
AGD{Library: A Library of Algorithms for Graph Drawing

1

David Alberts

Martin-Luther-Universit�at Halle-Wittenberg

D-06099 Halle, Germany

e-mail: alberts@informatik.uni-halle.de

Carsten Gutwenger

Max-Planck-Institut f�ur Informatik, Im Stadtwald

D-66123 Saarbr�ucken, Germany

e-mail: gutwenge@mpi-sb.mpg.de

Petra Mutzel

Max-Planck-Institut f�ur Informatik, Im Stadtwald

D-66123 Saarbr�ucken, Germany

e-mail: mutzel@mpi-sb.mpg.de

and

Stefan N�aher

Martin-Luther-Universit�at Halle-Wittenberg

D-06099 Halle, Germany

e-mail: naeher@informatik.uni-halle.de

ABSTRACT

A graph drawing algorithm produces a layout of a graph in two- or three-dimensional space

that should be readable and easy to understand. Since the aesthetic criteria di�er from one

application area to another, it is unlikely that a de�nition of the \optimal drawing" of a graph

in a strict mathematical sense exists. A large number of graph drawing algorithms taking dif-

ferent aesthetic criteria into account have already been proposed. In this paper we describe the

design and implementation of the AGD{Library, a library of Algorithms for Graph Drawing.

The library o�ers a broad range of existing algorithms for two-dimensional graph drawing and

tools for implementing new algorithms. The library is written in C
++

using the LEDA platform

for combinatorial and geometric computing ([16, 17]). The algorithms are implemented inde-

pendently of the underlying visualization or graphics system by using a generic layout interface.

Most graph drawing algorithms place a set of restrictions on the input graphs like planarity or

biconnectivity. We provide a mechanism for declaring this precondition for a particular algo-

rithm and checking it for potential input graphs. A drawing model can be characterized by a

set of properties of the drawing. We call these properties the postcondition of the algorithm.

There is support for maintaining and retrieving the postcondition of an algorithm.

1. Introduction

Visualization of structural information in form of graph layout diagrams is getting increasing

attention. Graphs are widely used to model relational structures such as networks, e.g., of a subway,

1

This work was supported in part by DFG-Grant Na 303/1-2, Forschungsschwerpunkt \E�ziente Algorithmen f�ur

diskrete Probleme und ihre Anwendungen"

1

of computers or the internet. Applications arise in economics (project management, work-
ow

diagrams, entity-relationship diagrams), computer science (compiler and software development tools,

data base modelling, algorithm animation), social science (social networks) and natural science (
ow-

diagrams in Chemistry, visualization of excavations in Archeology).

A graph drawing algorithm takes as input a graph and computes a layout of the graph, i.e., a

drawing in two or three-dimensional space by assigning coordinates to the vertices and mapping

each edge to a simple curve. In most cases, these curves are straight lines or polygonal chains.

The layouts produced by a graph drawing algorithm should be \aesthetically nice" and \easy-to-

understand". Some important criteria for readable diagrams are a small number of edge crossings,

evenly distributed vertices and edges, short edges, few edge bends, and a small layout area or volume.

There is a wide variety of graph drawing methods that take di�erent aesthetic criteria into account.

Here, we present a library of Algorithms for Graph Drawing, AGD{Library [1], that o�ers a

broad range of existing algorithms for two-dimensional graph drawing and tools for implementing

new algorithms. Section 2 describes the design goals and contains a comparison to related software

packages, Section 3 gives an overview of the AGD{Library, and Section 4 deals with the implementa-

tion of the library. In particular, the generic graphics interface and the handling of the preconditions

and postconditions of the drawing algorithms are described. Section 5 shows how to use the library

and gives a complete example of extending it by a new algorithm. Future plans are described in

Section 6.

The AGD{Library is a product of a cooperation of groups in Halle, K�oln and Saarbr�ucken

supported by the DFG in the program \E�ziente Algorithmen f�ur diskrete Probleme und ihre

Anwendungen". The AGD{Library is based on LEDA and will be distributed as a LEDA extension

package (LEP). LEDA [16, 17] aims at being a comprehensive software platform for combinatorial

and geometric computing. It provides a sizable collection of data types and algorithms. This

collection includes most of the data types and algorithms described in the text books of the area.

In particular, LEDA o�ers a very powerful and e�cient graph data type that allows to implement

graph algorithms very close to the typical text book presentation.

 1

 2

 4

 3

 5

 7

 6

 9

 8

11

10

12

18

13

15

14
17

20

19
16

 1

 2 4

 3 5 7

 6 9 8

11

10

12 18

13

15 14

17 20

19

16

(a) (b)

Figure 1: Two drawings of a nonplanar graph using the (a) hierarchical method [21] and (b) the force-directed

method [7]

Drawing methods can be classi�ed according to the kind of drawings they produce (e.g., hier-

archical drawings, orthogonal drawings, straight-line drawings, circular drawings), the model they

use (e.g., force-directed, planarization), and the class of graphs they can be applied to (e.g., planar

graphs, directed acyclic graphs, trees).

Most available software packages for graph drawing use the hierarchical drawing method suggested

2

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

1920

21

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1

2

3

4

5 6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

(a) (c)

(b) (d)

Figure 2: A planar graph drawn with the algorithms (a) in [4] (original) for triangulated graphs (b) in [8]

for biconnected graphs (c) in [11, 8] (d) in [22, 12].

by Sugiyama et al. [21], since this method is easy to implement and the produced drawings look

pleasant for graphs representing hierarchies (see Figure 1(a)). However, if the given graph does not

represent a hierarchy the output can be very poor.

Another popular class of layout algorithms are the force-directed algorithms. Most of them are

variants of the originally in [5] proposed spring embedder algorithm. Here, the energy of a physical

system is minimized where the vertices are represented by masses that repel each other and the

edges are modelled by springs that attract their endpoints. The idea is that the vertices and edges

are equally distributed in the layout-area as soon as the physical system is in equilibrium (see

Figure 1(b)). The method produces good results for symmetric graphs. However, since \real world

graphs" are, in general, not symmetric, it is not very often used in practical applications.

Circular layout methods are useful for displaying ring and star networks. Here, the vertices are

partitioned into groups, and each group of vertices is placed on a circle. The edges are drawn as

straight lines.

For restricted classes of graphs various drawing algorithms exist that lead to nice drawings. Let

us consider the class of planar graphs, i.e, graphs that can be drawn in the plane without edge

crossings. It is well-known that planar graphs can always be drawn with straight edges [6]. Various

planar straight-line algorithms [4, 11, 3, 8] exist. They proceed in the following way. In a �rst step,

the vertices are sorted according to the requirements of a canonical ordering, and in a second step,

the vertices are iteratively placed on a grid. The methods di�er in the de�nition of the canonical

ordering, that depends on the input graph (biconnected, triconnected or triangulated), and on the

layout (convex drawing, layout-area) (see Figure 2(a)-(b)). Some problems of the above methods

are that the angles between edges may become too small and that the area of the produced layout

is too big. By using a modi�cation called mixed-model [11, 8] (see Figure 2(c)) that allows edge

3

bends some of these problems can be avoided.

Orthogonal drawings have no problems with small angles; here, the edges are drawn as chains

of vertical and horizontal line segments. Of course, only graphs with maximal degree four can

have an orthogonal drawing on a grid. For a �xed combinatorial embedding (plane graph) it is

possible to construct a planar orthogonal drawing with the minimal number of bends e�ciently [22].

Di�erent approaches have been suggested for using orthogonal drawing algorithms for general planar

graphs (with vertex degrees greater than four); the size of the vertices can be increased, the size

of the underlying grid can be decreased, or non-orthogonal line segments may be allowed locally.

The latter approach is called quasi-orthogonal drawing (see Figure 2(d) for an extension [12] of the

algorithm in [22]).

By transforming a general graph into a planar graph via introducing additional vertices at edge

crossings (planarization), all graph drawing algorithms for planar graphs can be used for drawing

general graphs.

Besides the \conventional" graph drawing methods, various other approaches exist, e.g., dynamic

graph drawing, proximity drawing, or visibility drawing. In a visibility representation vertices are

drawn as horizontal line segments. Every edge is drawn as a vertical line segment connecting the

horizontal segments corresponding to its end-vertices at a certain x{coordinate. Apart from these

incidences all segments are disjoint.

2. Design Goals and Related Packages

In our opinion the following design goals are the most important in the �eld of implementing

graph drawing algorithms. We try to address them in the AGD{Library as described in the following

sections.

Flexibility

Since there are so many di�erent approaches to graph drawing none of which can be ruled out a

priori, it is important to provide the possibility of choosing among several di�erent algorithms

in order to get good results for a particular graph. Thus, systems o�ering only a single drawing

algorithm are only of limited usefulness.

A related issue is the visualization component. Since graph drawing often appears as a subtask

in a complex application, it is necessary to o�er the possibility of using an arbitrary visualiza-

tion component. A system for drawing graphs which is tied to a speci�c form of visualization

signi�cantly reduces the range of possible applications.

Ease of Usage

If a system is hard to use, then only a minority of \expert users" will be able to take advantage

of it. Since we want to address a broad audience, we have to provide an easy interface.

Extensibility

Graph drawing is still a very active area of research. We want to help in closing the gap

between interesting new ideas and usable software by providing a set of tools which helps

in quickly and e�ciently implementing new algorithms. In particular the reusage of already

written modules appearing in the implementations of several graph drawing algorithms should

be possible and easy, and di�erent modules implementing the same functionality should be

exchangeable.

At this point we give a brief overview of related libraries of graph drawing algorithms and how

we see them in the light of the above formulated design goals.

Graph Layout Toolkit [15] is a commercial system containing four C
++

class libraries for in-

tegration into application programs. The libraries represent the four layout methods hierarchical,

4

force-directed, orthogonal, and circular drawing. Some of the classes can be reused in user programs.

However, integration of new algorithms into the library is not supported.

Graphlet [9] is an object-oriented toolkit for implementing graph editors and graph drawing

algorithms. It contains various methods for force-directed layouts, a hierarchical method, a tree

layout algorithm, and planar graph drawing methods (partially provided by the AGD{Library).

Graphlet provides a plugin concept which makes it easy to integrate new algorithms. However,

reusability of parts of the algorithms is not intended. Moreover, the integration of graph drawing

algorithms into graphical user interface application programs is not supported.

GDToolkit [2] is an experimental library of C
++

classes based on LEDA which is still under

construction. It will contain orthogonal drawing methods and methods based on planarization.

GDToolkit is comparable with the AGD{Library in the sense that it allows the combination of

various algorithms by the user. In order to deal with modules, in particular, with the precondition

and postcondition of algorithms, GDToolkit introduces a unique inheritance hierarchy: A (graph

drawing) algorithm is seen as a constructor of a class with a higher compatible level generating a

new element of a di�erent class with lower level according to the underlying hierarchy (we compare

GDToolkit with AGD{Library in more detail in Section 4.2). The library can be used together with

LEDA and also independently, hence it can be integrated in any user program.

3. Overview of the AGD{Library

3.1. The Structure of the AGD{Library

The two main parts of the AGD{Library are a collection of layout algorithms and a toolbox for

extending the library by new implementations.

The design of the AGD{Library is based on the object-oriented features of C
++

programming

language. In particular, each layout algorithm is implemented as a C
++

class. There is a common

base class for all layout algorithms called LayoutModule. The main advantages of this approach are

a generic interface to all layout algorithms, which allows for an easy integration into applications,

and a mechanism for handling preconditions and postconditions of algorithms in the base class

which is simply inherited by all algorithms. The base class provides two basic methods, check

for checking the precondition of a particular algorithm given a speci�c graph, and call for calling

the particular algorithm. In a speci�c algorithm, which is a class derived from the base class, the

speci�c precondition is de�ned and a method for executing the speci�c algorithm called by call is

implemented. call does not change the input graph, i.e., the input is a const parameter.

Figure 3 shows an overview of the AGD{Library from the user's perspective. The speci�c layout

algorithms Convex or MixedModel are derived from the class GridLayoutModule. GridLayoutModule

provides operations for all layout algorithms which place the vertices on integer coordinates. More-

over, it de�nes a common user interface for this type of layout algorithms. GridLayoutModule

inherits from LayoutModule which provides common functionality and a basic interface for all lay-

out algorithms.

Depending on the application di�erent types of visualization of the computed layouts may be

suitable including no visualization at all (e.g., just using the computed vertex coordinates as input

to further computations). Thus it is important that the layout algorithms are not tied to a speci�c

visualization tool. In AGD{Library we achieve this goal by manipulating the graphical attributes

of a graph by means of a generic interface which is de�ned in the virtual class LayoutInterface.

The user can specify which package to use for representing and displaying graphical attributes of a

graph by choosing a prede�ned specialization of LayoutInterface (GraphWinInterface for LEDA's

graph visualization component GraphWin and GraphletInterface for the graph editor Graphlet

are already available) or by deriving her or his own class from LayoutInterface.

We are planning to provide a new class GraphInterface similar to LayoutInterface in order

to decouple the layout algorithms from the representation of the topology of the input graph, too.

5

LayoutInterface

LayoutModule

GridLayoutModule

Convex MixedModel

Graph

AGD-Library

(LEDA graph)

Graphical Attributes

Visualization

Topology

Generic

Specific

Class of Alg.

Interface wrt

Interface

Interface

LEDA

User

Figure 3: A Sketch of the User's View of the AGD{Library

At the moment a LEDA graph has to be used.

3.2. Layout Algorithms in the AGD{Library

The AGD{Library contains classical graph drawing algorithms as well as implementations of

new algorithms (in some cases extensions of the former), that have been developed within the DFG

project. In particular, AGD{Library is designed to support planar graph drawing algorithms and

planarization methods in a
exible way. Moreover, AGD{Library will contain exact algorithms using

ABACUS for NP-hard optimization problems occuring in graph drawing, e.g., crossing minimiza-

tion, maximum planar subgraph. ABACUS is a software system providing a framework for the

implementation of branch-and-cut algorithms [10].

Currently, the following graph layout algorithms are available.

� drawing planar graphs on the grid with straight edges

FPPLayout (de Fraysseix, Pach, and Pollack [4]), SchnyderLayout (Schnyder [20]), Convex

(Kant [11]), ConvexDraw (Chrobak and Kant [3]), PlanarDraw (Gutwenger and Mutzel [8]),

PlanarStraight (Gutwenger and Mutzel [8]), VisibilityRepresentation (Rosenstiehl and

Tarjan [19])

� drawing planar graphs on the grid with edge bends

MixedModelLayout (extension of Kant's algorithm [11, 8]), OrthogonalLayout (extension of

Tamassia's algorithm [22, 12])

� drawing special classes of planar graphs

TreeLayout (Reingold and Tilford, Walker [18, 24, 13])

� drawing general graphs

SpringLayout (Fruchterman, Reingold [7]), TutteLayout (Tutte [23]), SugiyamaLayout

(Sugiyama, Tagawa, and Toda [21])

As soon as the planarization module is integrated, all the planar graph drawing algorithms can be

used for drawing general graphs.

6

4. Implementation of the AGD{Library

4.1. The Generic Graphics Interface

The layout of a graph is expressed by graphical attributes of vertices and edges. Most graph

drawing packages de�ne an extended graph data structure, and use this structure with their graph

drawing functions.

This approach contains several disadvantages: Many applications that require graph layout al-

gorithms have already de�ned their own data structures, e.g., the graph editor Graphlet uses the

class GT Graph to represent a graph together with its graphical attributes. Another disadvantage

is that a speci�c application could need further graphical attributes, such as bitmaps or PostScript

graphics, or the provided graph class contains many unnecessary attributes.

The AGD{Library does not de�ne an extended graph data structure, but uses a generic interface

class to access graphical attributes in existing data structures. This makes it possible to use any

data structure representing a layout by implementing a layout interface for it.

In a drawing of a graph, vertices are represented by graphical objects such as rectangles or circles

usually containing a text label, and edges are represented by curves (polylines or splines). A layout

algorithm does not need to know the speci�c details of the graphical representation of a vertex, it

is su�cient to know its size and shape. The algorithm computes a position for each vertex, and

a list of bends for each edge. Some algorithms, e.g., visibility representation, in addition have to

change the size or shape of a vertex and to specify where exactly the edges are connected to the

corresponding source and target vertices. These points of connection are often called edge anchors.

For the representation of edge anchors we adopted the method used in the Graphlet system [9].

Each anchor p is de�ned by a point with two coordinates describing the relative position of p with

respect to the position of the corresponding vertex v. The point (0; 0) corresponds to the center of

v. The coordinates in the range of [�1 : : :1]� [�1 : : :1] are linearly mapped to the bounding box of

v which is speci�ed by the width and height of v.

The class LayoutInterface de�nes a generic interface to read and manipulate these basic at-

tributes containing the following virtual methods:

double A.get width(node v)

void A.set width(node v, double new w)

double A.get height(node v)

void A.set height(node v, double new h)

DPoint A.get position(node v)

void A.set position(node v, DPoint pos)

DPoint A.get source anchor(edge e)

void A.set source anchor(edge e, DPoint pos)

DPoint A.get target anchor(edge e)

void A.set target anchor(edge e, DPoint pos)

The class LayoutInterface does not store these attributes, but de�nes how they are accessed. An

implementation of a layout interface is a class derived from LayoutInterface that implements the

virtual methods for a speci�c data structure representing a layout.

Furthermore, the class LayoutInterface contains three noti�cation methods. The method init

is called at the start of the computation of a layout, cleanup is called, when the layout has been

completely computed, and update is called, when intermediate changes in the layout shall be made

visible (e.g., in animations).

void A.init(graph G)

void A.cleanup(graph G)

7

void A.update(graph G)

The methods init and cleanup are useful for implementations that bu�er some data until the

complete layout is computed. The bu�er can be initialized in the init method, and allocated

resources can be freed in the cleanup method.

There are already two prede�ned specializations of LayoutInterface available in the AGD{

Library: GraphWinInterface for LEDA's graph visualization component GraphWin [17] and

GraphletInterface for the graph editor Graphlet [9]. For an example of how to use a layout

interface with a graph drawing algorithm see Section 5.

4.2. Handling Preconditions and Postconditions of Algorithms

There is no generic algorithm for drawing all types of graphs, but a considerable number of

algorithms for di�erent restricted classes of input graphs (e.g., the input graph has to be planar,

simple and biconnected). Thus, there is a natural need for handling the precondition on the input

graph of a particular algorithm. A simple approach to this task is to describe the precondition in the

written documentation of the algorithm, and to simply assume that the algorithm gets only valid

input graphs. However, this is quite unsatisfactory.

A related problem lies in coping with the di�erent models of drawing graphs, e.g., edges have

bends or not, vertex coordinates are integers or not. Again, a simple solution is to describe the

properties of the drawing in the documentation. If in a particular application the user wants to

know, which of the available algorithms satisfy a certain property, then there is no elegant way for

the application to answer the question.

Our solution to the problems described above is to provide a mechanism for specifying, retriev-

ing and checking the precondition of an algorithm, and a mechanism for specifying and retrieving

properties of its output, which we call the postcondition of the algorithm. These mechanisms are

implemented in the base classes AGD and AGDModule by means of hash tables and they are easy to

(re{)use.

Let us see an example. A precondition is represented by a set of properties of the input graph, and

a postcondition by a set of properties of the layout. They are usually speci�ed in the constructor

of a particular algorithm class. The following is the constructor of the class FPPLayout, which

implements the layout algorithm by de Fraysseix, Pach, and Pollack [4].

FPPLayout::FPPLayout () : GridLayoutModule(true) {

add_precondition (key::planar);

add_precondition (key::simple);

add_precondition (key::no_self_loops);

add_post_rule (key::straight_line);

add_post_rule (key::no_crossings);

}

In this case all input graphs have to be planar and simple (no multi-edges are allowed) and

they may not contain sel
oops. The drawing that the algorithm produces for a valid input graph is

always planar (indicated by no crossings) and the edges are drawn as straight lines. Therefore, the

precondition is fplanar; simple; no self loopsg, and the postcondition is fstraight-line; no crossingsg.

The constructor of FPPLayout passes true to the parameter use copy of the constructor of

GridLayoutModule specifying that the algorithm is working on a copy of the graph rather than

the original graph itself. The reason is that the copy can be changed by adding dummy edges

temporarily which are ignored in the drawing in order to be able to use a certain algorithm.

The base class LayoutModule de�nes a method check which gets a potential input graph and

checks whether it satis�es the speci�ed precondition. The default implementation of check is able to

check all commonproperties of graphs, like, e.g., planarity, simplicity, biconnectivity. However, there

8

is the possibility to add new properties for particular algorithms, and to extend the check method

accordingly. The check method is not called by default, if an algorithm is executed, because there

are possible situations where it does not make sense to do so, e.g., an application can guarantee the

validity of the input because there is some preprocessing step which only produces inputs satisfying

the precondition.

A di�erent approach to the problem of handling preconditions and postconditions used by the

graph drawing library GDToolkit [2] works as follows. The input I of an algorithm A belongs

to a certain class C

I

within the inheritance hierarchy of GDToolkit. C

I

is the class of all graphs

satisfying the precondition of A. I is transformed by A to an output O belonging to a class C

O

,

which represents the set of all possible outcomes of A and thus the postcondition of A. This way

the type system of C
++

is used for handling preconditions and postconditions of algorithms.

Advantages of this approach are the lack of code overhead for supporting pre- and postconditions

of algorithms and an appealing model of the problem domain in the form of the inheritance hierarchy.

The main disadvantage is that the number of classes which is needed to express all possible sets

of properties for a graph is exponential in the number of supported independent properties. There

has to be a class for every possible tuple in the property space. This leads, e.g., to restricted

extensibility. Adding one new property means in the worst case creating a whole bunch of new

classes and redesigning the interfaces of many algorithms for which the input or output class was

split into two or more classes. Another problem arises for algorithms which do not care about the

distinction related to some speci�c property. They may be able to take input from two or more

classes, thus, it is di�cult to integrate them into the library without sacri�cing the conceptual

clarity.

If only a small set of algorithms is used and hence only a small number of properties is needed,

the GDToolkit approach seems to be suitable, but we think that our approach is better suited for

supporting a broad range of di�erent algorithms and easy extensibility.

5. Using the AGD{Library

In the following, we present a complete example of extending the library by a new algorithm (see

Figure 4). Moreover, the main routine is an easy example of an application. The algorithm added

to the library simply assigns random coordinates to the vertices for brevity.

A new class RandomLayout is created representing the new algorithm. It is derived from the

base class LayoutModule. Apart from the constructor, all methods in the class RandomLayout are

re�nements of virtual methods provided in LayoutModule.

The constructor declares the precondition (no restriction in this case) and postcondition of the

algorithm. The re�ned public methods provide information about the particular algorithm and

implementation. The protected method call layout implements the drawing procedure. It is

called by the inherited public method call (see main). get layout size tells the application the

dimensions of the current drawing. In this simple case, we always use the same dimensions, but

usually they depend on a previously calculated drawing.

In main we create an instance GW of class GraphWin as visualization component in line 1. Line 2

displays GW on the screen and lets the user edit a graph. We get the graph which has been created

in line 3. We create an interface for the generic graph drawing algorithms in the library to GW in

line 4. We create an instance of the RandomLayout algorithm in line 5 and use it on G displaying

the result again in GW in line 6. Finally, we let the user edit the resulting graph in line 7. The graph

together with the computed coordinates can be saved to disk, for example.

The call method additionally cares about glueing together the drawing algorithm and a speci�c

visualization. For example, call initiates the initialization and clean up of the particular instance

of class LayoutInterface by calling its above described init and cleanup methods.

Before calling an algorithm it is possible to check whether a certain input graph satis�es the

precondition of the algorithm that should be applied using the check method. In our example this

9

#include<AGD/LayoutModule.h>

#include<AGD/GraphWinInterface.h>

class RandomLayout : public LayoutModule

{

public:

RandomLayout();

string name() const { return string("Random"); }

string long_name() const { return string("Random Layout"); }

string author() const { return string("NA"); }

string impl_author() const { return string("David Alberts"); }

string impl_date() const { return string("May 1997"); }

AGDModule *clone() const { return new RandomLayout; }

protected:

bool call_layout(const graph& G, LayoutInterface& a);

void get_layout_size(DRect& bbox)

{ bbox = DRect(0.0,100.0,0.0,100.0); }

private:

random_source rs;

};

RandomLayout::RandomLayout() : LayoutModule()

{

add_post_rule(key::straight_line);

}

bool RandomLayout::call_layout(const graph& G, LayoutInterface& a)

{

node v;

forall_nodes(v,G)

{

double x,y;

rs >> x >> y; // assigns pseudo-random numbers in the range [0..1]

x *= 100.0; // scale to [0..100]

y *= 100.0;

a.set_position(v,DPoint(x,y));

}

return true;

}

int main()

{

GraphWin GW; // create a GraphWin (1)

GW.open(); // open it, and let user edit a graph (2)

graph& G = GW.get_graph(); // get the graph (3)

GraphWinInterface GWI(GW); // create an interface to GW for AGD alg's (4)

RandomLayout RL; // create an instance RL of RandomLayout (5)

RL.call(G,GWI); // apply RL to G displaying it in GW (6)

GW.edit(); // let the user edit the result (7)

}

Figure 4: A Complete Example

10

is not necessary, since there are no restrictions on the input.

6. Future Plans

6.1. Modularizing Algorithms

Besides the graph drawing algorithms provided by the AGD{Library themselves, many building

blocks of these algorithms can be reused, too. Some examples of such blocks are the following.

� Planarization: Transform a graph G into a graph G

0

by replacing edge crossings with dummy

vertices until G

0

is planar.

� Augmentation: Transform a graph G into a graph G

0

by adding edges until G

0

satis�es a

certain condition such as biconnectivity, or triconnectivity.

� Canonical ordering: Compute an ordered partitioning of the nodes of a given graph G that

satis�es particular conditions.

Instead of o�ering an unstructured collection of several classes or functions, we plan to provide

enhanced support for reusing those building blocks in the form of independent modules with well-

de�ned interfaces. For example, we can implement a drawing algorithm PlanarizationLayout,

which is able to draw a general graph by transforming it into a planar graph using a planarization

module, and drawing this planar graph using a layout algorithm for planar graphs. Moreover, it

should be easy to exchange each module even interactively at run-time.

We can characterize the type of a module by de�ning the type of its input, the type of its output,

and the associated functionality, e.g., augmentation or layout algorithm. A module implementation

declares, which precondition the input must satisfy, and which postcondition holds for the output,

e.g., a module for planar biconnected augmentation would declare that the input graph must be

planar, and that the output graph is planar and biconnected.

If an algorithm allows to exchange a module at run time, it must declare the module type T , the

precondition PRE that always holds for the input of the module, and the postcondition POST that

the output of the module must satisfy. Then, the module can be exchanged by an implementation

M , if M is of type T , PRE) precondition(M), and postcondition(M)) POST .

The implementation of the module concept is done in the following way. We express the di�erent

types of modules by abstract base classes de�ning the interface for calling the module. These base

classes are derived from AGDModule, which provides the management of pre- and postconditions.

We also want to provide support for querying if a condition P implies a condition Q by de�ning

dependencies between properties, e.g., \biconnected implies connected", or \tree is equivalent to

connected forest".

6.2. Decoupling Algorithms from the Graph Representation

We are planning to insert a further generic interface GraphInterface between the layout algo-

rithms and the topology of the graph. Currently, the layout algorithms use the LEDA data type

graph directly. Such an interface de�nes a standard set of operations that each graph data structure

has to provide. There are specializations by derived classes for speci�c graph data structures. An

important special case is still the LEDA graph data type of course, but moreover it becomes possible

to have additional problem speci�c graph data structures, e.g., a data structure which maintains a

graph implicitly. Many complex data structures can be viewed as graphs, and their visualization is

a useful tool for understanding or debugging them [25, 14]. For all these new graph data structures,

one would instantly be able to use all drawing algorithms in the library, once the corresponding

interface is written.

11

References

[1] The AGD User Manual (Version 0.7), 1997. Max-Planck-Institut f�ur Informatik, Im Stadwald, D-66123

Saarbr�ucken, Germany. See also http://www.mpi-sb.mpg.de/~mutzel/dfgdraw/agdlib.html.

[2] G. Di Battista, W. Didimo, and A. Leonforte. GDToolkit. Work Package 1.2 of the ALCOM-

IT ESPRIT LTR Project 20244; contributing sites: Cologne, Paris, Rome and Saarbr�ucken,

http://www.inf.uniroma3.it/people/gdb/wp12, 1997.

[3] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. Technical Report

RUU-93-45, Dept. of Computer Sci., Utrecht Univ., 1993.

[4] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,

10(1):41{51, 1990.

[5] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149{160, 1984.

[6] I. F�ary. On straight line representation of planar graphs. Acta Sci. Math. Szeged, 11:229{233, 1948.

[7] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Softw. { Pract. Exp.,

21(11):1129{1164, 1991.

[8] C. Gutwenger and P. Mutzel. Grid embedding of biconnected planar graphs. Extended Abstract,

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, 1997.

[9] M. Himsolt. The Graphlet system. Proc. Graph Drawing '96, LNCS, 1190:233{240, 1997.

[10] M. J�unger and S. Thienel. The design of the branch and cut system ABACUS. Technical Report

No. 97.260, Institut f�ur Informatik, Universit�at zu K�oln, 1997.

[11] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, Special Issue on Graph

Drawing, 16(1):4{32, 1996.

[12] G. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Extended Abstract, Max-Planck-

Institut f�ur Informatik, Saarbr�ucken, Germany, 1997.

[13] S. Leipert. The tree interface - version 1.0 user manual. Technical Report No. 96.242, Institut f�ur

Informatik, Universit�at zu K�oln, 1996.

[14] D. L�utkehaus and A. Zeller. DDD: The data display debugger. Technische Universit�at Braunschweig,

Germany, http://www.cs.tu-bs.de/softech/ddd/, 1997.

[15] B. Madden, P. Madden, S. Powers, and M. Himsolt. Portable graph layout and editing. Proc. Graph

Drawing '95, LNCS, 1027:385{395, 1996.

[16] K. Mehlhorn and S. N�aher. LEDA: A platform for combinatorial and geometric computing. Comm. As-

soc. Comput. Mach., 38:96{102, 1995.

[17] K. Mehlhorn, S. N�aher, and Ch. Uhrig. The LEDA User Manual (Version R 3.5). Max-Planck-Institut

f�ur Informatik, Saarbr�ucken, Germany. See also http://www.mpi-sb.mpg.de/LEDA/leda.html, 1997.

[18] E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng., SE-7(2):223{228, 1981.

[19] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs.

Discrete Comput. Geom., 1(4):343{353, 1986.

[20] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM Sympos. Discrete

Algorithms, pages 138{148, 1990.

[21] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical systems. IEEE

Trans. Syst. Man Cybern., SMC-11(2):109{125, 1981.

[22] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput.,

16(3):421{444, 1987.

[23] W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society, 13(3):743{768, 1963.

[24] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. { Pract. Exp., 20(7):685{705,

1990.

[25] A. Zeller and D. L�utkehaus. DDD { a free graphical front-end for UNIX debuggers. ACM SIGPLAN

Notices, 31(1), 1996.

12

