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Abstract

We consider exploration problems where a robot has to construct a complete map of an

unknown environment. We assume that the environment is modeled by a directed, strongly

connected graph. The robot's task is to visit all nodes and edges of the graph using the

minimumnumberR of edge traversals. Koutsoupias [16] gave a lower bound for R of 
(d

2

m),

and Deng and Papadimitriou [12] showed an upper bound of d

O(d)

m, where m is the number

edges in the graph and d is the minimumnumber of edges that have to be added to make the

graph Eulerian. We give the �rst sub-exponential algorithm for this exploration problem,

which achieves an upper bound of d

O(logd)

m. We also show a matching lower bound of

d


(logd)

m for our algorithm. Additionally, we give lower bounds of 2


(d)

m, resp. d


(logd)

m

for various other natural exploration algorithms.

1 Introduction

Suppose that a robot has to construct a complete map of an unknown environment using a

path that is as short as possible. In many situations it is convenient to model the environment

in which the robot operates by a graph. This allows to neglect geometric features of the en-

vironment and to concentrate on combinatorial aspects of the exploration problem. Deng and

Papadimitriou [12] formulated thus the following exploration problem. A robot has to explore

all nodes and edges of an unknown, strongly connected directed graph. The robot visits an edge

when it traverses the edge. A node or edge is explored when it is visited for the �rst time. The

goal is to determine a map, i.e. the adjacency matrix, of the graph using the minimum number

R of edge traversals. At any point in time the robot knows (1) all visited nodes and edges and

can recognize them when encountered again; and (2) the number of unvisited edges leaving any

visited node. The robot does not know the head of unvisited edges leaving a visited node or the

unvisited edges leading into a visited node. At each point in time, the robot visits a current node

and has the choice of leaving the current node by traversing a speci�c known or an arbitrary

(i.e. given by an adversary) unvisited outgoing edge. An edge can only be traversed from tail to

head, not vice versa.

If the graph is Eulerian, 2m edge traversals su�ce [12], where m is the number of edges.

This immediately implies that undirected graphs can be explored with at most 4m traversals.

For a non-Eulerian graph, let the de�ciency d be the minimum number of edges that have

to be added to make the graph Eulerian. Deng and Papadimitriou [12] suggested to study

the dependence of R on m and d and showed the �rst upper and lower bounds: they gave a

graph such that any algorithm needs 
(d

2

m= log d) edge traversals, and they also presented an

algorithm that achieves an upper bound of d

O(d)

m. Koutsoupias [16] improved the lower bound

to 
(d

2

m). Deng and Papadimitriou asked the question whether the exponential gap between

�
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the upper and lower bound can be closed. Our paper is a �rst step in this direction: we give

an algorithm that is sub-exponential in d, namely it achieves an upper bound of d

O(logd)

m. We

also show a matching lower bound for our algorithm and exponential lower bounds for various

other exploration algorithms.

Note that d arises also in the complexity of the \o�line" version of the problem: Consider

a directed cycle with one edge replaced by d + 1 parallel edges. On this graph any Eulerian

traversal requires 
(dm) edge traversals. A simple modi�cation of the Eulerian online algorithm

solves the o�ine problem on any directed graph with O(dm) edge traversals.

Related Work. Exploration and navigation problems for robots have been studied ex-

tensively in the past. The exploration problem in this paper was formulated by Deng and

Papadimitriou based on a learning problem proposed by Rivest [19]. Betke et al. [8] and Awer-

buch et al. [1] studied the problem of exploring an undirected graph and requiring additionally

that the robot returns to its starting point every so often. Bender and Slonim [9] showed how

two cooperating robots can learn a directed graph with indistinguishable nodes, where each

node has the same number of outgoing edges. Subsequent to the work in [12], Deng et al. [11]

investigated a geometric exploration problem, whose goal is to explore a room with or with-

out polygonal obstacles. Ho�mann et al. [15] gave an improved exploration strategy for rooms

without obstacles. More generally, theoretical studies of exploration and navigation problems in

unknown environments were initiated by Papadimitriou and Yannakakis [18]. They considered

the problem of �nding a shortest path from a point s to a point t in an unknown environment

and presented many geometric and graph based variants of this problem. Blum et al. [7] inves-

tigated the problem of �nding a shortest path in an unfamiliar terrain with convex obstacles.

More work on this problem includes [2, 5, 6].

Our Results. Our main result is a new robot strategy, called Balance, that explores an

arbitrary graph with de�ciency d and traverses each edge at most (d + 1)

6

d

2 logd

times, see

Section 3. The algorithm does not need to know d in advance. The total number of traversals

needed by the algorithm is also O(minfnm; dn

2

+mg), where n is the number of nodes. At the

end of Section 3 we show that any exploration algorithm that ful�lls two intuitive conditions

achieves an upper bound of O(minfnm; dn

2

+mg). A depth-�rst search strategy obtaining this

bound was independently developed by Kwek [17].

In Section 4 we demonstrate that our analysis of the Balance algorithm is tight: There exists

a graph that is explored by our algorithm using d


(logd)

m edge traversals. We also show that

various variants of the algorithm have the same lower bound. In Section 2, we present lower

bounds of 2


(d)

m, resp. d


(log d)

m for various other natural exploration algorithms to give some

intuition for the problem.

Our exploration algorithm tries to explore new edges that have not been visited so far. That

is, starting at some visited node x with unvisited outgoing edges, the robot explores new edges

until it gets stuck at a node y, i.e., it reaches y on an unvisited incoming edge and y has no

unvisited outgoing edge. Since the robot is not allowed to traverse edges in the reverse direction,

an adversary can always force the robot to visit unvisited nodes until it �nally gets stuck at a

visited node.

The robot then relocates, using visited edges, to some visited node z with unexplored outgo-

ing edges and continues the exploration. The choice of z is the only di�erence between various

algorithms and the relocation to z is the only step where the robot traverses visited edges. To

minimize R we have to minimize the total number of edges traversed during all relocations. It

turns out that a locally greedy algorithm that tries to minimize the number of traversed edges
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during each relocation is not optimal: it has a lower bound of 2


(d)

m (see Section 2).

Instead, our algorithm uses a divide-and-conquer approach. The robot explores a graph with

de�ciency d by exploring d

2

subgraphs with de�ciencies d=2 each and uses the same approach

recursively on each of the subgraphs. To create subgraphs with small de�ciencies, the robot keeps

track of visited nodes that have more visited outgoing than visited incoming edges. Intuitively,

these nodes are expensive because the robot, when exploring new edges, can get stuck there. The

relocation strategy tries to keep portions of the explored subgraphs \balanced" with respect to

their expensive nodes. If the robot gets stuck at some node, then it relocates to a node z such

that \its" portion of the explored subgraph contains the minimum number of expensive nodes.

2 Lower bounds for various algorithms

In this section we give lower bounds of 2


(d)

m, resp. d


(logd)

m for a locally greedy, a generalized

greedy, a depth-�rst, and a breadth-�rst algorithm. A related problem for which lower bounds

have been studied extensively, is the s{t connectivity problem in directed graphs, see [3, 4, 14]

and references therein. Given a directed graph, the problem is to decide whether there exists a

path from a distinguished node s to a distinguished node t. Most of the results are developed in

the JAG model by Cook and Racko� [10]. The best time{space tradeo�s currently known [4, 14]

only imply a polynomial lower bound on the computation time if no upper bounds are imposed

in the space used by the computation. Given the current knowledge of the s{t connectivity

problem it seems unlikely that one can prove super-polynomial lower bounds for a general class

of graph exploration algorithms.

In the following let G be a directed, strongly connected graph and let v be a node of G.

Let in(v) and out(v) denote the number of incoming, resp. outgoing edges of v. Let the balance

bal(v) = out(v) � in(v). For a graph with de�ciency d there exist at most d nodes s

i

, 1 �

i � d, such that bal(s

i

) < 0. Every node s

i

with bal(s

i

) < 0 is called a sink. Note that

�

P

s;bal(s)<0

bal(s) = d. We use the term chain to denote a path. A chain is a sequence of nodes

and edges x

1

; (x

1

; x

2

); x

2

; (x

2

; x

3

); : : : ; (x

k�1

; x

k

); x

k

for k > 1.

Greedy: If stuck at a node y, move to the nearest node z that has new outgoing edges.

Generalized-Greedy: At any time, for each path in the subgraph explored so far, de�ne

a lexicographic vector as follows. For each edge on the path, determine its current cost, which

is the number of times the edge was traversed so far. Sort these costs in non-increasing order

and assign this vector to the path. Whenever stuck at a node y, out of all paths to nodes with

new outgoing edges traverse the path whose vector is lexicographic minimum.

Depth-First: If stuck at a node y, move to the most recently discovered node z that can

be reached and that has new outgoing edges.

Breadth-First: Let v be the node where the exploration starts initially. If stuck at a node

y, move to the node z that has the smallest distance from v among all nodes with new outgoing

edges that can be reached from y.

Theorem 1 For Greedy, Depth-First, and Breadth-First and for every d, there exist graphs of

de�ciency d that require 2


(d)

m edge traversals. For Generalized-Greedy and for every d, there

exists a graph of de�ciency d that requires d


(logd)

m edge traversals.

Proof: Greedy: Basically Greedy fails since it is easy to \hide" a subgraph. Whenever Greedy

discovers this subgraph, the adversary can force it to repeat all the work done so far.
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The graph G consists of two parts, (1) a cycle C

0

of three edges and nodes v, v

1

(C

0

), and

v

2

(C

0

), and (2) a recursively de�ned problem P

d

. A problem P

�

, for any integer � � 2, is a

subgraph that has two incoming edges whose startnodes do not belong to P

�

but whose endnodes

do, and � outgoing edges whose startnode belongs to P

�

but whose endnodes do not. A problem

P

1

is de�ned in the same way as a problem P

�

, � � 2, except that P

1

has only one incoming

edge. In the case of P

d

, the two incoming edges start at v

1

(C

0

) and v

2

(C

0

), respectively; the d

outgoing edges all point to v.

For the description of P

�

we also need recursively de�ned problems Q

�

. These problems are

identical to P

�

except that, for � > 2, Q

�

has exactly � incoming edges.

A problem P

�

, � = 1; 2, consists of � chains of three edges each. The �rst edge of each chain

is an incoming edge into P

�

; the last edge of each chain is an outgoing edge. A problem Q

�

,

� = 1; 2, is the same as P

�

.

We proceed to de�ne P

�

, for � > 2. One of the incoming edges of P

�

is the �rst edge of a

chain D

�

consisting of three edges, the other incoming edge is the �rst edge of a long chain C

�

.

For each of these chains C

�

and D

�

, the last edge is an outgoing edge of P

�

. If � = 3, the last

interior node of each of the chains C

�

and D

�

has an additional outgoing edge pointing into a

problem P

1

. If � � 4, (a) the last two interior nodes of C

�

each have an additional outgoing edge

pointing into a subproblem P

��2

, (b) the last two interior nodes of D

�

each have an additional

outgoing edge pointing into a subproblem Q

��2

. There are � � 2 edges leaving P

��2

, exactly

minf0; � � 4g of which point to nodes of Q

��2

such that each node in Q

��2

that has k more

outgoing than incoming edges, for k > 0, receives k incoming edges from P

��2

. The remaining

outgoing edges of P

��2

point to the interior nodes of D

�

that have additional outgoing edges.

The problem Q

��2

has � � 2 outgoing edges all of which are outgoing edges of P

�

. The total

number of edges in C

�

is 2 plus the number of edges of D

�

plus the total number of edges

contained in the subproblem Q

��2

below D

�

.

A problem Q

�

, � > 2, is the same as P

�

except that the subproblem P

��2

is replaced by

another Q

��2

problem. That is, Q

�

is composed of chains C

�

, D

�

and problems Q

��2

i

, i = 1; 2.

As mentioned before, Q

�

has exactly � incoming edges.

C

0

v

Q

d�2

P

d�2

C

d

D

d

Figure 1: The graph for Greedy

Greedy is started at node v and traverses �rst chain C

0

. Then it either explores C

d

or D

d

.

In either case, afterwards Greedy explores all edges of Q

d�2

since C

d

is prohibitively long. Thus,

P

d�2

is \hidden" from Greedy. We exploit this in the analysis: Let N(�) be the number of times

that Greedy explores edges of a problem P

�

or Q

�

, gets stuck at some node and cannot relocate

to a suitable node by using only edges in P

�

resp. Q

�

. We show that N(�) � 2

�=2

. Since the

edge leaving v is traversed every time the algorithm cannot relocate by using only edges in P

d

,

the bound follows.
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A problem P

�

contains two subproblems P

��2

and Q

��2

. Note (a) that, because of chain D

�

,

no node in Q

��2

can reach a node of P

��2

without leaving P

�

. Note (b) that Q

��2

is completely

explored when the exploration of P

��2

starts and all paths starting in P

��2

lead through D

�

or Q

��2

. Thus, every time Greedy gets stuck in a subproblem P

��2

or Q

��2

and has to leave

P

��2

resp. Q

��2

in order to resume exploration, it also has to leave P

�

. For Q

��2

the statement

follows from (a); for P

��2

it follows from (a) and (b). In the same way we can argue for a

problem Q

�

. Thus, N(�) � 2N(� � 2). Since, for � = 1; 2, N(�) � 1, we obtain N(�) � 2

�=2

.

This implies that the edge e on C

0

leaving v is traversed 2


(d)

times. The desired bound

follows by replacing e by a path consisting of �(m) edges.

Depth-First: We can use the same graph as in the case of the Greedy algorithm. Depth-First

will explore all edges in Q

d�2

before it will start exploring P

d�2

.

Breadth-First: Again we can use the same graph as in the lower bound for Greedy. The last

two interior nodes of C

d

have a larger distance from the initial node v than all nodes on D

d

and

in Q

d�2

. Thus Q

d�2

is �nished before Breadth-First starts exploring P

d�2

.

Generalized-Greedy: The graph used for the lower bound is outlined in Figure 2. The basic

idea in the lower bound construction is as follows. Generalized-Greedy explores each subgraph

Q



i

and its sibling R



i

\in parallel". Without loss of generality we can assume that the last

chain traversed in the two subgraphs lies in Q



i

and the algorithm continues to explore Q



i+1

and

R



i+1

. Let N() denote the number of times that the algorithm has to leave R



i

and traverse

the root. We will show that N(4) � N(), which implies that the root has to be traversed

N(d) � d


(log d)

times.

C

0

Q



1

Q



2

Q



�1

R



1

R



2

R



�1

P





P



+1

Figure 2: The graph for Generalized-Greedy

To be precise we show the bound for d being a power of 4. The bound for all values of d

follows by \rounding" down to the largest power of 4 smaller than d. The graph G consists

of two parts, (1) a cycle C

0

with nodes v, v

1

(C

0

) and v

2

(C

0

), and (2) a recursively de�ned

subproblem P

d

. Problem P

d

has two incoming edges, one starting at v

1

(C

0

) and one starting at

v

2

(C

0

). It also has d outgoing edges, all pointing to v. The subproblem P

d

is a union of chains

C, each of which consists of three edges, a startnode, an endnode and two interior nodes v

1

(C)

and v

2

(C). The interior nodes have at most one additional outgoing edge. We proceed to de�ne
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P

�

and the \sibling" graphs Q

�

and R

�

, for all � � d that are a power of 4, and then show the

lower bound on this graph.

A problem P

�

, � > 1, is a graph with two incoming edges and exactly � outgoing edges. A

problem R

�

, � > 1, consists of P

�

with ��2 additional incoming edges. The problem Q

�

consists

of R

�

with two additional incoming and two additional outgoing edges.

� = 1: A problem P

1

consists of one chain. The incoming edge of P

1

is the �rst edge of the

chain, and the outgoing edge of P

1

is the last edge of the chain. In P

1

, the interior nodes of the

chain have no additional outgoing edges, in Q

1

each interior node has one additional incoming

and one additional outgoing edge. Problem R

1

is equal to P

1

.

� = 4: A problem P

4

consists of two subproblems P

1

1

and P

1

2

, and chains C

1

1

and D

1

1

, whose

�rst interior nodes have one additional outgoing edge. The outgoing edge of C

1

1

is the incoming

edge of P

1

1

and the corresponding edge of D

1

1

is the incoming edge of P

1

2

. The last edge of C

1

1

and of D

1

1

and the outgoing edges of P

1

1

and P

1

2

are outgoing edges of P

4

. A problem R

4

is P

4

with two additional incoming edges, one at the startnode of P

1

1

and one at the startnode of P

1

2

.

A problem Q

4

is R

4

with two additional incoming and outgoing edges; each interior node of P

1

1

has an additional incoming and outgoing edge.

D

1

1

C

1

1

P

1

1

P

1

2

Figure 3: The subproblem P

4

� = 4

l

, for some l � 2: Let  = �=4. It is simpler to describe Q

�

�rst. The construction is

depicted in Figure 4. Every node has the same indegree as outdegree, i.e., there are no sinks.

Problem Q

�

consists of subproblems Q



i

and R



i

, for 1 � i � , connected by chains C



i

and D



i

,

for 1 � i � , whose interior nodes each have an additional outgoing edge.

The C-chains and Q-subproblems are interleaved as follows. The two edges leaving the

interior nodes of C



1

point into Q



1

. In general, the edges leaving the interior nodes of C



i

point

into Q



i

. The same holds for the D-chains and R-subproblems. The �rst edge of C



i

and of

D



i

are incoming edges of Q

�

, for i = 1, and start in Q



i�1

, for 1 < i � , on a node of the

leftmost subproblem Q

1

contained in Q



i�1

. Recall that this problem consists of one chain with

two additional incoming and outgoing edges. One of these outgoing edges is the �rst edge of C



i

and the second outgoing edge is the �rst edge of D



i

.

Additionally, the subproblems are connected as follows. Recall that  edges leave R



i

. For

i = 1, the edges leaving R



i

are outgoing edges of Q



. For 1 < i � , two edges leaving R



i

point

to the interior edges of D



i�1

. Additionally, there are  � 2 edges leaving R



i

and pointing into

R



i�1

such that every node in R



i�1

that has k more outgoing than incoming edges, for k > 0,

receives k edges from R



i

. The same holds for Q



i

with C



i�1

. The problem Q





has  incoming

edges which are incoming edges for Q

�

, the problem R





has  � 2 incoming edges which are

incoming edges for Q

�

.

There are 4 + 2 = � + 2 outgoing edges in Q

�

: The last edge of C



i

and the last edge of

D



i

, for 1 � i � , all edges leaving R



1

, all but two edges leaving Q



1

(the other two are the

incoming edges of D



2

and C



2

), and two edges leaving Q





. There are also �+ 2 incoming edges:

the �rst edge of C



1

and of D



1

, the edges pointing to the two interior nodes of C





and D





, the

6



 incoming edges of Q





, the  � 2 incoming edges of R





, and 2 � 2 incoming edges ending at

the startnodes of C



i

and D



i

, for 2 � i � .

A problem P

�

consists of 2 chains C



i

and D



i

, 1 � i � , as well as two subproblems P



i

,

 � i �  + 1, and 2( � 1) subproblems Q



i

and R



i

, 1 � i �  � 1. These components are

assembled in the same way as in Q

�

, except that Q





is replaced by P



+1

, and R





is replaced by

P





. Problems P





and P



+1

each have only two incoming edges from C





and D





, respectively.

There are 4 = � outgoing edges in P

�

: The last edge of C



i

and the last edge of D



i

, for

1 � i � , all but two edges leaving Q



1

(the other two are the incoming edges of D



2

and C



2

),

all all edges leaving R



1

. There are two incoming edges in P

�

. The �rst edge of C



1

and of D



1

are incoming edges in every problem P

�

. The following � � 2 nodes are sinks for P

�

: the two

interior nodes of C





and of D





, the 2 � 2 startnodes of C



i

and D



i

, for 2 � i � , the  � 2

sinks of P





and the  � 2 sinks if P



+1

.

A problem R

�

is a problem P

�

with an incoming edge into all sinks of P

�

. Thus there are �

incoming and � outgoing edges.

A problem P

�

Q





Q



�1

R





R



�1

D



2

D



1

C



1

Q



1

C



2

Q



�1

D

�

i

C



2

Q



1

C

�

i

R



1

P



+1

P





R



�1

D



2

R



1

D



1

C



1

A problem Q

�

Figure 4: The subproblems Q

�

and P

�

We analyze Generalized-Greedy on G. For simplicity we only discuss the exploration of a

problem Q

�

. The argument for P

�

and R

�

is analogous. As before, let  = �=4. We show

inductively that the symmetric construction of Q



i

and R



i

attached to C



i

and D



i

as well as

the de�nition of Generalized-Greedy imply that Q



i

and R



i

are explored symmetrically. That is,

during two consecutive traversals of C (in order to resume exploration in Q



i

or R



i

), Generalized-

Greedy proceeds once into Q



i

and once into R



i

, where C is the chain at which chains C



i

and

D



i

start. This obviously holds for i = 1. Assume it holds for i and we want to show it for

i + 1. Note that Q



i

and R



i

di�er only in the last chain that Generalized-Greedy explores in

Q



i

, rep. R



i

. Thus, until the traversal of the earlier of the last chain of Q



i

and the last chain

of R



i

, Generalized-Greedy does not distinguish Q



i

from R



i

. Hence we can assume without

loss of generality that Generalized-Greedy traverses �rst the last chain of R



i

and afterwards the

last chain of Q



i

. (Think of an adversary \giving" to Generalized-Greedy �rst the last chain

of R



i

and then the last chain of Q



i

.) Then Generalized-Greedy explores C



i+1

and D



i+1

and

7



afterwardsQ



i+1

and R



i+1

symmetrically. Thus, when Generalized-Greedy explores a subproblem

R



i

, 1 � i � , subproblems R



j

with 1 � j < i are already �nished.

Whenever Generalized-Greedy gets stuck in R



i

, 1 � i � , and has to leave R



i

in order to

resume exploration, it also has to leave the \parent problem" Q

�

(or P

�

, R

�

). This is because the

chains D



i

, 1 � i � , prevent the algorithm from reaching a chain in Q



j

, 1 � j � i, from where

un�nished chains in Q

�

, (P

�

, R

�

) can be reached. On the way from R



i

to an outgoing edge of

the parent problem, Generalized-Greedy can traverse problems R



i

, j � i. As shown above, the

subproblems are �nished, no further exploration of R



j

is possible. The same arguments hold

when the algorithm gets stuck in a problem P





.

For any �, 4 � � � d, let N(�) be the number of times Generalized-Greedy generates a

chain in P

�

or R

�

, gets stuck and has to leave P

�

or R

�

in order to continue exploration. Then

N(�) � N() = �=4N(�=4). Since N(1) � 1, we have N(d) � d


(logd)

and hence the edge

leaving node v is traversed d


(logd)

times. 2

3 The Balance algorithm

3.1 The algorithm

We present an algorithm that explores an unknown, strongly connected graph with de�ciency

d, without knowing d in advance. First we give some de�nitions. At the start of the algorithm,

all edges are unvisited or new. An edge becomes visited whenever the robot traverses it. A node

is �nished whenever all its outgoing edges are visited. The robot is stuck at a node y if the

robot enters a �nished node y on an unvisited edge. A sink is discovered whenever the robot

gets stuck at the sink for the �rst time. We assume that whenever the robot discovers a new

sink, the subgraph of explored edges is strongly connected. This does not hold in general, but

by properly restarting the algorithm at most d times the problem can be reduced to the case

described here. Details are given in the Appendix.

Assume the algorithm knew the d missing edges (s

1

; t

1

); (s

2

; t

2

); : : : ; (s

d

; t

d

) and a path from

each s

i

to t

i

. Then a modi�ed version of the Eulerian algorithm could be executed: Whenever the

original Eulerian algorithm traverses an edge (s

i

; t

i

), the modi�ed Eulerian algorithm traverses

the corresponding path from s

i

to t

i

. Obviously, the modi�ed algorithm traverses each edge at

most 2d+ 2 times. Thus, the problem is to �nd the missing edges and corresponding paths.

Our algorithm tries to �nd the missing edges by maintaining d edge-disjoint chains such

that the endnode of chain i is s

i

and the startnode of chain i is our current guess of t

i

. As

the algorithm progresses paths can be appended at the start of each chain. At termination, the

startnode of chain i is indeed t

i

. To mark chain i all edges on chain i are colored with color i.

The algorithm consists of two phases.

Phase 1: Run the algorithm of [12] for Eulerian graphs. Since G is not Eulerian, the robot

will get stuck at a sink s. At this point stop the Eulerian graph algorithm and goto Phase 2. The

part of the graph explored so far contains a cycle C

0

containing s [12]. We assume that at the

end of Phase 1 all visited nodes and edges not belonging to C

0

are marked again as unvisited.

Phase 2: Phase 2 consists of subphases. During each subphase the robot visits a current

node x of a current chain C and makes progress towards �nishing the nodes of C. The current

node of the �rst subphase is s, its current chain is C

0

. The current node and current chain of

subphase j depend on the outcome of subphase j � 1.

8



A chain can be in one of three states: fresh, in progress, or �nished. A chain C is �nished

when all its nodes are �nished; C is in progress in subphase j if C was a current chain in a

subphase j

0

� j and C is not yet �nished; C is fresh if its edges are explored, but C is not yet

in progress.

At the same time up to d + 1 chains in progress and up to d fresh chains can exist. The

invariant that there are always at most d+ 1 chains in progress is convenient but not essential

in the analysis of the algorithm. The invariant that there exist always at most d fresh chains in

crucial. Every startnode of a fresh chain has more visited outgoing that visited incoming edges

and, thus, the robot can get stuck there. In the analysis we require that there always exist at

most d such nodes.

The algorithm marks the current guess for t

i

with a token �

i

, for 1 � i � d. In fact, every

startnode of a fresh chain represents the current guess for some t

i

, 1 � i � d, and thus has a

token �

i

. To simplify the description of the relocation process, each token is also assigned an

owner which is a chain that contains the node on which the token is placed. Note that a node

can be the current guess for more than one node t

i

and, thus, have more than one token.

From a high-level point of view, at any time, the subgraph explored so far is partitioned

into chains, namely C

0

and the chains generated in Phase 2. During the actual exploration in

the subphases, the robot travels between chains. While doing so, it generates or extends fresh

chains, which will be taken into progress later, and �nishes the chains currently in progress.

We give the details of a subphase. First, the algorithm tests if x has an unvisited outgoing

edge.

1. If x does not have an unvisited outgoing edge and x is not the endnode of C, then the next

node of C becomes the current node and a new subphase is started.

2. If x has no unvisited outgoing edge and x is the endnode of C, procedure Relocate is called

to decide which chain becomes the current chain and to move the robot to the startnode z

of this chain. Node z becomes the current node.

3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited edges until it gets

stuck at a node y. Let P be the path traversed. We distinguish four cases:

Case 1: y = x

Cut C at x and add P to C. See Figure 5. The robot returns to x and the next phase has

the same current node and current chain.

x x x

P

P

=)

C

C

Figure 5: Case 1

Case 2: y 6= x, y has a token �

i

and is the startnode of a fresh chain D (see Figure 6)

Append P at D to create a longer fresh chain, and move the token from y to x. The current

chain C becomes the owner of the token, the previous owner becomes the current chain, and

y becomes the current node.

Case 3: y 6= x, y has a token �

i

but is not the startnode of a fresh chain.

This is the same as Case 2 except that no fresh chain starts at y. The algorithm creates a

new fresh chain of color i consisting of P . It moves the token from y to x and C becomes

9



C C

0

x

P

D

y

Figure 6: Case 2

the owner of the token. The previous owner of the token becomes the current chain and y

becomes the current node.

Case 4: y 6= x and y does not own a token.

In this case bal(y) < 0. If bal(y) = �k, then this case occurs k times for y. Let i be the

number of existing tokens. The algorithm puts a new token �

i+1

on x with owner C, creates

a fresh chain of color i+ 1 consisting of P (the �rst chain with color i + 1), and moves the

robot back to s. The initial chain C

0

becomes the current chain, s becomes the current node.

This leads to the algorithm given in Figure 7. We use x to denote the current node, C

to denote the current chain, k the number of tokens used, and j the highest index of a chain.

Lines 4{17 of the code correspond to item 3 above. Line 6 and 7 correspond to Case 1, lines 8{13

correspond to Cases 2 and 3, and lines 14{16 to Case 4. Lines 18 and 19 implement item 1 and

item 2, respectively.

Algorithm Balance

1. j := 0, k := 1, x := s, C := C

0

.

2. repeat

3. while C is un�nished do

4. while 9 new outgoing edge at x do

5. Traverse new edges starting at x until stuck at a node y. Call this path P .

6. if y = x then

7. Insert P into C;

8. else if y has a token then

9. if 9 chain D of color i starting in y and D is fresh then

10. C

0

:= owner(�

i

). Concatenate P with D;

11. else

12. j := j + 1; C

j

:= chain that consists of P ;

13. Place �

i

on x; owner(�

i

) := C; x := y; C := C

0

;

14. else (� y 6= x and y has no token �)

15. j := j + 1; C

j

:= chain that consists of P ;

16. k := k + 1; Place token �

k

on x; owner(�

k

) := C; x := s; C := C

0

;

17. Move robot to x;

18. Move robot to �rst un�nished node z that appears on C after its startnode;

x := z;

19. C := Relocate(C); x = startnode of C;

20. until C = empty chain.

Figure 7: The Balance algorithm

Additionally, the algorithm maintains a tree T such that each chain C corresponds to a node

v(C) of T and v(C

0

) is a child of v(C) if the last subpath appended to C

0

was explored while C

10



was the current chain. Reversely, we use C(v) to denote the chain represented by node v. We

use T

v

to denote the subtree of T rooted at v and say C is contained in T

v

if v(C) lies in T

v

.

We also say a token � or an edge e is contained in T

v

if owner(�), respectively the chain of e is

contained in T

v

. If all chains in T

v

are �nished, we say that T

v

is �nished. To represent T , the

algorithm assigns a parent to each chain.

To relocate the robot needs to be able to move on explored edges from the endpoint of a

chain C to its startnode. This is always possible, since at the beginning of each subphase the

explored edges form a strongly connected graph. To avoid that an edge is traversed often for this

purpose, we de�ne for each chain C a path closure(C) connecting the endnode of C with the

startnode of C such that an edge belongs to closure(C) for at most d

O(logd)

chains C. Finally,

we will show that closure(C) is traversed at most O(d

2

) times.

A path Q is called a C-completion if it connects the endnode of a chain C with the startnode

of C. A path Q in the graph is called i-uniform if it is a concatenation of chains of color i. Let

u be a node of T . A path Q in the graph is T

u

-homogeneous if any maximal subpath R of Q

that does not belong to T

u

is (a) i-uniform for some color i; (b) the edge of Q preceding R is

the last edge of a chain of color i; and (c) the edge of Q after R is the �rst edge of a chain of

color i.

We try to choose closure(C) to be \as local to C" as possible: Let S(C) be the set of

explored edges when C becomes the current chain for the �rst time. Given S(C), a(C) is the

lowest ancestor of v(C) in T such that a T

a(C)

-homogeneous completion of C exists in S(C).

Note that a(C) is well-de�ned since each chain has a T

v(C

0

)

-homogeneous completion. The path

closure(C) is an arbitrary T

a(C)

-homogeneous completion of C using only edges of S(C). The

algorithm can compute closure(C) whenever C becomes the current chain for the �rst time

without moving the robot.

We describe the Relocation procedure, see Figure 8. In the relocation step, the robot repeat-

edly moves from the current chain to its parent until it reaches a chain C such that T

v(C)

is

un�nished. To move from a chain X to its parent X

0

, the robot proceeds along X to the endnode

of X and traverses closure(X) to the startnode of X , which belongs to X

0

. When reaching C,

the robot repeatedly moves from the startnode of the current chain X to the startnode of one

of its children until it reaches the startnode of an un�nished chain. It chooses the child X

0

of X

such that among all subtrees rooted at children of X and containing un�nished chains, T

v(X

0

)

has the minimum number of tokens.

3.2 The analysis of the algorithm

3.2.1 Correctness

Since the graph is strongly connected, all nodes of the graph must be visited during the execution

of the algorithm. When the algorithm terminates, all visited nodes are �nished. Thus, all edges

must be explored. We show next that each operation and each move of the robot are well-

de�ned. Proposition 1 shows that if a chain of color i is fresh, then �

i

lies at the startnode of the

chain. Thus, in line 10, token �

i

lies on y. By assumption there exists a path from any �nished

node to s. Thus, the move in line 17 is well-de�ned. In line 18, the robot moves to the next

un�nished node of the current chain C. It would be possible to walk along closure(C), but the

proof of Lemma 4 shows later that closure(C) is not needed.
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Procedure Relocate(C)

1. if all chains are �nished then return(empty chain).

2. else Move robot to the startnode of C along closure(C);

3. while C 6= C

0

and T

v(C)

is �nished do

4. Move robot to the startnode of parent(C) along closure(parent(C));

5. C := parent(C);

6. while C is �nished do

7. Let C

1

; C

2

; : : : ; C

l

be the chains with parent(C

k

) = C, 1 � k � l. Let C

k

be

the chain such that T

v(C

k

)

contains the smallest number of tokens among all

T

v(C

1

)

; : : : ; T

v(C

l

)

having un�nished chains;

8. C := C

k

; x := startnode of C;

9. Move robot to x;

10. if C is not in progress then

11. Compute closure(C);

12. return(C)

Figure 8: The Relocation procedure

3.2.2 Fundamental properties of the algorithm

Lemma 1 At most d tokens are introduced during the execution of the Balance algorithm.

Proof: We say that the algorithm �rst introduces the token �

k

at y in line 16.

Let in

v

(v) and out

v

(v) denoted the number of visited incoming and visited outgoing edges

of v, respectively. Let t(v) be the total number of tokens introduced on node v in line 16. We

show inductively that maxfin

v

(v)� out

v

(v); 0g = t(v). Since at termination in

v

(v) = in(v) and

out

v

(v) = out(v), it follows that �bal(v) � t(v) if bal(v) < 0 and t(v) = 0, otherwise. Thus,

d = �

P

v;with bal(v)<0

bal(v) �

P

v

t(v):

The claim maxfin

v

(v) � out

v

(v); 0g = t(v) holds initially. Let P be the newly explored

path when the �rst token is placed on v, i.e. when the algorithm gets stuck at v for the �rst

time. Before P enters v, in

v

(v) = out

v

(v). Traversing P increments in

v

(v) by 1 and sets

in

v

(v)� out

v

(v) = 1. Thus, the claim holds. Let P be the newly explored path when token i is

placed on v. It follows inductively that in

v

(v)�out

v

(v) = i�1 before P enters v and traversing

P increments the value by 1 as before. 2

We prove next some invariants.

Proposition 1 1. For every chain C that is in progress or �nished, parent(C) is �nished.

2. Let C be a chain of color i, 1 � i � d. (a) If C is fresh, C does not own a token, �

i

is

located at the startnode of C, and parent(C) = owner(�

i

). (b) If C is in progress and not

the current chain, then C is the owner of some token � .

3. Every chain C is the parent of at most d chains.

Proof: Part 1. Procedure Relocate ensures that parent(C) is �nished before C is taken into

progress.

Part 2a. When C is �rst created in line 12 or 15 of Balance, �

i

is placed on the startnode

of C. Whenever the robot gets stuck at the current startnode of C and removes �

i

, chain C is
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extended by a path P because C is not in progress. Token �

i

is placed on the new startnode of

C. Lines 13 and 16 ensure that the parent of C is always the owner of �

i

.

Part 2b. We show that whenever C is the current chain and Balance leaves C to continue

work on an other chain, C becomes the owner of a token. Chain C is un�nished. Thus, if C is

the current chain, Balance can only leave C to continue work on an other chain during lines 5{17

of the algorithm. In this situation, Balance places a token on a node of C and C becomes the

owner of that token.

Part 3. Chain C can become the parent of other chains while C is in progress and un�nished.

During this time, every chain C

0

with parent(C

0

) = C is un�nished and not in progress, see

Part 1. By Part 2a, the startnode of such a chain C

0

holds a token and C is the owner of that

token. Since there are only d token, the proposition follows. 2

The next lemma shows that our algorithm always balances the number of tokens contained

in neighboring subtrees of T . For a subtree T

v

of T , let the weight w(T

v

) be the number of tokens

contained in T

v

. Let active(T

v

) = 1 if the current chain is in T

v

; otherwise let active(T

v

) = 0.

Lemma 2 Let u; v 2 T be siblings in T such that T

u

and T

v

contain un�nished chains. Then

jw(T

u

) + active(T

u

)� w(T

v

)� active(T

v

)j � 1.

Proof: Let active(C) = 1 i� C is the current chain, and let active(C) = 0 otherwise. Let

token(C) be the number of tokens owned by C, and let g(C) = token(C) + active(C). Finally,

let g(v) =

P

C;v(C)2T

v

g(C) = w(T

v

) + active(T

v

). We show by induction on the steps of the

algorithm that jg(u)� g(v)j � 1:

The claim holds initially. For a subtree T

v

of T , the values w(T

v

) and active(T

v

) only change

in lines 13, 16, and 19 of Balance and in lines 4 and 9 of procedure Relocate. Additionally, T

changes in lines 10, 12, and 15.

Note �rst that changes in T do not a�ect the invariant: Whenever T changes, v(C) receives a

new child and C is not yet �nished (or the algorithm has not yet determined that C is �nished).

Thus, the children of C are not yet in progress, i.e. they do not own any tokens by Proposition 1.

Thus, the claim holds for any pair of children of v(C).

We consider next all changes to w(T

v

) and active(T

v

).

Line 13: Let C be the current chain before the execution of line 13. Note that token(C)

increases by 1, active(C) becomes 0, token(C

0

) decreases by 1, and active(C

0

) becomes 1. Thus,

g(C) and g(C

0

), and, hence, g(v) is unchanged for every node v 2 T .

Line 16: Note that (i) g(C) is unchanged by the same argument as for line 13, (ii) g(C

0

)

is unchanged, since token(C

0

) and active(C

0

) are unchanged, and (iii) g(C

0

) is increased by 1.

Since C

0

only contributes to g(v(C

0

)) and v(C

0

) is the root of T , the claim holds.

Line 19 of Balance/Line 4 and 9 of Relocate: Let

�

C be the current chain before the execution

of line 3 or 7 and let C be the current chain afterwards. In line 3, the claim does not apply to

T

v(C)

, since T

v(C)

is �nished. Thus, we are left with line 7. Note that active(

�

C) drops to 0 and

active(C) increases to 1. Thus, for every node v such that T

v

contains either both the parent

and its child or neither the parent nor its child, g(v) is unchanged. The only remaining subtree is

T

v(C)

. Before the execution of line 7, for any sibling C

0

of C, w(T

v(C)

) � w(T

v(C

0

)

) � w(T

v(C)

)+1.

Since active(C

0

) = 0, jw(T

v(C)

)� w(T

v(C

0

)

) + active(C)� active(C

0

)j � 1: 2
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Lemma 3 Let C be a chain of color i, 1 � i � d, and, at the time when C is taken in progress,

let u 2 T be the closest ancestor of v(C) that satis�es the following condition. The path from u

to v(C) in T contains d nodes u

1

; u

2

; : : : ; u

d

such that each u

j

with 1 � j � d has a child v

j

(a) T

v

j

contains a node of color i; and (b) v(C) =2 T

v

j

.

If there is no such ancestor u, then let u be v(C

0

). Then there exists a T

u

-homogeneous C-

completion.

Proof: By assumption, the graph of explored edges is strongly connected, which implies that

there exists a T

v(C

0

)

-homogeneous C-completion. Suppose that there are d nodes u

1

; : : : ; u

d

satisfying (a) and (b). For j = 1; : : : ; d, let C

u

j

be the chain corresponding to u

j

. If one of the

nodes u

1

; : : : ; u

d

, say u

k

, is of color i, then there is the following T

u

k

-homogeneous C-completion:

Follow edges of color i until you reach the startnode of C

u

k

, then walk \down" in T

u

k

along

ancestors of C to the startnode of C.

Thus, we are left with the case that none of the nodes u

1

; : : : ; u

d

has color i. For j = 1; : : : ; d,

let C

j;1

2 T

v

j

be a chain of color i such that no ancestor of C

j;1

contained in T

v

j

has color i.

Let C

j;2

; : : : ; C

j;l(j)

be the ancestors of C

j;1

in T

u

j

. More precisely, for k = 1; : : : ; l(j) � 1,

C

j;k+1

= parent(C

j;k

) and C

j;l(j)

= C

u

j

is the chain corresponding to u

j

.

Following the edges of color i gives a T

u

-homogeneous path from C to every chain C

j;1

for

1 � j � d. We want to show that there exists a T

u

-homogenous path to a chain C

j;l(j)

. We

consider the following game on a d�max

j

l(j) grid, where for 1 � j � d, square (j; k) has the

color of C

j;k

for 1 � k � l(j) and no color for k > l(j). Thus, all squares (j; 1) have color i

and no other squares have color i. Initially all squares (j; 1) are checked, all other squares are

unchecked. A square is checked if the robot can move to the startnode of the corresponding

chain on a T

u

-homogeneous path. The rules of the game are: (Note that the startnode of C

j

0

;k

0

�1

belongs to C

j

0

;k

0

.)

� A square (j; k) of color i

0

gets checked whenever there exists a square (j

0

; k

0

) of color i

0

such that square (j

0

; k

0

� 1) is checked and there exists a path of color-i

0

edges from the

endnode of C

j

0

;k

0

to the startnode of C

j;k

.

� The game terminates when one of the squares (j; l(j)) is checked or when no more square

can be checked.

We will show that one of the squares (j; l(j)) can be checked. This shows that there is a

T

u

-homogeneous path from C to C

j;l(j)

. Since u

j

is an ancestor of v(C), the same argument as

above shows that there exists a T

u

-homogeneous C-completion.

We employ the pigeon-hole principle: Initially, there are d checked squares (j; 1) for 1 � j � d

and each square (j; 2) has a color i

0

6= i. Since there are at most d�1 other colors, there must be

two squares (s; 2) and (t; 2) with the same color i

0

. Since the edges of color i

0

form a chain, there

is either a path from C

s;2

to C

t;2

or vice versa. Thus, one of the two squares can be checked.

Inductively, there are d checked squares (j; k(j)) such that (j; k(j) + 1) is unchecked. None of

the squares (j; k(j) + 1) has color i and thus, there must be two squares (j; k(j) + 1) with the

same color, which leads to checking one of the two squares. The game continues until one of the

squares (j; l(j)) has been checked. 2
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3.2.3 Counting the number of edge traversals

Lemma 4 Each edge is traversed at most d times during executions of line 17 and at most

2d+ 2 times during executions of line 18 of the Balance algorithm.

Proof: Let e be an arbitrary edge and let C be the chain e belongs to. Every time e is traversed

during an execution of line 17, a new token is placed on the graph. Since a total of d tokens are

placed, the �rst statement of the lemma follows.

Next we analyze executions of line 18. Let x and y be the tail and the head of e, i.e. e = (x; y).

Let C

1

be the portion of C that consists of the path from the startnode of C to x. Similarly,

let C

2

be the path from y to the endnode of C.

Note that in line 18, edge e could only be traversed while nodes on C

1

are un�nished if the

robot gets stuck at a node y on C

1

, y having a token, and has to move to an un�nished node

z on C

1

that lies before y. Since y holds a token, with C being the owner, y must have been

the current node in a subphase when C was current chain. However, the node selection rule in

line 18 ensures that this is impossible because z is un�nished. This also implies that in line 18,

the robot can always reach the �rst un�nished node on C by following C, without traversing

closure(C).

Thus, e is traversed for the �rst time in line 18 when all nodes on C

1

are �nished and the

robot moves to the next un�nished node on C

2

. The edge e can be traversed again (a) if the

robot gets stuck at a node on C

1

and moves to the next un�nished node of C, or (b) if the robot

traverses C from its startnode, since procedure Relocate returned chain C. Every time case (a)

occurs, a token is removed from C

1

, and this token cannot be placed again on C

1

. Since there

are only d tokens, e can be traversed at most d more times in case (a) after it was traversed the

�rst time in that line. Every time case (b) occurs, token(C)+active(C) increases by 1, while no

other step of the algorithm can decrease this value as long as C is un�nished. Thus, case (b)

occurs at most d+ 1 times. 2

Thus, it only remains to bound how often an edge is traversed in Relocate. A chain C

0

is dependent on a chain C if C

0

2 T

v(C)

and closure(C

0

) is not T

u

-homogeneous for any true

descendant u of v(C).

Lemma 5 For every chain C, there exist at most d

2 log d+1

chains C

0

2 T

v(C)

that are dependent

on C.

Proof: Let n

i

(C) be the total number of chains of color i dependent on C. For a color i,

1 � i � d, and an integer �, 1 � � � d, let

N

i

(�) = max

C

fn

i

(C);T

v(C)

contains at most � of the d tokens whenever active(T

v(C)

) = 1g.

We will show that for any �, 1 � � � d, and any color i, (1) N

i

(�) � d

2

N

i

(b�=2c) and (2)

N

i

(1) = 1: This implies N

i

(d) � d

2 log d

: Since

P

d

i=1

N

i

(d) � d � d

2 log d

; the lemma follows.

To prove (1), �x a color i and an integer �. Consider a subtree T

v(C)

that contains at most

� tokens when active(T

v(C)

) = 1. Out of all chains dependent on C, let C

0

be the chain whose

closure is computed last. We show that when the algorithm computes closure(C

0

), then the

number of chains of color i that are already dependent on C is at most d(d�1)N

i

(b�=2c). Thus,

n

i

(C) � d(d� 1)N

i

(b�=2c) + 1 � d

2

N

i

(b�=2c).
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Let u

1

; u

2

; : : : ; u

l

be the sequence of nodes (from lowest to highest) on the path from v(C

0

)

to v(C) such that every node u

j

, j = 1; 2; : : : ; l, has a child v

j

with (a) T

v

j

contains a node of

color i, and (b) v(C) =2 T

v

j

. By Lemma 3, l � d. Suppose that node u

j

, 1 � j � d, has c(j)

children, v

j;1

; v

j;2

; : : : ; v

j;c(j)

with v 2 T

v

j;1

. By condition (b), 2 � c(j) � d.

For �xed j and k � 2, we have to show: Up to the time when closure(C

0

) is computed,

whenever active(T

v

j;k

) = 1, then w(T

v

j;k

) � b�=2c. Consider the point in time when closure(C

0

)

is computed. Since T

v

j;1

contains C

0

, T

v

j;1

is un�nished. By Lemma 2, Balance distributes the

tokens contained in T

u

j

evenly among the subtrees T

v

j;1

; T

v

j;2

; : : : ; T

v

j;c(j)

that contain un�nished

chains. Thus, for each un�nished T

v

j;k

with k � 2, w(T

v

j;k

) was up to now at most b�=2c

whenever active(T

v

j;k

) = 1. For each �nished T

v

j;k

, consider the last point of time when an

un�nished chain of T

v

j;k

becomes the current chain. Since v

j;1

exists, T

v

j;1

is un�nished and, by

Lemma 2, w(T

v

j;k

) is up to this point in time at most b�=2c whenever active(T

v

j;k

) = 1. We

conclude that up to the time when closure(C) is computed, T

v

j;k

contains at most N

i

(b�=2c)

chains of color i that can be dependent on the chain corresponding to v

j;k

, and, thus, can be

dependent on C. Summing up, we obtain that T

v(C)

contains at most

d

X

j=1

c(j)

X

k=2

N

i

(b�=2c) � d(d� 1)N

i

(b�=2c)

chains of color i that can be dependent on C.

Finally we show that N

i

(1) = 1. If a subtree T

v(C)

contains at most one token whenever

active(T

v(C)

) = 1, then each node in T

v(C)

has only one child, by Proposition 1. Since T

v(C)

never branches, it can contain at most one chain of color i that is dependent on C. 2

Lemma 6 For every chain C, there exist at most d

2 logd+1

chains C

0

2 T

v(C)

such that closure(C

0

)

uses edges of C.

Proof: Let C be an arbitrary chain and let v 2 T be the node corresponding to C. We show

that if a chain C

0

2 T

v(C)

is not dependent on C, then closure(C

0

) does not use edges of C.

Lemma 6 follows immediately from Lemma 5.

If a chain C

0

2 T

v(C)

is not dependent on C, then the path closure(C

0

) is T

u

-homogeneous

for a descendant u of v. Suppose that a T

u

-homogeneous path P would use edges of C. Let i be

the color of C. Chain C does not belong to T

u

. Thus, after P has visited C, it may only traverse

chains of color i until it reaches again a chain of color i that belongs to T

u

. Note that all chains

of color i that are reachable from C via edges of color i must have been generated earlier that

C. However, all chain in T

u

were generated later than C. We conclude that a T

u

-homogeneous

path cannot use edges of C. 2

Lemma 7 For every chain C, there exist at most (d+ 2)d

2 logd+2

chains C

0

=2 T

v(C)

such that

closure(C

0

) uses edges of C.

Proof: A chain C

0

needs a chain C if closure(C

0

) uses edges of C and C

0

is u-hard if closure(C

0

)

is T

u

-homogeneous, but not T

v

-homogeneous for any child v of u. For each chain C

0

there exists

a unique node u of T such that C is u-hard. If C

0

is dependent on chain C, then C

0

is u-hard

for an ancestor u of v(C). If C

0

is u-hard and v is a descendant of u and an ancestor of v(C

0

),

then C

0

is dependent on C(v). To prove the lemma it su�ces to show the following two claims:
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Claim 1: There are at most d

2 logd+2

chains C

0

62 T

v(C)

such that C

0

needs C and C

0

is u-hard

for some ancestor u of v(C).

Claim 2: There are at most (d+ 1)d

2 logd+2

chains C

0

62 T

v(C)

such that C

0

needs C and C

0

is

u-hard for some node u that is not an ancestor of v(C).

Proof of Claim 1: If C

0

needs C, then C

0

either does not yet exist or is un�nished when C is

taken into progress. Consider the point in time when C is taken into progress. Let u

1

; u

2

; : : : ; u

l

be the ancestors of v(C) in T that ful�ll the following conditions: Each node u

j

has a child

v

j

such that (a) T

v

j

contains un�nished chains, and (b) v(C) =2 T

v

j

. Thus, every chain that

needs C lies in one of the subtrees T

v

j

. Note that l � d, since by Proposition 1, every subtree

that contains an un�nished chain not equal to the current chain must own a token. Assume

C

0

belongs to T

v

j

. Since u

j

is the least common ancestor of v(C) and v(C

0

), and C

0

is u-hard

for an ancestor u of v(C), C

0

is dependent on C(u

j

). Since by Lemma 5 there are at most

d

2 log d+1

chains that are dependent on C(u

j

), there can be at most l �d

2log d+1

� d

2 logd+2

chains

C

0

=2 T

v(C)

that need C and are u-hard for an ancestor of v(C). 2

Proof of Claim 2: Let i be the color of C. Let us denote the concatenation of all chains

of color i as the path of color i. Note that the path of color i introduces a linear order on the

chains of color i. We say a chain C lies between two other chains on the path of color i if C

is not equal to one of the chains and lies between them in the linear order. We de�ne �rst the

nearest predecessor of a chain. Then we show (1) that for each chain C

0

62 T

v(C)

that needs C

and is u-hard for some node u that is not an ancestor of v(C), there exists a chain C

1

of color i

such that

� C lies on the path of color i between C

1

and its nearest predecessor, and

� C

1

ful�lls the conditions of Claim 1, i.e., C

0

needs C

1

and u is an ancestor of v(C

1

).

We show next (2) that there exist at most d chains C

1

of color i for which C lies on the path

of color i between C

1

and its nearest predecessor. By Claim 1 and Lemma 6, for each C

1

there

exist at most (d + 1)d

2 logd+1

closures that are hard for an ancestor of v(C

1

). It follows that

there are at most d(d+1) � d

2 logd+1

chains C

0

that need C and are u-hard for some node u that

is not an ancestor of v(C).

Consider the point in time when C is taken into progress. Let a(C) be the closest ancestor of

v(C) such that T

a(C)

contains a node of color i that is not equal to v(C). The nearest predecessor

of C is the chain C

0

6= C of color i that was taken into progress most recently in T

a(C)

.

(1) The closure of C

0

introduces an order on the chains belonging to it. Let C

1

be the last

chain of T

u

before C on closure(C

0

) and let C

2

be the �rst chain of T

u

after C on closure(C

0

),

i.e. C lies on the path of color-i edges between C

1

and C

2

. We show below that the path of

color-i edges between C

1

and C

2

is contained in the path of color-i edges between C

1

and its

nearest predecessor. This implies that C lies on the path of color-i edges between C

1

and its

nearest predecessor and completes the proof of (1).

Since T

u

is a subtree that contains C

1

and C

2

, i.e. C

1

and another chain of color i that was

taken into progress before C

1

, T

u

also must contain the nearest predecessor of C

1

. Following the

path of color-i edges from C

1

, C

2

is the �rst chain of T

u

that is encountered. Thus, the color-i

path between C

1

and C

2

is contained in the color-i path between C

1

and its nearest predecessor.

(2) We want to bound the number of color-i chains C

1

such that C lies on the path of color

i between C

1

and its nearest predecessor. Obviously, C

1

was created, after C was taken in
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progress (otherwise, C

1

would have been appended to C). Consider the point in time when C

is taken into progress. Let C

1

; : : : ; C

l

be the chains that are parents of fresh chains. All chains

created afterwards must belong to T

v(C)

or to T

v(C

1

)

; : : : ; T

v(C

l

)

. Note (a) that for no color-i

chain in T

v(C)

, C can lie on the color-i path between the chain and its nearest predecessor. Note

(b) that for k = 1; : : : ; l, only for the color-i chain C

(k)

in T

v(C

k

)

created �rst after C was taken

into progress, C can lie between C

(k)

and its nearest predecessor. The nearest predecessor of

every color-i chain D created later belongs to T

v(C

k

)

and was created after C. Thus, C does not

lie on the color-i path between D and its predecessor. Thus, at most l chains exists such that

C lies on the color-i path between the chain and its predecessor. By Proposition 1, l � d. 2

Theorem 2 Using the Balance algorithm, the robot explores an unknown graph with de�ciency

d and traverses each edge at most (d+ 1)

6

d

2 log d

times.

Proof: Let e be an arbitrary edge of chain C. Edge e is traversed for the �rst time when it

is explored during an execution of line 5 of the Balance algorithm. By Lemma 4, it can be

traversed 3d + 2 times during executions of lines 17 and 18. By Lemmas 6 and 7, e belongs

to at most d

2 log d+1

+ (d + 2)d

2 logd+2

paths closure(C

0

). We show that each path closure(C

0

)

is traversed at most d(d + 1) times. The path closure(C

0

) is used at most d times during an

execution of line 2 of Relocate, since each time a token is removed from the �nished chain C

0

.

The path closure(C

0

) can also be used at most d

2

times in line 4 of Relocate, since each time a

token is removed from the �nished subtree T

v(C

00

)

of a child C

00

of C

0

.

Finally, the edge e might be traversed d(d+1) times in line 9 of Relocate. When e is traversed

in line 9, then (i) either the robot had moved to C

0

after the introduction of a new token (line

16) or (ii) there exists an ancestor u of v(C) with a child x such that the robot was stuck at a

node in T

x

and T

x

is �nished. Thus, by going \up" the tree T in lines 3{5, the robot reached

u. Case (i) occurs at most d times. When C becomes the current chain for the �rst time,

let u

1

; : : : ; u

l

be the ancestors of v(C) such that each u

j

has a child v

j

with (a) T

v

j

contains

un�nished chains, and (b) v =2 T

v

j

. By Proposition 1, the nodes u

1

; : : : ; u

l

can have a total of d

children satisfying (a) and (b). Since each subtree rooted at one of these children can contain

at most d tokens, case (ii) occurs at most d

2

times.

Thus, edge e is traversed at most

1 + 3d+ 2 + d(d+ 1)(d

2log d+1

+ (d+ 2)d

2 logd+2

) + d(d+ 1) � (d+ 1)

5

d

2 logd

times. Multiplying the bound by d to account for restarts shows the theorem. 2

The total number of edge traversals used by Balance is also O(minfmn; dn

2

+ mg), where

n is the number of nodes in the graph. It is not hard to show that an upper bound of

O(minfmn; dn

2

+ mg) is achieved by any exploration algorithm satisfying the following two

properties: (1) When the robot gets stuck, it moves on a cycle-free path to some, i.e. arbitrary,

node with new outgoing edges. (2) When the robot is not relocating, it always traverses new

edges whenever possible.

We show that any exploration algorithm satisfying (1) and (2) gets stuck at most minfm; dng

times. The bound follows because, by Property (1), at most n edges are traversed during each

relocation. Obviously, a robot gets stuck at most m times. For the proof of the second bound,

let in

u

(v) and out

u

(v) be the number of unvisited incoming and unvisited outgoing edges of v,

respectively. Let def(v) = minf0; in

u

(v)� out

u

(v)g. We show inductively that

P

v2G

def(v) � d.
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This implies that, for every node v, whenever the robot explores the last unvisited edge out of

v, there are at most d unvisited incoming edges at v. Thus the robot gets stuck at most d times

at any node v. Summing over all nodes in G gives the desired bound of dn.

The inequality

P

v2G

def(v) � d holds intitially. The invariant is maintained whenever the

robot relocates from a node y, where it got stuck, to some node z with new outgoing edges

because only visited edges are traversed. Whenever the robot starts a new exploration at a node

z, visits a sequence of new edges and gets stuck at a node x, def(z) increases by at most 1,

def(x) decreases by 1 while at no other node, the def-value changes.

4 A tight lower bound for the Balance algorithm and modi�ca-

tions

In this section we give �rst a lower bound for the Balance algorithm and afterwards we give

lower bounds for modi�cations of Balance.

Theorem 3 For every d � 1, there exists a graph G of de�ciency d that is explored by Balance

using d


(logd)

m edge traversals.

Proof: We show that there exists a graph G = (V;E) and an edge e 2 E that is traversed

d


(logn)

times while Balance explores G. The theorem follows by replacing e by a path of �(m)

edges. We show the bound or d being a power of 5. The bound for all values of d follows by

\rounding" down to the largest power of 5 smaller than d.

The graph is a union of chains C, each of which consists of three edges, a startnode, an

endnode and two interior nodes v

1

(C) and v

2

(C). The interior nodes belong to exactly one

chain and have up to one additional outgoing edge. We describe G, see also Figure 9. Graph G

contains (a) a cycle C

0

that starts and ends in a node v (Balance is started at v and �nds C

0

during Phase 1) and (b) a recursively de�ned problem P

d

attached to C

0

.

In the following let �, 1 � � � d, be a power of 5. A problem P

�

, for any integer � � 5,

is a subgraph that has two incoming edges whose startnodes do not belong to P

�

but whose

endnodes do, and � + 1 outgoing edges whose startnodes belong to P

�

but whose endnodes do

not. A problem P

1

has one incoming and one outgoing edge. In the case of P

d

, the two incoming

edges start at v

1

(C

0

) and v

2

(C

0

), respectively; d outgoing edges point to v and one outgoing

edge points to v

1

(C

0

).

For the de�nition of P

�

we also need problems Q

�

. These problems are identical to P

�

except

that, for � > 1, Q

�

has exactly � + 1 incoming edges.

A problem P

1

consists of a single chain; the �rst edge of the chain represents an incoming

edge and the last edge represents an outgoing edge. The interior nodes have no additional

outgoing edges. A problem Q

1

is identical to P

1

.

For � � 5, let  = �=5. Problem P

�

consists of 3

2

chains C



i;k

, 1 � i � , 1 � k � 3, as

well as  chains D



i

and  recursive subproblems Q



i

, 1 � i �  � 1, and P





.

These components are assembled as follows. One of the incoming edges of P

�

is the �rst

edge of C



1;1

. We assume that v

1

(C

0

) is the startnode of C

d=5

1;1

. Node v

1

(C



i;k

) is the startnode

of C



i;k+1

, 1 � i � , 1 � k � 3 � 1. Node v

1

(C



i;3

) is the startnode of C



i+1;1

, 1 � i �  � 1.

The last edge of C



1;k

, 1 � k � 3, is an outgoing edge of P

�

. The endnode of C



i;k

is equal to

the startnode of C



i�1;k

, 2 � i �  and 1 � k � 3. Note that the last edge of C



2;1

hence is an
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Q



2

Q



�1

P
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C



1;1

; : : : ; C



1;3

D



1

D



2

D



�1

D





Figure 9: The graph G

outgoing edge of P

�

. Nodes v

2

(C



i;k

), 1 � i � , 1 � k � 3 � 1, have no additional outgoing

edge but nodes v

2

(C



i;3

), 1 � i �  � 1, do. Chain C



;3

has no additional outgoing edges.

The second incoming edge of P

�

is the �rst edge of a chain D



1

and, for 2 � i � , the edge

leaving v

2

(C



i�1;3

) is the �rst edge of D



i

. For 1 � i � , the last edge of D



i

is an outgoing edge

of P

�

. If � = 5, then the �rst interior node of the chain D



i

= D



1

has an additional outgoing

edge pointing into a problem P

1

. If � > 5, then the two interior nodes of D



i

, 1 � i � , each

have an additional outgoing edge. For 1 � i �  � 1, these two edges point into Q



i

and, for

i = , they point into P





.

If � = 5, then the outgoing edge of the only subproblem P

1

is an outgoing edges of P

�

= P

5

.

If � > 5, the problems Q



i

, 1 � i �  � 1, and P





each have  + 1 outgoing edges. For Q



1

, 

these edges are also outgoing edges of P

�

and one edge points to the interior node of D



1

that

is the startnode of C



1;1

. For 2 � i �  � 1, exactly  � 1 edges leaving Q



i

point into Q



i�1

such

that every node that has l more outgoing than incoming edges, for l > 0, receives l edges. One

outgoing edge points to the interior nodes of D

�

i�1

that does not get an edge from Q



i�1

and the

remaining edge points to the interior node of D



i

that is the startnode of C



1;1

. In the same way

the edges leaving P





are connected with Q



�1

, D



�1

and D





.

We identify the sources of P

�

, i.e. the nodes having higher indegree than outdegree. At each

source, indegree and outdegree di�er by 1. The startnodes of the chains D



i

, 2 � i � , and

C



;k

, 1 � k � 3, represent a total of 4 � 1 sources. One interior node of D





represents a

source. Finally, the subproblem P





contains  � 1 sources.
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A problem Q

�

, � � 5, is the same as P

�

, except that the subproblem P





is replaced by a

problem Q





. As mentioned before, a problem Q

�

receives ��1 additional incoming edges. These

edges point to the nodes that represent sources in P

�

.

We analyze the number of edge traversals used by Balance on G. Consider a problem P

�

,

� � 5, and let  = �=5. When Balance generates the strand of chains C



i;1

; : : : ; C



i;3

, for some

1 � i � , this strand contains 3 >  + 1 tokens. Since D



i

and the subproblem attached to it

contain  tokens Balance does not explore the unvisited edges out of C



i;3

before the subproblem

attached to D



i

is �nished. In the same way we can argue for a problem Q

�

.

Let N(�) be the number of times the following event happens while Balance works on a

problem P

�

or Q

�

: Balance generates a new chain, gets stuck and cannot reach a node with

new outgoing edges by using only edges in P

�

resp. Q

�

. Problem P

�

contains  subproblems

Q



1

; : : : ; Q



�1

and P





. Every time Balance gets stuck in one of these subproblems and has to

leave it in order to resume exploration, it also has to leave P

�

. This is because of the following

facts: (1) When Balance explores Q



i

, 1 � i �  � 1, or P





, the subproblems Q



1

; : : : ; Q



i�1

resp.

Q



1

; : : : ; Q



�1

are already �nished. (2) The chains D



1

; : : : ; D





ensure that Balance cannot reach

any chain C



i;k

, 1 � i � , 1 � k � 3, from where the un�nished chains in P

�

can be reached.

Again the same holds for a problem Q

�

. Thus, for � � 5, N(�) � N() = (�=5)N(�=5): Since

N(�) = 1, for � = 1, we obtain N(d) = d


(logd)

. Finally, consider the edge e on C

0

that leaves

v. Balance must traverse e at least N(d) = d


(logd)

times. 2

We also modi�ed the Balance algorithm by relocating to other nodes with new outgoing

edges. Replace the choice of C

k

in line 7 of by one of the following rules.

Round Robin: Let C

k

be the chain among C

1

; : : : ; C

l

that was selected least often in any

execution of line 7.

Cheapest Subtree: Let C

k

be the chain among C

1

; : : : ; C

l

, such that T

v(C

k

)

contains the

fewest number of dependent chains with respect to the current chain.

Theorem 4 For Round Robin and for Cheapest Subtree and for all d � 1, there exist graphs of

de�ciency d that require d


(logd)

m edge traversals.

Proof: The proof is identical to that of Generalized-Greedy in Theorem 1. 2
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5 Appendix

Lemma 8 After at most d restarts of the Balance algorithm, whenever a new sink s

i

, 1 � i � d,

was discovered, we can ensure that the subgraph of explored edges is always strongly connected.

Proof: Whenever the Balance algorithm gets stuck in line 14 and there is no path to s using

edges that have been traversed before, then the algorithm stops and has to be restarted as

follows. Let s

1

; : : : ; s

k�1

be the already discovered sinks. Assume the robot gets stuck at y

on a path P that does not belong to any other chain created since the last restart. Whenever

this happens, y is a newly discovered sink s

k

and must have occurred on P before (each node

has degree � 2). Take the cycle C between the two occurrences of s

k

on P and restart the

algorithm with current node y and current chain C with the following modi�cation: All edges

traversed before the restart are marked as k� 1-visited. We show below that there exists a path

of k � 1-visited edges from all previously visited sinks to y. Whenever the algorithm started at

s

k

encounters an already visited sink s

i

, i < k, then the algorithm traverses the k � 1-visited

edges on the path from s

i

to s

k

as required in lines 16 and 17 of the algorithm, i.e., the algorithm

does not get stuck at s

i

, i < k.

Thus, whenever the modi�ed algorithm restarts, it has discovered a new sink s

k

. Hence,

after at most d restarts, all sinks have been discovered and there is a path from the every sink

s

i

with i < k to s

k

.

We show inductively that there exists a path from all previously explored sinks to y. Obvi-

ously the claim holds initially. Whenever y = s

j

for j > 1, then obviously there exists a path

from s

j�1

to s

j

, since this is how the previous algorithm got stuck. Thus, by transitivity of the

reachability relation, all previously visited sinks can reach s

j

. 2
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