Pitfalls of using PQ-Trees in Automatic Graph Drawing

Michael Jiinger® Sebastian Leipert?
Petra Mutzel®

¢ Institut fiir Informatik, Universitidt zu Koln, mjuenger@informatik.uni-koeln.de
b Institut fiir Informatik, Universitiit zu Ko6ln, leipert@informatik.uni-koeln.de
¢ Max-Planck-Institut fiir Informatik, Saarbriicken, mutzel@mpi-sb.mpg.de

Abstract

Since the number of erroneous attempts involving PQ-trees for the solution of au-
tomatic graph drawing problems that have been presented in the literature have in-
creased in recent years, we present a closer examination of some of the mistakes in
order to prevent future research from constructing algorithms with similar errors.

Throughout this extended abstract, we study the computation of maximal planar
subgraphs using PQ-trees and the leveled-planarity testing of directed acyclic graphs
with several sources and sinks.

Keywords: PQ-Trees, Maximal Planar Subgraphs, Planarization, Leveled-Planar
Dags

+MSC Classification: 05C85, 68R10, 90C35

1 Introduction

A P(Q-tree is a powerful data structure that represents the permutations of a finite set in
which the members of specified subsets occur consecutively, and in which updates require
linear time. This data structure has been introduced by Booth and Lueker (1976) to solve
the problem of testing for consecutive ones property. The most well known applications
of PQ-trees in Automatic Graph Drawing are planarity testing (see Lempel et al., 1967;
Booth and Lueker, 1976) and embedding (see Chiba et al., 1985). Both are difficult to
implement but very efficient, therefore PQ-trees have become standard tools in automatic
graph drawing systems.

Other attempts to use algorithms based on PQ-trees for automatic graph drawing prob-
lems have not been successful. One well known example is the computation of maximal
planar subgraphs. Given a simple, connected graph G = (V, E) with n vertices and m
edges, a subgraph G’ of G is a mazimal planar subgraph, if for all edges e € G — G’
the addition of e destroys planarity. Several efforts have been made in the literature to
solve the problem with PQ-trees following a certain strategy first presented by Ozawa
and Takahashi (1981) who described an O(nm) algorithm using PQ-tree techniques based
on the vertex addition algorithm of Lempel et al. (1967). Jayakumar, Thulasiraman, and
Swamy (1986) showed that in general this algorithm does not determine a maximal pla-
nar subgraph. Moreover, the resulting planar subgraph may not even contain all vertices.
In 1989 Jayakumar, Thulasiraman, and Swamy improved the vertex addition algorithm

by computing a spanning planar subgraph G, in O(n?). Furthermore, they presented an
algorithm to augment a biconnected subgraph G}, into a maximal planar subgraph G’
in a second phase. So they obtained a two-phase algorithm, whose first phase is called
PLANARIZE and whose second phase is called MAX-PLANARIZE. Subsequently, Kant
(1992) observed that the second phase does not necessarily augment G, into a maximal
planar subgraph, but his attempts to come up with a corrected version failed as well as is
described in Jiinger et al. (1996). In addition to the shortcomings found by Kant, we will
point out a major mistake in the algorithm by Jayakumar et al. that is not solved by the
ideas of Kant as well.

PQ-trees have also been proposed by Heath and Pemmaraju (1996a,b) to test planarity of
leveled directed acyclic graphs with several sources and sinks. We show why this application
leads to an incorrect algorithm.

In section 2 we discuss the computation of maximal planar subgraphs, first giving a brief
introduction on PQ-trees and the planarity test using this data structure. We then de-
scribe the principle of the planarization algorithm using the PQ-trees and show that the
algorithm of Jayakumar et al. is incorrect giving a detailed description of the major mis-
take. In section 3 we discuss the leveled-planarity testing, giving an introduction on the
algorithm presented by Heath and Pemmaraju and discussing one of the shortcomings in
detail.

2 Case study: maximal planar subgraphs

2.1 Planarity test using PQ-trees

Let G = (V, E) be a simple Graph with n vertices and m edges. A graph is planar, if it can
be embedded in the plane without any edge crossings. A graph is obviously planar, if and
only if its biconnected components are planar. We therefore assume that G is biconnected.
The planarity testing algorithm of Lempel, Even, and Cederbaum (1967) first labels the
vertices of G as 1,2.... ,n using an st-numbering (see Even and Tarjan, 1976). The st-
numbering induces an orientation of the graph, in which every edge is directed from the
incident vertex with the higher st-number towards the incident vertex with the lower st-
number. From now on we refer to the vertices of G by their st-numbers and call an edge
(v,u), with u < v, incoming edge of u and outgoing edge of v.

For 1 < k < n, let Gy denote the subgraph of G induced by the vertex set
Vi :={1,2,... ,k}. Let G}, be the graph formed by adding to G all those edges with
one end in Vi and the other end in V' \ Vj. These edges are called virtual edges and their
endvertices in V' \ V are called virtual vertices. The virtual vertices are labeled like their
counterparts in V'\ Vj, but they are kept separate. Let By, be a planar embedding of G,
such that all virtual vertices are placed on the outer face. Then, By, is called a bush form.
It has been shown by Lempel et al. (1967) that G is planar, if and only if for every By,
k=1,2,... ,n, there exists a bush form B}, isomorphic to By, such that all virtual vertices
in By, labeled k + 1 appear consecutively.

The PQ-tree T}, corresponding to the bush form By is a rooted ordered tree that consists
of three types of nodes :

1. Leaves in T} represent virtual edges in By.
2. P-nodes in T} represent cutvertices in By.

3. (Q-nodes represent maximal biconnected components in By,.

The frontier of a PQ-tree is the sequence of all leaves of T} read from left to right. The
frontier of a node X, denoted by frontier(X), is the sequence of its descendant leaves
read from left to right.

Let Ek.1 denote the set of leaves in T} that correspond to the virtual vertex k& + 1. A
node X is called full, if all leaves in its frontier are in Fy, 1. A node X is empty, if its
frontier does not contain any leaf of Ej ;. Otherwise, X is called partial. A node is called
pertinent, if it is full or partial. The pertinent subtree is the smallest connected subtree
that contains all leaves of Ey, in its frontier. The root of the pertinent subtree is called
pertinent root. Two PQ-trees are equivalent, if one can be obtained from the other by one
or more of the following operations:

1. Permuting the children of a P-node.

2. Reversing the order of the children of a @-node.

These operations are called equivalence transformations and describe equivalence classes
on the set of all PQ-trees. Every tree in an equivalence class of PQ-trees has a different
frontier. That means it describes a different permutation of the set of all leaves in its
frontier. Such an equivalence class of PQ-trees corresponds to a class of permutations
called the permissible permutations.

It has been shown by Booth and Lueker (1976) that Bj exists if and only if T} can be
converted into an equivalent PQ-tree T} such that all pertinent leaves appear consecu-
tively in the frontier of T}. Booth and Lueker (1976) have defined a set of patterns and
replacements called templates that can be used to reduce the PQ-tree such that the leaves
corresponding to edges of the set Fj,1 appear consecutively in all permissible permuta-
tions. To construct Ty, from T} they first reduce T} by use of the templates and then
replace all leaves corresponding to virtual edges of the vertex k£ 4+ 1 by a P-node, whose
children are the leaves corresponding to the incoming edges of the vertex £+ 1 in G.

The planarity testing algorithm now starts with 77 and constructs a sequence of PQ-
trees 11,75, If the graph is planar, the algorithm terminates after constructing 7;,_1.
Otherwise it terminates after detecting the impossibility of reducing some Ty, 1 < k < n.

2.2 Principle of an approach for planarization

The basic idea of a planarization algorithm using PQ-trees presented by Jayakumar et al.
(1989) is to construct the sequence of PQ-trees T}, Ts, ... ,T,,_1 by deleting an appropriate
number of pertinent leaves every time the reduction fails such that the resulting PQ-tree
becomes reducible. In every step of the algorithm PLANARIZE, a maximal consecutive
sequence of pertinent leaves is computed by using a [w, h, a]-numbering (see Jayakumar
et al., 1989). All pertinent leaves that are not adjacent to the maximal pertinent sequence
are removed from the PQ-tree in order to make it reducible. Hence the edges corresponding
to the leaves are removed from G' and the resulting Graph G, is planar.

It has been shown by Jayakumar et al. (1989) that the graph G, computed by PLA-
NARIZE is not necessarily maximal planar. The authors therefore suggest to apply a
second phase called MAX-PLANARIZE, also based on PQ-trees. Knowing which edges
have been removed from G to construct G\, edges from G — G}, are added back to G, in
the second phase without destroying planarity.

During the reduction of a vertex v, there might exist nonpertinent leaves that are in all
permissible permutations of the PQ-tree T;,_1 between a pertinent leaf [, and its maximal
pertinent sequence. This maximal pertinent sequence has been determined with the help
of the [w, h, a]-numbering. In order to make the tree T;_; reducible, the leaf [, is removed
from the tree and the corresponding edge is removed from the graph G, guaranteeing that
the subgraph G), will be planar. However, it may occur that the nonpertinent leaves that
are positioned between [, and its maximal pertinent sequence in T,_1, are removed as well
from a tree Ty, v < k < n, in order to obtain reducibility. Therefore, there is no need to
remove the edge corresponding to [, from the graph G.

In order to find leaves such as [,, Jayakumar et al. (1989) use the algorithm MAX-
PLANARIZE. Assuming that G} is biconnected, a maximal planar subgraph of G has
to be found that contains G. In order to do this, the authors construct the sequence of
PQ-trees that has been computed in PLANARIZE. This implies that the sequence of pla-
nar subgraphs G, is constructed with the same order that was implied by the st-numbering
computed during PLANARIZE.

So in step 2 both PLANARIZE as well as MAX-PLANARIZE reduce the same vertex 1.
The difference between the PQ-trees in the two algorithms is, according to the authors,
that all leaves that have been deleted in PLANARIZE are ignored in MAX-PLANARIZE
from the moment they are introduced into the tree until they get pertinent.

This application causes the nonpertinent leaves between the pertinent leaf [, and its
maximal pertinent sequence to be ignored. Hence [, is adjacent to its maximal pertinent
sequence and the corresponding edge can be added back to G, while the leaves between
[, and the maximal pertinent sequence are removed from the PQ-tree.

2.3 On the incorrectness of the algorithm

Although some incorrect details of the approach of Jayakumar et. al. have been described
in a technical report by Kant (1992), who attempted to correct the algorithm, a major
problem has not been detected.

Jayakumar et al. assume that the maximal planar subgraph G, is biconnected for the
correct application of the Lempel-Even-Cederbaum algorithm. Furthermore, as they have
stated correctly, this is necessary in order to have an st-numbering. Nevertheless, the
PQ-trees in MAX-PLANARIZE are constructed according to the st-numbering that was
computed for the graph G.

As a matter of fact, the st-numbering of G does not imply an st-numbering of any subgraph
Gy even if the subgraph G, is biconnected. This results in two problems, of which one is
crucial and cannot be dealt with even by the ideas described by Kant (1992).

Both problems are based on the fact that during the application of PLANARIZE for some
vertices of V' all incoming edges may be deleted from the graph while the resulting graph

G stays biconnected. In this abstract, we consider only the crucial problem. The other
problem is described in detail by Jiinger et al. (1996).

The existence of the problem is based on the fact that the planarization algorithm of
Jayakumar et al. (1989) does not obey an important invariant implied by the following
lemma, shown by Even (1979).

Lemma 2.1 Let G = (V, E) be a planar graph with an st-numbering and let 1 < k < n.
If the edge (s,t) is drawn on the boundary of the outer face in an embedding of G, then all
vertices and edges of G — Gy, are drawn in the outer face of the plane subgraph Gy of G.

This result allowed Lempel, Even, and Cederbaum (1967) to transform the problem of
planarity testing to the construction of a sequence of bush forms Bi, 1 < k < n. For
a planar graph G, edges and vertices that have not been introduced into the current
subgraph G, are always embedded into the outer face of Gy.

The approach of Jayakumar et al. (1989) does not obey this invariant. There exist edges
that have to be embedded into an inner face of some G} of G), even if (s,t) is drawn
on the outer face. Due to the above lemma, the correction step MAX-PLANARIZE only
considers edges for reintroduction into the planar subgraph G), that are on the outer face
of the current graph G. Since the numbering that is used to determine the order in which
the vertices are reduced does not correspond to an st-numbering of G, in general, the
algorithm of Jayakumar et al. (1989) ignores edges that have to be added into an inner
face of the embedding of a current graph Gj. This fact is fatal, as we are about to show
now.

In Figure 1 a part of a bush form By_1, 1 < k < n of a graph G = (V, E) is shown. The
virtual vertices corresponding to the vertex k are labeled k1, ko, ... , k5 and all other virtual
vertices are left unlabeled. We have marked them with v for simplicity. The corresponding
part of the PQ-tree is shown in Figure 2. Obviously, there do not exist any reversions or
permutations such that the virtual vertices of £ occupy consecutive positions. Hence, the
graph G is not planar. Applying the [w, h, a]-numbering of Jayakumar et al. (1989) allows
us to delete the virtual vertex k5 and to reduce the other four vertices ki, ko, k3, k4. The
resulting bush form By, is planar and the relevant part is shown in Figure 3.

The virtual vertices incident on k are labeled o in Figure 3, regardless of the number of the
corresponding vertex in G. Figure 4 shows the corresponding part of the PQ-tree. Assume
now that all leaves labeled with o have to be removed from the PQ-tree in a later step.
Hence all incoming edges incident on k are removed from the tree. Now assume further
that there exists a path vi,v2,... ,v; in G}, such that

e for all 7,7, 1 <4 < j <[the inequality v; < v; holds,

e the edge (v1,v2) corresponds to one of the virtual edges that are between the leaf k5
and the maximal pertinent sequence k1, ko, k3, k4 in all PQ-trees equivalent to Tj_1,

o vy =1t.

This path guarantees that all outgoing edges of the vertex k cannot be embedded into the
outer face of the embedding of By_; without crossing an edge on this path. Hence the edge

k, k, k; k, v v v v vV kg v v v

Figure 1: Part of a bush form By_1

ki ko kg k4 vvvvv ky v v v

Figure 2: Part of a PQ-tree corresponding to bush form Bjy_4

e, corresponding to the leaf k5 is not considered by the algorithm MAX-PLANARIZE
as being an edge that does not destroy planarity. Therefore, ey, is not added back to the
planar subgraph G,,.

Nevertheless adding the edge e, to G, may not destroy planarity of G), as is shown in
our example in Figure 5. Since all incoming edges of the vertex k have been deleted by
PLANARIZE and are not added back by MAX-PLANARIZE, it may be possible to swap
the vertex k into an inner face of the embedding of By such that the virtual vertex ks
can be identified with k¥ and the edge ey, is embedded into the bush form Bj without
destroying planarity.

Therefore, the strategy of using PQ-trees presented by Jayakumar et al. (1989) does not
compute a maximal planar subgraph in general. Furthermore, we point out that the same
problem holds for the modified version of this algorithm, presented by Kant (1992). This
version follows a similar strategy of computing a spanning planar subgraph G, using
PLANARIZE and then adding edges that do not destroy planarity in a second phase. The
order of reductions that is used to insert vertices into existing bush forms is the same as
the one implied by the st-numbering on G. Hence this approach is not able to compute a
maximal planar subgraph for the same reason.

We therefore state the following lemma that has been shown in the discussion above.

Lemma 2.2 Let G = (V,E) be a nonplanar Graph. Let G, = (V,E,), E, C E, be a
planar subgraph of G, such that G, was obtained from G by

Figure 3: Part of a bush form By

N

(0] (0] O VVVVvVYV YV vV Vv

Figure 4: Part of a PQ-tree corresponding to bush form By,

1. computing an st-numbering for all vertices and

2. applying the algorithm of Lempel, Even, and Cederbaum (1967) constructing a se-
quence of bush forms By, 1 < k < n, by embedding a mazimal number of outgoing
edges of a vertex k, 1 < k < n, in the outer face of By_1 without crossings, deleting
all other outgoing edges of k.

Let G}, = (V, E}), be a planar subgraph of G such that
1. B,C E,CE,

2. the graph G;, is computed by constructing a sequence of bush forms By, 1 <k < n,
based on the st-numbering used for determining Gy, and possibly embedding outgoing
edges e € E\ E, of every vertex k, 1 < k < n, without crossings in the outer face of
By 1.

Then the subgraph G;, s not necessarily mazimal planar.

Considering a computation of an st-numbering for the planar subgraph G, in order to
augment G, to a maximal planar subgraph of G' and then construct a sequence of bush
forms B}, 1 < k < n, is aggravated by the fact that the graph G, is not biconnected
in general, and the sequence of bush forms Bj, 1 < k < n is not equivalent to the
bush forms By, constructed in the first phase PLANARIZE. Kant (1992) has already
shown that the nonequivalence of the PQ-trees in MAX-PLANARIZE and the resulting

7

Figure 5: Part of a bush form Bj, with e, embedded

nonequivalence of the bush forms might result in the deletion of edges of the planar
subgraph G,. Nevertheless, the authors attempt to come up with a corrected version of
the algorithm does not solve the here described problem.

3 Case study: leveled-planarity testing

3.1 Principle of an approach for recognizing leveled-planar dags

Let G = (V, E) be a directed acyclic graph. A leveling of G is a function lev : V — Z
mapping the nodes of G to integers such that lev(v) = lev(u) + 1 for all (u,v) € E. G
is called a leveled dag if it has a leveling. If lev(v) = j, then v is a level-j vertex. Let
V; = lev1(j) denote the set of level-j vertices. Each V; is a level of G.

For the rest of this section, we consider G to be a leveled dag with m € N levels. An
embedding of G in the plane is called leveled if the vertices of every V;, 1 < j < m,
are placed on a horizontal line [; = {(z,m — j) | + € R}, and every edge (u,v) € E,
w € Vj, v € Vji1 is drawn as straight line segment between the lines /; and ;4. A
leveled embedding of G is called leveled-planar if no two edges cross except at common
endpoints. The dag G is obviously leveled-planar, if all its components are leveled-planar.
We therefore assume that G is connected.

Let G have a leveled embedding. This embedding determines for every V;, 1 < j <m, a
total order <; of the vertices of Vj, given by the left to right order of the nodes on [;. In
order to test whether a leveled embedding of G is leveled planar, it is sufficient to find
an order of the vertices of every set V;, 1 < j < m, such that for every pair of edges
(u1,v1), (u2,v2) € E with lev(u1) = lev(uz) = j and w1 <; ug it follows that vi <ji1 va.
Apparently, the ordering <;, 1 < j < m, describes a permutation of the vertices of Vj. Let
G'j denote the subgraph of G, induced by V; UVoU...UVj. Unlike G, G is not necessarily
connected.

The basic idea of the leveled-planar test algorithm presented by Heath and Pemmaraju
(1996a,b) is to perform a top-down sweep processing the levels in the order Vi, Va,... .V,

computing for every level V;, 1 < j < m, a set of permutations of the vertices of V; that
appear in some leveled-planar embedding of ;. In case that the set of permutations for
Gy, is not empty, the graph G = G, is obviously leveled-planar.

As long as the graph G is connected for some j € {1,2,3,... ,m} standard PQ-tree tech-
niques similar to the ones used in the planarity test can be applied in order to determine
the required set of permutations (see Di Battista and Tamassia, 1989). In case that G},
1 < 7 < m, consists of more than one connected component, Heath and Pemmaraju sug-
gest to use a PQ-tree for every component and formulate a set of rules of how to merge
components F; and F5, respectively their corresponding PQ-trees 11 and 75, if F} and F5
both are adjacent to some vertex v € V1.

The authors first reduce the pertinent leaves of 17 and 75 corresponding to the vertex v.
After successfully performing the reduction, the consecutive sequence of pertinent leaves
is replaced by a single pertinent representative in both 77 and 75. Going up one of the
trees T;, 1 € {1,2}, from its pertinent representative, an appropriate position is searched,
allowing the tree T}, 7 # 4 to be placed into T;. After successfully performing this step
the resulting tree 7" has two pertinent leaves corresponding to the vertex v, which again
are reduced. If any of the steps fails, Heath and Pemmaraju state that the graph G is not
leveled-planar.

Merging two PQ-trees 17 and T corresponds to merging the two components F; and F5
and is accomplished using certain informations that are stored at the nodes of the PQ-
trees. For any subset S of the set of vertices in V;, 1 < j < m, that belong to a component
F, define ML(S) to be the greatest d < j such that Vg, Vy41,... ,V; induces a dag in which
all nodes of S occur in the same connected component. For a Q-node ¢ in the correspond-
ing PQ-tree Tr with ordered children ry,79,... ,7, maintain in node ¢ integers denoted
ML(r;,7;41), where 1 < i < t, satisfying ML(r;, 7,11) = ML(frontier(r;)U frontier(r;y1)).
For a P-node p maintain in p a single integer denoted ML(p) that satisfies ML(p) =
ML(frontier(p)). Furthermore define LL(F') to be the smallest d such that F' contains a
vertex in V4 and maintain this integer at the root of the corresponding PQ-tree.

Using these LL- and ML-values, Heath and Pemmaraju (1996a,b) describe a set of rules
how to connect two PQ-trees claiming that the pertinent leaves of the new tree T” are
reducible if and only if the corresponding component F” is leveled-planar.

3.2 On the incorrectness of the algorithm

Within the merge phase, pertinent leaves are reduced pairwise in any given order. This
includes the pairwise reduction of pertinent leaves of different components as well. Hence,
components that have pertinent leaves of the same vertex in their frontier, are merged in
an arbitrary order.

Consider four different components Fy, Fb, F3, Fy and their corresponding PQ-trees
Ty,T5,T5,Ty each having at least one pertinent leaf corresponding to some level-j vertex k.
For simplicity, assume that the pertinent leaves of every component appear consecutively
in all permutations on one side of their PQ-trees and assume further that the smallest
common ancestor of the pertinent leaves and some other leaves is a ()-node. In Figure 6
such a component Fj, i € {1,2,3,4}, and its corresponding PQ-tree Tj, i € {1,2,3,4}, is
shown. The number ¢;, 7 € {1,2,3,4}, depicts the ML-value between the leftmost perti-

nent leaf and the frontier of its left neighbor. We have marked all pertinent leaves with a
k for simplicity.

LL(F) -

j _
Figure 6: Component F; and its corresponding PQ-tree T;. On the left side of
Fj, some levels of F; are indicated. The value ¢; is equal to ML({vy, k}).

Assuming that the following condition on the ML- and LL-values of the components holds:
LL(Fy) < ¢ < LL(F3) < ¢ < LL(F3) < ¢35 < LL(Fy) < ¢y,
it is possible to merge all four components into one component such that the pertinent

leaves form a consecutive sequence. Figure 7 shows the four components, indicating how
the components can be merged allowing a reduction of the pertinent leaves.

£y

Fy

| |
ol vl v w2 oy v ot vtk Kk kK k kKK
Figure 7: Possible leveled-planar arrangement of the components Fy, Fy, F3, Fy.

Considering the following merge operations on the components Fi, Fp, F3, Fy and their
corresponding PQ-trees:

1. merge F and Fj into component F”,
2. merge F' and F3 into component F",

3. merge F" and F5 into component F"’,

10

the resulting PQ-tree T corresponding to F"' is shown in Figure 8. Obviously, the perti-
nent leaves do not form a consecutive sequence in any permutation of the PQ-tree. Hence
the algorithm presented by Heath and Pemmaraju (1996a) states non planarity although
the graph may be planar.

|
vP vk k k k k k vl vl vi w2k ok
Figure 8: PQ-tree T"" whose pertinent leaves depicted by k are not reducible.

As a matter of fact, the order of merging the components is important for testing a leveled
dag. Moreover it is easy to see, that using different orderings while merging three or more
components results in different equivalence classes of PQ-trees. So even if every order of
merging PQ-trees with pertinent leaves results in a reducible PQ-tree, a PQ-tree may be
constructed such that the leaves of some vertex [, lev(l) > j are not reducible, although
the graph G is leveled-planar. Hence the algorithm presented by Heath and Pemmaraju
(1996a) may state incorrectly the non-leveled-planarity of a leveled-planar graph.

4 Conclusions

Although PQ-trees have proved themselves as a powerful data structure, they have to be
handled with great care. Any application has to make sure that the problem, which has
to be solved with PQ-trees really can be reduced to solving the problem of consecutive
sets. As we have seen throughout the abstract, it is mostly the lack of information that
makes the algorithms fail. Finding these problems is aggravated by the fact the algorithms
are intuitively clear, and the proofs are correct, except for the final conclusion. Mostly it
was luck or chance that revealed the mistakes in the past. So for the development of new
algorithms, it is very helpful to take a close look onto the mistakes.

References

Booth, K. and Lueker, G. (1976). Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13, 335-379.

Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T. (1985). A linear algorithm for embedding
planar graphs using PQ-trees. Journal of Computer and System Sciences, 30, 54-76.

Di Battista, G. and Tamassia, R. (1989). Incremental planarity testing. In Proceedings on
the 30th Annual IEEE Symposium on Foundations of Computer Science, North Car-
olina, pages 436—441.

Even, S. (1979). Graph Algorithms. Computer Science Press, Potomac, Maryland.

11

Even, S. and Tarjan, R. E. (1976). Computing an st-numbering. Theoretical Computer
Science, 2, 339-344.

Heath, L. and Pemmaraju, S. (1996a). Recognizing leveled-planar dags in linear time,
volume 1027 of Lecture notes in Computer Science, pages 300-311. Springer.

Heath, L. and Pemmaraju, S. (1996b). Stack and queue layouts of directed acyclic graphs:
Part II. Technical report, Department of Computer Science, Virginia Polytechnic Insti-
tute & State University.

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1986). On maximal planarization of
non-planar graphs. IEEE Transactions on Circuits Systems, 33(8), 843-844.

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1989). On O(n?) algorithms for graph
planarization. IEEE Transactions on Computer-Aided Design, 8(3), 257-267.

Jinger, M., Leipert, S., and Mutzel, P. (1996). On computing a maximal planar subgraph
using PQ-trees. Technical Report 96.227, Institut fur Informatik der Universitat zu
Koln.

Kant, G. (1992). An O(n?) maximal planarization algorithm based on PQ-trees. Technical
Report RUU-CS-92-03, Department of Computer Science, Utrecht University, P.O. Box
80.089, 3508 TB Utrecht, the Netherlands.

Lempel, A., Even, S., and Cederbaum, 1. (1967). An Algorithm for Planarity Testing of
Graphs, pages 215-232. Gordon and Breach, New York, Theory of Graphs: International
Symposium: Rome, July 1966 edition.

Ozawa, T. and Takahashi, H. (1981). A Graph-planarization Algorithm and its Application
to Random Graphs, volume 108 of Lecture Notes in Computer Science, pages 95-107.
Springer Verlag, Graph Theory and Algorithms edition.

12

