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Abstract

Since the number of erroneous attempts involving PQ�trees for the solution of au�

tomatic graph drawing problems that have been presented in the literature have in�

creased in recent years� we present a closer examination of some of the mistakes in

order to prevent future research from constructing algorithms with similar errors�

Throughout this extended abstract� we study the computation of maximal planar

subgraphs using PQ�trees and the leveled�planarity testing of directed acyclic graphs

with several sources and sinks�
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� Introduction

A PQ�tree is a powerful data structure that represents the permutations of a �nite set in
which the members of speci�ed subsets occur consecutively� and in which updates require
linear time� This data structure has been introduced by Booth and Lueker ���	
� to solve
the problem of testing for consecutive ones property� The most well known applications
of PQ�trees in Automatic Graph Drawing are planarity testing �see Lempel et al�� ��
	�
Booth and Lueker� ��	
� and embedding �see Chiba et al�� ��
��� Both are di�cult to
implement but very e�cient� therefore PQ�trees have become standard tools in automatic
graph drawing systems�

Other attempts to use algorithms based on PQ�trees for automatic graph drawing prob�
lems have not been successful� One well known example is the computation of maximal
planar subgraphs� Given a simple� connected graph G � �V�E� with n vertices and m

edges� a subgraph G� of G is a maximal planar subgraph� if for all edges e � G � G�

the addition of e destroys planarity� Several e�orts have been made in the literature to
solve the problem with PQ�trees following a certain strategy �rst presented by Ozawa
and Takahashi ���
�� who described an O�nm� algorithm using PQ�tree techniques based
on the vertex addition algorithm of Lempel et al� ���
	�� Jayakumar� Thulasiraman� and
Swamy ���

� showed that in general this algorithm does not determine a maximal pla�
nar subgraph� Moreover� the resulting planar subgraph may not even contain all vertices�
In ��
� Jayakumar� Thulasiraman� and Swamy improved the vertex addition algorithm
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by computing a spanning planar subgraph Gp in O�n��� Furthermore� they presented an
algorithm to augment a biconnected subgraph Gp into a maximal planar subgraph G�

in a second phase� So they obtained a two�phase algorithm� whose �rst phase is called
PLANARIZE and whose second phase is called MAX�PLANARIZE� Subsequently� Kant
������ observed that the second phase does not necessarily augment Gp into a maximal
planar subgraph� but his attempts to come up with a corrected version failed as well as is
described in J�unger et al� ����
�� In addition to the shortcomings found by Kant� we will
point out a major mistake in the algorithm by Jayakumar et al� that is not solved by the
ideas of Kant as well�

PQ�trees have also been proposed by Heath and Pemmaraju ����
a�b� to test planarity of
leveled directed acyclic graphs with several sources and sinks� We show why this application
leads to an incorrect algorithm�

In section � we discuss the computation of maximal planar subgraphs� �rst giving a brief
introduction on PQ�trees and the planarity test using this data structure� We then de�
scribe the principle of the planarization algorithm using the PQ�trees and show that the
algorithm of Jayakumar et al� is incorrect giving a detailed description of the major mis�
take� In section � we discuss the leveled�planarity testing� giving an introduction on the
algorithm presented by Heath and Pemmaraju and discussing one of the shortcomings in
detail�

� Case study� maximal planar subgraphs

��� Planarity test using PQ�trees

Let G � �V�E� be a simple Graph with n vertices and m edges� A graph is planar � if it can
be embedded in the plane without any edge crossings� A graph is obviously planar� if and
only if its biconnected components are planar� We therefore assume that G is biconnected�
The planarity testing algorithm of Lempel� Even� and Cederbaum ���
	� �rst labels the
vertices of G as �� �� � � � � n using an st�numbering �see Even and Tarjan� ��	
�� The st�
numbering induces an orientation of the graph� in which every edge is directed from the
incident vertex with the higher st�number towards the incident vertex with the lower st�
number� From now on we refer to the vertices of G by their st�numbers and call an edge
�v� u�� with u � v� incoming edge of u and outgoing edge of v�

For � � k � n� let Gk denote the subgraph of G induced by the vertex set
Vk �� f�� �� � � � � kg� Let G�

k be the graph formed by adding to Gk all those edges with
one end in Vk and the other end in V n Vk� These edges are called virtual edges and their
endvertices in V n Vk are called virtual vertices� The virtual vertices are labeled like their
counterparts in V n Vk� but they are kept separate� Let Bk be a planar embedding of G�

k

such that all virtual vertices are placed on the outer face� Then� Bk is called a bush form�
It has been shown by Lempel et al� ���
	� that G is planar� if and only if for every Bk�
k � �� �� � � � � n� there exists a bush form B�

k isomorphic to Bk� such that all virtual vertices
in B�

k labeled k � � appear consecutively�

The PQ�tree Tk corresponding to the bush form Bk is a rooted ordered tree that consists
of three types of nodes �
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�� Leaves in Tk represent virtual edges in Bk�

�� P �nodes in Tk represent cutvertices in Bk�

�� Q�nodes represent maximal biconnected components in Bk�

The frontier of a PQ�tree is the sequence of all leaves of Tk read from left to right� The
frontier of a node X� denoted by frontier�X�� is the sequence of its descendant leaves
read from left to right�

Let Ek�� denote the set of leaves in Tk that correspond to the virtual vertex k � �� A
node X is called full � if all leaves in its frontier are in Ek��� A node X is empty � if its
frontier does not contain any leaf of Ek��� Otherwise� X is called partial � A node is called
pertinent � if it is full or partial� The pertinent subtree is the smallest connected subtree
that contains all leaves of Ek�� in its frontier� The root of the pertinent subtree is called
pertinent root � Two PQ�trees are equivalent � if one can be obtained from the other by one
or more of the following operations�

�� Permuting the children of a P �node�

�� Reversing the order of the children of a Q�node�

These operations are called equivalence transformations and describe equivalence classes

on the set of all PQ�trees� Every tree in an equivalence class of PQ�trees has a di�erent
frontier� That means it describes a di�erent permutation of the set of all leaves in its
frontier� Such an equivalence class of PQ�trees corresponds to a class of permutations
called the permissible permutations�

It has been shown by Booth and Lueker ���	
� that B�

k exists if and only if Tk can be
converted into an equivalent PQ�tree T �

k such that all pertinent leaves appear consecu�
tively in the frontier of T �

k� Booth and Lueker ���	
� have de�ned a set of patterns and
replacements called templates that can be used to reduce the PQ�tree such that the leaves
corresponding to edges of the set Ek�� appear consecutively in all permissible permuta�
tions� To construct Tk�� from Tk they �rst reduce Tk by use of the templates and then
replace all leaves corresponding to virtual edges of the vertex k � � by a P �node� whose
children are the leaves corresponding to the incoming edges of the vertex k � � in G�

The planarity testing algorithm now starts with T� and constructs a sequence of PQ�
trees T�� T�� � � � � If the graph is planar� the algorithm terminates after constructing Tn���
Otherwise it terminates after detecting the impossibility of reducing some Tk� � � k � n�

��� Principle of an approach for planarization

The basic idea of a planarization algorithm using PQ�trees presented by Jayakumar et al�
���
�� is to construct the sequence of PQ�trees T�� T�� � � � � Tn�� by deleting an appropriate
number of pertinent leaves every time the reduction fails such that the resulting PQ�tree
becomes reducible� In every step of the algorithm PLANARIZE� a maximal consecutive
sequence of pertinent leaves is computed by using a �w� h� a��numbering �see Jayakumar
et al�� ��
��� All pertinent leaves that are not adjacent to the maximal pertinent sequence
are removed from the PQ�tree in order to make it reducible� Hence the edges corresponding
to the leaves are removed from G and the resulting Graph Gp is planar�
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It has been shown by Jayakumar et al� ���
�� that the graph Gp computed by PLA�
NARIZE is not necessarily maximal planar� The authors therefore suggest to apply a
second phase called MAX�PLANARIZE� also based on PQ�trees� Knowing which edges
have been removed from G to construct Gp� edges from G�Gp are added back to Gp in
the second phase without destroying planarity�

During the reduction of a vertex v� there might exist nonpertinent leaves that are in all
permissible permutations of the PQ�tree Tv�� between a pertinent leaf lv and its maximal
pertinent sequence� This maximal pertinent sequence has been determined with the help
of the �w� h� a��numbering� In order to make the tree Tv�� reducible� the leaf lv is removed
from the tree and the corresponding edge is removed from the graph G� guaranteeing that
the subgraph Gp will be planar� However� it may occur that the nonpertinent leaves that
are positioned between lv and its maximal pertinent sequence in Tv��� are removed as well
from a tree Tk� v � k � n� in order to obtain reducibility� Therefore� there is no need to
remove the edge corresponding to lv from the graph G�

In order to �nd leaves such as lv� Jayakumar et al� ���
�� use the algorithm MAX�
PLANARIZE� Assuming that Gp is biconnected� a maximal planar subgraph of G has
to be found that contains Gp� In order to do this� the authors construct the sequence of
PQ�trees that has been computed in PLANARIZE� This implies that the sequence of pla�
nar subgraphsGk is constructed with the same order that was implied by the st�numbering
computed during PLANARIZE�

So in step i both PLANARIZE as well as MAX�PLANARIZE reduce the same vertex i�
The di�erence between the PQ�trees in the two algorithms is� according to the authors�
that all leaves that have been deleted in PLANARIZE are ignored in MAX�PLANARIZE
from the moment they are introduced into the tree until they get pertinent�

This application causes the nonpertinent leaves between the pertinent leaf lv and its
maximal pertinent sequence to be ignored� Hence lv is adjacent to its maximal pertinent
sequence and the corresponding edge can be added back to Gp� while the leaves between
lv and the maximal pertinent sequence are removed from the PQ�tree�

��� On the incorrectness of the algorithm

Although some incorrect details of the approach of Jayakumar et� al� have been described
in a technical report by Kant ������� who attempted to correct the algorithm� a major
problem has not been detected�

Jayakumar et al� assume that the maximal planar subgraph Gp is biconnected for the
correct application of the Lempel�Even�Cederbaum algorithm� Furthermore� as they have
stated correctly� this is necessary in order to have an st�numbering� Nevertheless� the
PQ�trees in MAX�PLANARIZE are constructed according to the st�numbering that was
computed for the graph G�

As a matter of fact� the st�numbering of G does not imply an st�numbering of any subgraph
Gp even if the subgraph Gp is biconnected� This results in two problems� of which one is
crucial and cannot be dealt with even by the ideas described by Kant �������

Both problems are based on the fact that during the application of PLANARIZE for some
vertices of V all incoming edges may be deleted from the graph while the resulting graph
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Gp stays biconnected� In this abstract� we consider only the crucial problem� The other
problem is described in detail by J�unger et al� ����
��

The existence of the problem is based on the fact that the planarization algorithm of
Jayakumar et al� ���
�� does not obey an important invariant implied by the following
lemma� shown by Even ���	���

Lemma ��� Let G � �V�E� be a planar graph with an st�numbering and let � � k � n�

If the edge �s� t� is drawn on the boundary of the outer face in an embedding of G� then all

vertices and edges of G�Gk are drawn in the outer face of the plane subgraph Gk of G�

This result allowed Lempel� Even� and Cederbaum ���
	� to transform the problem of
planarity testing to the construction of a sequence of bush forms Bk� � � k � n� For
a planar graph G� edges and vertices that have not been introduced into the current
subgraph Gk are always embedded into the outer face of Gk�

The approach of Jayakumar et al� ���
�� does not obey this invariant� There exist edges
that have to be embedded into an inner face of some Gk of Gp� even if �s� t� is drawn
on the outer face� Due to the above lemma� the correction step MAX�PLANARIZE only
considers edges for reintroduction into the planar subgraph Gp that are on the outer face
of the current graph Gk� Since the numbering that is used to determine the order in which
the vertices are reduced does not correspond to an st�numbering of Gp in general� the
algorithm of Jayakumar et al� ���
�� ignores edges that have to be added into an inner
face of the embedding of a current graph Gk� This fact is fatal� as we are about to show
now�

In Figure � a part of a bush form Bk��� � � k � n of a graph G � �V�E� is shown� The
virtual vertices corresponding to the vertex k are labeled k�� k�� � � � � k� and all other virtual
vertices are left unlabeled� We have marked them with v for simplicity� The corresponding
part of the PQ�tree is shown in Figure �� Obviously� there do not exist any reversions or
permutations such that the virtual vertices of k occupy consecutive positions� Hence� the
graph G is not planar� Applying the �w� h� a��numbering of Jayakumar et al� ���
�� allows
us to delete the virtual vertex k� and to reduce the other four vertices k�� k�� k�� k�� The
resulting bush form Bk is planar and the relevant part is shown in Figure ��

The virtual vertices incident on k are labeled o in Figure �� regardless of the number of the
corresponding vertex in G� Figure � shows the corresponding part of the PQ�tree� Assume
now that all leaves labeled with o have to be removed from the PQ�tree in a later step�
Hence all incoming edges incident on k are removed from the tree� Now assume further
that there exists a path v�� v�� � � � � vl in Gp such that

� for all i� j� � � i � j � l the inequality vi � vj holds�

� the edge �v�� v�� corresponds to one of the virtual edges that are between the leaf k�
and the maximal pertinent sequence k�� k�� k�� k� in all PQ�trees equivalent to Tk���

� vl � t�

This path guarantees that all outgoing edges of the vertex k cannot be embedded into the
outer face of the embedding of Bk�� without crossing an edge on this path� Hence the edge
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Figure �� Part of a bush form Bk��

v v v v vk 1 k 2 k 3 k 4 k 5 v vv

Figure �� Part of a PQ�tree corresponding to bush form Bk��

ek� corresponding to the leaf k� is not considered by the algorithm MAX�PLANARIZE
as being an edge that does not destroy planarity� Therefore� ek� is not added back to the
planar subgraph Gp�

Nevertheless adding the edge ek� to Gp may not destroy planarity of Gp as is shown in
our example in Figure �� Since all incoming edges of the vertex k have been deleted by
PLANARIZE and are not added back by MAX�PLANARIZE� it may be possible to swap
the vertex k into an inner face of the embedding of Bk such that the virtual vertex k�
can be identi�ed with k and the edge ek� is embedded into the bush form Bk without
destroying planarity�

Therefore� the strategy of using PQ�trees presented by Jayakumar et al� ���
�� does not
compute a maximal planar subgraph in general� Furthermore� we point out that the same
problem holds for the modi�ed version of this algorithm� presented by Kant ������� This
version follows a similar strategy of computing a spanning planar subgraph Gp using
PLANARIZE and then adding edges that do not destroy planarity in a second phase� The
order of reductions that is used to insert vertices into existing bush forms is the same as
the one implied by the st�numbering on G� Hence this approach is not able to compute a
maximal planar subgraph for the same reason�

We therefore state the following lemma that has been shown in the discussion above�

Lemma ��� Let G � �V�E� be a nonplanar Graph� Let Gp � �V�Ep�� Ep � E� be a

planar subgraph of G� such that Gp was obtained from G by
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Figure �� Part of a bush form Bk
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Figure �� Part of a PQ�tree corresponding to bush form Bk

�� computing an st�numbering for all vertices and

�� applying the algorithm of Lempel� Even� and Cederbaum ���	
� constructing a se�

quence of bush forms Bk� � � k � n� by embedding a maximal number of outgoing

edges of a vertex k� � � k � n� in the outer face of Bk�� without crossings� deleting

all other outgoing edges of k�

Let G�

p � �V�E�

p�� be a planar subgraph of G such that

�� Ep � E�

p � E�

�� the graph G�

p is computed by constructing a sequence of bush forms B�

k� � � k � n�

based on the st�numbering used for determining Gp� and possibly embedding outgoing
edges e � E nEp of every vertex k� � � k � n� without crossings in the outer face of

Bk���

Then the subgraph G�

p is not necessarily maximal planar�

Considering a computation of an st�numbering for the planar subgraph Gp in order to
augment Gp to a maximal planar subgraph of G and then construct a sequence of bush
forms B�

k� � � k � n� is aggravated by the fact that the graph Gp is not biconnected
in general� and the sequence of bush forms B�

k� � � k � n is not equivalent to the
bush forms Bk� constructed in the �rst phase PLANARIZE� Kant ������ has already
shown that the nonequivalence of the PQ�trees in MAX�PLANARIZE and the resulting
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Figure �� Part of a bush form Bk with ek� embedded

nonequivalence of the bush forms might result in the deletion of edges of the planar
subgraph Gp� Nevertheless� the authors attempt to come up with a corrected version of
the algorithm does not solve the here described problem�

� Case study� leveled�planarity testing

��� Principle of an approach for recognizing leveled�planar dags

Let G � �V�E� be a directed acyclic graph� A leveling of G is a function lev � V � Z

mapping the nodes of G to integers such that lev�v� � lev�u� � � for all �u� v� � E� G
is called a leveled dag if it has a leveling� If lev�v� � j� then v is a level�j vertex� Let
Vj � lev���j� denote the set of level�j vertices� Each Vj is a level of G�

For the rest of this section� we consider G to be a leveled dag with m � N levels� An
embedding of G in the plane is called leveled if the vertices of every Vj � � � j � m�
are placed on a horizontal line lj � f�x�m � j� j x � Rg� and every edge �u� v� � E�
u � Vj � v � Vj�� is drawn as straight line segment between the lines lj and lj��� A
leveled embedding of G is called leveled�planar if no two edges cross except at common
endpoints� The dag G is obviously leveled�planar� if all its components are leveled�planar�
We therefore assume that G is connected�

Let G have a leveled embedding� This embedding determines for every Vj � � � j � m� a
total order �j of the vertices of Vj � given by the left to right order of the nodes on lj � In
order to test whether a leveled embedding of G is leveled planar� it is su�cient to �nd
an order of the vertices of every set Vj� � � j � m� such that for every pair of edges
�u�� v��� �u�� v�� � E with lev�u�� � lev�u�� � j and u� �j u� it follows that v� �j�� v��
Apparently� the ordering �j � � � j � m� describes a permutation of the vertices of Vj� Let
Gj denote the subgraph of G� induced by V��V�� � � ��Vj� Unlike G� Gj is not necessarily
connected�

The basic idea of the leveled�planar test algorithm presented by Heath and Pemmaraju
����
a�b� is to perform a top�down sweep processing the levels in the order V�� V�� � � � � Vm






computing for every level Vj � � � j � m� a set of permutations of the vertices of Vj that
appear in some leveled�planar embedding of Gj� In case that the set of permutations for
Gm is not empty� the graph G � Gm is obviously leveled�planar�

As long as the graph Gj is connected for some j � f�� �� �� � � � �mg standard PQ�tree tech�
niques similar to the ones used in the planarity test can be applied in order to determine
the required set of permutations �see Di Battista and Tamassia� ��
��� In case that Gj�
� � j � m� consists of more than one connected component� Heath and Pemmaraju sug�
gest to use a PQ�tree for every component and formulate a set of rules of how to merge
components F� and F�� respectively their corresponding PQ�trees T� and T�� if F� and F�
both are adjacent to some vertex v � Vj���

The authors �rst reduce the pertinent leaves of T� and T� corresponding to the vertex v�
After successfully performing the reduction� the consecutive sequence of pertinent leaves
is replaced by a single pertinent representative in both T� and T�� Going up one of the
trees Ti� i � f�� �g� from its pertinent representative� an appropriate position is searched�
allowing the tree Tj � j �� i to be placed into Ti� After successfully performing this step
the resulting tree T � has two pertinent leaves corresponding to the vertex v� which again
are reduced� If any of the steps fails� Heath and Pemmaraju state that the graph G is not
leveled�planar�

Merging two PQ�trees T� and T� corresponds to merging the two components F� and F�
and is accomplished using certain informations that are stored at the nodes of the PQ�
trees� For any subset S of the set of vertices in Vj� � � j � m� that belong to a component
F � de�ne ML�S� to be the greatest d � j such that Vd� Vd��� � � � � Vj induces a dag in which
all nodes of S occur in the same connected component� For a Q�node q in the correspond�
ing PQ�tree TF with ordered children r�� r�� � � � � rt maintain in node q integers denoted
ML�ri� ri���� where � � i � t� satisfying ML�ri� ri��� � ML�frontier�ri��frontier�ri�����
For a P �node p maintain in p a single integer denoted ML�p� that satis�es ML�p� �
ML�frontier�p��� Furthermore de�ne LL�F � to be the smallest d such that F contains a
vertex in Vd and maintain this integer at the root of the corresponding PQ�tree�

Using these LL� and ML�values� Heath and Pemmaraju ����
a�b� describe a set of rules
how to connect two PQ�trees claiming that the pertinent leaves of the new tree T � are
reducible if and only if the corresponding component F � is leveled�planar�

��� On the incorrectness of the algorithm

Within the merge phase� pertinent leaves are reduced pairwise in any given order� This
includes the pairwise reduction of pertinent leaves of di�erent components as well� Hence�
components that have pertinent leaves of the same vertex in their frontier� are merged in
an arbitrary order�

Consider four di�erent components F�� F�� F�� F� and their corresponding PQ�trees
T�� T�� T�� T� each having at least one pertinent leaf corresponding to some level�j vertex k�
For simplicity� assume that the pertinent leaves of every component appear consecutively
in all permutations on one side of their PQ�trees and assume further that the smallest
common ancestor of the pertinent leaves and some other leaves is a Q�node� In Figure 

such a component Fi� i � f�� �� �� �g� and its corresponding PQ�tree Ti� i � f�� �� �� �g� is
shown� The number ci� i � f�� �� �� �g� depicts the ML�value between the leftmost perti�
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nent leaf and the frontier of its left neighbor� We have marked all pertinent leaves with a
k for simplicity�
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Figure 
� Component Fi and its corresponding PQ�tree Ti� On the left side of
Fi� some levels of Fi are indicated� The value ci is equal to ML�fvip� kg��

Assuming that the following condition on the ML� and LL�values of the components holds�

LL�F�� � c� � LL�F�� � c� � LL�F�� � c� � LL�F�� � c��

it is possible to merge all four components into one component such that the pertinent
leaves form a consecutive sequence� Figure 	 shows the four components� indicating how
the components can be merged allowing a reduction of the pertinent leaves�

���������� ���������� �������� ���������������� �
�
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Figure 	� Possible leveled�planar arrangement of the components F�� F�� F�� F��

Considering the following merge operations on the components F�� F�� F�� F� and their
corresponding PQ�trees�

�� merge F� and F� into component F
��

�� merge F � and F� into component F
���

�� merge F �� and F� into component F
����

��



the resulting PQ�tree T ��� corresponding to F ��� is shown in Figure 
� Obviously� the perti�
nent leaves do not form a consecutive sequence in any permutation of the PQ�tree� Hence
the algorithm presented by Heath and Pemmaraju ����
a� states non planarity although
the graph may be planar�

����������

���������� ������
��
��
��
�
�
�
�

���������������� ���������� ��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

v�� v�p

k k k k k kv�� v�p v�� v�p

c� c�
v�� v�p k k

c�

c�

Figure 
� PQ�tree T ��� whose pertinent leaves depicted by k are not reducible�

As a matter of fact� the order of merging the components is important for testing a leveled
dag� Moreover it is easy to see� that using di�erent orderings while merging three or more
components results in di�erent equivalence classes of PQ�trees� So even if every order of
merging PQ�trees with pertinent leaves results in a reducible PQ�tree� a PQ�tree may be
constructed such that the leaves of some vertex l� lev�l� � j are not reducible� although
the graph G is leveled�planar� Hence the algorithm presented by Heath and Pemmaraju
����
a� may state incorrectly the non�leveled�planarity of a leveled�planar graph�

� Conclusions

Although PQ�trees have proved themselves as a powerful data structure� they have to be
handled with great care� Any application has to make sure that the problem� which has
to be solved with PQ�trees really can be reduced to solving the problem of consecutive
sets� As we have seen throughout the abstract� it is mostly the lack of information that
makes the algorithms fail� Finding these problems is aggravated by the fact the algorithms
are intuitively clear� and the proofs are correct� except for the �nal conclusion� Mostly it
was luck or chance that revealed the mistakes in the past� So for the development of new
algorithms� it is very helpful to take a close look onto the mistakes�
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