

1

and (1) is satis�ed. Otherwise d > 1 and we have

�

d

v

� 2�

d

2

2�2

d�1

d�1

Y

i=1

�

i

2

2

d

�1

� 2

2�2

d

d

Y

i=1

�

i

;

because v has a degree of less than 2�

d

, and each child of v spans at most 2

2�2

d�1

Q

d�1

i=1

�

i

leaves (by the induction hypothesis (1) and each leaf has a potential of at least one with
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respect to height d�1), and each leaf has a potential of at most 2

2

d

�1

with respect to height

d. We conclude that (1) is satis�ed, and is indeed an invariant.

Because a node at level d is �rst split when the node has degree 2�

d

it follows that all

nodes of height d have a degree of at least �

d

(except for the root), implying that all nodes

v (except for the root) satisfy jT

d

v

j �

Q

d

i=1

�

i

.

Together with (1) we get the result that the degree of a node v of height d is at most

�

d

v

=

Q

d�1

i=1

�

i

� 2

2�2

d

�

d

, and the theorem follows. 2

Corollary 1 If �

d

= 2

2

d

the algorithm maintains a tree of height log log n�O(1) where all

nodes of height d have degree O(2

3�2

d

).

3 Maintaining pointers to ancestors

One of the main di�culties in giving an e�cient implementation of the algorithm described

in Section 2 is that we cannot �nd the level d ancestor of leaf ` that should be split in worst

case constant time. In this section we describe how to solve this problem so that we can �nd

the ancestor in constant time while still having constant insertion time, assuming that we

can split a node of arbitrary degree in constant time. How to remove the assumption about

splitting is postponed to Section 4.

The basic idea is to extend the information stored at each leaf so that in addition to the

counter c

`

we also store a pointer to each of the log log n ancestors of `. In fact we only store

a relevant subset of the pointers. The details are as follows.

With leaf ` we store a stack S

`

of triples (i; j; u

j

) where i � j are positions in the binary

representation of c

`

and u

j

is a pointer to the ancestor of ` of height j + 1,

1

so that the

triples on S

`

represents the intervals [i; j] of positions in the binary representation of c

`

all

containing a one. If c

`

= 001110011010

2

then S

`

= (1; 1; �); (3; 4; �); (7; 9; �). To clarify this,

we require all intervals to be disjoint, nonadjacent, sorted with respect to i, and their union

to be exactly the set of positions in the binary representation of c

`

which equals one.

Because S

`

implicitly represents the value of c

`

we do not need to store c

`

. In the following

we let c

`

refer to the value implicitly represented by S

`

.

An important detail of the algorithm described in the previous section is that when

creating leaf `

0

, we assign c

`

0

the new value of c

`

. Similarly we now assign S

`

0

the stack S

`

.

To avoid copying the whole stack (which would require �(log log n) time), we implement the

stacks S

`

as purely functional stacks. A purely functional stack is just a standard LISP list.

This allows us to assign S

`

0

the value of S

`

in worst case constant time. Recent work on

functional data structures can be found in [11, 14].

We now describe how to update S

`

corresponding to incrementing c

`

and how to determine

the node v at level d that should be split. In the following, p

x

denotes the parent of the

leaf or internal node x. If S

`

is empty, we just push (0; 0; p

`

) onto S

`

. Otherwise let (i; j; u

j

)

denote the triple at the top of S

`

. If i � 1 we push (0; 0; p

`

) onto S

`

, otherwise i = 0 and we

replace the top triple of S

`

by (j + 1; j + 1; p

u

j

). The node v to split is now the last �eld in

1

Due to the splitting of ancestors of `, u

j

can also point to a node of height j+1 which is not an ancestor

of `, but this turns out to be a minor problem.
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the top triple of S

`

. Finally we check if the two top triples of S

`

have become adjacent, i.e.,

if they are of the form (i; k; �) and (k + 1; j; u

j

) in which case the two triples are replaced

by (i; j; u

j

).

The correctness of the implementation with respect to i and j is obvious, because it is

just binary counting. The interesting property is how we handle the pointers to the nodes

u

j

. If after updating S

`

, c

`

mod 2 = 1 then the node returned is the correct node p

`

and the

only pointer which can be added to the stack is p

`

. If c

`

mod 2

d

= 2

d�1

for d > 1, then the

returned and only new node on the stack is p

u

d�1

which is exactly the ancestor of ` of height

d+ 1 | provided that before updating S

`

, u

d�1

is in fact the ancestor of ` of height d.

If no nodes were ever split, the above argument could be used to give an inductive

argument that a u

j

stored in a stack S

`

would always be the ancestor of ` of height j + 1.

Unfortunately we split nodes, and cannot guarantee that this property is satis�ed (at least

not without doing a nontrivial update of a nonconstant number of purely functional S

`

stacks

when doing a split). In the following we argue that we do not need to care about \wrong"

pointers, provided that splitting a node does not introduce too many wrong pointers.

The insertion algorithm is now the following. First we update in constant time the set

S

`

as described above. Let v be the node of height d which is returned to be split. We then

create the new leaf `

0

and assign S

`

to S

`

0

in constant time. If the degree of v is � 2�

d

we

split v into two nodes as follows. First we create a new node v

0

to the right of v with p

v

0

= p

v

,

and then we move the rightmost �

d

children of v to v

0

. It is essential to the algorithm that

splittings are done nonsymmetrically. The details of how to perform a split in worst case

constant time is described in Section 4.

In the following we prove that this modi�ed algorithm basically achieves the same bounds

on the degrees of the nodes as the algorithm in Section 2.

Theorem 2 The above algorithm guarantees that all nodes of height d have a degree of at

most 2

3�2

d

�

d

and at least �

d

, except for the root.

Proof The proof is basically the same as for Theorem 1, except that we now have to

incorporate the \wrong" pointers into the potentials.

Let ` be a leaf, d a �xed height, and v the ancestor of ` of height d. If 1 � c

`

mod 2

d

<

2

d�1

, let u

j

be given by j = maxfj

0

< dj(�; j

0

; �) 2 S

`

g and (�; j; u

j

) 2 S

`

.

We now de�ne the potential �

d

`

of ` with respect to height d. The potential is basically

equal to two raised to the number of times we have to increment c

`

before we split v.

�

d

`

=

8

>

>

>

>

<

>

>

>

>

:

2

2

d

+2

d�1

�1�(c

`

mod 2

d

)

if (1 � c

`

mod 2

d

< 2

d�1

) ^ (u

j

=2 T

d

v

),

2

2

d

+2

d�1

�1�(c

`

mod 2

d

)

if 2

d�1

� c

`

mod 2

d

,

2

2

d�1

�1

if c

`

mod 2

d

= 0,

2

2

d�1

�1�(c

`

mod 2

d

)

if (1 � c

`

mod 2

d

< 2

d�1

) ^ (u

j

2 T

d

v

).

(2)

Notice that 1 � �

d

`

� 2

2

d

+2

d�1

�2

. We similarly de�ne the potential of T

d

v

to be

�

d

v

=

X

`2T

d

v

�

d

`

:

6



We now show that incrementing c

`

by updating S

`

we either are allowed to split v or �

d

`

is halved. We do this by considering each of the cases in (2).

First we consider the case where 1 � c

`

mod 2

d

< 2

d�1

and u

j

=2 T

d

v

. We split this into

two cases. If c

`

mod 2

d

= 2

d�1

� 1, then the new value of c

`

mod 2

d

= 2

d�1

and �

d

`

is halved.

If c

`

mod 2

d

< 2

d�1

� 1, then c

`

is increased by one and u

j

remains on the stack S

`

or is

replaced by p

u

j

=2 T

d

v

implying that �

d

`

is halved.

If 2

d�1

� c

`

mod 2

d

, then we consider two cases. If c

`

mod 2

d

< 2

d

�1, then �

d

`

is halved.

If c

`

mod 2

d

= 2

d

� 1, then the new value of c

`

mod 2

d

= 0 and again �

d

`

is halved.

If c

`

mod 2

d

= 0, then the new value of c

`

mod 2

d

= 1 and u

j

= p

`

2 T

d

v

and the value of

�

d

`

is halved.

The last case to be considered is where 1 � c

`

mod 2

d

< 2

d�1

and u

j

2 T

d

v

. If c

`

mod 2

d

=

2

d�1

� 1 then the new value of c

`

mod 2

d

= 2

d�1

and the node we split is p

u

j

= p

u

d�2

= v.

The new potential of �

d

`

= 2

2

d

�1

. Finally if 1 � c

`

mod 2

d

< 2

d�1

� 1, then c

`

is increased

by one and u

j

remains on the stack S

`

or is replaced by p

u

j

2 T

d

v

implying that �

d

`

is halved.

We conclude that incrementing c

`

either halves �

d

`

and a node di�erent from v is to be

split, or �

d

`

changes from one to 2

2

d

�1

and v is the node to be split. This is exactly the same

statement as in the proof of Theorem 1, except that we now use di�erent potentials.

We now make the observation that when an insertion creates a new leaf `

0

next to ` after

having incremented c

`

, then �

d

`

0

= �

d

`

and �

d

v

does not change for any d and node v at level

d, except for the node to be split which increases its potential by at most 2

2

d

� 1.

We now give an inductive argument that

�

d

v

� 2

3�2

d

d

Y

i=1

�

i

: (3)

But �rst we have to observe that a u

j

pointer at leaf ` either points to the ancestor v of

` of height j + 1 or is a node of height j + 1 to the left of v. This is true because whenever

a node is split the new internal node is created to the right of the old node.

The above observation implies that when splitting node v, no leaf in T

d

v

points to a node

in T

d

v

0

and therefore no leaf in T

d

v

changes its potential with respect to height d when splitting

v, but for the leaves in T

d

v

0

this is not true. No potential with respect to heights di�erent

from d changes due to the splitting.

That (3) is true for the initial tree is obvious. We know from the above arguments that

the only potential that can change due to incrementing c

`

and adding a new leaf `

0

is the

node v of height d that is to be split.

If v has degree less than 2�

d

then we do not split v, and

�

d

v

� 2�

d

2

3�2

d�1

d�1

Y

i=1

�

i

2

2

d

+2

d�1

�2

� 2

3�2

d

d

Y

i=1

�

i

;

because v has at most 2�

d

children each spanning 2

3�2

d�1

Q

d�1

i=1

�

i

leaves (by the induction

hypothesis), and each leaf has a potential of at most 2

2

d

+2

d�1

�2

with respect to height d.

If v is split, then the increase of �

d

v

due to the increase of c

`

and the leaf `

0

is canceled

out by the potential moved to v

0

of at least �

d

, because each subtree has a potential of at
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least one. For the new vertex v

0

we have

�

d

v

0

� �

d

2

3�2

d�1

d�1

Y

i=1

�

i

2

2

d

+2

d�1

�2

� 2

3�2

d

d

Y

i=1

�

i

: (4)

We conclude that (3) is satis�ed, and is indeed an invariant. From (3) and that jT

d

v

j �

Q

d

i=1

�

i

, for v di�erent from the root, the theorem follows. 2

4 Incremental node splitting

The basic assumption in the previous section was that we could split a node v of arbitrary

degree in constant time. In this section we show how to achieve this by basically maintaining

the parent pointers as trees of height two.

We let all children of node v be maintained in a double linked list. Instead of letting all

children have parent pointers directly to v, we introduce an intermediate level of indirection.

We partition the children of v into blocks of size at least �

d

and at most 2�

d

� 1, such that

there is one node in the intermediate level for each of the blocks. In the following the nodes

in the intermediate level are denoted intermediate nodes.

The information maintained at each of the above mentioned nodes is the following. At

v we just maintain a pointer to the leftmost and rightmost intermediate node below v. The

children maintain pointers to their left and right sibling and a pointer to the intermediate

node corresponding to the block the child belongs to. An intermediate node maintains a

pointer to v, and pointers to the leftmost and rightmost child of v in the block spanned by

the intermediate node.

Whenever a child u of v is split, we add the new child u

0

next to u in the double link

list of children of v and let it belong to the same block as u. To avoid having too many

children belong to the same block, which would imply that the block should be split, we

do the splitting of the block incrementally as follows. Whenever an intermediate node w

spans more than �

d

children, we instead represent w by a pair of nodes w

0

and w

00

such

that w

0

spans the leftmost �

d

children and w

00

spans the remaining at most �

d

� 1 children.

The additional information we associate with each intermediate node to achieve this is the

number of children spanned by each intermediate node, and if a node is part of a pair, a

pointer to the other node in the pair. The number of children spanned by an intermediate

node immediately reveals whether the node is the left or right node in the pair. See Figure 1.

Whenever a new leaf is added to the block spanned by w we check if w is part of a pair.

If w is not part of a pair, then w now has degree �

d

+ 1. To satisfy the above constraints,

we create a new intermediate node w

0

that, together with w, make a pair, and move the

rightmost child of w to w

0

by appropriately updating the pointers. If w is part of a pair we

check if w is the left node of the pair. If w is the left node, then w now spans �

d

+1 children

and we move the rightmost child of w to the other node of the pair to satisfy the condition

that w has degree �

d

. If both nodes of the pair now have degree �

d

(the initial degree bound

of 2�

d

� 1 is violated) we split the pair by simply setting the two pair pointers to nil. The

above updating when v gets a new child can clearly be done in worst case constant time.

We now describe how the above substructure can be used to solve the splitting problem

of the algorithm in Section 3. The algorithm is exactly the same as in Section 3, except for

8
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Figure 1: The implementation of the children of v. Undirected edges represent pointers in

both directions. The dashed edge is the pair pointers of two intermediate nodes.

the constraints on how to split node v. The original constraint was that we split v if it has

a degree of at least 2�

d

and that the new node v

0

has a degree equal to �

d

.

We replace this by the following. We split v if it spans at least two intermediate nodes

not belonging to the same pair (which is exactly the same as requiring that v should have a

degree of at least 2�

d

). We split v by �rst creating a new node v

0

to the right of v (in worst

case constant time as described above), and then by moving the rightmost intermediate node

of v to v

0

. If the intermediate node is part of a pair we move both nodes of the pair to v

0

.

The degree of v

0

after the splitting is at least �

d

and at most 2�

d

� 1.

That the behavior of the algorithm remains the same is captured by the following theorem.

Theorem 3 The above algorithm guarantees that all nodes of height d have degree at most

2

3�2

d

�

d

and at least �

d

, except for the root. New leaves can be created in worst case constant

time.

Proof The proof is exactly the same as for Theorem 2, except for (4) which is replaced by

(5) below. Because v

0

after splitting has a degree of at most 2�

d

� 1, we get

�

d

v

0

� (2�

d

� 1)2

3�2

d�1

d�1

Y

i=1

�

i

2

2

d

+2

d�1

�2

� 2

3�2

d

d

Y

i=1

�

i

: (5)

The time bound for updating the tree follows immediately from the previous discussions,

and the time for updating the S

`

stacks only increases by a constant factor due to the

introduced level of indirection. 2

5 A semi-dynamic �nger search tree

We now describe how the data structure of Section 4 can be extended to support �nger

searches. In this section we assume �

d

= 2

2

d

. The basic idea is to replace each node of the

tree in Section 4 by a balanced tree allowing constant time updates. By appropriately level

linking the resulting data structure we get a �nger search tree that supports insertions in

worst case constant time.

By level linking [10] the search tree of Section 2 a �nger search for element x starting

at leaf ` can be done as follows, which is basically the same as in [10]. We without loss of

9



generality assume x is contained in the tree. Notice that level linking does not introduce any

new data �elds in the nodes, because each node already stores a pointer to its right and left

sibling. We just have to maintain the corresponding pointers for the leftmost and rightmost

child of a node too.

If x is contained in a neighbor leaf of ` we are done. Otherwise we look at the parent p

of `. If x is contained in the subtree rooted at p or one of the neighbors of p we search for x

in the corresponding subtree, otherwise we recursively consider the parent of p.

Before giving the details of how to search for x in a subtree of height d we give a lower

bound for the distance between x and `. If we are going to search for x in a subtree rooted

at node v of height d, we know that x is not contained in the subtree below v containing `

or the neighbor subtrees. By Theorem 3 we have that the distance between ` and x is at

least 2

2

d�1

. We conclude that we can use O(2

d

) time for the search for x.

If we could search for which subtree rooted at a child of v contained x in time logarithmic

in the degree of v, we could recursively �nd x in time

d

X

i=1

log 2

3�2

i

+2

i

=

d

X

i=1

2

i+2

� 2

d+3

= O(2

d

):

To achieve the logarithmic search time we add the following structure to the data struc-

ture of Section 4. With v we associate a search tree which stores each of v's intermediate

nodes, and with each of the intermediate nodes we associate a search tree which stores the

children of v. By choosing the search trees of Levcopoulos and Overmars [13] or Fleischer [6]

we can add and remove new leaves to these search trees in worst case constant time, implying

that the overhead introduced for splitting a node as described in Section 4 is only a constant.

To summarize we get the following theorem.

Theorem 4 There exists a pointer-based implementation of �nger search trees which sup-

ports arbitrary �nger searches in O(log �) time and neighbor insertions in worst case constant

time.

6 Deletions

In the following we describe how to extend the data structure of the previous sections to sup-

port deletions in worst case O(log

�

n) time. We basically implement delete as for (a; b){trees

by performing a sequence of fusion and sharing steps [10]. Due to the ancestor pointers intro-

duced in Section 3, fusion and sharing steps need to be implemented carefully to guarantee

that the potentials �

d

v

remain bounded.

The �rst step towards achieving O(log

�

n) deletion time is to decrease the height of the

tree to O(log

�

n). Let 2

(d)

recursively be given by 2

(1)

= 2 and 2

(d+1)

= 2

2

(d)

. By letting

�

d

= 2

(d)

, it follows by Theorem 3 that the resulting tree of Section 4 has a height of

O(log

�

n) and that new leaves can be added in worst case constant time. In the following we

�rst describe how to support deletions in worst case O(log

�

n) time and then how to support

�nger searches in worst case O(log �) time (for the �nger search implementation presented

in Section 5 it is crucial that �

d

= 2

2

d

).
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The basic idea of how to delete a leaf ` is as follows. First the leaf ` is deleted. If the

parent v of the leaf ` has at least �

1

children left we are done. Otherwise we fuse v with the

left or right sibling v

0

of v, by moving the children of v to v

0

and removing the node v. If v

0

now has too large a degree we split v

0

by creating a new node v

00

to the right of v and moving

a fraction of the children of v

0

to v

00

.

2

We postpone the exact thresholds to the discussion

below. Otherwise p

v

has lost one child and we recursively fuse p

v

if it has obtained too low

a degree.

There are two problems which should be considered when implementing deletions as

outlined above.

The �rst involves the ancestor stacks stored at the leaves. Assume v is fused with v

0

, and

v is removed from the child list of p

v

. Unfortunately many leaves can have ancestor pointers

stored in their S

`

stacks pointing to v, and we cannot a�ord to update all these pointers.

And it is even more complicated because a pointer to v from a leaf ` can be the essential

u

j

pointer in the potential de�nition (2) of ` with respect to a height larger than the height

of v.

Our solution is very simple. We just let v become a dead child of p

v

. For a dead child of

height d we only maintain a pointer from the child to its parent of height d+ 1. No pointer

from the parent to the child is required. A dead child is never moved to another node, and

a node can have an arbitrary number of dead children. The parent of a dead child can also

be dead (due to a fusion step).

Because of the parent pointers of the dead nodes, a dead node u

j

of height j + 1 in a

natural way belongs to a subtree T

d

v

if and only if there is an ancestor path from u

j

to v.

This allows us to de�ne the potential of a leaf ` with respect to height d as given by (2) in

Theorem 2 and to replace u

j

by p

u

j

on a S

`

stack when incrementing c

`

.

The second problem to be considered is the change in the potential of �

d

v

0

when we fuse

v with v

0

. We fuse v with v

0

if the degree of v becomes �

d

� 1, implying that the potential

�

d

v

0

increases. If v

0

now has too large a degree, we split v

0

to insure that the children

moved from v

0

to the new node v

00

cancel out the increase in potential. Unfortunately it

is not su�cient to move �(�

d

) children to v

00

, because the children we add below v

0

can

have high potential whereas the children we remove below v

0

can have low potential. Let

�

d

= 2

3(d�1)2

d�1

� 2

2

d

+2

d�1

�2

. It turns out that if we move at least �

d

��

d

children to v

00

, the

potential of v

0

is guaranteed not to increase.

3

To support the splitting of nodes in worst case constant time, we introduce an additional

intermediate level at each node v, such that the intermediate nodes introduced in Section 4

(of degree at least �

d

and at most 2�

d

� 1) are partitioned into blocks of size at least �

d

and at most 2�

d

�1 (provided that there are at least �

d

intermediate nodes). The additional

intermediate level only increases the cost of �nding a parent node p

u

j

by a constant.

Each node of the original intermediate level, in the following referred to as intermediate

level 1, points to a node in the new intermediate level, intermediate level 2. Nodes in

intermediate level 2 point to v and the leftmost and rightmost node in the corresponding

2

Intuitively we should move one child of v

0

to v, but this does not work due to the ancestor pointers

introduced in Section 3.

3

�

d

is the maximumpotential of a node of height d�1 divided by

Q

d�1

i=1

�

i

, times the maximumpotential

of a leaf with respect to to height d.
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intermediate level 1 blocks. If a block at intermediate level 2 has a size larger than �

d

we similarly to the intermediate level 1 represent the block by a pair of nodes to support

incremental splitting and fusion of intermediate level 2 nodes.

If a intermediate level 1 block is of size �

d

�1 we consider fusing the block with a neighbor

block. If the neighbor block has is larger than �

d

we just move one child of the neighbor

block to the block and are done. Otherwise we fuse the two blocks to a pair of size 2�

d

� 1.

If the corresponding intermediate level 2 block now is of size �

d

� 1 we similarly fuse the

intermediate level 2 block with a neighbor block (if a level 2 neighbor block exists). The

necessary pointer updating is straightforward.

The implementation of insert remains unchanged, except that nodes are �rst split when

there are two level 2 blocks, implying that a node not split can have degree (2�

d

�1)(2�

d

�1).

Dead nodes are never split. When splitting a node v we now just move the rightmost

intermediate level 2 block to the new node.

We are now ready to give the remaining details of how to perform deletions in worst case

O(log

�

n) time. If a node v di�erent from the root reaches degree �

d

� 1 we move all the

children of v to one of its neighbor siblings. Let v

0

denote this sibling. Because v is of degree

�

d

�1 all children of v belong to a single intermediate level 1 block. So we just have to move

this block to v

0

and fuse it with a intermediate level 1 neighbor block as described above.

This can clearly be done in worst case constant time. The node v becomes a dead child of

p

v

. If v

0

now has at least two level 2 blocks we split v

0

by creating a new node v

00

to the right

of v

0

and move the rightmost level 2 block of v

0

to v

00

. Otherwise we recursively consider the

parent p

v

of v which has lost one child.

Because we always fuse a node when it has a degree of less than �

d

and always split a

node into two nodes of a degree of at least �

d

, the above algorithm guarantees that all nodes

of height d (except for the root) have a degree of at least �

d

, and therefore span at least

Q

d

i=1

�

i

leaves. Because delete spends only constant time for each height we get the result

that delete can be implemented in worst case O(log

�

n) time.

Theorem 5 The above algorithm guarantees that all nodes of height d have degree at most

2

3d2

d

�

d

and at least �

d

, except for the root. New leaves can be created in worst case constant

time and existing leaves can be deleted in worst case O(log

�

n) time.

Proof The time bounds and the lower bound on the degrees follow immediately from the

previous discussion. What remains to be shown is the upper bound on the degrees.

Let �

d

`

and �

d

v

be de�ned as in Theorem 2. We are going to prove that the potentials of

the nodes are bounded by

�

d

v

� 2

3d2

d

d

Y

i=1

�

i

: (6)

That the initial con�guration satis�es (6) is obvious. We �rst consider inserting a new

leaf `

0

next to a leaf `. When incrementing the c

`

counter by updating a S

`

stack and adding

the new leaf `

0

it follows as for Theorem 2 that no potentials change except for the node at

level d that is going to be split. This is true because if u

j

6= v, then u

j

2 T

v

if and only if

p

u

j

2 T

v

| also if u

j

refers to a dead node.
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If a node v cannot be split, then for d = 1 we have

�

1

v

� (2�

1

� 1)(2�

1

� 1)2

2

1

+2

1�1

�2

� 2�

1

� 3 � 2 � 2

3�1�2

1

�

1

; (7)

and for d � 2 we have

�

d

v

� (2�

d

� 1)(2�

d

� 1)2

3(d�1)2

d�1

d�1

Y

i=1

�

i

2

2

d

+2

d�1

�2

� 2

3(d�1)2

d�1

+2

d

+2

d�1

�2+3(d�1)2

d�1

+2

d

+2

d�1

d

Y

i=1

�

i

� 2

3d2

d

d

Y

i=1

�

i

: (8)

If v is split it similarly follows that the new node v

0

satis�es (6). Because nodes of height

d have a degree of at least �

d

, v

0

spans at least �

d

Q

d

i=1

�

i

leaves.

Finally we have to consider the potential of v when v is split. We know that the potential

of v can at most increase by 2

2

d

� 1 by the new leaf added, and that the potential moved to

v

0

is at least �

d

Q

d

i=1

�

i

� 2

2

d

� 1. This guarantees that the potential �

d

v

does not increase

due to the insertion | provided that splitting v does not increase the potential of any leaf

of T

d

v

with respect to height d.

To guarantee this, we again need the observation that u

j

stored at leaf ` points to the

ancestor of ` of height j + 1 or a node to the left of the ancestor of height j + 1. This

guarantees that no leaf in T

d

v

maintains a pointer into the new subtree T

d

v

0

. Unfortunately a

u

j

pointer can point to a dead node, and dead nodes do not belong to the tree. By de�ning

the dead children of a node to always be the leftmost children of the node (in any arbitrary

order), the above constraint will be satis�ed. This is true because splitting a node always

moves the children to a new node to the right of the node. For deletions we only have to

argue that when we fuse v with a sibling v

0

to the right or left of v, the constraint is also

satis�ed. When we fuse v and v

0

all leaves in T

d

v

are moved to T

d

v

0

. But because v becomes a

dead node we, by de�nition, let v (and its dead subtree) be a node to the left of v

0

, implying

that u

j

pointers to v in T

d

v

0

points to a node to the left of their level d ancestor. We conclude

that (6) is true for insertions.

For deletions we have to argue that (6) is satis�ed. Let v be a node we consider to fuse

with v

0

because v gets degree �

d

� 1. This implies �

d

v

0

increases by at most

(�

d

� 1)2

3(d�1)2

d�1

d�1

Y

i=1

�

i

2

2

d

+2

d�1

�2

� �

d

d

Y

i=1

�

i

:

If v

0

is not split we know from (7) and (8) that v

0

satis�es (6). If v

0

is split we similarly know

that v

00

satis�es (6), and because v

00

spans at least �

d

Q

d

i=1

�

i

leaves v

0

also satis�es (6).

From (6) we conclude that all nodes at height d have a degree of at most

2

3d2

d

Q

d

i=1

�

i

Q

d�1

i=1

�

i

� 2

3d2

d

�

d

;

and the theorem follows. 2

Unfortunately the modi�ed trees do not support �nger searches as described in Section 5,

because the degree of a node of height d is exponential in the maximumsize of a child subtree
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root at height d� 1. Except for the searching at each of the ancestor nodes of the �nger f ,

the implementation of a �nger search remains the same as described in Section 5.

We need the following lemma to achieve O(log �) time for �nger searches.

Lemma 1 There exists a pointer-based implementation of �nger search trees which supports

arbitrary �nger searches in O(log log n + log �) time, and neighbor insertions and deletions

in worst case constant time.

Proof The lemma is obtained by combining the �nger search trees of Dietz and Raman [3]

and the search trees of Levcopoulos and Overmars [15].

The basic data structure of Dietz and Raman [3] is a (2; 3){tree where each leaf stores

a bucket of �(log

2

n) elements. By level-linking the (2; 3){tree a �nger search can easily

be done on this part of the data structure as described by Brown and Tarjan [2]. Dietz

and Raman [3] implement the buckets by using the RAM model. This is the only part of

their construction requiring the RAM. They show that, if buckets of size O(log

2

n) support

insertions and deletions in worst case constant time and buckets can be split and joined in

O(log n) time, it is possible to support leaf insertions and deletions in worst case constant

time and �nger searches in O(log �) time plus the time for a �nger search in a bucket.

Whereas Dietz and Raman support �nger searches in a bucket in time O(log �) by using the

RAM, we show how to obtain O(log log n) time by using the weaker pointer machine.

Our bucket representation is quite similar to that of [3, 4, 13]. We represent a bucket by

a tree of height two where all nodes of height one have a degree between log n and 2 log n�1.

If a node of height one has a degree of at least log n+ 1 we, as with the intermediate nodes

in Section 4, represent the node by a pair of nodes (see Figure 1). Adding or deleting a leaf

is handled in a similar way a as for the intermediate nodes. By using the search trees of

Levcopoulos and Overmars [13] to store the children of each node in a bucket, we can insert

and delete leaves from a bucket of size O(log

2

n) in worst case constant time and support

searches in worst case O(log log n) time. A bucket can be split in worst case O(log n) time

by simply incrementally moving O(log n) nodes of height one to a new bucket.

The lemma follows from [3]. 2

If we represent each intermediate level 1 node of our data structure by the search tree of

Lemma 1, a �nger search can be implemented as follows.

The �rst search at node v of height d is performed as follows. If x is spanned by the

same or a neighboring intermediate level 1 block of the block spanning f , we perform a

�nger search for the child of v spanning x in time at most O(log �+ log log 2

(d)

) as described

in Lemma 1. Otherwise � � 2

(d)

and we sequentially �nd the intermediate level 1 block

spanning x and perform a search in this block. Because there are at most 2

3d2

d

intermediate

level 1 blocks this can be done in O(2

3d2

d

+ log 2

(d)

) = O(log �) time. We conclude that

the search at height d can be performed in O(log � + log log 2

(d)

) time. For each recursive

search we �nd the intermediate level 1 block spanning x sequentially as described above

and perform a search in the block to �nd the child spanning x. For level i this requires

O(2

3i2

i

+ log 2

(i)

) time.

The total time for a �nger search therefore becomes

log � + log log 2

(d)

+

d�1

X

i=1

�

2

3i2

i

+ log 2

(i)

�

= O(log � + log log 2

(d)

) = O(log �);
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because � � 2

(d�1)

.

We are now ready to state our main theorem.

Theorem 6 There exists a pointer-based implementation of �nger search trees which sup-

ports arbitrary �nger searches in O(log �) time, neighbor insertions in worst case constant

time, and deletions in worst case O(log

�

n) time.

7 Space requirement

In the previous sections we have not considered the space requirement of our data structure.

It immediately follows that if only insertions are allowed, the data structure only requires

linear space because each insertion only requires additional constant space. If deletions are

allowed the space requirement can become nonlinear due to the dead nodes and the stacks

stored at the leaves. Because deletions take O(log

�

n) time each deletion only increases the

space requirement by O(log

�

n). In the following we describe how the space requirement

of our data structure can be made linear by applying the global rebuilding technique of

Overmars [15].

The details are as follows. Assume the �nger search tree T at some time stores N

elements. Throughout the next �(N) time (not operations) spent on updating T we incre-

mentally build a new �nger search tree T

0

storing the same elements as T . For each element

in T we maintain a pointer to its position in both T and T

0

. An element not yet inserted

into T

0

stores a null pointer. Initially T

0

is an empty �nger search tree. We build T

0

by

incrementally scanning through the list stored by T from left-to-right by having a pointer

to the next element in T to be scanned. Whenever a new element is inserted into T we also

insert the element into T

0

if the neighbor list elements have been inserted into T

0

. For each

insertion we scan two elements of T and insert the elements into T

0

in constant time. For

deletions we similarly delete the element from T

0

if the element already has been inserted

into T

0

. For each deletion we scan maxf2; log

�

Ng elements of T and insert the elements

into T

0

in O(log

�

N) time. The time required for insertions and deletions only increases by a

constant. After at most N insertions and N= log

�

N deletions, in total requiring �(N) time

and space, T and T

0

store the same set of elements, and we can discard the �nger search

tree T and let T

0

play the role of T .

The discarding of T can be done by applying standard incremental garbage collecting

techniques, provided that no element in T

0

stores a pointer to its position in T . We therefore,

before discarding T , perform a second scan through the elements in time �(N) as described

above where we set all pointers into T to null. Throughout this scan updates and �nger

searches are only performed on T

0

.

Let N

0

denote the number of elements stored in T

0

when we discard T . The number of

neighbor insertions done during the two scans is at most 3N and the number of deletions

is at most 2N= log

�

N . Because N(1 � 2= log

�

N) � N

0

� 4N and there has been at most

2N= log

�

N deletions done on T

0

, T

0

requires O(N

0

) space. By always starting a new rebuild-

ing when the previous rebuilding is �nished, it follows that the data structure requires linear

space.
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8 Conclusion

We have presented the �rst pointer-based �nger search tree implementation allowing inser-

tions to be done in worst case constant time. The previous best bounds were O(log

�

n) [6,

8, 9].

It remains an open problem if our data structure can be extended to support deletions

in worst case constant time too. Our data structure can be extended to support deletions in

worst case O(log

�

n) time, matching the bounds of Harel and Lueker [8, 9].

An interesting and related question to consider is if some of the presented ideas can be

used to remove the amortization from the node splitting technique of Driscoll et al. [5] to

make data structures fully persistent.
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