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Abstract

In this paper we report on results obtained by an implementation of a 2-approximation

algorithm for edge separators in planar graphs [1]. For 374 out of the 435 instances the algorithm

returned the optimum solution. For the remaining instances the solution returned was never

more than 10.6% away from the lower bound on the optimum separator. We also improve the

worst-case running time of the algorithm from O(n

6

) to O(n

5

) and present techniques which

improve the running time signi�cantly in practice.

1 Introduction

Since the seminal work of Lipton and Tarjan [4] �nding small separators in planar graphs has

attracted the attention of theoreticians and practitioners alike. A separator in a graph is a set of

vertices/edges whose removal disconnects the graph into two roughly equal pieces. Finding a small

separator is important because it allows one to use a divide-and-conquer paradigm for solving a

host of problems on graphs [5]; the small size of the separator ensures that the amount of work

done in merging the solutions obtained on the two pieces is small.

Finding a minimum separator in a graph is NP-hard. Leighton and Rao [3] use multicommodity


ow techniques to �nd a separator of cost at most O(logn) times the optimum balanced cut. For

planar graphs it is not known if �nding the minimum separator is NP-hard. Rao [7] showed how

to compute the optimum simple cycle separator in a planar graph (this is a separator which is

a simple cycle in the dual). In a surprising result, Park and Philipps [6] showed that for planar

graphs one can in polynomial time compute a cut which minimizes sparsity (the ratio of the cost

of the cut to the number of vertices on its smaller side).

By picking sparse cuts repeatedly till the number of vertices accumulated is at least n=3 (and at

most 2n=3) one can hope to �nd a small separator. However it is easy to construct examples where

this approach can give a separator of cost logn times the optimum. Garg, Saran and Vazirani [1]

introduced the notion of net-cost (which is just the incremental cost of picking the next set of

vertices) and showed that this together with ideas from [6] and [8] leads to a 2-approximation

algorithm for edge separators in planar graphs.
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While the algorithm in [1] has a very good performance guarantee it has a running time of O(n

6

).

In this paper we reduce the running time to O(n

5

) by introducing a wrap-around technique for

computing net-costs and net-weight. Besides this we introduce a host of other ideas which although

do not improve the worst-case running time beyond O(n

5

) reduce it signi�cantly in practice so that

the empirical running times are more like O(n

4

) with the constant in the O-notation only about

1/80.

We also implement the algorithm and compare the cost of the solution returned to the lower bound

on the optimum cost which is also provided by the algorithm. The implementation is tested on

three di�erent test-sets. The �rst two consist of grid graphs with sizes 10�10 to 30�30 and random

edge costs chosen from the set f1; 2g in the �rst and f1 : : :ng in the second test set, where n is the

number of vertices on one side of the grid. The third set is obtained from EUC 2D instances of

TSPLIB [9] by computing the delaunay diagram of the given points.

In 374 out of 435 tested instances we found the optimum separator and we were never more

than 10.6% away from a lower bound on the optimum separator. For problems with at least 130

vertices, the maximum error was only 2.60%. Such results have been obtained in the past for other

approximation algorithms. For instance, Goemans and Williamson [10] report that the solution

found by their 2-approximation algorithm for matching with triangle inequality was never more

than 4% o� from the optimum for a large set of Euclidean instances. Such results demonstrate that

well-designed approximation algorithms perform really well in practice and their worst case bounds,

which at 2 or log n are not very appealing to the practitioner, are achieved only for pathological

instances which almost never arise in practice. We should point out that in our implementation

of the algorithm in [1] we do not make any heuristic modi�cations to improve the quality of the

solution; all our modi�cations are limited to improving the running time of the algorithm.

The paper is organized as follows: In section 2 we give a brief overview of the algorithm in [1]

introducing the necessary de�nitions and the various components of the algorithm. In section 3,

4 and 5 we discuss our implementation of these basic components viz. computation of transfer

function, dot-cycle and box-cycle respectively. In section 6 we report on the test-sets used and

the results obtained and we conclude in section 7 with a discussion of these results and possible

directions for future work.

2 An Overview of the algorithm

An optimum separator in a planar graph is a set of edge disjoint cycles in the dual graph.

Given a directed simple cycle, C, the side of C that lies on the right in a traversal of this cycle

is the side enclosed by C. Let cost(C) be the total cost of the edges in the cycle C. De�ne the

weight of the cycle C, wt(C) to be the total weight of faces enclosed by C. For wt(C) � n=2,

de�ne the sparsity of C, sparsity(C), as the ratio cost(C)=wt(C). The algorithm in [1], called

Dot-Box Algorithm, �nds a set of directed simple cycles of small total cost and having a total

weight between n=3 and 2n=3.

The Dot-Box Algorithm proceeds in iterations. In the i

th

iteration it has a partial solution

T

i�1

(T

0

= �) which is a set of cycles enclosing less than n=3 faces. This it augments to another

partial solution T

i

by �nding a dot-cycle D

i

, and to a complete solution (a separator), by �nding
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a box-cycle B

i

. Thus in each iteration the algorithm �nds a separator; the solution returned is the

one with minimum cost.

For a directed simple cycle C we denote by T

i�1

[C, the set of faces enclosed by C and the cycles in

T

i�1

. The box-cycle B

i

is a simple cycle of minimum cost satisfying n=3 � wt(T

i�1

[ B

i

) � 2n=3.

Let G

i

be the graph obtained by merging the faces enclosed by each cycle T

i

into a single face. The

trapped cost of a directed simple cycle C in G

i

is the total cost of the cycles of T

i

enclosed by C.

The net-cost of C is then de�ned as

net-cost

i

(C) = cost(C)� trapped-cost

i

(C)

and measures the incremental cost incurred in picking C. The net-weight of C is the additional

number of faces picked and the net-sparsity of C is the ratio of its net-cost to its net-weight. The

dot-cycle D

i

is a simple cycle of minimum net-sparsity satisfying wt(T

i�1

[D

i

) < n=3.

Let k be the �rst iteration at which some cycle of the optimum solution is available as a box-

cycle to the Dot-Box Algorithm. In [1] it is shown that if i < k then cost(T

i�1

) � OPT. For

i = k, cost(B

i

) � OPT. We compare these lower bounds on the optimum value with the solutions

returned by the algorithm.

3 Computing the Transfer Function

Given an assignment of weights to the faces of a planar graph there is a way of de�ning values on

the edges so that for every simple cycle not enclosing the in�nite face the sum of the values of the

edges in the cycle equals the total weight of the faces enclosed by the cycle. For cycles enclosing

the in�nite face this sum is equal to the total weight of the faces enclosed by the cycle minus the

total weight of all faces.

We implement a linear-time procedure for computing the transfer function. We �rst �nd a spanning

tree in the graph and set the transfer function values for all edges in this tree to 0. For every face in

the graph we maintain the number of edges that have not been assigned any value so far; initially

this is just the number of edges that are not part of the spanning tree. Next we go through the

faces till we �nd one that has only one edge unassigned. We compute the transfer function value

for this edge and update the number of unassigned edges on the other face bounded by this edge.

If this number goes down to one then we consider this face next, else we go on to the next face.

The in�nite face is never considered. It is easy to show that we can always �nd a face (besides the

in�nite face) that has only one unassigned edge. The bound on the running time is obtained by

noting that each face is considered at most twice.

4 Computing the Dot-cycle

Let t

i

be the transfer function obtained by assigning faces of G

i

that are cycles in T

i�1

a weight

equal to the cost of the cycle and the remaining faces a weight 0. Let C be a simple cycle not

enclosing the in�nite face. The net-cost of C is then given by cost(C) � t

i

(C). Similarly let w

i

be the transfer function obtained by assigning faces of G

i

a weight 0 and other faces a weight 1;
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w

i

(C) now gives the net-weight of cycle C. By �nding the cycle with minimum net-cost for each

choice of net-weight in the range 0 to n=3� wt(T

i�1

) we can �nd the minimum net-sparsity cycle

satisfying the weight restriction. To consider cycles containing the in�nite face we also look for

cycles with minimum cost(C)� t

i

(C) and w

i

(C) in the range �n+wt(T

i�1

) to �2n=3. In [1] it is

shown that if the cycle obtained by the above minimization is not simple then the box-cycle found

in this iteration has cost at most cost(T

i�1

) so that the separator found in this iteration is within

twice the optimum.

Our extensions. In computing the net-weight of a cycle we sum the transfer function values on the

edges of the cycle modulo (n� wt(T

i�1

)); this limits the net-weight to the range [0. . . (n-wt(T

i�1

)-

1)]. Further, every time we wrap around the right (left) of this weight range we add (subtract)

cost(T

i�1

) to the net-cost of the cycle. We refer to this way of computing net-cost as computing

modulo cost(T

i�1

). A nice aspect of this modi�cation is that now we only need to look for minimum

net-cost cycles for each value of net-weight in the range 0 to n=3 � wt(T

i�1

). Furthermore, the

earlier argument that the \cycle minimizing the net-sparsity is simple or the separator found is

within twice the optimum" continues to hold. As we point out later this way of computing net-cost

and net-weight reduces the running-time for the dot-computation by a factor n.

Our procedure for computing the dot-cycle is similar to the Bellman-Ford algorithm for shortest

paths. At any stage of our procedure we maintain information about the shortest paths found so

far, for each weight value, from a speci�ed starting node s to all the other nodes in the graph. This

is done by having for each node v an array whose i

th

entry is the minimum net-cost s; v path of

net-weight i; the entries in the array for node s would then give us the minimum net-sparsity cycle

containing s.

To update these arrays we need to keep track of those \pieces of information" which could possibly

give us shorter s; v paths. This is done using a FIFO queue of \active information" each item of

which is a 3-tuple of the form (node, net-cost, net-weight); an entry u; c; w in this queue would

mean that node u has a path from s of net-weight w and net-cost c and that this information

has not yet been passed on to the node adjacent to u. The entries in the various arrays and the

queue are updated as follows. Let (u; c; w) be the top of the queue and let node v be adjacent to

u (the following step is repeated for all nodes adjacent to u). The path corresponding to the entry

(u; c; w) when extended to node v would have a net-weight (w + w

i

(e))mod (n � wt(T

i�1

)) and

net-cost (c+cost(e)� t

i

(e))modcost(T

i�1

), where e is the edge u; v. If this net-weight entry in the

array for node v has a higher net-cost then we set it to this new net-cost. Whenever we manage

to update the array for a node v we add a triple to the queue (since this is \active information").

The procedure terminates when the queue becomes empty or we have broadcasted n� 1 times.

The wrap-around idea limits the sizes of the arrays at each node. This saves a factor n in the

running time over that in [1].

5 Computing the box-cycle

Assign a zero weight to all faces enclosed by the cycles in T

i�1

and unit weight to the other faces.

Then the box-cycle is a simple cycle of minimum cost in the dual graph enclosing a total weight of

at least n=3� wt(T

i�1

) and at most 2n=3� wt(T

i�1

). Equivalently, the box-cycle is the optimum

simple cycle b-balanced separator in the dual graph, for b = (n=3� wt(T

i�1

))=(n� wt(T

i�1

)).
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In [8] Rao shows that there is an optimum b-balanced simple cycle separator (b � 1=3), C, such

that shortest paths between all pairs of vertices on C lie completely on one side of C. Assume

that s is a vertex on C and f a face adjacent to v and on the side of C that does not contain the

shortest paths. Compute a shortest path tree, T , rooted at s. Order the edges of T incident at

any node in a clockwise manner starting from the parent edge; for the root node edges are ordered

clockwise starting from the face f . We now perform a depth-�rst-search on T that is consistent

with the above ordering. Every time a node is visited it is assigned a label which is just the time

of the visit; thus a node has as many labels as its degree in T .

Traverse C starting from s and in a direction such that the face f is on the left. There is a way of

picking one label for each vertex (from amongst the labels assigned to it) such that the sequence of

labels obtained by the above traversal is monotonically increasing. Conversely, any path, starting

and ending at s, for which we can obtain a monotonically increasing sequence of labels is a connected

circuit | a simple cycle with \pinched portion" [8].

Our implementation. Let w

i

be the transfer function corresponding to the above assignment of

weights to the faces. We �nd the minimum cost path starting and ending at v for which there is

a monotone increasing sequence of labels and such that w

i

sums to at least n=3 � wt(T

i�1

) and

at most 2n=3 � wt(T

i�1

). From the above discussion it follows that this path corresponds to a

connected circuit of cost at most that of the box-cycle. Since this connected circuit encloses the

right weight we are done.

To compute this path we proceed as in the case of the dot-cycle with one modi�cation. We now

maintain a four-tuple of active information with the fourth entry now being the highest label

encountered by the path so far. Thus if the entry at the top of the queue is (u; c; w; l) then we

update the entries in the array of node v (v adjacent to u) only if v has a higher label than l. After

updating the array we add the information to the queue, the label associated with this 4-tuple is

the smallest label of v larger than l.

We compute the transfer function w

i

with respect to the shortest path tree T and with f as the

in�nite face. Since the tree-paths between vertices on C are completely contained on the side of C

not containing the in�nite face, the transfer function values for all edges encountered in a clockwise

traversal of C are positive. Thus we need not consider edges with negative transfer function values

in the procedure above and so we can restrict the size of the array at each node to 2n=3�wt(T

i�1

).

Furthermore, since edge costs are positive and we are searching for the cycle with minimum cost

we can kill all such active information (ie. not add it to the queue) for which the cost of the path

exceeds an upper bound on the box-cycle cost. When we �nd a cycle with weight in the range

n=3� wt(T

i�1

) : : :2n=3� wt(T

i�1

) we can update the upper-bound.

When the weight of the cycle found is in the range 0 : : :n=3�wt(T

i�1

) we compute the ratio of its

cost and net-weight for use as an upper-bound on the net-sparsity in the dot-cycle computation.

Since this ratio was for a cycle in G and not in G

i

, there is a question whether it really gives us an

upper-bound on the net-sparsity of the dot-cycle. However, the results in [1] show that the cycle

in G with minimum net-sparsity is also a cycle in G

i

. Furthermore, in computing the above ratio

we used cost instead of net-cost and so it is only higher than the net-sparsity of the dot-cycle.

Note that we assumed knowledge of the vertex s and face f . Rao suggests trying for all possible

choices of vertices and the faces adjacent to them; this implies that the above procedure would be

repeated 2m times where m is the number of edges. Signi�cant savings on this count were obtained
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n # instances Running time Inf. broadcast

10 60 21sec. 2:8� 10

6

15 50 5min. 25sec. 51� 10

6

20 40 42min. 0:4� 10

9

23 28 1hr. 57min. 1:1� 10

9

27 13 6hr. 17min. 3:6� 10

9

30 8 13hr. 7:3� 10

9

Table 1: Running times for Grids of size n�n with edge costs from f1; 2g. The running time and information

broadcast are averages. All solutions were optimum.

by using the following procedure for choosing s; f . We �nd a spanning tree in the dual graph

and for each vertex v and edge e incident to v in the tree, we pick one face adjacent to e as the

in�nite face. It is easy to see that one of these (vertex, face) choices would give us a vertex on the

optimum box-cycle and a face which is on the side of the cycle not containing the shortest paths.

This reduces the number of times we have to run the above computationally intensive procedure

from 2m to 2n.

6 Experimental Results

The algorithm was implemented in C++ using LEDA (Library of E�cient Data Types and Algo-

rithms) data types and algorithms. Some of the most computationally intensive parts of the code

were written in C++ (without invoking the LEDA libraries) and this resulted in some savings in

the running time. All experiments were performed on a ULTRA SPARC workstation in a multiuser

environment.

We ran experiments on three classes of graphs: the �rst two sets are n�n grids, the edge costs for

the �rst set are chosen randomly from f1; 2g while that for the second set are chosen randomly from

the range [1 : : :n]. The third set of instances are from the TSPLIB. An instance of the TSPLIB is a

collection of points in the plane. A planar graph is constructed by computing the delaunay diagram

of the point-set and the cost of an edge is just the Euclidean distance between its endpoints. Some

programming e�ort was saved by assuming that the input graph is the dual of the planar graph.

The results obtained are tabulated in Tables 1, 2 and 3.

7 Discussion of Results

For instances where the edge costs are small (1,2) we always get optimum solutions. The amount

of active information generated for this test set also seems to behave more like O(n

3

logn). When

the edge costs are from a larger range | as is the case with grid graphs with edge costs in the

range [1 : : :n] and the TSPLIB instances | the amount of active information generated (and hence

the running time) seem to behave more like O(n

4

); however the constant in the O-notation is only

about 1/80. The quality of the solution for these sets of instances is again surprisingly good with
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n # instances # optimum max. error Running time Inf. broadcast

10 60 45 4.00% 27sec. 3:7� 10

6

15 50 37 1.20% 8min. 20sec. 89� 10

6

20 40 32 1.04% 1hr. 28min. 0:9� 10

9

23 20 15 1.77% 4hr. 27min. 2:9� 10

9

27 13 9 0.93% 15hr. 11� 10

9

30 8 8 - 38hr. 26� 10

9

Table 2: Running times and quality of solution for Grids of size n� n with edge costs from [1 : : :n]. The

running time and information broadcast are averages.

# Instances optimum max. Error

� 70 nodes 2 1 10.6%

70{130 nodes 14 6 4.14%

130{200 nodes 13 8 2.60%

� 200 nodes 16 14 0.88%

Total 45 29 10.6%

Table 3: For TSPLIB instances the quality of solution obtained improves with increasing problem size.
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Figure 1: A plot of the quality of the solution obtained for di�erent problem sizes from TSPLIB.
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Figure 2: A plot of the average active information generated divided by jV j � jEj � jF j for di�erent grid sizes.

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800

Inf. bcast

jV j�jEj�jF j

Problem Size

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3
3

3

3

3

Figure 3: A plot of the average active information generated divided by jV j � jEj � jF j for di�erent TSPLIB

instances.

algorithm �nding the optimum solution in 75% of the grid and 66% of the TSPLIB instances.

One drawback of the algorithm is still the fairly large running time; in spite of all the additional
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techniques we used to reduce running time, we obtained empirical times of �(n

4

). A trade-o�

between the running time and the quality of the solution produced can be achieved by, for instance,

running the dot and box-cycle only from a small set of randomly chosen starting nodes. While this

shall reduce the running time we will not be able to provide any guarantees on the quality of the

solution obtained. Another possible approach that we have not checked yet is to preprocess the

graph in some manner so as to reduce its size.

The algorithm can be parallelized in a rather straightforward manner. The various starting nodes

for the dot and box cycle computations can be distributed evenly among the various processors.

The processors would have to synchronize after every dot and box cycle computation. But within

one of these computations they need to exchange very little information with the other processors;

every time a processor �nds a dot/box cycle of lesser cost/net-sparsity than the current best it

broadcasts this information to the other processors.
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