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Abstract

We present a parallel priority queue that supports the following operations in con-

stant time: parallel insertion of a sequence of elements ordered according to key, parallel

decrease key for a sequence of elements ordered according to key, deletion of the min-

imum key element, as well as deletion of an arbitrary element. Our data structure

is the �rst to support multi insertion and multi decrease key in constant time. The

priority queue can be implemented on the EREW PRAM, and can perform any se-

quence of n operations in O(n) time and O(m log n) work, m being the total number

of keys inserted and/or updated. A main application is a parallel implementation of

Dijkstra's algorithm for the single-source shortest path problem, which runs in O(n)

time and O(m logn) work on a CREW PRAM on graphs with n vertices and m edges.

This is a logarithmic factor improvement in the running time compared with previous

approaches.

Keywords: Parallel data structures, parallel algorithms, graph algorithms, priority

queues.

1 Introduction

A priority queue is a sequential data structure which can maintain a set of elements with

keys drawn from a totally ordered universe subject to the operations of insertion, deletion,

�
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decrease key, and �nd minimum key element. There has been a considerable amount of work

on parallel priority queues, see for instance [2, 5, 8, 9, 25, 26, 27, 28].

There are two di�erent directions for incorporating parallelism into priority queues. The

�rst is to speed up the individual queue operations that handle a single element, using

a small number of processors [2, 5, 25, 27, 28]. For instance, the parallel priority queue

of Brodal [2] supports �nd minimum in constant time with one processor, and insertion,

deletion, and decrease key operations (as well as other operations) in constant time with

O(logn

0

) processors, n

0

being the maximum number of elements allowed in the priority

queue. The other direction is to support the simultaneous insertion of k elements and the

simultaneous deletion of the k smallest elements, k being a constant. Pinotti and Pucci

introduced in [26] the notion of k-bandwidth parallel priority queue implementations, by

giving implementations of k-bandwidth-heaps and k-bandwidth-leftist-heaps for the CREW

PRAM. Using the k-bandwidth idea Chen and Hu [5] give an EREW PRAM parallel priority

queue supporting multi insert and multi delete (of the k smallest elements) in O(log log

n

k

+

log k) time. Ranade et al. [28] show how to apply the k-bandwidth technique to achieve a

parallel priority queue implementation for a d-dimensional array of processors, and Pinotti

et al. [25] and Das et al. [8] give implementations for hypercubes. None of the above data

structures supports the simultaneous deletion of k arbitrary elements.

In this paper we present a parallel priority queue which supports simultaneous insertion

and simultaneous decrease key of an arbitrary sequence of elements ordered according to key,

in addition to �nd minimum and single element delete operations. These operations can all

be performed in constant time. Our main result is that any sequence of n queue operations

involving m elements in total can be performed in O(n) time using O(m logn) operations on

the EREW PRAM. The basic idea in the implementation is to perform a pipelined merging

of keys. With the aid of our parallel priority queue we can give a parallel implementation on

the CREW PRAM of Dijkstra's single-source shortest path algorithm running in O(n) time

and O(m logn) work on digraphs with n nodes and m edges. This improves the running

time of previous implementations [11, 24] by a logarithmic factor, while sacri�cing only a

logarithmic factor in the work. This is the fastest, work-e�cient parallel algorithm for the

single-source shortest path problem.

The rest of the paper is organized as follows. In Section 2 we de�ne the operations

supported by our parallel priority queue. The main application to Dijkstra's single-source

shortest path algorithm is presented in Section 3. In Section 4 we give a simple imple-

mentation of the priority queue which illustrates the basic idea of the pipelined merge, but

requires O(n

2

+m logn) work for a sequence of n queue operations. In Section 5 we show

how to reduce the work to O(m logn) by dynamically restructuring the pipeline in a tree like

fashion. Further applications are discussed in Section 6. A preliminary version of the paper

appeared as [4]. In that version a parallel priority data structure was proposed supporting a

somewhat di�erent set of operations, more directly tailored to the parallel implementation

of Dijkstra's algorithm.
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2 A parallel priority queue

In this section we specify the operations supported by our parallel priority queue. We will

be working on the PRAM [18, 19], and for the description of the queue operations and

the simple implementation assume that successively numbered processors P

1

; : : : ; P

i

; : : :, are

available as we need them. In Section 5 we will then show how to work with a reduced

number of processors.

Consider a set of up to n

0

elements e

1

; : : : ; e

n

0

, each with a key drawn from a totally

ordered set. We emphasize that an element e

i

has key d

i

by writing e

i

(d

i

). Keys do not

uniquely identify elements, that is e(d

0

) and e(d

00

) are di�erent occurrences of the same

element e. The priority queue maintains a set Q of elements subject to the operations

described below. At any given instant a set of successively numbered processors P

1

; : : : ; P

i

will be associated withQ. We use jQj to denote the number of processors currently associated

with Q. The priority queue operations are executed by the available processors in parallel,

with the actual work carried out by the jQj processors associated with the queue. The

operations may assign new processors to Q and/or change the way processors are associated

with Q. The result (if any) returned by a queue operation is stored at a designated location

in the shared memory.

� Init(Q): initializes Q to the empty set.

� Update(Q;L): updates Q with a list L = e

1

(d

1

); : : : ; e

k

(d

k

) of (di�erent) elements in

non-decreasing key order, i.e., d

1

� � � � � d

k

. If element e

i

was not in the queue before

the update, e

i

is inserted into Q with key d

i

. If e

i

was already in Q with key d

0

i

, the

key of e

i

is changed to d

i

if d

i

< d

0

i

, otherwise e

i

remains in Q with its old key d

0

i

.

� DeleteMin(Q): deletes and returns the minimum key element from Q in location

MinElt.

� Delete(Q; e): deletes element e from Q.

� Empty(Q): returns true if Q is empty in location Status.

The Update(Q;L) operation provides for (combined) multi insert and multi decrease key

for a sequence of elements ordered according to key. For the implementation, it is important

that the sequence be given as a list, enabling one processor to retrieve, starting from the �rst

element, the next element in constant time. We will represent such a list of elements as an

object with operations L:�rst, L:rem�rst for accessing and removing the head (�rst element)

of the list, operations L:curr and L:advance for returning a current element and advancing

to the next element, and L:remove(e) for removing the element (pointed to by) e. When the

end of the list is reached by operation L:advance, L:curr returns a special element ?. A list

object can easily be built to support these operations in constant time (with one processor).

In Sections 4 and 5 we present two di�erent implementations of the priority queue. In

particular, we establish the following two main results:

Theorem 1 The operations Init(Q) and Empty(Q) take constant time with one processor.

The DeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQj
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processors. The operation Update(Q;L) can be done in constant time by 1+ jQj processors,

and assigns one new processor to Q. The priority queue can be implemented on the EREW

PRAM. Space consumption per processor is O(n

0

), where n

0

is the maximum number of

elements allowed in the queue.

Theorem 2 The operations Init(Q) and Empty(Q) take constant time with one processor.

After initialization, any sequence of n queue operations involving m elements in total can be

performed in O(n) time with O(m logn) work. The priority queue can be implemented on

the EREW PRAM. Space consumption per processor is O(n

0

), where n

0

is the maximum

number of elements allowed in the queue.

Before giving the proofs of Theorems 1 and 2 in Sections 4 and 5 respectively we present

our main application of the parallel priority queue.

3 The main application

The single-source shortest path problem is a notorious example of a problem which despite

much e�ort has resisted a very fast (i.e., NC), work-e�cient parallel solution. Let G = (V;E)

be an n-vertex, m-edge directed graph with real-valued, non-negative edge weights c(v; w),

and let s 2 V be a distinguished source vertex. The single-source shortest path problem is

to compute for all vertices v 2 V the length of a shortest path from s to v, where the length

of a path is the sum of the weights of the edges on the path.

The best sequential algorithm for the single-source shortest path problem on directed

graphs with non-negative real valued edge weights is Dijkstra's algorithm [10]. The algorithm

maintains for each vertex v 2 V a tentative distance d(v) from the source, and a set of

vertices S for which a shortest path has been found. The algorithm iterates over the set of

vertices of G, in each iteration selecting a vertex of minimum tentative distance which can

be added to S. The algorithm can be implemented to run in O(m + n logn) operations by

using e�cient priority queues like Fibonacci heaps [12] for maintaining tentative distances,

or other priority queue implementations supporting deletion of the minimum key element

in amortized or worst case logarithmic time, and decrease key in amortized or worst case

constant time [3, 11, 17].

The single-source shortest path problem is in NC (by virtue of the all-pairs shortest path

problem being in NC), and thus a fast parallel algorithm exists, but for general digraphs no

work-e�cient algorithm in NC is known. The best NC algorithm runs in O(log

2

n) time and

performs O(n

3

(log logn= logn)

1=3

) work on an EREW PRAM [16]. Moreover, work-e�cient

algorithms which are (at least) sublinearly fast are also not known for general digraphs.

Dijkstra's algorithm is highly sequential, and can probably not be used as a basis for

a fast (NC) parallel algorithm. However, it is easy to give a parallel implementation of

the algorithm that runs in O(n logn) time [24]. The idea is to perform the distance updates

within each iteration in parallel by associating a local priority queue with each processor. The

vertex of minimum distance for the next iteration is determined (in parallel) as the minimum

of the minima in the local priority queues. For this parallelization it is important that the

priority queue operations have worst case running time, and therefore the original Fibonacci
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heap cannot be used to implement the local queues. This was �rst observed in [11] where

a new data structure, called relaxed heaps, was developed to overcome this problem. Using

relaxed heaps, an O(n logn) time and O(m+n logn) work(-optimal) parallel implementation

of Dijkstra's algorithm is obtained. This seems to have been the previously fastest work-

e�cient parallel algorithm for the single-source shortest path problem. The parallel time

spent in each iteration of the above implementation of Dijkstra's algorithm is determined by

the (processor local) priority queue operations of �nding a vertex of minimum distance and

deleting an arbitrary vertex, plus the time to �nd and broadcast a global minimum among

the local minima. Either or both of the priority queue operations take O(logn) time, as

does the parallel minimum computation; for the latter 
(logn) time is required, even on a

CREW PRAM [7]. Hence, the approach with processor local priority queues does not seem

to make it possible to improve the running time beyond O(n logn) without resorting to a

more powerful PRAM model. This was considered in [24] where two faster (but not work-

e�cient) implementations of Dijkstra's algorithm were given on a CRCW PRAM: the �rst

algorithm runs in O(n log logn) time, and performs O(n

2

) work; the second runs in O(n)

time and performs O(n

2+�

) work for 0 < � < 1.

An alternative approach would be to use a parallel global priority queue supporting some

form of multi-decrease key operation. As mentioned in the introduction none of the parallel

priority queues proposed so far support such an operation; they only support a multi-delete

operation which assumes that the k elements to be deleted are the k elements with smallest

keys in the priority queue. This does not su�ce for a faster implementation of Dijkstra's

algorithm.

Using our new parallel priority queue, we can give a linear time parallel implementation of

Dijkstra's algorithm. Finding the vertex of minimum distance and decreasing the distances

of its adjacent vertices can obviously be done by the priority queue, but preventing that

a vertex, once selected and added to the set S of correct vertices, is ever selected again

requires a little extra work. The problem is that when vertex v is selected by the �nd

minimum operation, some of its adjacent vertices may have been selected at a previous

iteration. If care is not taken, our parallel update operation would reinsert such vertices into

the priority queue, which would then lead to more than n iterations. Hence, we must make

sure that we can remove such vertices from the adjacency list of v in constant time upon

selection of v. We �rst sort the adjacency list of each vertex v 2 V according to the weight

of its adjacent edges. Using a sublinear time work-optimal mergesort algorithm [6, 15] this

is done with O(m logn) work on the EREW PRAM. This su�ces to ensure that priority

queue updates are performed on lists of vertices of non-decreasing tentative distance. To

make it possible to remove in constant time any vertex w from the adjacency list of v we

make the sorted adjacency lists doubly linked. For each v 2 V we also construct an array

consisting of the vertices w to which v is adjacent, (w; v) 2 E, together with a pointer to

the position of v in the sorted adjacency list of w. This preprocessing can easily be carried

out in O(logn) time using linear work on the EREW PRAM.

Let L

v

be the sorted, doubly linked adjacency list of vertex v 2 V , and I

v

the array of

vertices to which v is adjacent. As required in the speci�cation of the priority queue, we

represent each L

v

as an object with operations L

v

:�rst, L

v

:rem�rst, L

v

:curr, L

v

:advance and

L

v

:remove(e). In the iteration where v is selected the object for L

v

will be initialized with a
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Algorithm Parallel-Dijkstra

/* Initialization */

Sort the adjacency lists of G after edge weight, and make doubly linked lists L

v

;

For each v build array I

v

of vertices to which v is adjacent;

Init(Q);

d(s) 0; S  fsg;

Update(Q;L

s

(0));

/* Main loop */

while :Empty(Q) do

v(d) DeleteMin(Q);

d(v) d; S  S [ fvg;

Update(Q;L

v

(d));

forall w 2 I

v

pardo

if w =2 S then remove v from L

w

�;

odpar

od

Figure 1: An O(n) time parallel implementation of Dijkstra's algorithm.

constant value d representing the distance of v from the source. We denote this initialization

of the object by L

v

(d). The operations L

v

:�rst and L

v

:curr return a vertex w on the sorted

adjacency list of v (�rst, respectively current) with key c(v; w) o�set by the value d, i.e.

d + c(v; w). The initialization step is completed by initializing the priority queue Q, and

inserting the object L

s

(0) representing the vertices adjacent to the source vertex s with o�set

0 into Q.

We now iterate as in the sequential algorithm until the priority queue becomes empty,

in each iteration deleting a vertex v with minimum key (tentative distance) from Q. As in

the sequential algorithm the distance d of v will be equal to the length of a shortest path

from s to v, so v is added to S and should never be considered again. The adjacency list

object L

v

(d) representing the vertices adjacent to v o�set with v's distance from s is inserted

into the priority queue, and will in turn produce the tentative distances d + c(v; w

i

) of v's

adjacent vertices w

i

. Since the adjacency lists were initially sorted, the tentative distances

produced by the L

v

object will appear in non-decreasing order as required in the speci�cation

of the priority queue. To guarantee that the selected vertex v is never selected again, v must

be removed from the adjacency lists of all vertices w =2 S. This can be done in parallel in

constant time by using the array I

v

to remove v from the adjacency lists L

w

of vertices to

which v is adjacent for all w =2 S. Note that this step requires concurrent reading, since the

jI

v

j processors have to know the starting address of the I

v

array of the selected vertex v.

However, the concurrent reading required is of the restricted sort of broadcasting the same

constant-size information to a set of processors. A less informal description of the above

implementation of Dijkstra's algorithm is given in Figure 1.
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Theorem 3 The parallel Dijkstra algorithm runs: (i) in O(n) time and O(m logn) work on

the CREW PRAM; (ii) in O(n log(m=n)) time and O(m logn) work on the EREW PRAM.

Proof. (i) The initialization takes sublinear time and O(m logn) work on an EREW PRAM,

depending on the choice of parallel sorting algorithm. Since one vertex is put into S in each

iteration, at most n� 1 iterations of the while loop are required. Each iteration (excluding

the priority queue operations) can obviously be done in constant time with a total amount

of work bounded by O(

P

v2V

jL

v

j+

P

v2V

jI

v

j) = O(m). We have a total of n priority queue

operations involving a total number of elements equal to

P

v2V

jL

v

j = m. Now, the bounds

of part (i) follow from Theorem 2.

(ii) Concurrent reading was needed only for removing the selected vertex v from the

adjacency lists of vertices w =2 S using the I

v

array. This step can be done on an EREW

PRAM if we broadcast the information that v was selected to jI

v

j processors. In each

iteration this can be done in O(log jI

v

j) time and O(jI

v

j) work. Summing over all iterations

gives O(

P

v2V

log jI

v

j) = O(log(�

v2V

jI

v

j) = O(n log(m=n)) time and O(m) work. 2

4 Linear pipeline implementation

In this section we present a simple implementation of the priority queue as a linear pipeline

of processors, thereby giving a proof of Theorem 1.

At any given instant the processors associated with Q are organized in a linear pipeline.

When an Update(Q;L) operation is performed a new processor becomes associated with

Q and is put at the front of the pipeline. Elements of the list L may already occur in Q,

possibly with di�erent keys; it is the task of the implementation to ensure that only the

occurrences with the smallest keys are output by the DeleteMin(Q) operation. An array

is used to associate processors with Q. Let P

i

denote the ith processor to become associated

with Q. The task of P

i

will be to perform a stepwise merging of the elements of the list

L = e

1

(d

1

); : : : ; e

k

(d

k

) with the output from the previous processor P

i�1

in the pipeline

(where i > 1). Since L becomes associated with P

i

at the Update(Q;L) call, we shall refer

to it as the element list L

i

of P

i

when we describe actions at P

i

. Processor P

i

produces output

to an output queue Q

i

; Q

i

is either read by the next processor, or, if P

i

is the last processor in

the pipeline, Q

i

contains the output to be returned by the next DeleteMin(Q) operation.

The pipeline after 4 Update(Q;L) operations is shown in Figure 2. Each Q

i

is a standard

FIFO queue with operations Q

i

:�rst, which returns the �rst element of Q

i

, Q

i

:rem�rst, which

deletes the �rst element of Q

i

, and Q

i

:append(e), which appends the element e to the rear of

Q

i

. Furthermore, each Q

i

must support deletion of an element (pointed to by) e in constant

time, Q

i

:remove(e). Implementation of each Q

i

as a doubly linked list su�ces.

The Init(Q) operation marks all processors as not associated withQ, and can therefore be

done in constant time by initializing the association array. The operations DeleteMin(Q),

Delete(Q; e) and Update(Q;L) are all implemented by a procedure MergeStep(Q),

which, for each processor P

i

associated with Q, performs one step of a merge of the element

list L

i

of P

i

and the elements in the output queue Q

i�1

of the previous processor.

Let Q(i) denote the contents of the priority queue after the ith Update(Q;L) operation.

The purpose of procedure MergeStep(Q) is to output, for each processor P

i

associated

7



��

��

P

1

Q

1

F

1

�

6

L

1

��

��

P

2

Q

2

F

2

�

6

L

2

��

��

P

3

Q

3

F

3

�

6

L

3

��

��

P

4

Q

4

F

4

�

6

L

4

Figure 2: The linear processor pipeline with associated data structures.

with Q, the next element of Q(i), if non-empty, in non-decreasing order to the output queue

Q

i

. This is achieved as follows. Recall that L

i

is a list of elements, some of which may

already have been in the priority queue before the ith update (possibly with di�erent keys).

The elements output to each output queue will be in non-decreasing order, so the merge step

of processor P

i

simply consists in choosing the �rst element of either Q

i�1

or L

i

, whichever

is smaller (with ties broken arbitrarily), deleting this element and outputting it to Q

i

. The

merge step must also ensure that an element is output from Q at most once. There can be

occurrences of an element in di�erent lists L

i

corresponding to a number of updates on this

element; the occurrence with the smallest key must be output. In order to guarantee that

an element is output from Q(i) (by P

i

) at most once, an element is marked as forbidden

by processor P

i

once it is output. Each processor maintains a set F

i

of forbidden elements,

represented as a Boolean array indexed by elements: F

i

[e] = true i� e has been output and

made forbidden by P

i

. This ensures that each Q

i

always contains di�erent elements. In

order that the merge step can be performed in constant time, it must furthermore hold that

neither Q

i�1

nor L

i

contain elements that are forbidden for P

i

. We maintain the invariants

that

F

i

\Q

i�1

= ; and F

i

\ L

i

= ;:

The merge step for processor P

i

now proceeds as follows: the smaller element is chosen from

either Q

i�1

or L

i

(with ties broken arbitrarily), presuming neither is empty. If either Q

i�1

or L

i

is empty the element is taken unconditionally from the other sequence, and when both

are empty, P

i

has no more work to do. If the chosen element is not forbidden for the next

processor P

i+1

, it is output to Q

i

, and made forbidden for P

i

. If it also occurs in either

Q

i�1

or L

i

it must be deleted so that the above invariants are maintained. To this end, each

processor maintains two arrays of pointers Q

i

and L

i

into Q

i

and L

i

, respectively, indexed

by the elements. When an element e is inserted into Q

i

, a pointer Q

i

[e] to e in Q

i

is created;

when e is removed from Q

i

(by processor P

i+1

) Q

i

[e] is reset to ?. The pointers L

i

[e] into

L

i

should be set, conceptually, when the update Update(Q;L) is performed. However, this

would require concurrent reading, so instead we initialize the L

i

pointer array in a pipelined

fashion. Since at most one element from L

i

is \consumed" at each merge step, it su�ces to

8



Procedure MergeStep(Q)

forall P

i

, i 2 jQj pardo /* for all processors associated with Q */

if L

i

:curr 6= ? then /* lazy L

i

pointer update */

if F

i

[L

i

:curr] = true then L

i

:remove(L

i

:curr); /* current element is forbidden */

else L

i

[L

i

:curr] L

i

:curr; �;

L

i

:advance; /* advance to next element */

�;

e

0

(d

0

) Q

i�1

:�rst;

e

00

(d

00

) L

i

:�rst;

if d

00

< d

0

then

e

0

(d

0

) e

00

(d

00

);

L

i

:rem�rst;

/* remove e

0

from Q

i�1

using Q

i�1

[e

0

] */

if Q

i�1

[e

0

] 6= ? then Q

i�1

:remove(Q

i�1

[e

0

]);

else

Q

i

:rem�rst;

/* remove e

0

from L

i

using L

i

[e

0

] */

if L

i

[e

0

] 6= ? then L

i

:remove(L

i

[e

0

]);

�;

F

i

[e

0

] true;

if :F

i+1

[e

0

] then

Q

i

:append(e

0

(d

0

));

Update Q

i

[e

0

] to the position of e

0

in Q

i

;

�;

odpar;

End of Procedure

Figure 3: The MergeStep(Q) procedure.

let each merge step initialize the pointer for the next element of L

i

. When an element e is

chosen from Q

i�1

and has to be deleted from L

i

, either L

i

[e] already points to e's position

in L

i

, or it has not yet been set. In the latter case e is deleted later when reached by the

corresponding merge step because F

i

[e] = true. The MergeStep(Q) procedure is shown

in Figure 3.

It is now easy to implement the remainder of the priority queue operations. The oper-

ations Update(Q;L) should associate a new processor P

i

with the pipeline whose task is

to merge L with the elements already in the queue. In order to guarantee that the new

processor has something to merge, aMergeStep(Q) is performed to bring at least one new

element into Q

i�1

. The new processor then associates itself with the pipeline, and initializes

the set of forbidden elements and the pointer arrays Q

i

and L

i

. The operation is shown in

Figure 4.

A DeleteMin(Q) is even easier. A call to MergeStep(Q) brings a new element into

9



Procedure Update(Q;L)

MergeStep(Q); /* perform a merge step to ensure that last queue is non-empty */;

Associate a new processor P

i

with Q and connect it to the pipeline;

L

i

 L;

Initialize F

i

, L

i

and Q

i

;

End of Procedure

Figure 4: The Update(Q;L) operation.

Procedure DeleteMin(Q)

MergeStep(Q);

if P

i

is the last processor then

MinElt Q

i

:�rst; Q

i

:rem�rst;

�;

End of Procedure

Procedure Delete(Q; e)

MergeStep(Q);

if P

i

is the last processor then

F

i

[e] true;

/* Remove e from Q

i

using Q

i

[e] */

if Q

i

[e] 6= ? then Q

i

:remove(Q

i

[e]);

�;

End of Procedure

Figure 5: The DeleteMin(Q) and Delete(Q; e) operations.

the output queue of the last processor P

i

. The smallest element of Q is the �rst element of

Q

i

which is removed and copied to the return cell MinElt. The operation Delete(Q; e)

just makes e forbidden for the last processor. To ensure that the last output queue does

not become empty, one call to MergeStep is performed. The code for these operations is

shown in Figure 5. The �nal operation Empty(Q) simply queries the output queue of the

last processor, and writes true into the Status cell if empty.

For the correctness of the queue operations it only remains to show that processor P

i+1

only runs out of elements to merge when Q(i), the queue after the ith update, has become

empty. We establish the following:

Lemma 1 The output queue Q

i

of processor P

i

is non-empty, unless Q(i) is empty.

Proof. It su�ces to show that as long as Q(i) is non-empty, the invariant jQ

i

j > jF

i+1

nF

i

j �

0 holds. Consider the work of processor P

i+1

at some MergeStep. Either jF

i+1

n F

i

j is

increased by one, or jQ

i

j is decreased by one, but not both, since in the case where P

i+1

10



outputs an element fromQ

i

this element has been put into F

i

at some previous operation, and

in the case where P

i+1

outputs an element from L

i+1

which was also in Q

i

, this element has

again been put into F

i

at some previous operation. In both cases jF

i+1

nF

i

j does not change

when P

i+1

puts the element into F

i+1

. The work of P

i+1

therefore maintains jQ

i

j � jF

i+1

nF

i

j;

strict inequality is reestablished by considering the work of P

i

which either increases jQ

i

j or,

in the case where P

i

is not allowed to put its element e into Q

i

(because e 2 F

i+1

), decreases

jF

i+1

n F

i

j (because e is inserted into F

i

). 2

In procedure Update(Q;L) we need to initialize the array of forbidden elements F

i

to

false for all elements, and each of the pointer arrays L

i

and Q

i

to ?. There is a well-known

solution to do this sequentially in constant time (see for instance [21, pp. 289{290]). The

initialization is done in a lazy fashion, and requires two extra arrays of the same size for each

array, respectively. The �rst array will be treated as an array of pointers into the second

array which will be a stack of array indices actually \seen". The stack is initially made

empty by setting a stack pointer to the bottom of the stack array. Apart from this nothing

has to be done for either of the three arrays. When an element is accessed, we can check as

follows whether it is encountered for the �rst time and thus has to be initialized. We look

up the pointer of the element in the pointer array. If this is not a valid pointer into the

stack, the element has not been seen before (likewise, if the pointer points to a position in

the stack above the stack pointer, the element has not been seen before). In this case the

element is initialized, its index pushed on the stack, and the pointer in the pointer array set

to this position. Only in the case where the pointer points to a valid position in the stack

below the stack pointer may the element have been encountered before, and this is the case

only if the index which is on the stack actually equals the index of the element.

This completes the proof of Theorem 1.

4.1 A linear space implementation

For the linear pipeline implementation as described above it is possible to reduce the O(n

0

)

space required per processor for the forbidden sets and the arrays of pointers into the output

queues to a total of O(n

0

+m) for a sequence of queue operations involvingm elements, if we

allow concurrent reading. Instead of maintaining the forbidden sets F

i

and arrays L

i

and Q

i

explicitly, we let each occurrence of an element in the priority queue carry information about

its position (whether in some queue Q

j

or in L

i

), whether it has been forbidden and if so,

by which processor. Maintaining for each element a doubly linked list of its occurrences in

the data structure makes it possible for processor P

i

to determine in constant time whether

a given element has been forbidden for processor P

i+1

, and to remove it in constant time

from Q

i�1

whenever it is output from L

i

, and from L

i

whenever it is output from Q

i�1

. In

order to insert new elements on these occurrence lists in constant time an array of size O(n

0

)

is needed. For element e this array will point to the most recently inserted occurrence of e

(which is still in Q). Occurrences of e appear in the occurrence list of e in the order in which

update operations involving e were performed.

At the ith Update(Q;L) operation, each element e of L

i

(i.e., of L which is now asso-

ciated with the new processor P

i

) is linked to the front of the occurrence list of e with a

label that it belongs to L

i

and pointers which allows it to be removed from L

i

in constant

11



time. Let us now consider a merge step of processor P

i

. When an element e is chosen from

Q

i�1

, P

i

looks at the next occurrence of e in e's occurrence list. If this occurrence is in L

i

,

it is removed, both from L

i

and from the list of e-occurrences. This eliminates the need

for the L

i

array. It is now checked whether e is forbidden for P

i+1

by looking at the next

occurrence of e; if it not marked as forbidden by P

i+1

, e is output to Q

i

, marked as forbidden

by P

i

. If e was forbidden by P

i+1

this occurrence is still marked as forbidden by P

i

, but not

output. If e is chosen from L

i

, P

i

looks at the previous occurrence of e. If this is in Q

i�1

it

is removed from both Q

i�1

and from the list of e-occurrences. This eliminates both the need

for forbidden sets and the pointer arrays Q

i

. It should be clear that consecutive occurrences

of e are never removed in the same merge step, so the doubly linked lists of occurrences

are properly maintained also when di�erent processors work on di�erent occurrences of e.

Note, however, that all elements in L

i

have to be linked into their respective occurrence lists

before subsequent merge steps are performed, so concurrent reading is needed. This gives

the following variant of the priority queue.

Lemma 2 The operations Init(Q) and Empty(Q) take constant time with one processor.

The DeleteMin(Q) and Delete(Q; e) operations can be done in constant time by jQj

processors. The operation Update(Q;L) can be done in constant time by 1 + jQj + jLj

processors, and assigns one new processor to Q. The priority queue can be implemented on

the CREW PRAM. The total space consumption is O(n

0

+m), where n

0

is the maximum

number of elements allowed in the queue, and m the total number of elements updated.

5 Dynamically restructuring tree pipeline

In this section we describe how to decrease the work done by the algorithm in Section 4

such that we achieve the result stated in Theorem 2. Before describing the modi�ed data

structure, we �rst make an observation about the work done in Section 4.

Intuitively, the work done by processor P

i

is to output elements by incrementally merging

its list L

i

with the queue Q

i�1

of elements output by processor P

i�1

. Processor P

i

terminates

when nothing is left to be merged. An alternative bound on the work done is the sum of the

distance each element e(d) belonging to a list L

i

travels, where we de�ne the distance to be

the number of processors that output e(d). Since the elements e(d) in L

i

can be output only

by a pre�x of the processors P

i

; P

i+1

; : : : ; P

n

, the distance e(d) travels is at most n� i + 1.

This gives a total bound on the work done by the processors of O(mn). The work can

actually be bounded by O(n

2

) due to the fact that elements get annihilated by forbidden

sets.

In this section we describe a variation of the data structure in Section 4 that intuitively

bounds the distance an element can travel by O(logn), i.e., bounds the work by O(m logn).

The main idea is to replace the linear pipeline of processors by a binary tree pipeline of

processors of height O(logn).

We start by describing how to arrange the processors in a tree and how to dynamically

restructure this tree while adding new processors for each Update-operation. We then

describe how the work can be bounded by O(m logn) and �nally how to perform the required

processor scheduling.
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Figure 6: The tree arrangement of processors. Numbers denote processor ranks.

5.1 Tree structured processor connections

To arrange the processors in a tree we slightly modify the information stored at each proces-

sor. The details of how to handle the queues and the forbidden sets are given in Section 5.2.

Each processor P

i

still maintains a list L

i

and a set of forbidden elements F

i

. The output of

processor P

i

is still inserted into the processor's output queue Q

i

, but P

i

now receives input

from two processors instead of one processor. As for the linear pipeline we associate two

arrays Q

i

and L

i

with the queue Q

i

and list L

i

. The initialization of the array L

i

is done in

the same pipelined fashion as for the linear pipeline.

The processors are arranged as a sequence of perfect binary trees. We represent the trees

as shown in Figure 6. A left child has an outgoing edge to its parent, and a right child an

edge to its left sibling. The incoming edges of a node v come from the left child of v and

the right sibling of v. Figure 6 shows trees of size 1, 3, 7 and 15. Each node corresponds to

a processor and the unique outgoing edge of a node corresponds to the output queue of the

processor (and an input queue of the parent processor). The rank of a node is the height

of the node in the perfect binary tree and the rank of a tree is the rank of the root of the

tree. A tree of rank r + 1 can be constructed from two trees of rank r plus a single node,

by connecting the two roots with the new node. It follows by induction that a tree of rank

r has size 2

r

� 1.

The processors are arranged in a sequence of trees of rank r

k

; r

k�1

; : : : ; r

1

, where the ith

root is connected to the i + 1st root as shown in Figure 7. For the sequence of trees we

maintain the invariant that

r

k

� r

k�1

< r

k�2

< � � � < r

2

< r

1

: (1)

When performing an Update-operation a new processor is initialized. If r

k

< r

k�1

the new

processor is inserted as a new rank one tree at the front of the sequence of trees as for the

linear pipeline. That (1) is satis�ed follows from 1 � r

k

< r

k�1

< � � � < r

1

. If r

k

= r

k�1

we

link the kth and k � 1st tree with the node corresponding to the new processor to form a

tree of rank 1 + r

k�1

. That (1) is satis�ed follows from 1 + r

k�1

� r

k�2

< r

k�3

< � � � < r

1

.

Figure 7 illustrates the relinking for the case where r

k

= r

k�1

= 2 and r

k�2

= 4. Note that

the only restructuring of the pipeline required is to make the edge e an incoming edge of the

new node w.

The described approach for relinking has been applied in a di�erent context to construct

purely functional random-access lists [23]. In [23] it is proved that a sequence of trees
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Figure 7: How to restructure the tree when performing Update.

satisfying (1) is unique for a given number of nodes.

5.2 Queues and forbidden sets

We now give the details of how to handle the output queues and the forbidden sets and how

to implement the MergeStep-operation. Let P

j

be a processor connected to a processor

P

i

, i > j, by the queue Q

j

. For the tree pipeline processor P

j

is only guaranteed to output

a subset of the elements in Q(j) in non-decreasing order. For the linear pipeline processor

P

j

outputs exactly the set Q(j).

Assume that processors P

i

and P

j

were created as a result of the ith and jth, respectively,

Update operations. Let J

j

denote the set of elements deleted by Delete and DeleteMin

operations between the jth and ith Update operations. The important property of J

j

is

that J

j

are the elements that can be output by P

j

but are illegal as input to P

i

, because they

already have been deleted prior to the creation of P

i

. We represent each J

j

as a Boolean

array. How to handle J

j

when restructuring the pipeline is described later in this section.

To guarantee that Q

j

does not contain any illegal input to P

i

we maintain the invariant

Q

j

\ (F

i

[ J

j

) = ;: (2)

Our main invariant for the connection between processors P

j

and P

i

while processor P

j

still has input left to be considered is (3), which intuitively states that P

j

has output more

elements than the number of elements output by P

i

plus the elements deleted before the

connection between P

j

and P

i

is created.

j(F

i

[ J

j

) n F

j

j < jF

j

n (F

i

[ J

j

)j: (3)

We now describe how to implement the MergeStep-operation such that the invariants

(3) and (2) remain satis�ed. The basic idea of the implementation is the same as for the

linear pipeline. Processor P

j

�rst selects the element v with smallest key in L

j

and the

input queues of P

j

in constant time. If no v exists processor P

j

terminates. Otherwise, all

occurrences of v are removed from L

j

and the input queues Q

`

of P

j

using the arrays L

j

and

Q

`

respectively, and v is added to F

j

. If Q

j

is an input queue of P

i

and v =2 F

i

[ J

j

, then

v is inserted in Q

j

. If v 2 F

i

[ J

j

, then v is not inserted into Q

j

, since otherwise (2) would

be violated. If v 2 F

i

, then v has already been output by processor P

i

and we can safely

annihilate v. If v 2 J

j

, then v has been deleted from Q(k), j � k < i, and we can again safely

14



annihilate v. That (3) is satis�ed after a MergeStep-operation follows from an argument

similar to the one given in the proof of Lemma 1 for the linear pipeline: the work done by

processor P

i

, when inserting a new element into F

i

, either increases the left-hand side of

(3) by one or decreases the right-hand side of (3) by one and thereby makes the inequality

�. The < is reestablished by processor P

j

which inserts a new element into F

j

(this either

decreases the left-hand side of (3) by one or increases the right-hand side of (3) by one).

Invariant (3) allows us to let Q

j

become empty throughout a MergeStep-operation,

without violating the correctness of the operation and without P

j

being terminated. The

reason is that F

j

n (F

i

[ J

j

) 6= ; implies that there exists an element v that has been output

by P

j

(v 2 F

j

) that neither has been deleted from the data structure before P

i

was created

(v =2 J

j

) nor has been output by P

i

(v =2 F

i

). If Q

j

becomes empty, v can only be stored in

an output queue of a processor in the subtree rooted at P

i

due to how the dynamic relinking

is performed, i.e., v appears in a Q

k

, j < k < i. It follows that v has to be output by P

i

(perhaps with a smaller key because v gets annihilated by an appearance of v with a smaller

key) before the next element to be output by P

j

can be output by P

i

. This means that P

i

can safely skip to consider input from the empty input queue Q

j

, even if Q

j

later can become

non-empty. Note that (3) guarantees that a queue between P

i�1

and P

i

always is non-empty.

We now describe how to implement the Update-operation. The implementation is as

for the linear pipeline, except for the dynamic relinking of a single connection (edge e in

Figure 7) which is done after the MergeStep-operation and the initialization of the new

processor. Assume that P

i

is the newly created processor. That Q

i�1

satis�es (3) and (2)

follows from the fact that J

i�1

� F

i�1

(the MergeStep-operation at the beginning of the

Update-operation implies that at least one element output by P

i�1

has not been deleted)

and F

i

= ;. What remains to be shown is how to satisfy the invariants for the node P

j

when

Q

j

, j < i, is relinked to become an input queue of P

i

.

When Q

j

is relinked, P

j

has output at least jJ

j

j+1 elements in total (jJ

j

j for delete oper-

ations and one from theMergeStep-operation at the beginning of the Update-operation).

Because F

i

= ; and i > j, it follows that (3) is satis�ed after the relinking. To guarantee

that (2) is satis�ed we have to update J

j

according to the de�nition and to update the queue

Q

j

as follows

Q

j

 Q

j

n J

j

:

Since Q

j

and J

j

can be arbitrary sets it seems hard to do this updating in constant time

without some kind of precomputation. Note that the only connections which can be relinked

are the connections between the tree roots. Our solution to this problem is as follows: For

eachMergeStep-operation, we mark the deleted element v as dirty in all the output queues

Q

j

where P

j

is a root and mark v dirty in J

j

. Whenever a queue Q

j

is relinked we just need

to be able to delete all elements marked dirty from Q

j

in constant time. When inserting

a new element into a queue Q

j

it can be checked if it is dirty or not by examining if the

element is in J

j

.

A reasonably simple solution to the marking problem, as well as to the insertion of the

dirty elements in J

j

, is the following. First, note that each time Q

j

is relinked it is connected

to a node having rank one higher, i.e., we can use this rank as a time stamp t. We represent

a queue Q

j

as a linked list of vertices, where each vertex v has two time stamped links to

vertices in each direction from v. The link with the highest time stamp � t is the current
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link in a direction. A link with time stamp t+1 is a link that will become active when Q

j

is

relinked, i.e., we implicitly maintain two versions of the queue: The current version and the

version where all the dirty vertices have been removed. The implementation of the marking

procedure is straightforward. To handle the Boolean array J

j

, it is su�cient for each true

entry to associate a time stamp. A time stamp equal to t+ 1 implies that the entry in J

j

is

dirty. As described here the marking of dirty vertices requires concurrent read to know the

deleted element, but by pipelining the dirty marking process along the tree roots from left

to right, concurrent read can be avoided. This is possible because the relinking of the tree

pipeline only a�ects the three leftmost roots in the tree pipeline.

We now argue that the described data structure achieves the time bounds claimed in

Theorem 2, i.e., that the work done by the processors for the MergeStep-operations is

O(m logn). Elements can travel a distance of at most 2 logn in a tree (in the sense mentioned

in the beginning of this section) before they reach the root of the tree. The problem is that

the root processors move elements to lower ranked nodes, but the total distance to travel

increases at most by 2 logn for each of the n MergeStep-operations. This is true, because

the increase in the total distance to travel along the root path results in the telescoping sum

2(r

1

� r

2

) + 2(r

2

� r

3

) + � � �+ 2(r

k�1

� r

k

)

which is bounded by 2 logn. We conclude that the actual merging work is bounded by

O(2m logn+ 2n logn), i.e., O(m logn).

5.3 Processor scheduling

What remains is to divide the O(m logn) work among the available processors on an EREW

PRAM. Assuming that O(

m log n

n

) processors are available, the idea is to simulate the tree

structured pipeline forO(logn) time steps, after which we stop the simulation and inO(logn)

time eliminate the (simulated) terminated processors, and reschedule. By this scheme a

terminated processor is kept alive for only O(logn) time steps, and hence no superuous

work is done. In total the simulation takes linear time.

6 Further applications and discussion

The improved single-source shortest path algorithm immediately gives rise to corresponding

improvements in algorithms in which the single-source shortest path problem occurs as a

subproblem. We mention here the assignment problem, the minimum-cost ow problem,

(for de�nitions see [1]), and the single-source shortest path problem in planar digraphs. As

usual, n and m denote the number of vertices and edges of the input graph, respectively.

Note that the minimum-cost ow problem is P-complete [14] (i.e., it is very unlikely that

it has a very fast parallel solution), while the assignment problem is not known to be in

NC (only an RNC algorithm is known in the special case of unary weights [20, 22], and a

weakly polynomial CRCW PRAM algorithm that runs in O(n

2=3

log

2

n log(nC)) time with

O(n

11=3

log

2

n log(nC)) work [13] in the case of integer edge weights in the range [�C;C]).

The assignment problem can be solved by n calls to Dijkstra's algorithm (see e.g. [1,

Section 12.4]), while the solution of the minimum-cost ow problem is reduced to O(m logn)
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calls to Dijkstra's algorithm (see e.g. [1, Section 10.7]). The best previous (strongly polyno-

mial) algorithms for these problems are given in [11]. They run on an EREW PRAM and

are based on their implementation of Dijkstra's algorithm: the algorithm for the assignment

problem runs in O(n

2

logn) time using O(nm + n

2

logn) work, while the algorithm for the

minimum-cost ow problem runs in O(nm log

2

n) time using O(m

2

logn+ nm log

2

n) work.

Using the implementation of Dijkstra's algorithm presented in this paper, we can speedup

the above results on a CREW PRAM. More speci�cally, we have a parallel algorithm for

the assignment problem that runs in O(n

2

) time using O(nm logn) work, and a parallel al-

gorithm for the minimum-cost ow problem that runs in O(nm logn) time and O(m

2

log

2

n)

work.

Greater parallelism for the single-source shortest path problem in the case of planar

digraphs can be achieved by plugging our implementation of Dijkstra's algorithm (Theo-

rem 3(ii)) into the algorithm of [29] resulting in an algorithm which runs in O(n

2�

+ n

1��

)

time and performs O(n

1+�

) work on an EREW PRAM, for any 0 < � < 1=2. With respect

to work, this gives the best (deterministic) parallel algorithm known for the single-source

shortest path problem in planar digraphs that runs in sublinear time.
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